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Abstract

In this thesis I offer new results on how we can acquire, reward, and use accurate

predictions of future events. Some of these results are entirely theoretical, improving

our understanding of strictly proper scoring rules (Chapter 3), and expanding strict

properness to include cost functions (Chapter 4). Others are more practical, like

developing a practical cost function for the [0, 1] interval (Chapter 5), exploring

how to design simple and informative prediction markets (Chapter 6), and using

predictions to make decisions (Chapter 7).

Strict properness is the essential property of interest when acquiring and rewarding

predictions. It ensures more accurate predictions are assigned higher scores than less

accurate ones, and incentivizes self-interested experts to be as accurate as possible.

It is a property of associations between predictions and the scoring functions used to

score them, and Chapters 3 and 4 are developed using convex analysis and a focus

on these associations; the relevant mathematical background appears in Chapter 2,

which offers a relevant synthesis of measure theory, functional analysis, and convex

analysis.

Chapters 5–7 discuss prediction markets that are more than strictly proper. Chap-

ter 5 develops a market for the [0, 1] interval that provides a natural interface, is

computable, and has bounded worst-case loss. Chapter 6 offers a framework to un-

derstand how we can design markets that are as simple as possible while still providing
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an accurate prediction. Chapter 7 extends the classical prediction elicitation setting

to describe decision markets, where predictions are used to advise a decision maker

on the best course of action.
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We choose to go to the moon in this decade and to do these other things

not because they are easy, but because they are hard, because that goal

will serve to organize and measure the best of our energies and skills,

because that challenge is one that we are willing to accept, one we are

unwilling to postpone, and one which we intend to win.

—President John F. Kennedy

Come, my friends,

’Tis not too late to seek a newer world.

Push off, and sitting well in order smite

The sounding furrows; for my purpose holds

To sail beyond the sunset, and the baths

Of all the western stars, until I die.

It may be that the gulfs will wash us down;

It may be we shall touch the Happy Isles,

And see the great Achilles, whom we knew.

Though much is taken, much abides; and though

We are not now that strength which in old days

Moved earth and heaven, that which we are, we are,

One equal temper of heroic hearts,

Made weak by time and fate, but strong in will

To strive, to seek, to find, and not to yield.

—Lord Alfred Tennyson’s Ulysses

This thesis is dedicated to my father, Edward Ruberry, who resolutely
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1: Introduction

All appearances being the same, the higher the barometer is, the greater the

probability of fair weather.

– John Dalton, 17931

. . . there has been vague demand for [probabilistic weather] forecasts for sev-

eral years, as the usual inquiry made by the farmers of this district has

always been, “What are the chances of rain?”

– Cleve Hallenbeck, 19202

Verification of weather forecasts has been a controversial subject for more

than half a century. There are a number of reasons why this problem has

been so perplexing to meteorologists and others but one of the most impor-

tant difficulties seems to be in reaching an agreement on the specification of

a scale of goodness for weather forecasts. Numerous systems have been pro-

posed but one of the greatest arguments raised against forecast verification

is that forecasts which may be the “best” according to the accepted system of

arbitrary scores may not be the most useful forecasts.

– Glenn W. Brier, 19503

One major purpose of statistical analysis is to make forecasts for the future

and provide suitable measures for the uncertainty associated with them.

– Gneiting & Raftery, 20074

1From [27], see also [61] for a discussion of the history of probabilistic weather forecasts.

2From [46].

3All of Brier’s quotes are from [16].

4From [43].
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1: Introduction

This thesis studies the now classical problem of how we elicit and score predictions

about the future and some of its practical extensions. This problem is motivated

by a natural desire to acquire an accurate prediction about the likelihood of future

events from one or more self-interested (risk-neutral and expected score maximizing)

experts, or – equivalently – a desire to devise a system for scoring experts that rewards

accurate predictions. The formal study of this problem first came from meteorology,

with its interest in predicting tomorrow’s weather, and is now often studied indepen-

dently. Systems designed to elicit accurate predictions of the future have been used

to predict everything from presidential elections to technology trends, and it appears

they produce better predictions than some common alternatives.[17, 22]

After about sixty years of study there are still significant challenges to our un-

derstanding of how we score predictions. Some of these challenges are theoretical –

we lack a complete understanding of how to relate our problem to various mathe-

matical objects – and many others are practical—some systems for eliciting accurate

predictions are too complicated to be used in practice, and actually making use of a

prediction can be surprisingly difficult. This thesis addresses some of these challenges,

offering a new theoretical perspective on how we score predictions and examining sev-

eral practical problems: (1) the creation of a practical securities market for events

occurring in the [0,1] interval, (2) the construction of simple and informative markets,

and (3) the use of predictions for decision making. Chapters 2–4 are more theoreti-

cal, presenting some mathematical background and then characterizing strictly proper

scoring rules and cost functions, and Chapters 5–7 present the three more practical

investigations. The rest of this introduction provides an overview of these chapters.

