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Abstract

We provide an overview of more than two decades of
work, mostly in AI, that studies computational complex-
ity as a barrier against manipulation in elections.

Introduction
It was a late evening in Bitotia. The next day was go-
ing to be a big day: Citizens of Bitotia would once and
for all establish which byte order was better, big-endian
(B) or little-endian (L). Little Bit Timmy was a big sup-
porter of little endian because that would give him the
best position in the word. However, the population was
split quite evenly betweenL andB, with a small minor-
ity of Bits who still remembered the single tape Turing
machine and preferred unary encoding (U ), without any
of this endianness business. Nonetheless, about half of
the Bits preferred big-endian (B > L > U ), and about
half were the other way round (L > B > U ). The vot-
ing rule was simple enough: You gave2 points to your
top choice,1 point to your second-best, and0 points to
the worst. As Timmy was about to fall asleep, a sudden
realization struck him: Why voteL > B > U and give
the point toB, whenU is not winning anyway? Imme-
diately, Timmy knew: He would voteL > U > B!

The next day brought some of the most sensational
news in the whole history of Bitotia: Unary system had
won! There were 104 votesL > U > B, 98 votes
B > U > L, and 7 votesU > B > L (Bitotia is a sur-
prisingly small country.)U had won with216 points,
while B had 203 and L had 208. Apparently, Timmy
was not the only one who found the trick. Naturally,
Bitotians wanted to find out if they could avoid such sit-
uations in the future, but... since they have to use unary
now, we will have to help them!
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The above story is an illustration of what we callelec-
tion manipulation. A manipulative voter decides to cast
a vote that is different from his true preferences in order
to obtain a more desirable outcome. If every supporter
of L votedL > B > U (104 votes) and every supporter
of B votedB > L > U (98 votes), and the remaining
7 votes wereU > B > L, thenB would have won
(see Figure 1). However, if Timmy were the only one to
submit a manipulative vote, thenL andB would tie for
victory (and if only several more supporters ofL would
cast manipulative votes,L would have won). Yet, one
of the dangers of manipulation is that voting rules are
designed to aggregate votes accurately and if many vot-
ers attempt manipulation, the result of the election can
be skewed quite significantly. In our case, the clearly
least favorable option,U , ended up winning.1

(a) Before the manipulation.

(b) After the manipulation.

Figure 1: The election in Bitotia.

1We should point out that our example is very much
in spirit of safe manipulation, introduced by Slinko and
White (2008).



Of course, part of the Bitotians’ problem was that
they chose an election rule—called Borda count—that
seems particularly vulnerable to manipulation: It is very
tempting to rank the most preferred candidate first and
to rank his strongest competitor last, even if we think
that the competitor is not so bad after all. They should
have known better and should have picked a better vot-
ing rule! The only glitch is that there are no better
voting rules: The classic result of Gibbard (1973) and
Satterthwaite (1975) says that every reasonable2 voting
rule for three candidates or more sometimes creates in-
centives for voters to attempt manipulation.

The danger of manipulation is quite clear in human
elections, but recently voting manipulation has also en-
dangered the world of artificial intelligence and com-
puter science. The reason is that virtual elections have
become a standard tool in preference aggregation. The
idea of employing voting in AI originates from the
work of Ephrati and Rosenschein (1991) where elec-
tions were used to solve planning problems in multia-
gent systems (very briefly, the agents can vote on the
next step of the plan, without revealing too much of
their internal goals and desires). Another very promi-
nent application was the web metasearch engine devel-
oped by Dwork et al. (2001). The engine treated other
search engines as voters and the web pages as candi-
dates in a virtual election. At the intersection of the
worlds of computer science and human societies, vot-
ing mechanisms were used, e.g., to build recommender
systems (Ghosh et al. 1999), for collaborative filter-
ing (Pennock, Horvitz, and Giles 2000), or even to plan
the development of computer systems (see the Debian
project, which uses a rather advanced voting method).

The threat of manipulation is particularly relevant
in the context of multiagent systems: Software agents
have all the patience and computing power necessary to
perform complicated analysis of elections and provide
optimal manipulative votes. Additionally, they are not
bound by moral obligation to act honestly as in multia-
gent systems their goal is to maximize their own utility
(or, their owner’s utility).

