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ABSTRACT
While market-based systems have long been proposed as so-
lutions for distributed resource allocation, few have been
deployed for production use in real computer systems. To-
wards this end, we present our initial experience using Mi-
rage, a microeconomic resource allocation system based on
a repeated combinatorial auction. Mirage allocates time on
a heavily-used 148-node wireless sensor network testbed. In
particular, we focus on observed strategic user behavior over
a four-month period in which 312,148 node hours were allo-
cated across 11 research projects. Based on these results, we
present a set of key challenges for market-based resource al-
location systems based on repeated combinatorial auctions.
Finally, we propose refinements to the system’s current auc-
tion scheme to mitigate the strategies observed to date and
also comment on some initial steps toward building an ap-
proximately strategyproof repeated combinatorial auction.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Measurement, Design, Economics, Experimentation

Keywords
Strategic Behavior, Resource Allocation, Market-Based Sys-
tems

1. INTRODUCTION
Market-based systems have long been proposed as solu-

tions for resource allocation in distributed systems including
computational Grids [2, 20], wide-area network testbeds [9],
and peer-to-peer systems [17]. Yet, while the theoretical un-
derpinnings of market-based schemes have made significant
strides in recent years, practical integration of market-based
mechanisms into real computer systems and empirical obser-
vations of such systems under real workloads has remained
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an elusive goal. Towards this end, we have designed, imple-
mented, and deployed a microeconomic resource allocation
system called Mirage [3] for scheduling testbed time on a
148-node wireless sensor network (SensorNet) testbed at In-
tel Research. The system, which employs a repeated combi-
natorial auction [5, 14] to schedule allocations, has been in
production use for over four months and has scheduled over
312,148 node hours across 11 research projects to date.

In designing and deploying Mirage, we had three primary
goals. First, we wanted to validate whether a market-based
resource allocation scheme was necessary at all. An eco-
nomic problem only exists when resources are scarce. There-
fore, a key goal was to first measure both resource con-
tention and the range of underlying valuations users place
on the resources during periods of resource scarcity. Sec-
ond, we wanted to observe how users would actually behave
in a market-based environment. Much of economic theory is
predicated on rational user behavior, which forms the basis
for motivating research efforts such as strategyproof mech-
anism design [4, 6, 15, 16, 19]. With Mirage, we wanted to
observe to what extent rationality held and in what ways
users would attempt to strategize and game the system. Fi-
nally, we wanted to identify what other practical problems
would emerge in a deployment of a market based system. In
this paper, we report briefly on our first goal while focusing
primarily on the second. The third is left for future work.

Empirical results based on four months of usage have val-
idated the key motivating factors in using an auction-based
scheme (i.e., significant resource contention and widely vary-
ing valuations) but have also pointed to real-world observa-
tions of strategic user behavior. In deploying Mirage, we
made the early decision to base the system on a repeated
combinatorial auction known not to be strategyproof. That
is, self-interested users could attempt to increase their per-
sonal gain, at the expense of others, by not revealing their
true value to the system. We made this decision mainly be-
cause designing a strategyproof mechanism remains an open,
challenging problem and we wanted to deploy a working sys-
tem and gain experience with real users to address our three
goals in a timely manner. Deploying a non-strategyproof
mechanism also had the benefit of testing rationality and
seeing how and to what extent users would try to game the
system. The key contribution of this paper is an analysis of
such strategic behavior as observed over a four-month time
period and proposed refinements for mitigating such behav-
ior en route to building an approximately strategyproof re-
peated combinatorial auction.

The rest of this paper is organized as follows. In Section 2,



we present an overview of Mirage including high-level obser-
vations on usage over a four-month period. In Section 3, we
examine strategic user behavior, focusing on the four pri-
mary types of strategies employed by users in the system.
Based on these results, Section 4 presents a set of key chal-
lenges for market-based resource allocation systems based
on repeated combinatorial auctions. As a first step in ad-
dressing some of these challenges, we describe refinements
to Mirage’s current auction scheme that mitigate the strate-
gies observed to date and also comment on some initial steps
towards building an approximately strategyproof repeated
combinatorial auction for Mirage. Finally, in Section 5, we
conclude the paper.