3



1: Introduction

1.1 Convex Functions and Relations

Chapter 2 synthesizes concepts from measure theory, functional analysis, and con-

vex analysis, to provide the mathematical tools and perspective needed in Chapters

3–5. It formalizes our discussion of predictions and scores, and shows how we can

study associations between them using convex analysis. These associations describe

how we score predictions, and will be the fundamental objects of study in Chapters

3 and 4.

Chapter 2 also develops some specialized new tools that let us succinctly describe

strictly proper associations between predictions and scoring functions, associations

that are the subject of Chapter 3.

1.2 Scoring Rules

Chapter 3 describes strictly proper scoring rules. Scoring rules are a popular

method for acquiring predictions about the future, and strict properness is the es-

sential property that guarantees they elicit and reward accurate predictions. These

rules define an association between predictions and a means of scoring them, known

as scoring functions, and strict properness is a property of the structure of these

relations. Using the tools developed in Chapter 2, Chapter 3 identifies this strictly

proper structure as always being a subset of a relation described by convex functions.

When using a scoring rule ask an “expert,” like a meteorologist, to offer a predic-

tion of the likelihood of future events, like whether or not it will rain tomorrow. A

scoring rule assigns this prediction a scoring function that maps each possible out-

4



1: Introduction

comes to a score. When a meteorologist is predicting the likelihood of rain there are

two outcomes, RAIN and NO RAIN, and a prediction is a probability distribution

over these possible outcomes. A scoring rule assigns the meteorologist’s prediction

a scoring function b, and if it RAINS the expert is scored b(RAIN) and otherwise

b(NO RAIN).

If a scoring rule is strictly proper, then an expert expects to maximize its score only

when it offers the most accurate prediction possible. Alternatively, a strictly proper

scoring rule rewards accurate predictions more in expectation. If our meteorologist

thinks the likelihood of rain is 70% then a strictly proper scoring rule provides a strict

incentive for it to also predict a 70% likelihood. If a scoring rule is not strictly proper

then our meteorologist may expect to maximize its score by predicting 50% instead,

and this less accurate prediction might be rewarded just as much as or more than

the more accurate one! Simply put, scoring rules that are not strictly proper fail our

goal of eliciting and rewarding accurate predictions. This is why strict properness is

the essential property we need when eliciting and scoring predictions, and this point

cannot be emphasized enough.5

Strictly proper scoring rules have been studied heavily, ever since Brier proposed

a scoring system for weather predictions he thought would encourage and reward ac-

curate predictions [16]. Savage later characterized strictly proper scoring rules that

could handle countable outcome spaces [83], and Gneiting and Raftery described

them for arbitrary measurable spaces [43]. Both Savage’s and Gneiting and Raftery’s

characterizations identify strictly proper scoring rules with strictly convex functions,

5I think methods of acquiring a prediction that are not strictly proper have some serious explain-
ing to do.
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1: Introduction

essentially showing that a strictly proper scoring rule’s association between predic-

tions and scoring functions is described by a strictly convex function’s association

between points and their “subtangents.”6 This characterization is not as elegantly

stated as I have paraphrased it, and, from my perspective, it has real deficits:

1. It provides little insight into why strictly proper scoring rules and strictly convex

functions are related.

2. It uses subtangents, atypical mathematical objects that are not part of convex

analysis

3. It requires the class of predictions considered is convex. Equivalently, it only

allows strictly proper scoring rules with convex instead of arbitrary domains.

4. It allows scoring rules to assign scores of negative infinity to some experts, and

these scores cannot be assigned in a prediction market.7

5. It does not suggest a way of expanding strict properness to cost functions,

another popular method of scoring predictions. (Discussed in the next chapter.)

Gneiting and Raftery were not attempting to address these perceived deficits; they

were certainly not trying to create a perspective on strict properness that would also

cover cost functions! My point here is that there is room to improve our fundamental

characterization of strictly proper scoring rules.

6See Chapter 3 for a more detailed analysis of Gneiting and Raftery’s characterization.

7In a prediction market it is necessary to take the difference of two scores. The difference of
negative infinity and negative infinity is undefined, and so scoring functions that assign negative
infinity would result in an ill-defined market.
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By approaching strict properness from the perspective provided in Chapter 2,

Chapter 3 quickly arrives at a distinct characterization that shows a strictly proper

scoring rule’s mapping from predictions to scoring functions is always a subset of

a convex function’s mapping from its points to their unique supporting subgradients.