Manipulation is one of very many types of attack on
elections. For example, in transferable utility settings,
an agent may offer payments to those voters that change
their votes to his liking (bribery). An agent that con-
trols the process of voting might attempt tricks such as
adding spoiler candidates (to split the votes of competi-
tors; for example, in the U.S. 2000 presidential race it is
often believed that if Ralph Nader did not participate, Al

2“Reasonable” has a very natural, formal meaning here:
For the Gibbard-Satterthwaite theorem the rule is reasonable
if it is not dictatorial (that is, there is no special voter who
chooses the winner on his own) and each candidate has a
chance of winning (that is, for each candidate there is a set
of votes that elect him or her). Indeed, each practically useful
voting rule satisfies these conditions.

Gore would have beat George Bush), or make it difficult
for some agents to cast votes. Attempts to change the re-
sult of an election via adding/deleting candidates/voters
are calledelection control. Software agents can sys-
tematically plan attacks on elections using each of these
types of actions (as well as many other types).

Is there any way in which we can protect elections
from these attacks? Quite surprisingly, in the late
80s and early 90s, Bartholdi, Tovey, and Trick (1989;
1992) and Bartholdi and Orlin (1991) answered:Yes!
Even though manipulative actions are possible in prin-
ciple, we can prevent them in practice!They observed
that even though elections are vulnerable to most types
of attack, a given attack can be carried out only if it
can be computed effectively. What does it mean? For
example, let us consider some voting ruleR and the
problem of manipulation (strategic voting). Bartholdi,
Orlin, Tovey, and Trick said that if given the votes of all
remaining voters it is stillNP-hard to compute a ma-
nipulative vote, then we can rest assured thatR is com-
putationallyresistant to manipulation. Even if someone
wanted to manipulate elections where ruleR is used,
short of randomly guessing the correct vote, this person
would never succeed in time! Naturally, this idea of a
computational barrier to manipulative behavior extends
to bribery and control and to all other types of attack.

Many researchers have pursued the direction pio-
neered by Bartholdi, Orlin, Tovey, and Trick, studying
the computational complexity of manipulation, control,
and bribery in elections, obtaining results for a great
number of voting rules in very varied settings; we will
survey some of these results in the sequel. However, re-
cently the computational barrier approach has also been
criticized.

The most controversial part of the approach is that
it relies on NP-hardness as a measure of computa-
tional difficulty. The issue is thatNP-hardness is a
worst-case notion and the fact that a problem isNP-
hard simply means that it hassomedifficult instances
and not that necessarily the ones typically occurring in
practice are hard to solve. For example, let us con-
sider the PARTITION problem, where we are given a se-
quences1, . . . , sn of nonnegative integers and we ask
if there is a subset of them that sums up to1

2

∑n

i=1
si.

Even though the problem isNP-hard (and, in fact,NP-
complete), we can solve it in polynomial time if the
valuess1, . . . , sn are sufficiently small (specifically, we
can solve PARTITION in polynomial time with respect
to n and max{s1, . . . , sn}). We can also effectively
compute arbitrarily-close-to-correct approximate solu-
tions to an optimization variant of the problem, where
we ask for a subset whose sum is at most1

2

∑n

i=1
si but

as close to it as possible (though, of course, the better
the approximation the longer the running time). From
the practical perspective, in a large majority of settings
PARTITION is easy to solve. The worry regarding com-
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putational barrier approach is that, perhaps, theoreti-
cally hard manipulation problems are also practically
easy to solve.

The main purpose of this paper is to present the re-
sults regarding manipulation in voting, both challenging
the worst-case computational barrier approach and de-
veloping its theory. We believe that considering both
types of results leads to a significantly better under-
standing of computational aspects of voting.

Elections
Let us now define our election model and describe sev-
eral voting rules that we focus on in this paper.

Formally, an electionE = (C, V ) consists of a set of
candidates (or alternatives) denotedC = {c1, . . . , cm}
and a sequence of votersV = (v1, . . . , vn). Each voter
vi has some preferences regarding the candidates. For
example, ifC = {a, b, c} andv1 thinks thata is the
best candidate,c is second, andb is the worst, we say
thatv1’s preference order isa > c > b. There are also
other means to express preference. For example, in ap-
proval voting agents simply indicate which candidates
they approve of, and in range voting they assign numer-
ical scores to candidates proportionally to the level of
support. Nonetheless, preference orders are the stan-
dard model. We identify voters’ preference orders with
their votes.

Given the votes, a voting rule says which candidates
are winners. Partially due to the Gibbard-Satterthwiate
theorem, and partially due to the famous result of Ar-
row (1951),3 there are remarkably many voting proce-
dures, and new ones are still being developed (for ex-
ample, Schulze method (2003), a very popular voting
system used, e.g., by Wikimedia, has been developed in
the late 90s). In this paper we will look just at several
typical examples.