2. THE MIRAGE SYSTEM
SensorNet testbeds are a critical tool for developing and

evaluating SensorNet technology in a controlled and instru-
mented environment. As with many large-scale systems,
however, resource management is a key problem given that
it is not economical for users to each build and operate their
own testbed. In Mirage [3], testbed resources are space-
shared and allocated using a repeated combinatorial auction
in a closed virtual currency environment. Users compete for
testbed resources by submitting bids which specify resource
combinations of interest in space/time (e.g., “any 32 MICA2
motes for 8 hours anytime in the next two days”) along with
a maximum value amount the user is willing to pay. A com-
binatorial auction is then periodically run to determine the
winning bids based on supply and demand while maximizing
aggregate utility delivered to users.
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Figure 1: Testbed utilization for 97 MICA2 motes.

In Mirage, resources are allocated using a first-price com-
binatorial auction which clears every hour. In each round
of the auction, a rolling window of future testbed resources
is available for allocation with subsets of that window be-
ing removed from the pool as resources get allocated. In
our initial deployment, we used a 72-hour window and de-
ployed the system on a testbed consisting of 148 nodes (97
MICA2 [1] and 51 MICA2DOT sensor nodes or “motes”).
In each round of the auction, users bid for subsets of re-
sources available in the current window. When the system
is first brought online, a full 148-node × 72-hour window
is available, where each row of the window represents the
availability of a particular node across time, and each col-
umn represents the availability of the testbed for a given
hour. The leftmost column of the window represents node
availability for the hour immediately following the auction;

these node/hours will never again be available for auction.
All other node/hours not allocated at this or previous auc-
tions continue to be offered for sale at subsequent auctions.
In each subsequent round (i.e., every hour), portions of the
current window are allocated as bids are matched to avail-
able resources and a new rightmost 148-node × 1-hour col-
umn of resources rolls in and replaces the leftmost column of
resources which expires. There is no time sharing of nodes:
given limited local computation and communication power,
once a sensor is allocated to a user for a particular time
period, it is unavailable to all other users.

In Mirage, users place combinatorial bids specifying re-
source combinations of interest in space/time along with a
maximum value amount the user is willing to pay. More
specifically, a bid bi = (vi, si, ti, di, fmin, fmax, ni, oki) in-
dicates the user wants any combination of ni motes from
the set oki simultaneously for a duration of di hours (di ∈
{1, 2, . . . , 32}), a start time anywhere between si and ti, and
a radio frequency in the range [fmin, fmax].1 The user also
is willing to pay up to vi units of virtual currency for these
resources. In essence, each bid specifies in a succinct man-
ner what subsets of the resource window would serve as ac-
ceptable resources that meet the user’s constraints and how
important the desired resource allocation is to the user.

We deployed Mirage on December 9, 2004 and the system
has been in continuous production use for over four months.
In the process, its lifetime has overlapped with several pe-
riods of significant resource contention including the SIG-
COMM ’05 and SenSys ’05 conference deadlines. Overall,
the system has 18 research projects registered to use the
system spanning a variety of academic and commercial in-
stitutions. Of these, 11 have actively bid and received time
on the system. As of April 8, 2005, the system has received
322 bids, and allocated 312,148 node hours over the testbed’s
148 nodes.
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Figure 2: Bid value distributions by user.

As a measure of contention, Figure 1 shows the utiliza-
tion of the 97 MICA2 motes over the past four months.
It depicts periods of significant contention extending over
multiple consecutive days, in particular near major dead-
lines.2 To quantify user valuations for resources, Figure 2

1The frequency constraints are used to schedule testbed al-
locations such that allocations co-scheduled in time do not
collide by using the same radio frequency. In practice, dis-
tinct frequencies have not been a scarce resource.
2Results for the 51 MICA2DOT motes are similar and omit-
ted for space.



plots distributions of bid values per node hour for the seven
most active users in the system. This graph shows that
user valuations for testbed resources varied substantially,
spanning over four orders of magnitude. Valuations are also
distributed relatively evenly across each order of magnitude,
suggesting that these ranges are not due to a few anomalous
bids but rather to a wide range of underlying user valuations
for testbed resources. These dual observations—significant
resource contention and a wide range of valuations—support
the use of an auction, which is designed precisely to harness
such widely varying valuations to compute an efficient and
user utility-maximizing node allocation.

