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Abstract

This thesis presents an attempt at using multiple event interpretations to enhance
the boosted decision tree used in the search for the Standard Model Higgs boson decay
to the bb̄ final state at a Higgs mass of mH = 125 GeV with the ATLAS detector, look-
ing in particular at the ZH → ℓℓbb̄ process. Recent studies have suggested that using
multiple event interpretations offered by constructing jets with different radii can offer
a large improvement over the traditional deterministic approach to event interpretation.
Monte Carlo datasets generated using a center of mass energy

√s = 13 TeV are used
for this analysis, and the data’s truth labels are used to evaluate the performance of the
boosted decision tree. Using a S/

√
S+ B measure of significance for the boosted deci-

sion tree, improvements of 1.9% in the pVT < 120 GeV region and 6.5% in the pVT > 120
GeV region are found by using additional inputs derived from the multiple event inter-
pretations, both of which are smaller than the expected improvements from previous
work.
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1
Introduction

This thesis describes and implements the technique of multiple interpretations to en-

hance the significance of the results of the search with the ATLAS experiment at the Large

Hadron Collider (LHC) for the StandardModel Higgs Boson through the associated pro-

duction pp → VH, with the Higgs decaying viaH → bb̄. It specifically attempts to

improve the results of the boosted decision tree used in the last analysis searching for this

process [1] with the addition of new physical observables constructed through the idea of

multiple interpretations. The goal is to investigate how the use of these newmultiple inter-

pretations inspired variables as additional input to the boosted decision tree affects its abil-

ity to differentiate between signal and background events at reconstructed-level, using data
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fromMonte Carlo simulations of physical events to do so. Chapter 2 describes the details of

the datasets used, as well as what event reconstruction means and how it is done. Chapter 3

describes how candidate events are selected out of the entire dataset and describes all of the

physical observables that are used as input variables to the boosted decision tree. Chapter

4 describes the boosted decision tree itself and how it is trained and evaluated. Finally, the

results are presented in Chapter 5, with concluding thoughts in Chapter 6.

This introductory chapter will first outline the background behind the work in this

thesis. Section 1.1 gives a high-level theoretical overview of the StandardModel and how

the Higgs particle is relevant. Section 1.2 describes the discovery of the Higgs boson at the

LHC. Section 1.3 describes the idea of multiple interpretations, as well as past work using

this method.

1.1 The StandardModel

The StandardModel is our current theory describing all observed matter and fundamental

forces besides gravity. According to the StandardModel, all matter is made of 3 elementary

particles: leptons, quarks, and mediators. Elementary particles in the StandardModel all

carry their own intrinsic angular momentum, quantized in units of the reduced Planck’s

constant ~. They can be categorized as bosons, which carry integer spin, and fermions,

which carry 1/2-spin. Leptons and quarks are fermions, distinguished from each other

foremost by the fact that leptons do not interact with the strong force but quarks do. All

charged fermions interact through the electromagnetic force, and all fermions regardless of

charge interact with the weak force. There are 3 generations of leptons and quarks in to-

tal, and each one also has an associated antiparticle of the same mass and opposite charge.
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Figure 1.1: The particles of the Standard model [2].

The force mediators are bosons and carry the fundamental forces; they are also called gauge

bosons. The electromagnetic force is carried by the massless photons, the weak force is car-

ried by the massiveW and Z bosons, and the strong force is carried by the massless gluons.

However, the StandardModel says that the 4 bosons in the electroweak sector are all mass-

less before the electroweak symmetry is broken. The theory then calls for at least one spin-0

Higgs particle, which is responsible for breaking the electroweak symmetry and giving the

W and Z bosons their mass, as well as the mass of all other massive particles. These particles

with their basic properties are pictured in Figure 1.1.

The StandardModel has survived every experimental result so far, successfully predicting

and explaining the observed behavior of particles and their interactions in our experiments.

Until recently, the one significant remaining prediction of the StandardModel that had not

yet been experimentally confirmed was the Higgs particle. In the StandardModel, the mass
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of the Higgs boson (along with many other constants, including the masses of leptons and

quarks) is a free parameter, and though there were some theoretical limitations on its possi-

ble values, the precise value had to be found by experiment. This last piece of the Standard

Model was confirmed to be found at the LHC at CERN in 2012 [3, 4].

1.2 Higgs BosonDiscovery at the LHC

One of the primary purposes of the LHC was to discover the Higgs boson and measure its

properties. It aimed to do this by colliding protons at unprecedentedly high energies and

looking at the resulting collision products. During Run 1 from 2009 to 2013, the LHC was

run at center of mass energies of
√s = 7 TeV and

√s = 8 TeV. In 2012, the discovery of a

newmassive boson was reported at the LHC, later confirmed to be the Higgs boson. The

ATLAS experiment reported the result at a significance of 5.9 standard deviations [3], and

the CMS experiment reported a significance of 5.1 standard deviations [4]. Using Run 1

data in theH → γγ (Higgs decay to 2 photons) andH → ZZ → 4ℓ (Higgs decay to 2

Z bosons decaying to 4 leptons) channels, the ATLAS and CMS collaborations later more

precisely placed the mass of the Higgs boson at 125.09± 0.21(stat.)± 0.11(sys.)GeV [5].