Perhaps the simplest and the most popular one is the
Plurality rule: In Plurality we simply give each candi-
date one point for each vote that ranks him first, and
we declare as winners those candidates that have most
points. Note that wedoallow multiple winners. In prac-
tice, elections involve various tie-breaking rules, but
here (and typically in the CS literature) we disregard
such complications, and instead use one of the follow-
ing models. In theunique-winner model, a candidate
has to be the unique winner to claim victory in the elec-
tion, and in thenonunique-winner modelit suffices that
the candidate is one of the winners.

Plurality rule is the simplest member of a class of
election systems called(positional) scoring rules. A

3Arrow’s impossibility theorem gives several very natural
requirements that an intuitively good voting rule should sat-
isfy and shows that there areno voting rules that satisfy all
of them. As a result, what voting rule is best depends on the
setting and hence there are multiple different ones to choose
from.

scoring rule form candidates is defined by a vector
α = (α1, . . . , αm) of nonnegative integers such that
α1 ≥ · · · ≥ αm. A candidate receivesαj points for
each vote that ranks him on thejth position; the win-
ners are those candidates who get most points. It is easy
to see that Plurality is defined via a family of scoring
rules(1, 0, . . . , 0), with one vector for each number of
candidates. Similarly, Borda count—the rule used by
Bitotians—is defined via a family of scoring vectors of
the form(m− 1,m− 2, . . . , 0). A scoring rule is used,
e.g., for the elections of the best song in the Eurovision
song contest.

Copeland’s rule presents a very different perspective
on choosing a winner. Leta andb be two candidates
in an electionE. We say thata wins a head-to-head
contest withb if the majority of voters prefersa to b.
In Copeland’s rule a candidate receives one point for
each candidate that he defeats in a head-to-head contest,
and half a point for each candidate with whom he ties.
That is, Copeland’s rule views the process of electing
the winner as a round-robin tournament, with1 point
for victory, 1

2
point for a tie, and0 points for losing.

The candidates with most points are winners. Some-
times, instead of using half-points for a tie, a different
valueα ∈ [0, 1] is used, and the voting rule is denoted
Copelandα (Faliszewski et al. 2009b) (though, we men-
tion that some papers also use the term Copeland for
what we would call Copeland0).

Manipulation and Related Problems
To formally study computational properties of manipu-
lation we have to define it as a decision problem. We
will do so in this section, discussing several variants of
the definition and several related problems.

Let R be a voting rule. Intuitively, in theR-
MANIPULATION problem we are given an election
where some of the voters have fixed votes (preference
orders) and some voters—the manipulators—are trying
to choose their votes so that their preferred candidatep
becomes a winner. The manipulators are working to-
gether, i.e., they form a coalition, and we assume that
they can perfectly coordinate their actions. We also as-
sume that they have perfect knowledge regarding the
remaining votes. These assumptions stem from the fact
that we are interested in hardness of manipulation in a
setting that is most favorable for the manipulators. If
the manipulation is hard there then certainly it must
be hard in more realistic settings.4 Formally, we have
the following definition (based on that from (Bartholdi,
Tovey, and Trick 1989) and (Conitzer, Sandholm, and
Lang 2007)).

Definition 1. Let R be a voting rule. In R-
MANIPULATION we are given an electionE = (C, V +

4One should be careful here: In a less favorable setting the
goals of the manipulators might also be less demanding.
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W ), where voters inV have fixed preference orders and
the preference orders of voters inW remain to be set,
and a designated candidatep ∈ C; we ask if there is a
way to set the votes inW so thatp is a winner.

Originally, Bartholdi, Tovey, and Trick (1989) con-
sideredsingle-votermanipulation instances only, that
is, those where the collectionW contains exactly
one voter. The definition presented here—adapted
from (Conitzer, Sandholm, and Lang 2007)—regards
coalitional manipulation. In fact, Conitzer, Sandholm,
and Lang introduced one more important twist to the
definition: They allowed voters to be weighted. InR-
WEIGHTED-MANIPULATION each voterv (manipula-
tor or not) has aweightwv and his vote counts aswv

votes. Weighted elections are very natural. For exam-
ple, within a company, the votes of shareholders are
weighted by the amount of shares they hold, the U.S.
electoral college is weighted, and so are countries vot-
ing within European Union.

Finally, a different variant of the manipulation prob-
lem was studied by Meir et al. (2008), who considered
multiwinner elections (such as, e.g., elections for as-
semblies or parliaments).