Lastly, as another measure of resource contention and the
utility of driving resource allocation via user-specified valu-
ations, Figure 3 plots the median per-node clearing price for
both MICA2 and MICA2DOT motes over time. To compute
these prices, we price an allocated node-hour for a winning
bid with value v for n nodes for k hours as v/nk. Unallocated
node-hours are assigned a price of 0. For a given hour, we
examine all MICA2 motes and plot the median node-hour
price for that hour and do the same for MICA2DOT motes.
Of particular interest in this graph are the sequence of prices
from days 45–60 and days 105–120 (i.e., periods leading up
to conference deadlines). These sequences show that the
value of testbed resources, as measured by market prices for
motes, increases exponentially (logarithmic y-axis) during
times of peak contention. This suggests that allowing users
to express valuations for resources to drive the resource al-
location process is important for making effective use of the
testbed (e.g., to distinguish important use from low prior-
ity activities). However, it also suggests that users become
exponentially desperate to acquire resources as deadlines ap-
proach. As it turns out, it is precisely during these times
that users will try their hardest to game the system and,
therefore, when the efficacy of a market-based mechanism
can be best evaluated.
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Figure 3: Median node-hour market prices.

3. OBSERVED STRATEGIC BEHAVIOR
During the past four months of operation, Mirage has em-

ployed two distinct auction mechanisms and observed four
primary types of strategic behavior from users. The first
auction mechanism, A1, was deployed from December 9,
2004 to March 28, 2005. During this time period, we ob-
served three different types of strategic behavior (S1-S3),
the most recent of which (S3) resulted in significant gaming
of the system. In response to the impact of S3, we deployed

a second mechanism, A2, on March 29, 2005 (Day 111 in
Figures 1 and 3). While A2 mitigated or eliminated the
known shortcomings of A1—in particular the vulnerability
strategy S3 exploited that prompted the change in the first
place—it was soon discovered that A2 remained vulnerable
to another strategy, S4, which was predictably discovered
and exploited by a motivated user community. We are cur-
rently in the process of designing a mechanism to address the
weakness in A2 that is abused by S4. Of course, ideally we
would develop a provably strategyproof mechanism. How-
ever, this remains an open research problem for repeated
combinatorial auctions.

In this section, we describe the two auction mechanisms
A1 and A2, Mirage’s virtual currency policy, the four types
of observed strategic behavior S1–S4, and their impact on
aggregate utility delivered.

3.1 Auctions and virtual currency
Our first auction mechanism, A1 was a first-price, open-

bid (i.e., users can see all outstanding bids from competing
users) combinatorial auction that cleared every hour based
on a greedy algorithm. In each round of auction, the current
set of bids was sorted by value per node hour and bids were
greedily fit into the remaining portion of the current window
of available resources. Like A1, our second auction, A2, was
also based on a greedy clearing algorithm. Its key differences
were that (i) it was a sealed-bid auction and (ii) it allocated
resources over a 148-node × 104-hour window with bid start
times constrained to be within the next 72 hours (the reason
for this will become apparent when we discuss strategy S3).