Before the mass of the Higgs boson was discovered, the branching ratios for each of the

possible decay channels could only be calculated as a function of its mass, shown in Figure

1.2. Now that its mass has been measured, data from the LHC has been used to confirm

these branching ratios in many channels. At the measured mass, the decay to a bottom

and antibottom quark (H → bb̄) is the dominant decay channel, but the ATLAS and

CMS experiments have so far not detected this at rates high enough to match the Standard

Model prediction, due largely to the high backgrounds in searching for this interaction [1].
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Figure 1.2: The branching ratios for each of the possible Higgs decay channels as a function
of the Higgs mass. For the discovered mass of roughly 125 GeV, theH → bb̄ decay mode is
dominant [6].

While it is expected that this decay will be detected with the Run 2 data at
√s = 13 TeV

that is currently being collected, new methods are needed to improve our ability to separate

background from the events we are looking for. This thesis will build on the search for the

Higgs bb̄ final state after associated production of the Higgs with a vector bosonW or Z,

focusing in particular on the ZH → ℓℓbb̄ process.

1.3 Multiple Interpretations

When the proton beams collide in the LHC, a single collision is considered to be a single

event for use in analysis. To determine whether the event is of the desired type, we look at

various physical observables of the event, which must be reconstructed by various methods

from the raw data collected by the detector. Traditionally, a single way to construct these
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physical observables is selected, leaving only one way to interpret the event. However, there

are newmethods proposed that would exploit multiple interpretations of a single event

instead of using the traditional deterministic approach. The Qjets method proposed in

[7] looks at how an observable varies depending on certain parameters used in the event

reconstruction, offering multiple interpretations of the event with these variations.

In particular, the properties of jets can depend quite heavily on the jet algorithms used

and the parameters used in the algorithms. Jets are reconstruction-level objects that group

together showers of particles that have deposited their energy in the detector. For instance,

in the search for the bb̄ final state we look for two jets that we determine to have both origi-

nated from b quarks, and use these jets to reconstruct variables like the dijet mass (details of

how jets are defined, constructed, and tagged can be found in Sections 2.2 and 2.3). The re-

constructed dijet mass will vary with the jet radius used in reconstruction, since larger radii

will include more particles, as pictured in Figure 1.3. By constructing jets in multiple dif-

ferent ways for the same group of detector hits, we get multiple possible values for a single

observable, and so multiple ways to look at and interpret an event. Sizable improvements in

significance were found in [8] and [9] by varying how jets were created in event reconstruc-

tion to yield multiple interpretations.

The work done in [10] with the ZH → ℓℓbb̄ process found an improvement of 21% in

significance by using multiple interpretations instead of a single-dimensional cut on the

dijet mass from 2 b jets using Monte Carlo data. It did this by constructing multiple jets of

different radii around each jet axis to create multiple interpretations of each event, giving a

different dijet mass for each radius used, and then applying a multi-dimensional cut based

on the multiple possibilities for the dijet mass. The work in [11] found that at truth level
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Figure 1.3: Using different jet radii to interpret a single event. Different radii include dif-
ferent information within each jet, giving different results when physical observables are
reconstructed from the jets.

(directly accessing the properties of the simulated particles from theMonte Carlo data),

using the multiple interpretations offered by different jet radii in addition to other kine-

matic variables in a boosted decision tree can give improvements of up to 12% in the low pT

region and 20% in the high pT region over using these other kinematic variables with just

a single jet radius. When the actual analysis is done with real data from the detector, it will

have to use variables at reconstructed-level, where it must do the full process of converting

data from the detector into physical objects. Additionally, it will use a boosted decision tree

(BDT) in the multi-variate analysis, whose details can be found in Section 4.1. Because of

this, the results of these two studies are promising, but they are not direct evidence that the

multiple interpretations will be helpful in the real analysis. This thesis aims to build upon

[10] and [11] by applying the method of multiple interpretations using different jet radii

at reconstructed level to a boosted decision tree, using Monte Carlo data passed through

the ATLAS detector simulation and closely emulating the methods of the actual analysis so
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that the results may be directly applicable. The rest of this thesis will describe the datasets

used, the event selection and reconstruction process, the BDT training process, and the re-

sults of the study.
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2
Datasets and Event Reconstruction

Event reconstruction is the process by which signals from the ATLAS detector are con-

verted into physics objects. This includes reconstructing muons, electrons, jets, and missing

energy through a variety of algorithms, all of which are necessary for this analysis. Although

this thesis uses Monte Carlo data, it looks at the data at the reconstructed level for reasons

described in the previous chapter, and so this chapter provides a summary of the datasets

used in the analysis and the methods used to reconstruct all these physics objects. Section

2.1 describes the datasets used and the Monte Carlo methods used to generate them. Section

2.2 describes how jets are reconstructed and calibrated. Section 2.3 describes the algorithm

used for b-tagging the jets. Section 2.4 summarizes how the remaining objects (electrons,
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muons, and missing energy) are constructed.