Manipulation captures situations where a group of
voters, the coalition, decides to collude in order to ob-
tain a better outcome for itself. On the other hand, in
bribery there is a single agent who wishes to change
the outcome of the election and offers payments to vot-
ers for changing the preference orders to his liking.
The computational study of bribery was initiated by
Faliszewski, Hemaspaandra, and Hemaspaandra (2009)
who, in particular, introduced and studied the following
problem.

Definition 2. LetR be a voting rule. In theR-BRIBERY
problem we are given an electionE = (C, V ), a desig-
nated candidatep ∈ C, and a natural numberB. We
ask if it is possible to ensure thatp is anR-winner ofE
via changing the votes of at mostB voters.

As in the case of manipulation, we can consider
the weighted variant of the problem,R-WEIGHTED-
BRIBERY. However, in the case of bribery, perhaps a
different twist of the definition is more interesting. In
R-BRIBERY, effectively, each voter has the same unit
cost: We only care about bribing as few voters as pos-
sible. However, in many settings, the voters might have
different prices, depending, e.g., on how much a par-
ticular voter cares about the result of the election or on
the nature of the bribery. To model the first possibility,
Faliszewski, Hemaspaandra, and Hemaspaandra (2009)
introducedR-$BRIBERY where each voterv has a price
πv for changing his vote (after we payv theπv units, we
obtain full control overv’s vote). To deal with the lat-
ter option, Elkind, Faliszewski, and Slinko (2009) intro-
ducedR-SWAP-BRIBERY. In swap bribery each voter
v has a cost functionπv such that for each two candi-

datec, c′, πv(c, c′) is the cost of swappingc andc′ on
v’s preference list (providedc andc′ are ranked next to
each other). For example, a voter might be willing to
swap his two least favorite candidates at a small cost,
but would never—irrespective of the payment—change
the top-ranked candidate. The goal of the briber is to
find a sequence of adjacent swaps that lead to his or her
preferred candidate’s victory, and that has lowest cost.

The priced variants of the bribery problem can also
be considered in the weighted setting. However, essen-
tially, all such problems areNP-complete as this is true
even with respect to Plurality-WEIGHTED-$BRIBERY.

We will not survey results regarding bribery in this
paper and we point the reader to particular research ar-
ticles. However, the general intuition is that bribery
appears to be computationally harder than manipula-
tion. This intuition is based on the results fornatural
systems studied so far. However, there is an artificial
election system for which manipulation isNP-complete
but bribery is inP (Faliszewski, Hemaspaandra, and
Hemaspaandra 2009).

There is one more problem that is quite related to
manipulation and bribery, namely thePossible-Winner
problem introduced by Konczak and Lang (2005) and
further studied by, e.g., (Xia and Conitzer 2008a; Walsh
2007; Pini et al. 2007; Betzler, Hemmann, and Nie-
dermeier 2009). Let us fix a voting ruleR. In R-
POSSIBLE-WINNER we are given an electionE =
(C, V ) where the preference orders are possibly partial
(a partial order is, simply, a reflexive, transitive, anti-
symmetric relation). The question is: Given a candi-
datep, is it possible to extend the preference orders to
complete linear orders so thatp is a winner? The pos-
sible winner problem models a situation where we have
some partial information about the votes and we want
to find out who still has a chance of winning. Similarly,
in theR-NECESSARY-WINNER problem—also defined
in (Konczak and Lang 2005)—we ask if a given candi-
date is a winner irrespective of how the votes are com-
pleted.

Formally, manipulation is a special case of the pos-
sible winner problem, where the nonmanipulators have
fully specified preference orders and the manipulators
have completely unspecified ones. In fact, quite a few
problems mentioned above are special cases of each
other. For exampleR-MANIPULATION is a special case
of R-$BRIBERY (we can view the manipulation prob-
lem as a bribery problem where the prices of manipula-
tors are very low, the prices of nonmanipulators are very
high, and our budget allows us to buy the votes of all the
manipulators, but none of the nonmanipulators). It is
somewhat less trivial to see thatR-POSSIBLE-WINNER
is a special case ofR-SWAP-BRIBERY. We present the
“is a special case of” relations between problems in Fig-
ure 2. These relations are important as computational
hardness of a special case implies hardness of the more
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Figure 2: Diagram of “is a special case of” relation for
manipulation-related problems (R is a voting rule). An
arrow points from a problem that is a special case to the
problem that generalizes it. The same diagram is true
for the weighted variants of the problems.

general problem, and easiness of the more general prob-
lem implies easiness of its special cases. For pairs of
problems in Figure 2 for which we do not indicate “is a
special case of” relation, either such a relation does not
hold or is not known to hold. (Figure 2 presents results
from (Faliszewski, Hemaspaandra, and Hemaspaandra
2009; Elkind, Faliszewski, and Slinko 2009).)