In both auctions, winning bids from previous auctions
were publicly visible for price feedback and the same vir-
tual currency policy was used. Our virtual currency policy
assigns two numbers to each user’s bank account: a baseline
value and a number of shares. When created, each bank ac-
count is initialized to its baseline value. Once funded, a user
can then begin to bid and acquire testbed resources through
Mirage. In each round of the auction, accounts for winning
bids are debited and the proceeds are redistributed through
a proportional profit-sharing policy based on bank account
share values. The primary purpose of this policy is to re-
ward users who refrain from using the system during times
of peak demand and penalize those who use resources ag-
gressively during periods of scarcity. These rewards result
in transient bursts of credit and are balanced by another
mechanism, a savings tax, to prevent idle users from sitting
on large amounts of excess credit forever (a “use it or lose
it” policy). In our deployment, an administrator set the vir-
tual currency policy. Bank accounts for external users were
assigned baseline and shares value set to 1000, while bank
accounts for internal users (U4 and U5) were assigned larger
allocations with baseline and share values set to 2000.

3.2 Strategic behavior
The following are descriptions of the four primary bidding

strategies observed over the past four-months.
S1: underbidding based on current demand. In A1, all

outstanding bids were publicly visible. Consequently, when
users would observe a lack of demand, some users would bid
correspondingly low amounts rather than their true values.
For example, one user would frequently bid 1 or 2 when no
other bids were present. While underbidding in the absence
of competition is not a problem per se, it does raise two



issues. First, if a seller was collecting revenue for profit,
such bidding leads to suboptimal outcomes for the seller.
Second, should other users enter competing bids before the
auction clears, users will need to refine their bids to allow the
system to compute an allocation that maximizes aggregate
utility. This second problem then leads to strategy S2.

S2: iterative bidding. Because users are allowed to modify
their bids and A1 was an open auction, iteratively refining
one’s bid value in response to other users’ bid values should,
in theory, have no effect on who wins the auction; users
with higher valuations—who may also be underbidding—
should eventually outbid those with lower valuations after
sufficient iteration. The problem is that users do not be-
have this (rational) way. Usability overhead matters: users
in Mirage bid once and perhaps modify their bid a second
time. The end result is that inefficiencies may arise since
the auction may clear with bid values that are understated.
While bidding proxies that automatically adjust user bids in
response to other bids are effective in single-good auctions,
it is unclear how such proxies could be generally effective in
a combinatorial auction without actually implementing the
same clearing algorithm used by Mirage (which could be
computationally expensive). In summary, S1 and S2 both
point toward the need for a strategyproof auction mechanism
in Mirage. In such an auction, a user’s optimal strategy is
always to bid truthfully the first time. Thus, rational users
will never underbid and iterative bidding is unnecessary.

S3: rolling window manipulation. Unlike auctions for tan-
gible goods, resource allocation in computer systems funda-
mentally involves time, since sharing of resources implies
that a resource cannot be assigned to a given user/process
forever. In Mirage, we addressed the issue of time by sell-
ing resources over a rolling window 72 hours into the future
with users able to bid for blocks 1, 2, . . . , or 32 hours in
length. What we did not anticipate, however, was what
would happen when the entire window of resources becomes
fully allocated. In this scenario, which was the norm near
the recent SenSys ’05 deadline, the entire 148-node × 72-
hour window is allocated. A user bidding for, say, 32 hours
thus needs to minimally wait 32 hours for 32 new 148-node
× 1-hour columns of resources to become available.

The problem here is that a user can game the system
by observing other bids and simply requesting fewer hours.
Since 16 columns will roll into the resource window before
32 columns, a user bidding for 16 hours outbids a 32-hour
bid independent of each bid’s value because resources for the
32-hour bid are not available when the auction clears. Of
course, if other users also begin bidding for 16 hours, this
opportunity disappears but then moves to durations shorter
than 16 hours. In the limit, all users bid for 1-hour blocks,
thereby eliminating the possibility of obtaining longer re-
source allocations which may be critical to the underlying
SensorNet experiment. In practice, we observed this type of
gaming push winning bid durations down to 2 hours.