2.1 Monte Carlo Simulation andDatasets

The analysis in this thesis is done with data generated byMonte Carlo methods, which sim-

ulate physics events and objects. These objects are then run through a simulation of the

ATLAS detector [12] based on GEANT-4 [13], which is a toolkit for simulating the pas-

sage of particles through matter. The output of this simulation is of the same form as that

which is used for real data coming in from the detector, allowing us to see the simulated

events as the ATLAS detector would. Signal and background processes for proton-proton

collisions are generated at center of mass energy
√s = 13 TeV, to correspond to the Run 2

data currently being taken. The signals and backgrounds are normalized to a luminosity

of 30 fb−1, which is a rough estimate of the amount of data that is anticipated to be taken

in 2016. The signal sample is the ZH → ℓℓbb̄ process discussed previously, generated in

Pythia8 [14] configured with the AU2 tune [15] using the CTEQ6L1 parton distribution

functions [16], and using a Higgs mass ofmH = 125 GeV. Since this signal is characterized

by the detection of two b-tagged jets in association with two leptons from the Z decay, the

primary background process is Z+jets, with the jets possibly originating from any of b, c, or

light (u, d, or s) quarks. The background samples for this process are generated in Sherpa

[17] for Z → e+e− and Z → μ+μ− for all of these possible jets, and for the transverse mo-

mentum pT of the Z boson ranging from 0 to 1000 GeV. In addition, t̄t samples generated

in the Powheg generator [18] were also included in the background processes, as were the

diboson processesWZ → qqℓℓ and ZZ → qqℓℓ generated using Sherpa.
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2.2 Jet Reconstruction and Calibration

Jets are detector-level objects that are seen when high-energy partons formed from the ini-

tial proton-proton collision shower into many lower energy particles, which are then picked

up in the detector’s calorimeter. This process can be seen in Figure 2.1, which depicts a sam-

ple event in the detector with the reconstructed jets. The energy deposits in the individual

calorimeter cells are then grouped into topological clusters [19], from which jets are con-

structed by some choice of algorithm. Clusters are created by first picking a high-threshold

energy cell as the seed, and then adding neighboring cells whose energy exceed some thresh-

old repeatedly, forming a 3-dimensional cluster of cells. This is repeated for all of the seed

cells until everything has been clustered appropriately. Due to the fact that particles do not

always deposit all of their energy in the calorimeters, there are additional calibrations that

need to be performed on the energies of the cells comprising these clusters. The two pri-

mary calibration methods are ElectroMagnetic scale (EM) and Local Calibration scale (LC),

both of which are used in this analysis for practical reasons. The LC calibration brings the

cluster energy closer to the actual amount of energy deposited, while the EM calibration

gives a more accurate reading of the energy of the electrons and photons.

These topological clusters are then used as input to the anti-kt jet clustering algorithm

[21]. The anti-kt algorithm takes a radius R as an input parameter, and then iterates over

each cluster, attempting to merge it with other remaining nearby clusters based on a dis-

tance parameter dependent on the input radius R. Using a larger R results in each indi-

vidual jet including more of the topological clusters in the calorimeter, which can capture

additional information but can also result in the inclusion of clusters that did not origi-

nate from the same parton in truth. Previous searches for theH → bb̄ decay [22] have
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Figure 2.1: A sample event from the ATLAS detector. The top left is a transverse view
of the detector, and the bottom left is a longitudinal view. The red and green shaded re-
gions show the reconstructed jets, and the yellow markings are hits in the calorimeter.
The bottom right shows the energy readings in the calorimeter for different η and φ. The
gray marks are the reconstructed tracks, and the red and green highlighted ones are tracks
belonging to particles included in the two shown jets. [20]

used R=0.4 for jet reconstruction as the optimal radius. In this analysis, jets are constructed

for radius R=0.2 through R=0.8 at intervals of 0.1, selected because these are the radii for

which LC calibrations currently exist. The R=0.4 jets are constructed with both the EM

and LC calibrations, and the other radii are constructed with the LC calibration only, as

EM calibrations do not currently exist for the other radii.

2.3 b-Tagging

Because the final state in this analysis includes 2 b-jets from which the Higgs is reconstructed,

it is highly reliant on being able to accurately b-tag jets. This entails having high efficiency

in identifying jets that originated from B-hadrons (the hadrons formed after hadronization

of a b quark) as well as high efficiency in rejecting jets that did not. B-hadrons have two par-
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ticularly distinguishing characteristics. They have relatively long lifetimes, which causes the

secondary vertex reconstructed from the resulting jets to be significantly displaced from the

primary vertex where they are formed, and they have relatively high masses, which results in

a greater angular spread in their resulting jets. These properties are exploited by a variety of

algorithms, such as IP3D, SV1, and JetFitter [23].

This analysis uses the MV2 algorithm, which combines the outputs of the 3 previously

mentioned algorithms using a boosted decision tree, and which offers an improvement in

performance over the MV1 algorithm used for b-tagging in the Run 1 analysis [22]. Specif-

ically, b-tagging is done using MV2c20, which is the result of the MV2 algorithm when

trained on a sample with b-jets as signal and a mixture of 80% light-flavored jets and 20%

c-jets as background, offering better rejection of c-jets than versions trained with a higher

percentage of light-flavored jets. TheMV2c20 algorithm’s output is a value on a continuum

from -1 to 1, which can be interpreted as the likelihood that a jet is a b-jet. A cut is applied

at a point to optimize the balance between efficiency of b-jet identification and efficiency

of rejecting other jets; jets with a MV2c20 score above this cutoff are then classified as b

jets. Further details on the tagging algorithm can be found in the b-tagging section of [24].