As a final remark, we mention that researchers often
consider destructive variants of the problems we have
presented here, where the goal is to ensure that some
candidate does not win. However, in this paper we fo-
cus on the constructive cases only (as presented in the
definitions in this section).

Hardness of Manipulation
With all the necessary background, we can finally move
on to the discussion of computational aspects of manip-
ulation. In sync with history, we start with the single-
manipulator variant of the problem.

Bartholdi, Tovey, and Trick wanted to show hardness
of manipulation, but their first result was, in fact, that
for a large class of voting rules, including all scoring
rules and Copeland, single-voter manipulation is easy.
The manipulator has to execute the following natural
steps:

Initialization: Place the preferred candidatep in the
first position in the vote.

Loop: If there are no more unprocessed candidates, we
have found a successful manipulative vote. Other-
wise, test if there is a not-yet-placed candidatec such
that puttingc in the next free position in the vote does
not preventp from being a winner. If there is such a

c, place him in the vote. Otherwise, signal that ma-
nipulation is impossible. Repeat.

It is quite easy to see that this algorithm works both
for Copeland and for each scoring rule. Placingp in
the first position in the vote completely determinesp’s
score, and the order in which we fill in positions in
the vote (from the most preferred to the least preferred)
guarantees that each time we place a new candidate we
can also determine his final score.

Given the naturalness and simplicity of the above al-
gorithm, it is in fact quite remarkable that Bartholdi,
Tovey, and Trick (1989) and Bartholdi and Orlin (1991)
have actually found voting rules for which single-voter
manipulation is NP-hard. These rules are, respectively,
second-order Copeland (a variant of the Copeland rule
with an elaborate tie-breaking) and a variant of single
transferable vote (STV). Very briefly speaking, STV
works as follows: If there is a single candidate, he is
the winner; otherwise find a candidate that is ranked
first the least number of times, remove him from the
votes, and repeat. STV is quite vulnerable to internal
tie-resolutions (that is, the order in which candidates
with the same number of first-place votes are removed).
In fact, a recent result shows that for a certain natural
tie-breaking rule even determining the winners in STV
can becomeNP-complete (Conitzer, Rognlie, and Xia
2009).

Second-order Copeland and STV were the first rules
for which computational resistance to manipulation was
obtained. In fact, to date, only one more natural voting
rule—called Ranked Pairs—is known to posses such re-
sistance to single-voter manipulation (Xia et al. 2009).
However, Conitzer and Sandholm (2003) showed how
adding a preround can make single-voter manipulation
computationally hard, and Elkind and Lipmaa (2005a)
achieved the same by building hybrid election systems,
in a way resembling STV.

The early results of Bartholdi, Orlin, Tovey, and
Trick (almost) exhaust the research regarding single
voter manipulation; their greedy algorithm is indeed
very powerful. Let us, thus, turn to coalitional ma-
nipulation. There are two main flavors of the prob-
lem: weighted and unweighted. Historically, weighted
manipulation has been studied earlier (and much more
thoroughly) so let us consider it first.

Weighted manipulation was introduced by Conitzer,
Sandholm, and Lang (2007) who observed that in real
life elections (that is, in elections we encounter in hu-
man societies) typically there are very few candidates.
They have pointed out that if the number of candi-
dates is a small constant then (unweighted) manipula-
tion immediately becomes easy—one can, essentially,
brute-force through all possible combinations of votes
(if there arem candidates andn manipulators then there
are at most(n+1)m! different combinations of manipu-
lative votes—assuming the order of votes is irrelevant—
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and if m is a small constant then, at least in princi-
ple, we can look at each set of votes for the manip-
ulators). However, in weighted elections the brute-
force approach does not work anymore. Even if there
are very few candidates, it is not sufficient to know
how many votes of each type there are, but it is crit-
ical to know which voters have which preference or-
ders. Thus, Conitzer Sandholm, and Lang (2007) set
out to determine the complexity of weighted manipula-
tion for a number of voting rules (they have considered
nearly a dozen rules including Plurality, Veto, Borda,
Copeland). In fact, not only have they done that, but
also for each rule they have established the exact num-
ber of candidates that need to participate in the elec-
tion for the weighted manipulation problem to beNP-
complete. It turned out that for most rules, as soon as
we have at least3 or 4 candidates, weighed manipula-
tion becomesNP-complete. However, there are some
quite interesting rules (e.g., so-calledrandomized cup)
for which weighted manipulation is inP for up to 6 can-
didates and then—suddenly—becomesNP-complete if
there are7 candidates or more.