This is very similar to Gneiting and Raftery’s characterization, and it has the following

advantages:

1. It clarifies the relationship between scoring rules, a type of relation, and convex

functions, which are a useful tool for understanding the structure of relations.

2. It uses the idea of “supporting subgradients” instead of “subtangents,” and the

former is part of convex analysis.

3. It lets strict properness apply to any class of predictions, not just convex ones.

4. It restricts scores to be real-valued, letting these scores always usable by a

prediction market.

5. It offers a framework for extending strict properness to cost functions.

This second-to-last point may also be seen as a negative, since Gneiting and Raftery’s

characterization is more general by allowing more scores. Written negatively, the

last item might read: scoring functions can no longer assign a value of negative

infinity. This is a consequence of using supporting subgradients and the tools of

convex analysis instead of subtangents. Not being a complete generalization, I think

both characterizations are still of interest, and I hope my own offers the reader some

new insights for their own work.

7
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1.3 Cost Functions

Cost functions are another popular means of acquiring a prediction. These func-

tions are especially interesting since they can emulate futures markets where (one

or more) traders buy and sell securities whose values anticipate future events. While

scoring rules can also be used to run markets with many experts “trading” predictions,

trading securities using a cost function has two significant advantages over using a

scoring rule: (1) it presents a familiar interface to traders, and (2) it lets traders focus

exclusively on their areas of expertise.8 Instead of having to predict the likelihood of

every future event, a cost function lets traders focus on determining whether a few

securities are priced correctly. The cost function, acting as a market maker, assumes

the role of translating trading behavior into a complete prediction of future events.

Futures markets have been implicitly acquiring and rewarding predictions of the

future since they were first opened. The better a trader can predict the price of corn

the more it expects to make trading corn futures. These markets naturally provide the

same incentives a strictly proper scoring rule does for traders to acquire information

and produce predictions that are as accurate as possible. Well-designed cost functions

can let us act as market makers who emulate these futures markets.

Prior work on cost functions has usually developed them to have desirable eco-

nomic properties, to be efficiently computable,9 or to make theoretical connections

8Generalizations of the scoring rules considered in Chapter 3, like those discussed in Chapter 6,
can also allow traders to focus in this way. Classically, however, we think of scoring rules request an
entire probability measure.

9When running a market with billions (or more) possibilities, accounting for the effects of one
trade on the system can be very difficult. For instance, if running a market to determine the next
U.S. president, it can be hard to understand how to increase the likelihood of a Democratic win if
traders begin purchasing the security that says they will win in Iowa. Some excellent work on this
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with other fields, especially machine learning [1]. This work has also often revealed

connections between cost functions and scoring rules [1, 3], yet the idea of a strictly

proper cost function was never formally developed.10 It has also proven difficult to

adapt cost functions to measurable spaces, and most work on them considers discrete

spaces.

Chapter 4 characterizes strictly proper cost functions on arbitrary measurable

spaces for the first time. This characterization puts our understanding of cost func-

tions in parity with our understanding of scoring rules, and completely reveals the

relationship between the two. It does this by developing the perspective on scoring

rules in Chapter 3 into a more general object that I call a “scoring relation.” These

scoring relations are the root object in the study of strict properness, and both scoring

rules and cost functions are derived from them.

Perhaps surprisingly, given our discussion so far, a cost function must be more

than strictly proper to emulate a futures market. Chapter 5 discusses the additional

structure required while developing a new cost function for continuous random vari-

ables.

problem is [53].

10The authors of [1] effectively show the cost functions they consider are strictly proper when they
demonstrate the mathematical connections these cost functions have to strictly proper scoring rules.
The concept of strict properness has been so alien to cost functions, though, that the authors do
not elaborate on the incentive implications of this result.

9
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1.4 A Cost Function for Continuous Random Vari-

ables

Chapter 5 continuous our discussion of cost functions. In Chapter 4 strictly proper

cost functions were described, and Chapter 5 begins by characterizing when these

functions actually emulate a futures market. In addition to being strictly proper,

emulating a futures market requires cost functions reliably offer traders a consistent

set of securities to buy and sell, and that they can quote meaningful prices for any

bundle of securities. These are natural properties we expect any market to have.