The datasets being used in this analysis only contain the MV2c20 score for the anti-kt EM-

calibrated jets for R=0.4; the other jets are dealt with by the method described in Section

3.2.

2.4 Electrons, Muons, andMissing Energy

Electrons in the ATLAS detector are reconstructed using data from the inner detector and

the electromagnetic calorimeter, the details of which can be found in [25]. Muons are re-
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constructed using data from both of the prior detectors in addition to the muon spectrom-

eter. Both types of leptons are subject to 3 tiers of quality controls, called loose, medium,

and tight, whose details can be found in [22]. Each tier imposes additional constraints on

the reconstructed lepton, cutting out more potential candidates and suppressing additional

backgrounds. In this analysis looking for decay products of the Z boson, out of the two se-

lected leptons, one is required to pass the medium requirement while the other is required

to pass the loose requirement.

Though the ATLAS detector can absorb all electrons, photons, and jets, and can accu-

rately measure muons through the muon spectrometer, it cannot directly detect neutrinos

at all due to their extremely weakly interacting nature. The energy and momentum of neu-

trinos (in addition to other non-interacting particles) can instead be inferred by looking at

the reconstructed transverse energy and momentum from all other objects and other soft

components that were not classified as part of another object; conservation of momentum

then gives us a quantity called missing transverse energy (MET or Emiss
T ). This quantity is

thus dependent on the quality of the calibrations of everything else in the detector.
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3
Event Selection and Variables

Event selection is the process by which the entire list of events is narrowed down to a smaller

list of candidate events in a way that suppresses certain backgrounds and ensures the candi-

date events were not the result of uncertain or poor-quality reconstructions. This chapter

describes how the various physics objects used in the analysis are defined and used in the

selection requirements. Section 3.1 defines the physics objects used in the selection and the

criteria imposed upon them for use as candidate events. Section 3.2 describes how the re-

constructed jets of different radii are matched to each other as different reconstructions of

the “same” jet. Lastly, section 3.3 lists the variables that are used in the multivariate analysis

to separate signal from background.
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3.1 Object Definition and Event Selection

Only electrons and muons are considered as the lepton candidates, and they only pass event

selection if one passes at least the medium requirement and the other passes at least the

loose requirement, as described in Section 2.4. In addition, there is a requirement that the

dilepton massmll be between 71 and 121 GeV. This is slightly wider than the regular cut of 83

to 99 GeV, because the BDT is expected to be able to use themll information to predict the

magnitude of the t̄t background.

The reconstructed R=0.4 jets are split into two exclusive categories of signal jets and for-

ward jets, whose criteria are shown in Table 3.1. Only signal jets are considered as candidates

for the results for the Higgs decay. jeti=1 denotes the leading jet, with i > 1 denoting the

other jets. The leading jet has greater transverse momentum pT than the jets with i > 1,

with these other jets ranked by their transverse momentums as well.

Variable Signal Jet Forward Jet

pT (GeV)
jeti=1 > 45

jeti>1 > 20
>30

|η| < 2.5 2.5 < 4.5

Table 3.1: Transverse momentum pT and pseudorapidity η requirements for signal and
forward jets

In b-jet identification, there are again 3 tiers of quality called loose, medium, and tight,

depending on what value of the MV2c20 algorithm is chosen as the cutoff. These cor-

respond respectively to 80%, 70%, and 50% identification efficiency of b-jets, where the

trade-off of higher efficiency identification is an increase in false-positives frommisidenti-
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fied light-flavor or c jets. b-tagging is only done for the EM-calibrated R=0.4 jets, and an

event must have at least 2 R=0.4 signal jets passing the medium (70% efficiency) b-tagging

requirement to be considered.

3.2 Matching Jets of Different Radii

Because the datasets used in this analysis only have b-tagging information for the R=0.4

EM-calibrated jets, a method is required to match all of the LC-calibrated reconstructed jets

with R=0.2 through R=0.8 to these b-tagged jets. Intuitively, this is an attempt to match

up the jets of different radii as different ways of reconstructing the “same” jet in the de-

tector, and treating them as either all b-tagged or not b-tagged depending on the R=0.4

EM-calibrated jet in the set of matched jets.

To do this, first the two leading b-tagged R=0.4 EM-calibrated jets are identified. Then

for the LC-calibrated jets of each other radius, the jets that are closest to the previously

mentioned b-jets (with distance defined by (ΔR)2 = (Δη)2 + (Δφ)2 between the jets) are

found, and these are then treated as the matched jets. If the two b-tagged jets are matched

to the same LC-calibrated jet for any particular R by this method, then the event is rejected.

When this occurs, it generally means that when the jets are reconstructed at a larger radius,

the jet algorithm “merges” two jets of smaller radius into one, causing them to get matched

to the same jet by this method. The acceptance rates using these criteria are shown in Fig-

ure 3.1. The acceptance rates peak around R=0.4 as expected, and fall as the used jet radius

R deviates more from the R=0.4 comparison point. The smallest R jets likely have higher

rejection rates because the R=0.4 jets can be split into two or more smaller jets in a way that

causes the matching to fail, and the largest R jets likely have high rejection rates because the
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Figure 3.1: Fraction of events that pass the described jet matching requirement, for both
low and high pVT, for each radius R of LC-calibrated jets. The right-most point denotes the
fraction of events passed when the jet matching requirement is imposed for all radii from
R=0.2 to R=0.8.