Perhaps the most beautiful result regarding the com-
plexity of weighted manipulation is the dichotomy
theorem of Hemaspaandra and Hemaspaandra (2007),
which classifies the complexity of weighted manipu-
lation in scoring rules: Given a scoring ruleα =
(α1, . . . , αm), weighted manipulation isNP-complete
if α satisfies thediversity of dislikecondition, that
is {α2, . . . , αm} contains at least two values. Other-
wise, weighted manipulation is inP. The proof of
Hemaspaandra and Hemaspaandra relies on the fact
that the voters’ votes are not restricted in any way;
any voter can cast any possible vote. However, if one
does restrict possible votes—e.g., via assuming that the
electorate is single-peaked—then the dichotomy con-
dition changes. Recently, Faliszewski et al. (2009a),
showed a variant of the dichotomy for scoring proto-
cols with 3 candidates for single-peaked electorates.
Study of manipulation under single-peaked electorates,
initiated by Walsh (2007), is a very interesting direc-
tion of research as single-peaked preferences often arise
in practice. (Single-peaked preferences, introduced by
Black (1958), model situations where voters judge can-
didates based on their view on a single issue such as,
e.g., level of taxation.)

Compared to weighted coalitional manipulation, sur-
prisingly little is known about the unweighted case.
There is only a handful of voting rules for which the
complexity of unweighted coalitional manipulation has
been determined. Zuckerman, Procaccia and Rosen-
schein (2009) showed that the problem is easy for Veto
and for a voting rule called Plurality with runoff, Fal-
iszewski, Hemaspaandra, and Schnoor (2008; 2010)
showed hardness for Copelandα (for α ∈ [0, 1]−{0.5}),
and Xia et al. (2009) showed hardness for Maximin and

Ranked Pairs, and easiness for Bucklin. It is quite in-
teresting that for all of these rules for which coalitional
manipulation is hard—but single voter manipulation is
easy—it suffices that we have exactlytwomanipulators
to reach hardness. That is, even the need to coordinate
such a small coalition is enough to boost the complexity
of these problem toNP-completeness.

Some earlier results regarding unweighted manip-
ulation include those of Elkind and Lipmaa (2005b)
(they used one-way functions to tweak voting rules so
that the resulting rules are computationally resistant to
unweighted manipulation) and of Conitzer, Sandholm,
and Lang (2007), who analyzed connections between
weighted manipulation and unweighted manipulation
for the case where votes are not known with certainty.

Unfortunately, so far, no result resembling the di-
chotomy theorem for unweighted manipulation under
(polynomial-time computable families of) scoring rules
is known, and it appears that obtaining one may be very
difficult.5 Very recently, Xia et al. (2010) established
that there is a polynomial-time computable family of
scoring rules where unweighted manipulation is NP-
complete. However, to date even the exact complex-
ity of unweighted manipulation for Borda is not known
(though, see the next section for a discussion). We be-
lieve that establishing such a result is a very interesting,
difficult challenge and we very much hope that some of
the readers of this paper will successfully tackle it!

Challenging the Worst-Case Approach
The previous section surveyed a significant body of
work devoted to variations on the following theme:
preventing manipulation via computational complexity.
The results provide a rather rich understanding of the
intricate dependence between the characteristics of the
voting rule used to govern the election, and the compu-
tational complexity of manipulating it. However, these
results are all concerned withworst-casehardness. As
we mentioned above, it may still be the case that voters
areusuallyable to manipulate the election even though
the voting rule in question is worst-case hard to manip-
ulate. In this section we survey the literature that chal-
lenges the worst-case approach by asking: Is there a rea-
sonable voting rule that is usually hard to manipulate?
In the sequel we discuss three approaches to answering
this question (in the negative!).

The “Window of Error” approach
Although what one means by “areasonablevoting rule”
may be arguable, the main difficulty in answering the
above question is that it is unclear what one means by

5Note that if the number of candidates is fixed then ma-
nipulation underany scoring protocol is easy. Thus, we ask
here for a dichotomy theorem regardingfamilies of scoring
protocols.
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“usually”. Ideally, we would like the results to hold un-
der any plausible distribution on the votes, but it isa
priori unclear which formal methodology can achieve
such an ambitious goal.