With rampant gaming of the system occurring through
S3, we responded by implementing and deploying auction
A2. As mentioned, a key difference of A2 compared to A1 is
that it allocates resources over a 104-hour window with bid
start times constrained to be within the next 72 hours. In
expanding the window and expanding (while still constrain-
ing) the range of start times, A2 eliminates strategy S3.
When the entire 148-node × 72-hour window is allocated,
a pending 16-hour bid and a pending 32-hour bid will both

Time Project Value Nodes Hours

04-02-2005 03:58:04 U2 1590 97 32

04-02-2005 05:05:45 U1 5 24 4

04-02-2005 05:28:23 U1 130 40 4

04-02-2005 06:12:12 U1 1 33 4

Table 1: Strategy S4 on 97 MICA2 motes.

have their first opportunity for an allocation when 32 new
columns become available. At that point, both the 16-hour
bid and the 32-hour bid will have an opportunity to obtain
an allocation. Such allocations are then determined by the
usual greedy clearing algorithm.

S4: auction sandwich attack. While A2 eliminated S3 and
significantly reduced S1 and S2, it still retained a weakness
of A1 that had yet to be discovered and exploited. In the
auction sandwich attack, a user exploits two pieces of infor-
mation: (i) historical information on previous winning bids
to estimate the current workload and (ii) the greedy nature
of the auction clearing algorithm. In this particular case,
a user employs a strategy of splitting a bid for 97 MICA2
motes across several bids, only one of which has a high value
per node hour. Since the high value bid is likely to win due
to the greedy nature of the auction clearing algorithm and
since all other users at the time were all requesting 97 motes
(based on the historical information and the fact that the
SenSys ’05 deadline was imminent requiring experiments at
scale), no other bids could backfill the remaining slots; the
user’s remaining bids would then fit those slots at a low
price. An actual occurrence is shown in Table 1. Here, user
U1 uses three bids, the main one being a bid with value
130 (value per node hour 130/(4 · 40) = 0.813) which is
used to outbid a bid with value 1590 (value per node hour
1590/(32 · 97) = 0.0512). Once the high valued 40-node bid
has occupied its portion of the resource window, no other
97-node bids can be matched. Consequently, the user back-
fills on the remaining 57 nodes using two bids: a 24-node
bid and a 33-node bid, both at low valuations.

4. CHALLENGES AND REFINEMENTS
Designing an appropriate auction mechanism is key to ad-

dressing the above strategies. Specifically, our goals for such
a mechanism include: (i) strategyproofness, (ii) computa-
tional tractability, and (iii) optimal allocation. The Gener-
alized Vickrey Auction (GVA) [8, 18] is the only known com-
binatorial mechanism that provides both strategyproofness
and optimal allocation. However, it also is computation-
ally intractable as it is NP-hard to calculate the allocations
as well as individual payments. Other VCG-based mecha-
nisms exist that replace the allocation algorithms in GVA
with approximate ones to provide tractability. In this case,
however, strategyproofness is no longer available [16]. These
goals are in conflict for VCG and in general [10]. We thus
must make certain trade-offs.

With this in mind, we now present a two-phase roadmap
for improving Mirage: (i) short-term improvements to the
current mechanism that mitigate the effects of existing strate-
gies; and (ii) designing a new mechanism that approximately
achieves our three goals simultaneously.

4.1 Ongoing improvements
Our first improvement is a mixed-integer programming



(MIP) formulation as an alternative to the greedy algorithm.
This is aimed directly at eliminating strategy S4. While
the MIP does not provide strategyproofness, it is able to
compute approximately-optimal allocations. Like the GVA,
however, the MIP is computationally demanding and thus
careful formulation of the MIP and optimizations based on
the observed workloads from Mirage will be required to en-
sure timely clearing of the auction. Our first step is to test
and optimize our MIP-based algorithm on auction data from
the past four months. We can then run both the MIP along-
side the greedy algorithm in parallel and select the higher
quality result each time the auction clears.

Second, we can also augment the auction with additional
rules and fees to further mitigate strategic behavior. To
eliminate S4, two possibilities are to restrict each user to
having either one outstanding bid at a time or to mandate
that users are not allowed to have multiple overlapping al-
locations in time. To mitigate S1 and S2, we could add
transaction fees. With such fees in place, a user who under-
states a bid and intends to iteratively refine it will have a
disincentive to do so given that each iteration incurs a fee.
Finally, another approach to eliminating S4 is to modify
the greedy algorithm such that if users do have bids whose
allocations could overlap in time, then those potential allo-
cations are considered from lowest to highest value per node
hour. In effect, this allows bids for overlapping allocations
but creates a disincentive for users to place such bids.