two R=0.4 jets might get merged into one larger one. These rates are considered to be ac-

ceptable under the assumption that the rejections occur somewhat randomly. However,

this is not necessarily a safe assumption, and for future analyses it would be better to have

b-tagging information for every jet radius so that they can be selected independently, and

events don’t have to be rejected by this method.
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3.3 Variables Used inMultivariate Analysis

Variable Name Description

mjj mBB Higgs Boson mass reconstructed from the two leading b-jets

ΔR(jet1, jet2) dRBB ΔR between the two leading b-jets

pjet1T pTB1 Transverse momentum pT of the leading b jet

pjet2T pTB2 Transverse momentum pT of the subleading b jet

|Δη(jet1, jet2)| dEtaBB Difference in pseudorapidity |Δη| between the two leading b jets

MV2c20(jet1) MV2cB1 Output of MV2c20 algorithm on leading b jet

MV2c20(jet2) MV2cB2 Output of MV2c20 algorithm on subleading b jet

pVT pTV Transverse momentum pT of the Z boson

mℓℓ mLL Mass of the Z boson reconstructed from the two leptons

|ΔΦ(V,H)| dPhiVBB Difference in azimuth |ΔΦ| between the Z boson and the Higgs boson

|Δη(V,H)| dEtaVBB Difference in pseudorapidity |Δη| between the Z boson and the Higgs boson

Emiss
T MET Missing transverse energy

Table 3.2: Variables used in BDT from Run 1 analysis [22]. These are used again in this
analysis to provide a base level of performance.

Multivariate analysis methods take in a number of user-defined input variables and use

these to make predictions about data. The variables chosen for use in the BDT in Section 4

are typical physical observables for an event, that are expected to have high discriminating

power due to the physical predictions of theory. The variables used in the Run 1 analysis

[22], along with a description of what each of them are, are listed in Table 3.2. Furthermore,

events are split into low and high pVT regions, with the cutoff at pVT = 120 GeV, as past stud-
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ies have shown this improves the results. Separate BDTs are trained and evaluated for each

of these regions.

In addition to these variables, this analysis also adds in 7 new ones: mBBR2, mBBR3,

mBBR4, mBBR5, mBBR6, mBBR7, and mBBR8. Each of these is the Higgs mass recon-

structed from the two LC-calibrated jets for the corresponding radius R that were matched

to the two leading R=0.4 b-jets. Figures 3.2 and 3.3 show the 2D distributions for mBB

against mBBR2 and mBBR8 in the high and low pVT regions, to show how the Higgs mass

differs when reconstructed from jets of different radii. These plots show that as expected,

the value of mBBR2 is generally smaller than than the value of mBB, which is constructed

from larger jets, and that mBB is generally smaller than mBBR8, which is constructed from

even larger jets. The distributions of all the input variables for both background and signal

samples are shown in Figures 3.4 and 3.5, where it can be seen that under naive expectations,

mBB, dRBB, and dEtaBB have some of the best discriminating power. More detailed plots

of these variable distributions can be found in Appendix A. Correlation matrices for all of

the input variables are shown in Figure 3.6. The values of mBBR2 through mBBR8 are less

strongly correlated with mBB in the signal region than they are in the background region,

which provides weak evidence in favor of the idea that they may help discriminate signal

from background, as found in [11].

20



Figure 3.2: 2D distribution of the dijet mass reconstructed from different jet radii in the
high pVT region. The top row has mBB on the x-axis and mBBR2 on the y-axis, and the
bottom row has mBB on the x-axis and mBBR8 on the y-axis. The left column is for the
background samples, and the right column is for the signal sample.
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Figure 3.3: 2D distribution of the dijet mass reconstructed from different jet radii in the
low pVT region. The top row has mBB on the x-axis and mBBR2 on the y-axis, and the
bottom row has mBB on the x-axis and mBBR8 on the y-axis. The left column is for the
background samples, and the right column is for the signal sample.
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Figure 3.4: Distribution of all input variables to the BDT for background and signal
samples overlaid, in the low pVT region.

Figure 3.5: Distribution of all input variables to the BDT for background and signal sam-
ples overlaid, in the high pVT region.
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Figure 3.6: Correlation matrices for the input variables for background (left) and signal
(right) samples. The top row is for the low pVT region, and the bottom row is for the high
pVT region. The correlations of the mBB values reconstructed from jets of different radii are
roughly the expected values found in [11].
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4
BDTTraining and Optimization

Multivariate methods are now fairly widely used in high-energy physics analyses, because

there is rarely just one or two physical observables that give all the information needed to

classify the events. In machine learning terms, the analysis has a binary classification prob-

lem, where events are classified as either signal or background. Since we are using data from

Monte Carlo simulations, each event has an accurate truth label, which can be used for

training and testing. This analysis uses the boosted decision tree (BDT) implemented in

TMVA [26], the same method used in the Run 1 analysis [22]. However, with machine

learning methods, care must be taken to not overfit the training data. This chapter offers an

overview of the strategies used to train the BDT. Section 4.1 describes the BDT algorithm
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and how its performance is measured. Section 4.2 describes the method used to split up

the data for training and testing. Section 4.3 describes the parameters used to configure the

BDT and how the optimal settings were found.