The first to tackle these rather intimidating issues
were Procaccia and Rosenschein (2007b). They pre-
sented the notion ofjunta distributions; very gener-
ally speaking, these are distributions over the instances
of R-MANIPULATION that satisfy several constraints.
Procaccia and Rosenschein then informally argued that
a junta distribution may possess the following prop-
erty: if an algorithm often succeeds in decidingR-
MANIPULATION when the instances of the problem are
distributed according to a junta distribution, it would
also succeed in decidingR-MANIPULATION when the
instances are distributed according to many other plau-
sible distributions. Procaccia and Rosenschein pre-
sented a greedy algorithm that often succeeds in decid-
ing R-MANIPULATION , whereR is a scoring rule, and
the instances are distributed with respect to a specific
distribution that is proven to be a junta distribution. This
may provide some evidence thatscoring rules are usu-
ally easy to manipulate. However, other authors have
argued that the notion of junta distributions has limited
usefulness (Erd́elyi et al. 2009).

In retrospect, the crux of the paper of Procaccia and
Rosenschein (2007b) is a rather loose characterization
of instances on which the greedy algorithm may fail;
these instances are drawn with small probability accord-
ing to their junta distribution. More recently, Zucker-
man et al. (2009) significantly refined this idea. In par-
ticular, by obtaining a more careful characterization of
the greedy algorithm’s hard instances, they show that
the greedy algorithm of Procaccia and Rosenschein has
the following property with respect to Borda: Given a
“yes” instance ofR-MANIPULATION with a setW of
manipulators, the algorithm may wrongly return a neg-
ative answer, but would in fact find a successful ma-
nipulation given|W | + 1 manipulators. (On the other
hand, if the algorithm answers “yes”, the answer is cer-
tainly correct.) It is possible to define an optimization
problem whose solution is the minimum number of un-
weighted manipulators needed to make a given candi-
date win; then the greedy algorithm approximates the
solution to this problem under Borda to an additive term
of one. The intuitive implication is that the “size” of
the algorithm’s “window of error” is one manipulator,
which in turn implies that the algorithm would succeed
with high probability under many distributions.

A slightly weaker extension of the above result
to scoring rules in general was obtained by Xia et
al. (2010). In another related paper Brelsford et
al. (2008) set up a general framework for studying ap-
proximation in manipulation and other problems; as a
corollary of their main theorem they obtain a version
of the above result of Zuckerman et al. that holds for a

large subset of scoring rules but requires that the num-
ber of candidates is constant.

In general, the abovementioned papers (except the
one by Brelsford et al.) design algorithms that are “usu-
ally” able to manipulate certain voting rules, by argu-
ing that these algorithms fail on very specific instances.
The drawback of this approach is that the algorithms
are tailor-made for the voting rules in question (scoring
rules, Maximin, Plurality with Runoff), and hence this
approach cannot give a completely satisfying answer to
the question posed at the beginning of the section.

The “Fraction of Manipulators” approach
In a different paper, Procaccia and Rosenschein (2007a)
made the following observation, which is an extension
of similar results in the social choice literature (Baharad
and Neeman 2002; Slinko 2004): If the number of ma-
nipulators is large then there almost always exists a suc-
cessful manipulation, whereas if the number of manip-
ulators is small then there almost always does not exist
a successful manipulation. Specifically, they consider
scoring rules, and show that if|W | = ω(

√

|V |) then
there exists a trivial manipulation6 with high probabil-
ity, and if |W | = o(

√

|V |) then there does not exist a
manipulation with high probability. This result holds
under rather general assumptions on the distribution
over the given votes inV . Moreover, the above result
was generalized by Xia and Conitzer (2008b); their the-
orems hold forgeneralized scoring rules, a large class
of voting rules that includes the voting rules mentioned
above (scoring rules, Copeland, STV, Ranked Pairs), as
well as other commonly studied voting rules. These re-
sults suggest that in the vast majority of cases theR-
MANIPULATION problem can be solved efficiently un-
der generalized scoring rules.

A gap that the foregoing papers left open is the case
where|W | = Θ(

√

|V |); this case seems unwieldy as
far as analytical analysis is concerned. Walsh (2009)
recently addressed this difficulty using an empirical
methodology. In particular, analyzing the Veto rule,
he demonstrates that there is a smooth transition, from
nearly zero to nearly one, in the probability that there
exists a successful manipulation when the size of the
manipulating coalition grows.

Note that, although the class of generalized scoring
rules certainly includes many natural voting rules, it is
still not wide enough to preclude the existence of a rea-
sonable voting rule that is usually hard to manipulate.
Indeed, in more recent work, Xia and Conitzer (2009)
characterized this class using two axiomatic properties,
anonymity(indifference to the identities of the voters)
and a new axiom calledfinite local consistency. Their

6The manipulators rank their preferred candidatep
first, and every other candidate is ranked last by roughly
|W |/(|C| − 1) manipulators.
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characterization implies that the well-studied Dodg-
son rule (see, e.g., (Homan and Hemaspaandra 2006;
Caragiannis et al. 2009)) is not a generalized scoring
rule.