The second part of Chapter 5 uses the techniques developed to produce a prac-

tical cost function for continuous random variables. Cost functions for non-discrete

spaces have, historically, proven elusive. In [38] a set of economic properties was pro-

posed, as we expect from work on cost functions, and it was shown that cost functions

satisfying these properties must experience unbounded worst-case loss when working

with continuous random variables. Unbounded worst-case loss means that our market

maker can lose any amount of money, and this is an undesirable property to have in

practice. In [67] a cost function for continuous random variables with bounded loss

was incorrectly claimed, a claim withdrawn in the author’s thesis [66]. These diffi-

culties have caused prior work to discretize the outcome space of continuous random

variables, or offer alternative interfaces other than a traditional cost function [68, 37].

Chapter 5 uses my characterization of strictly proper cost functions for arbitrary

measurable spaces to create a market for the outcome of a (bounded) continuous

random variable that (1) is strictly proper, (2) acts like a futures market, (3) has

10
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bounded worst-case loss, and (4) can be computed using a convex program. This cost

function is not perfect. It does not let traders buy and sell any security, and it is

incapable of representing every possible prediction. Still, it is an interesting first step

in our development of cost functions for continuous random variables, and may even

be considered suitable for real use.

Chapter 5 concludes my discussion of strict properness in measurable spaces.

Chapters 6 and 7 continue, like Chapter 5, to discuss markets that are more than

strictly proper. The first of these chapters, Chapter 6, asks how we can design predic-

tion markets that are simple and informative, and the second, Chapter 7, investigates

how we can use expert advice to make decisions.

1.5 Simple and Informative Markets

Chapter 6, like Chapter 5, focuses on a prediction market that is more than strictly

proper. In this chapter I assume a finite outcome space and Bayesian traders, with a

common prior and known information structure. Our prediction market offers a set

of securities, and Chapter 6 is interested in designing markets that are both simple

and informative.

A market is informative if (1) traders are able to converge on security prices that

reflect all their private information, and (2) we are able to uniquely infer from these

prices the likelihood of some events of interest. This first property has been studied

by [65], which showed a separability condition was necessary. In brief, this condition

related the available securities to the structure of traders’ information. Securities

are the medium through which traders exchange ideas and debate in markets, and if

11
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they are cleverly structured then traders are able to accurate deduce the likelihood

of future events. Sometimes, however, this is not possible.

Consider, for example attempting to determine the future price of corn. Corn

prices are determined by a variety of factors, like the weather and future demand,

and if we understood these variables we could offer securities to determine how much

it would rain, and how much demand there would be. The prices of these securities

would then let traders better determine future corn prices. If we just offer a security

for the future price of corn, traders would be unable to express their information

about the weather, future demand for corn, etc., and the result is a less accurate

prediction of future corn prices.

The second property of informativeness is straightforward: the security prices

must actually be usable. This prevents us from mistakes like running a trivial market

with, for instance, a constant-valued security. Traders are always able to price this

security perfectly and it always tells us nothing. Thus informativeness is composed

of two properties.

Returning to our future corn price example, we might think one solution to best

determining the future price of corn is offering as many securities as possible, one for

every possible event. This would allow traders to express a great deal of information,

and the market would be very difficult, in practice, to run. Broadly speaking, the more

securities a market offers the more computationally complex it becomes to run, and

too many securities is computationally prohibitive. Some excellent work on making

tractable markets that can handle large outcome spaces is [31, 53].

Because too many securities is computationally prohibitive, then, when designing
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a market we think of both informativeness and simplicity. These are markets that

informative and that use as few natural securities as possible, securities that either

pay $0 or $1. This prevents us from offering superfluous securities, as well as especially

strange securities real traders are unlikely to want to work with.

How we consider designing a market that is both simple and informative depends

on our knowledge of traders’ signal structure, and Chapter 6 has two significant re-

sults. The first shows that without any knowledge of how traders’ information is

structured a potentially huge number of securities is necessary to best identify the

likelihood of a future event, as many securities as outcomes that comprise the event

or its complement. The second shows that when we know traders’ signal structure,

designing a simple and informative market is NP-hard. Thus, designing a simple

and informative market is either trivial and does not help us reduce the computa-

tional complexity of a market, or we actually have the chance of reducing a market’s

complexity but doing so perfectly is NP-hard.

In the end, these results that simple prediction markets likely work because in-

formation is being exchanged outside the market, or traders’ information is already

very simple. In our corn example traders might be receiving weather reports in-

stead of relying on weather securities. Given the hardness of usefully designing a

market that is both simple and informative, and how unlikely it is that we perfectly

know traders’ information structure, this chapter likely raises more questions about

designing prediction markets than it answers.