4.1 Boosted Decision Tree Algorithm

Boosted decision trees use the idea of boosting, by which an ensemble of weaker methods

(decision trees in this case) can be combined to create a more robust and more powerful

method. A basic binary decision tree selects the variable with the highest separation power

at each node, and then makes a cut at some value, separating the remaining events into two

pools, which are passed to its children in the tree. The separation gain is defined by some

separation index chosen by the user; here, the Gini Index is used, defined as p(1− p), where

p is the purity of the node. The leaves at the end of the tree then each contain a number of

events, and the leaves are each labelled Signal or Background according to the majority of

events that have ended up in that particular node. This process is shown in Figure 4.1.

In a boosted decision tree, the events that were misclassified by the first decision tree are

given an additional weight depending on the boosting procedure being used before the

entire event set is fed into the next decision tree. This process is repeated sequentially for

however many trees have been specified. For the Adaptive Boost algorithm (AdaBoost)

being used in this BDT, the weights of each misclassified event are multiplied by αβ, where

α is given by Eq. 4.1, β is a user-specified learning rate, and err is the misclassification rate

of the previous tree. The weights are renormalized for each tree so that their sum remains

constant.
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Figure 4.1: Model of a simple binary decision tree. The root node contains all of the in-
put events, and at each level it picks the one input variable with the best discriminating
power, and makes a cut on it to split the events into two pools passed to its children. This
is repeated until some stopping criteria is reached, and the final leaves are labelled Signal or
Background. The final leaf that an event ends up in is the classification that the decision
tree assigns to it. [26]
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α =
1− err
err (4.1)

This ensemble of trees, also called a forest, then gives the boosted decision tree’s final

output for each event by taking a weighted average of the result of each of the consituent

decision trees. For the AdaBoost, this output on an event x is given by Eq. 4.2, where hi(x)

denote the binary outputs 1 or -1 of each individual tree.

BDT(x) = 1
Ntrees

∗
Ntrees∑
i=1

ln (αi)hi(x) (4.2)

This procedure works well with weak classifiers like shallow decision trees, as the like-

lihood of overtraining one of the component classifiers is small, and the final ensemble is

more stable with respect to statistical fluctuations in the training samples. Boosted decision

trees also have the benefit that they tend to be robust against unuseful variables, since they

will just avoid using them.

Finally, there must be a measure of the performance of the BDT. Regular decision trees

can be judged by a simple accuracy measure, since they just output yes/no for binary classifi-

cation problems, but a BDT gives an output between -1 and 1 for each event as described in

Eq. 4.2, with the output value indicating the likelihood that the event is background or sig-

nal. To translate this output into a classification, a cut is applied at some value, with BDT

outputs above this value indicating signal and outputs below it indicating background. A

standard S/
√
S+ Bmeasure for significance is used, where for a chosen cut, S is the num-

ber of signal events above this cut and B is the number of background events above the

cut. In machine learning terms, S is the number of true positives, and B is the number of
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false positives. This measure of significance is preferable over something like a plain accu-

racy statistic because the problem in question has far more background events than signal

events. For any particular configuration, the cut that maximizes S/
√
S+ B is chosen, and

this is treated as the performance of that configuration.

4.2 HoldoutMethod

In an ideal world, there would be a wealth of data available for training and testing. Un-

fortunately, this is not the case in the real world, and so there exist methods to make the

best use of the available data while avoiding overtraining. This analysis employs a holdout

method, depicted in Figure 4.2. The data is randomly split into 3 equal parts. Since each

event in Monte Carlo data is labelled with an EventNumber, which is unrelated to the ac-

tual contents of the event, this splitting is done by using the value of EventNumber % 3.

These three divisions are labelled training, validation, and test data. Step 1 is to tune the pa-

rameters of the BDT using the training data for training and the validation data for testing,

with the optimal configuration determined by looking at the BDT’s performance on the

validation data. Step 2 is to train the BDT on the training and validation data together us-

ing this optimal configuration, and then testing it with the test data. The performance on

the test data is measured by applying the cut that maximized significance on the validation

data, and this is then used as the final evaluation of the BDT’s performance. This means

that the test data is never used for tuning, and so the result can be trusted as the true perfor-

mance of the BDT, rather than a consequence of overtraining.
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Figure 4.2: Diagram of how the available data is split 3-ways for the holdout method. The
training data is only ever used for training; the validation data is used for testing when tun-
ing the BDT and also included in training for final evaluation. The test data is never used
for training and never used for tuning; it is only used for the final evaluation of the BDT’s
performance after a configuration has been chosen.

4.3 BDT Parameter Tuning

Machine learning methods generally have a number of free parameters with which they can

be configured, and the configuration which yields the best results varies with the problem

and the inputs. The relevant parameters, their meanings, and their settings in the Run 1

analysis BDT are shown in Table 4.1. nCuts is set to -1 for every BDT used in this analysis,

which tells the tree to algorithmically find the optimal cut. The settings that are considered

for tuning are the AdaBoostBeta, MinNodeSize, NTrees, andMaxDepth.
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TMVA Setting Value Meaning

BoostType AdaBoost boost procedure (see Section 4.1)

SeparationType GiniIndex measure of separation gain in nodes (see Section 4.1)

PruneMethod NoPruning pruning method (normally not used in boosted ensembles)

nCuts 100 number of equally spaced cuts tested per variable per node

AdaBoostBeta 0.15 learning rate for boosting

NTrees 200 number of trees in the ensemble

MaxDepth 4 maximum depth of a tree

nEventsMin 100 minimum number of events per node (now replaced byMinNodeSize)

MinNodesize N/A minimum node size as a percentage of total number of events

Table 4.1: BDT parameters used by the TMVA implementation along with their meanings
and values for the BDT used in the Run 1 analysis [22]. The parameter nEventsMin, whose
value was an absolute number of events, has been replaced byMinNodeSize, which is a
percentage, in the TMVA implementation since the previous analysis.