The axiomatic approach

Generally speaking, the last set of papers that we wish
to discuss makes the following argument: all reason-
able voting rules satisfy some axioms, and all the voting
rules satisfying said axioms are usually manipulable by
a trivial algorithm.

The first to take this approach were Conitzer
and Sandholm (2006). They showed that anR-
MANIPULATION instance can be decided easily if it
satisfies two properties: weak monotonicity, which is a
very natural property, and the more controversial prop-
erty that the manipulators can make one of exactly two
candidates win the election. Conitzer and Sandholm
empirically demonstrated that the latter property holds
with high probability under different voting rules, but
their simulations were carried out only with respect to
specific distributions and a small number of candidates.

More recently, Friedgut et al. (2008) proposed a
promising line of attack that does not impose stringent
restrictions on the voting rule. They assumed that the
distribution over votes is uniform, that is, we draw a uni-
formly random ranking independently for each voter;
this assumption is known as theimpartial culture as-
sumptionin the social choice literature. Friedgut et al.
also assume that there is a single manipulator. Their
main insight is that a completely random manipula-
tion may succeed with non-negligible probability.7 In
more detail, consider a trivial randomized algorithm
that, given the preferences of the voters, chooses a ran-
dom ranking as the strategic vote of the manipulator;
if this strategy provides a successful manipulation with
nonnegligible probability on a given instance, then by
repeating this procedure we can achieve a high prob-
ability of success with respect to that instance. The
main result of Friedgut et al. is, roughly speaking, as
follows. Assume there are exactly three candidates, and
the voting rule isneutral, i.e., the outcome is indepen-
dent of the names of the candidates. If the trivial ran-
domized algorithm succeeds with only negligible prob-
ability when a preference profile and a manipulation are
drawn uniformly at random, then the voting rule must
be very close to being a dictatorship, in the sense that
there is one voter such that his favorite candidate is al-
most always selected by the voting rule. The appeal of

7This is trivial under the formulation of the manipulation
problem given in Definition 2 whenp is chosen at random.
Friedgut et al. consider a slightly different, in a sense more
focused, formulation of the problem, where the manipulator
also holds a ranking and the question is whether he can vote in
a way that improves the outcome according to his preferences.

this result is that one can easily argue that it indeed cap-
tures every reasonable voting rule. However, its impact
is limited by the fact that it only holds for a restricted
number of candidates and under the impartial culture
assumption.

Several attempts have been made to extend the above
result. Xia and Conitzer (2008c) achieved a similar re-
sult that holds for any constant number of candidates,
albeit requires more restrictive assumptions on the vot-
ing rule. Dobzinski and Procaccia (2008) established an
analogous result for the case of two voters and any num-
ber of candidates, under a comparably weak assumption
on the voting rule. Very recently the result of Friedgut
et al. was successfully extended to settings with an arbi-
trary number of voters and candidates, in an impressive
demonstration of mathematical prowess due to Isaksson
et al. (2010).8

The last result settles in the negative the question of
the existence of voting rules that are usually hard to ma-
nipulate, as long as one is willing to accept the impartial
culture assumption. Nevertheless, it is still possible to
argue that in most settings, both in the context of po-
litical elections and multiagent domains, the votes tend
to exhibit structure that is far from random (the work
of Walsh (2007) and of Faliszewski et al. (2009b) on
manipulating single-peaked elections is an example of
a step in that direction, albeit in the worst-case com-
plexity model). Therefore, the final word regarding the
(non)existence of voting rules that are usually hard to
manipulate is yet to be said.

Summary

In the first part of the survey we discussed worst-case
hardness as a barrier against manipulation in elections.
The results along this line of work show that several
formulations of the manipulation problem are computa-
tionally hard under different voting rules. After more
than two decades of research we have a deep under-
standing of the worst-case complexity of manipulation
in elections. An enigmatic open problem is the com-
plexity of unweighted manipulation under Borda.

In the second part of the survey we outlined three
lines of work that challenge the worst-case approach.
Ideally, one would like to design a reasonable voting
rule that is “usually” hard to manipulate. Unfortunately,
to date all the work in this direction suggests that there
is no such voting rule. However, despite significant
progress over the last few years, this issue has not yet
been settled decisively, and still gives rise to fascinating
methodological and mathematical questions.

8Isaksson et al. (2010) consider manipulations where four
adjacent candidates are randomly permuted.
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