13



1: Introduction

1.6 Making Decisions with Expert Advice

Chapter 7 concludes my new results with an investigation of how we can use expert

advice to help make decisions. Acquiring predictions of the future is, after all, only

useful if it might change how we act today—if it can influence some decision we are

making. The idea of a “decision market” where prediction markets would influence

policy decisions was first proposed in [47], and formally studied for the first time

in [69]. This latter paper revealed a tension between acting on decisions and ensuring

their accuracy, and they discussed a solution for a special case of the problem.

In the first part of Chapter 7 I will fully characterize strictly proper decision

markets, which incentivize accurate predictions just like strictly proper prediction

markets. These markets consider a decision maker trying to choose between several

available actions. Experts are then asked to predict what would happen if each action

were taken. For example, a prediction of the likelihood of future events conditional

on action A being taken, and another prediction of the likelihood of future events

conditional on action B being taken. The decision maker can then review these

predictions to assist in picking what it thinks is the best possible action it can take.

Chapter 7 shows that strictly proper decision markets exist, and can be readily

built from traditional strictly proper scoring rules. Unfortunately, they also require

the decision maker risk taking any action with some (arbitrary small) probability.

Since this probability can be made as small as desired, this limitation still means a

decision maker can use a decision market to improve the chances it makes a good

decision.

The second part of Chapter 7 talks about decision making using the advice of

14
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a single expert. Here it is possible to simply take a recommended option, and rec-

ommendation rules can be constructed to incentivize the expert to reveal the option

the decision maker would most prefer. These recommendation rules are an interest-

ing departure from scoring rules since they are not necessarily designed to reward

more accurate predictions. Instead, they might give the expert a share of the de-

cision maker’s utility for the actual outcome, aligning the expert’s incentives with

the decision maker’s. Recommendation rules are mathematically similar to scoring

rules, even if conceptually different, and they suggest there may be other uses for the

techniques developed in Chapters 2–4.
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Mathematical Background

This chapter offers a relevant synthesis of some concepts from measure theory,

functional analysis, and convex analysis needed in Chapters 3–5. An excellent intro-

ductory measure theory book is [7], an excellent introductory functional analysis text

is [52], and a very interesting book on convex analysis is [9].

This chapter begins in Section 2.1 by showing how measure theory is an appro-

priate language for scoring predictions. The events we would like to predict are

represented by a measurable space, predictions are probability measures, and scor-

ing functions are bounded measurable functions. Section 2.2 shows how predictions

(probability measures) and scoring functions (bounded measurable functions) can be

placed in duality, and how each is actually a continuous linear function of the other.

Section 2.3 shows how convex functions can be used to study relations between ob-

jects in duality, like predictions and scoring functions, and develops some refinements

particular to our work. In particular, it concludes with a description of a the rela-

tion between a convex function’s points and their unique supporting subgradients, a
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relation that we will see describes all of strict properness.

2.1 Measures, Measurable Spaces, Sets and Func-

tions

When using a scoring rule we start with something we would like to predict, then

we acquire a prediction and assign it a scoring function that describes how it will

be scored. Afterwards we observe the actual outcome and use the scoring function

to assign the prediction a score. In this section I will formalize each of these steps

using concepts from measure theory, assisted by two running examples. The first

will be of a meteorologist predicting the likelihood of rain tomorrow, and this will

allow us to use and compare our intuition from discrete probability theory with the

measure theory; the second example will be of a statistician predicting the outcome

of a continuous random variable on the [0, 1] interval, a more abstract instance that

requires measure theory understand.

2.1.1 Measurable Spaces and Sets

We will represent the possible outcomes of what we would like to predict as an

arbitrary measurable space, a tuple (Ω,F). This tuple consists of an outcome space

Ω, a set that describes what may happen, and a σ−algebra F , a set that describes

the measurable sets of Ω. These measurable sets are the sets we can use a measure to

assign a value (“size,” “length,” “mass”) to, and are referred to as measurable. In our

context a measurable set is also described as an event. A measurable space always
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has at least one event, ensures the complement of any event is also an event, and

requires that a countable union of events is also an event (and thus so are countable

intersections of events).

Discrete probability theory does not explicitly define a σ−algebra. When Ω is a

countable set, like {RAIN, NO RAIN}, it is natural to think of every subset being

an event. Explicitly, such an outcome space Ω can be interpreted as belonging to the

measurable space (Ω, 2Ω), and these spaces are the purview of discrete probability

theory.

Measure theory was developed to work with countable and uncountable outcome

spaces, like the [0, 1] interval, where assuming every subset is an event is mathemati-

cally problematic. The details of why this assumption is problematic is not important

for our purposes, and we need only accept that σ−algebras are a mathematical neces-

sity and that much of our intuition from discrete probability theory no longer applies

in this setting. We will not encounter any subsets of interest that are not also events

in this thesis, and we will never be interested directly in the structure of a σ−algebra;

they are mostly carried around as notation.