The optimal configuration found in [22], listed in Table 4.1, did not use the variables

mBBR2 through mBBR8 described in Section 3.3, and was trained and evaluated on a dif-

ferent dataset. Consequentially, the BDTmust be tuned again to properly take advantage

of this new information on this new data. It is computationally impractical to perform a

multi-dimensional parameter scan over everything to find the optimal configuration, so

instead a 2-dimensional scan is first performed over the NTrees and AdaBoostBeta param-

eters, and a 1-dimensional scan is performed over each of MaxDepth andMinNodeSize at

the optimal value found using the 2D scan. The parameter-scan results for the high pVT re-

gion can be found in Figure 4.3, and for the low pVT region in Figure 4.4. Points with abnor-
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mally high significance relative to the surrounding points were discarded as likely statistical

fluctuations. The final settings chosen for each BDT using all of the variables, including

mBBR2 through mBBR8, are shown in Table 4.2.

TMVA Parameter Setting for pVT > 120 GeV Setting for pVT < 120 GeV

NTrees 1500 1100

AdaBoostBeta 0.15 0.05

MaxDepth 4 4

MinNodeSize 1.5% 2.5%

nCuts -1 -1

Table 4.2: Settings for the BDT parameters used for the low and high pVT samples for the
final evaluation. Any other parameters not shown here used the values shown in Table 4.1.
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Figure 4.3: Plot of how the BDT’s performance varies with various parameters using all of
the input variables in the high pVT region, with training done on the training set and per-
formance measured on the validation set described in Section 4.2. The settings used were
NTrees=1500, AdaBoostBeta=0.15, MaxDepth=4 andMinNodeSize=1.5% as the default,
and then 1 or 2 of these parameters were varied in the plots. The 2D scan over NTrees and
AdaBoostBeta (bottom) was performed first to find this point, and then 1D scans (top)
were performed around this point.
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Figure 4.4: Plot of how the BDT’s performance varies with various parameters using all
of the input variables in the low pVT region, with training done on the training set and per-
formance measured on the validation set described in Section 4.2. The settings used were
NTrees=1100, AdaBoostBeta=0.05, MaxDepth=4 andMinNodeSize=1.5% as the default,
and then 1 or 2 of these parameters were varied in the plots. The 2D scan over NTrees and
AdaBoostBeta (bottom) was performed first to find this starting point, and then 1D scans
(top) were performed around this point.
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5
Results

Region Base 12 Variables Base+ 7 R’s Base+ 7 R’s Percent Improvement

Unoptimized Optimized

pVT < 120 GeV 0.416 0.420 0.424 1.9%

pVT > 120 GeV 0.664 0.682 0.707 6.5%

Table 5.1: Significances of the BDT evaluated on the test dataset, and the total percent
improvement found by adding in the additional mBB frommultiple interpretations.

The significance of the BDT trained on the training and validation datasets and tested

on the test dataset is shown in Table 5.1. The significance value for each BDT is obtained by
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finding the cut that optimizes S/
√
S+ B on the validation sample, and then applying that

same cut on the test sample. The base 12 variables are the ones used in the Run 1 analysis

[22], using the same BDT settings, which are shown in Table 4.1. The unoptimized result

with the additional mBB reconstructed from jets of different R was evaluated using the

same parameters, and the optimized result uses the settings found by parameter scan in

Section 4.3. The magnitude of these significances are smaller than those found in [22], but

this should not be a concern, since this analysis used a much smaller dataset and thus has

poorer statistics. We are only concerned with the relative magnitude of the significance of

the BDTwith just the base 12 variables compared to the significance of the BDTwith the

additional R’s. The shapes of the BDT outputs can be found in Figure 5.1, and it is seen

that adding in the new inputs does not change the shape of the BDT output significantly.

The results show a small improvement in the significance of the BDT results after adding

in inputs based on multiple event interpretations using jets of different R, but the improve-

ments are significantly smaller than the ones found using a BDT in the truth-level study in

[11]. As a validation check on the approach taken in this analysis, the work in [10] using a

cut-based analysis with multiple interpretations is replicated in Appendix B, and similarly

high levels of improvement are found. This suggests the event reconstruction and selection

was done properly in this analysis, and that the problem likely lies elsewhere.

There are a number of factors that could explain the disparity between the significance

improvement found here and the improvements found at truth-level in [11]. First, the

jet matching method described in Section 3.2 is not perfect, and the loss of events from

failed matching in addition to the possible information loss from this indirect method of

b-tagging the jets could be a problem. In addition, this reconstructed-level analysis has to
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Figure 5.1: BDTOutput on the test dataset. The top row is for the low pVT region, and
the bottom row is for the high pVT region. The left column has the outputs using only the
base variables from the Run 1 analysis, and the right column has the outputs including the
additional inputs from the different R jets.
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use the MV2 algorithm to b-tag the R=0.4 jets in the first place, which is also imprecise

compared to using the truth-level flavor of the jets. The truth-level analysis also used 12 dif-

ferent radii jets, from R=0.4 up through R=1.5 at intervals of 0.1, as opposed to the 7 radii

used in this analysis from R=0.2 to R=0.8. It is possible that much of the information gain

responsible for the improvements in the truth-level BDT output came from the higher radii

jets, which were not present in this analysis.