4.2 Towards a strategyproof mechanism
Clearly, we need to evaluate our goals and identify where

we can make trade-offs in designing a new mechanism. Com-
putational tractability is a fundamental requirement for op-
erational reasons. Strategyproofness or, minimally, making
the system hard to manipulate is also key given the behavior
we have observed. Finally, our mechanism should compute
near-optimal allocations given our compute time budget.

Among the potential mechanisms we can extend, the LOS
scheme [12] seems to be a good starting point. It is a fast al-
gorithm as the allocation rule is a greedy mechanism, rank-
ing bids with some “norm” such as value per node hour.
The advantage of LOS is its special payment scheme that is
tightly linked to the greedy allocation. Essentially, a winner
i pays the “norm” of the first bidder denied access times the
amount of units (i.e. node hours) that i won. This feature
makes it strategyproof. The main downside, however, is that
it assumes users are single-minded, meaning that each bid-
der only cares about a specific set of goods (e.g., a specific
list of nodes for specific durations) and they do not value
anything else. Unfortunately, this is highly restrictive and
contradicts what Mirage currently offers its users, namely
the ability to select any subset of nodes for any slots and
submit multiple bids. Thus, LOS is vulnerable to S4 and to
avoid it we must find a way to extend LOS and its strate-
gyproof property to satisfy complex-bidders.

Realistically, even with a strategyproof LOS scheme for
complex bidders there will likely be further strategies we
have yet to encounter and that we should consider in our
design. For instance, our discussion so far focuses on strat-
egyproofness within a single auction. Across auctions, how-
ever, there may be temporal strategies that are possible. For
example, in a particular auction, suppose the highest bidder
wants all nodes and pays, using GVA payment scheme for
simplicity, the next bidder’s value. This same bidder may

be better off by waiting until the next auction, if the user
can still win and face bidders that have even lower values.
In this case, the user will gain additional utility due to a
lower payment. This, however, may create various problems
as total revenue, total value, as well as allocative efficiency
across the auctions may be adversely affected.

There are two techniques we can use to address tempo-
ral strategies. The first is a “wrapper” scheme such as the
one employed by Virtual Worlds (VW) [13] that makes se-
quences of individually strategyproof auctions (e.g., LOS)
strategyproof. What VW does is, after bidder i wins, it
tracks what would have happened if i had submitted in a
subsequent auction instead. Specifically, it tracks what i
would have paid in all following auctions during i’s patience
(i.e., the maximum time i is willing to wait for an alloca-
tion) and keeps track of the lowest possible payment. i will
instead be charged the lowest payment and will thus have
no incentive to temporally game the system. Alternatively,
the new class of online mechanisms[7, 11] assumes dynamic
arrival and departure of bidders and does not hold auctions
at fixed intervals. Instead, the mechanism is a continuous
scheme that accepts bids as they arrive and makes allocation
decisions immediately, thus removing any need to “clear”
auctions. The challenge is that the current literature is still
restricted to non-combinatorial settings.

5. CONCLUSION
Despite initially using a repeated combinatorial auction

known not to be strategyproof, Mirage has shown significant
promise as a vehicle for SensorNet testbed allocation. The
dual observations of significant resource contention and a
wide range of valuations suggest that auction-based schemes
can deliver large improvements in aggregate utility when
compared to traditional approaches such as proportional
share allocation or batch scheduling. Fully realizing these
gains, however, requires addressing key problems in strate-
gyproof mechanism design and combinatorial optimization.
The temporal nature of computational resources and the
combinatorial resource demands of distributed applications
adds an additional layer of complexity. Nevertheless, we re-
main optimistic and believe that a pragmatic mix of theory
and practice combined with iterative improvements on real
deployments provides one promising avenue toward bringing
market-based resource allocation into the mainstream.
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