A common way of quickly defining and forgetting a σ−algebra for familiar sets Ω

is to generate one from a familiar or usual topology on Ω. A topology is a collection

of open sets, just like a σ−algebra is a collection of measurable sets, that satisfies

some similar properties we will not be concerned with. We are intuitively familiar

with the “usual” Euclidean topology on the reals, where a basis of open sets are the

open intervals, the empty set, and R itself, and the uncountable unions of these sets

define the open sets that compose the topology. A Borel σ−algebra generated from
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this topology is the smallest σ−algebra that contains every open set.

On the [0, 1] interval a more common σ−algebra is the Lebesgue measurable sets,

which also contains every open set and so is a super set of the Borel σ−algebra. These

sets are described in the next subsection along with Lebesgue measure.

2.1.2 Measures

In the previous subsection we represented the outcome space of what we would

like to predict as a measurable space. This measurable space provided a structure

of measurable sets or events that will let us describe how likely an event is, and a

prediction will be a complete description of how likely each event is. More formally,

a prediction will be a probability measure, a special type of measure.

Given a measurable space (Ω,F), a measure is any function that maps from the

σ−algebra to the reals, µ : F → R. The probability measures are a special closed

and convex subset of all measures that are non-negative, countably additive, and that

assign a likelihood of one to Ω itself.1 Countable additivity means that the sum of the

likelihoods of countably many disjoint events is equal to the likelihood of the union

of the disjoint events,
∑

i µ(Fi) = µ(∪iFi), ∀i, j, Fi ∩ Fj = ∅. The set of probability

measures is denoted P .

With a discrete space, like Ω = {RAIN, NO RAIN}, probability measures are

also called probability distributions, and handling them is well understood. With

an arbitrary measurable space it is not so clear what a probability measure looks

1Sometimes probability measures are allowed to be finitely additive, too. This may be an inter-
esting extension for future work to consider. We are usually economically interested in the countably
additive probability measures.
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like. Luckily, in the case of the [0, 1] interval the probability measures have a very

special and familiar structure. Understanding this first requires knowing a little about

Lebesgue measure.

Lebesgue measure is a measure defined on the reals that acts as one might expect,

assigning intervals a measure equal to their length. In fact, Lebesgue measure is

“strictly positive,” which means it assigns every open set of the interval a positive

value. Lebesgue measure is usually denoted λ, and the Lebesgue measurable sets are

denoted L. We will not go into detail about this measure, suffice to say that they are

a superset of the Borel measurable sets, and so contain all points, subintervals, and

all their countable unions and finite intersections—every subset of interest on the [0,

1] interval. Thus we have statements like λ([0, .5]) = λ(0, .5) = .5, and λ(.7) = 0.

Lebesgue measure and the Lebesgue measurable sets are so important that we will

always think of [0, 1] as part of the measurable space ([0, 1],L). One nice thing about

probability measures whose domain is the Lebesgue measurable sets is that these

probability measures are identified with cumulative distribution functions (CDFs).2

Every cumulative distribution function is such a probability measure, and every such

probability measure is a cumulative distribution function. Lebesgue measure itself is

the uniform “straight-line” 45 degree angle CDF.

Returning to our context of acquiring a prediction, we start with a measurable

space (Ω,F) that represents the possible outcomes of what we would like to predict.

We normally think of an expert have some beliefs p ∈ P of what they think most

likely to occur, and they make a prediction p′ ∈ P . If Ω = {RAIN, NO RAIN}

2Right-continuous functions of the [0, 1] interval that begin at zero and go to one.
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then this prediction is a probability distribution, and if Ω = [0, 1] this prediction is a

CDF. Strict properness is the property that attempts to make p′ = p. That is, strict

properness is about getting experts to tell us what they actually believe, or about

scoring them higher (in expectation) when the expert is most accurate and does so

(we take the expert’s belief as the pinnacle of accuracy).

That beliefs and predictions over the [0, 1] interval are equivalently CDFs will offer

a great deal of useful structure that we will exploit in Chapter 5. Describing more

of this structure will require understanding measurable functions, and conveniently

these functions are also what we will use as scoring functions that determine what

score to assign a prediction.

2.1.3 Measurable Functions

So far we have discussed measurable spaces, sets, and measures, especially proba-

bility measures. When acquiring a prediction, we think of a measurable space (Ω,F)

describing the possible outcomes, and providing the structure necessary to define

measures, like the probability measures, that represent an expert’s beliefs and the

predictions they can make. In this subsection we describe measurable functions, a

subset of which we will use as our scoring functions that describe how we assign

predictions a score.