Lastly, in theory the holdout method employed in this analysis and described in Sec-

tion 4.2 means that these results should be valid, since it is blinded to the test dataset until

the final evaluation. However, the relatively small amount of data available in total for this

analysis means the statistics are rather poor. Consequentially, the BDT results can be un-

stable and prone to statistical fluctuations, as evidenced by the non-smooth distribution of

the BDT output in Figure 5.1. Significance gains as small as the ones seen here can plausibly

be attributed to such fluctuations, as a result of a “lucky” split of the data. It is also possi-

ble that the significance gains are small because of an “unlucky” split of the data, and that

the real gains would be higher. This issue could potentially be addressed with the use of a

different measure of the significance; a preliminary study where the significance is found

by adding the S/
√
S+ B values for each of the BDT output bins in quadrature has found

improvements of 8-9% with the addition of multiple interpretations variables. The combi-

nation of the improvements found in this analysis with the results in Appendix B suggests

that it is likely that the poor statistics are working against us, and is promising for the use of

multiple interpretations in the BDT once more data is available.
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6
Conclusion

Previous work [10, 11] has suggested that the use of multiple interpretations by construct-

ing jets at multiple different radii and using the dijet masses from each of them could offer

sizable improvements in significance in theH → bb̄ search in association with aW or Z

boson. This thesis has attempted to use multiple dijet massesmbb,R=0.2 throughmbb,R=0.8

at intervals of 0.1 as additional input to the boosted decision tree used in the ZH → ℓℓbb̄

search while under conditions close to those of the real analysis. However, the improve-

ments of 1.9% in the pVT < 120 GeV region and 6.5% in the pVT > 120 GeV region are signifi-

cantly smaller than the improvements found in previous work at truth-level. Possible causes

of this disparity may be the jet matching strategy used in this analysis, the fact that this anal-
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ysis uses fewer different radii for practical reasons than previous work did, and the relatively

small datasets available for training and testing, with the latter 2 issues probably being the

biggest culprits. The fact that this analysis was able to find small improvements despite all

of these barriers is promising for the use of multiple interpretations under realistic analy-

sis conditions. It is likely that further investigation with proper b-tagging information for

the jets of every radius used, with additional radii jets being constructed, and with better

statistics available will yield higher levels of improvement that are more consistent with the

expectations of previous work.

40



A
BDT Input Variable Distributions by

Sample

This appendix contains stacked plots of the base input variables to the BDT described in

Section 3.3. These plots show how the distributions vary for the different types of back-

ground, and it is seen that the largest background is that of a Z boson with two b-jets, as

expected. The distributions in the pVT < 120 GeV region are shown in Figure A.1, and the

pVT > 120 GeV region is shown in Figure A.2.
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Figure A.1: Distributions for all of the BDT variables in the pVT < 120 GeV region, separated
by the different types of background.
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Figure A.2: Distributions for all of the BDT variables in the pVT > 120 GeV region, separated
by the different types of background.
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B
Replication of Previous Studies

One of the studies that this thesis builds upon is [10], which found a 21% improvement in

significance at the reconstructed level using a cut-based approach with multiple interpre-

tations from jets of different radii. That approach is replicated here for comparison. For

this analysis, only the Z+jets samples are used for background. The samples are further split

into 5 pVT bins, and the analysis is done separately on each of these bins. The significance

changes using the 2D cut described in the paper are shown in Figure B.1, where improve-

ments are either very small or nonexistent, as they were in the previous study.

The study further defines a parameter ρ, defined as the fraction of event interpretations

that pass ambb cut designed to select for signal. The ρ distributions for the signal and back-
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Figure B.1: Ratio of significance using the 2D cut of 95 < mbb,R=0.4 < 140 GeV, 105 <
mbb,R=0.6 < 160 GeV compared to the 1D cut.

ground samples are shown in Figure B.2. Note that the background ρ distribution peaks

around 0, while the signal ρ distribution peaks closer to 1, as expected.

The significance improvement using the t∗(z)measure described in the study in each of

the pVT bins is shown in Figure B.3, finding similarly high levels of improvement. On the

whole, the significance gains and ρ distributions found in this replication are similar, but

not identical to those found in the original study. This disparity is likely due to the differ-

ent methods in jet reconstruction, since the original study used a telescoping jets approach,

whereas this analysis reconstructs the jets directly from the calorimeter topological clusters.

The successful replication of the results in [10] means that the unexpectedly low improve-

ments in significance found in Section 5 are likely the result of some other complicating

factor that comes from bringing in the BDT.
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Figure B.2: ρ distributions for the background (left) and signal (right) samples. The counts
are weighted by the event weights from theMonte Carlo simulation.

Figure B.3: Improvement in significance by using t∗(z) instead of the 1D cut. The total
significance gain is found by adding the significance gains from each of the other pVT bins in
quadrature.
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