Let (Ω0,F0) and (Ω1,F1) be two measurable spaces. A function f : Ω0 → Ω1 is

F0/F1−measurable when the inverse image of every measurable set is also a mea-

surable set. When the measurable spaces are understood, such functions will be

described simply as “measurable.” This is analogous to the topological notion of
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continuity, where a function is continuous when the inverse of each open set is open.

If a function is continuous then it is measurable, and if a function is measurable it is

“almost continuous,” having at most a countable number of discontinuities.

Our scoring functions will be bounded and measurable functions from (Ω,F) to

the reals with their Borel σ−algebra. The set of such functions is denoted B, and

(again) a member of this set is a function b : Ω→ R that is measurable and bounded.

Boundedness will be important in the next section, where we will need the supremum

norm of our scoring functions supω∈Ω |b(ω)| to be well-defined. Note that, while any

function b ∈ B is bounded above and below by some real k, the set itself is unbounded.

It is important our scoring functions be measurable, because this will allow us to

take their expectation. If an expert has beliefs p ∈ P , the expectation of a bounded

measurable function b ∈ B is defined by the Lebesgue integral

p(b) =

∫
Ω

b dp (Expectation / Lebesgue integral)

This integral is a means of turning a countably additive measure, like p, into a function

of measurable functions. The precise definition of the integral is too detailed for this

overview; in the discrete setting we have a natural intuition about expectations, and

the integral is best understood as such. In the continuous setting the integral is like

the limit of a discrete expectation, and can be thought of as the values of the function

b times the measure that p assigns to them.

When predicting the likelihood of rain, Ω = {RAIN, NO RAIN} and we interpret

this outcome space as part of a discrete space. Our meteorologist has some belief

about how likely rain is, and this is simply a probability distribution. Let’s assume

the meteorologist believes there is a 70% chance of rain, and let this measure be p.
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We ask the meteorologist for a prediction p′ ∈ P , also a probability distribution, and

assign it a scoring function b ∈ B. The expert expects to score p(b), its expectation

for the scoring function. If b(RAIN) = 1 and b(NO RAIN) = 0, then this would be

p(b) = .7(1) + .3(0) = .7. If RAIN occurs then the expert is scored b(RAIN) = 1.

When an expert is predicting the outcome of a continuous random variable its

beliefs are a probability measure or CDF p, and it offers as a prediction another CDF

p′. It receives a scoring function b : [0, 1]→ R, and it expects to score p(b). If b is one

on [0, .5] and zero on (.5, 1], then p(b) = p([0, 5])(1) + p((.5, 1])(0). If the outcome .2

occurs then the expert is scored b(.2) = 1.

This concludes most of the measure theory we will need in the following chapters.

We have a way to represent what may happen, an understanding of beliefs and pre-

dictions as probability measures, and a knowledge of scoring functions as bounded

and measurable functions. This is a formal representation of how using a scoring

rule works, and in the next chapter I will focus on how we determine what scoring

function b to pair with each prediction p. Before moving on to discuss Banach spaces

and duality, however, it is convenient to now return to Lebesgue measure and how it

relates to probability measures on the [0, 1] interval. This structure will be needed

in Chapter 5.

2.1.4 Lebesgue Measure as a Perspective

The measurable space ([0, 1],L) is so often of interest that we have a great deal

of specialized tools available for analyzing it, and we will need these tools in Chapter

5 when we focus on acquiring predictions over the interval. As described earlier
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in this section, probability measures on this interval are identified with cumulative

distributions functions CDFs). Lebesgue measure is the CDF corresponding to the

uniform distribution, and is a natural reference point for mathematical investigations.

In this subsection we will discuss how other probability measures on relate to it.

A probability density function (PDF) is another way of describing some proba-

bility measures on the [0, 1] interval. In the language of classical (not discrete) or

calculus-based probability theory, a PDF is usually defined as a function f : [0, 1]→ R

that is Riemann integral. The likelihood of an event is then the Riemann integral of

this function over that event. For instance, the likelihood of the event [.2, 4] would

be ∫ .4

.2

f dx (specifying likelihoods with a PDF)

Probability measures that can be described with a PDF are called “absolutely con-

tinuous” in classical probability theory.

From a measure theory perspective, one measure µ is absolutely continuous with

respect to another measure ψ when there exists a measurable function, usually written

dµ
dψ

: [0, 1]→ [0,∞), such that

µ(L) =

∫
L

dµ

dψ
dψ (Radon-Nikodym derivative)

and this function is known as the Radon-Nikodym derivative of µ with respect to ψ.3

If a probability measure p is absolutely continuous with respect to Lebesgue measure,

then its Radon-Nikodym derivative with respect to Lebesgue measure is then called

3I am misrepresenting the math a little here in a simplification that avoids notions like
σ−finiteness. It would be more accurate here to say “any measure we might consider is absolutely
continuous with respect to another one we might ever consider when....”
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its PDF. To avoid a proliferation of “with respect to Lebesgue measure”s from appear-

ing, I will adopt the classical probability theory perspective that assumes Lebesgue

measure as a reference point. That is, I will also start referring to measures simply

as “absolutely continuous,” and we will understand it is with respect to Lebesgue

measure.

Note that the change of integral from the Riemann to the Lebesgue here is a minor

issue, since while more functions are Lebesgue-integrable than Riemann-integrable,

the Riemann integral is equivalent to Lebesgue integration with respect to Lebesgue

measure wherever the former is defined.

Measures that are absolutely continuous do not have unique PDFs, and as men-

tioned not every probability measure has a PDF. In particular, probability measures

with point masses do not have PDFs. (These are measures that assign positive mass

to a single real number.4 There are also singular continuous measures, which do not

have point masses and are still not absolutely continuous. These measures are difficult

to work with (an example of a singular continuous measure is the probability mea-

sure that has uniform support on the Cantor set5) and we will, in fact, exclude them

from our consideration in Chapter 5 when designing a practical system for acquiring

predictions on the [0, 1] interval.

While not every measure has a PDF, every measure on the interval can be par-

titioned from the perspective of Lebesgue measure in what is known as a Lebesgue

decomposition. This partition results in three measures, one consisting only of point

4This is why probability measures are countably additive, and not simply additive. Many prob-
ability measures on [0, 1], like Lebesgue measure, assign a likelihood of zero to every point.

5Good luck trying to draw that CDF.
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masses known as a pure point part, an absolutely continuous part, and a singular con-

tinuous part. Further, the pure point part has a countable number of point masses,

and this fact and this decomposition will be used in Chapter 5. In fact, we can im-

mediately derive the fact that the pure point part has a countable number of point

masses because every point mass is a discontinuity in a CDF, and since CDFs are

right-continuous they have at most a countable number of discontinuities. Results

like this demonstrate the utility of working with probability measures on the interval,

where we can leverage the structure of CDFs.

Before concluding our discussion of measure theory and moving on to functional

analysis, I will prove that we can create a strictly convex function of the absolutely

continuous probability measures over the interval by using a strictly convex function

of the reals f : R→ R. Formally:

Lemma 1 (Strictly Convex Functions of Absolutely Continuous Measures). Letting

f : R→ R be a strictly convex function, the function

ψ(µ) =

∫
[0,1]

f(
dµ

dλ
) dλ

is a strictly convex function of measures µ over ([0, 1],L) that are absolutely continu-

ous, where dµ
dλ

is the Radon-Nikodym derivative of µ with respect to Lebesgue measure.

To prove this I will use the following lemma.

Lemma 2 (CDF Distinguishability). Any two CDFs F and G on [0, 1] such that

∃x ∈ [0, 1] such that F (x) 6= G(x) must differ on a non-empty open set.

Proof. We begin by showing distinct right-continuous functions differ on a non-empty

open set, then applying this results to CDFs.
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Let f and g be two right-continuous functions defined on [a, b) ∈ R. Assume there

exists x ∈ [a, b) such that f(x) 6= g(x). Let c = f(x)− g(x), then by right-continuity

there exists δf , δg > 0 such that f(x) − f(x′) < c/2 for all x′ ∈ (x, x + δf ), and

symmetrically for g. Let δ = min(δf , δg), then on the interval [x, x + δ) f and g are

nowhere equal since f is always within c/2 of f(x) on that interval and g is always

within c/2 of g(x), and f(x) and g(x) differ by c, so no number is within c/2 of both

of them.

Since any two right-continuous functions differ on a non-empty open subset and

CDFs are right-continuous if two CDFs F and G differ on [0, 1) the result is imme-

diate. If the functions do not differ on [0, 1) they do not differ anywhere since the

extension of a CDF to [0, 1] is unique.

Which we now apply.

Proof. Let F and G be the CDFs of two probability measures absolutely continuous

with respect to the Lebesgue measure. A Radon-Nikodym derivative (density func-

tion) of the measure αF+(1−α)G is then αdF
dλ

+(1−α)dF
dλ

. Using the strict convexity

of f , we have the inequality

f

(
α

dF

dλ
+ (1− α)

dF

dλ

)
< αψ(

dF

dλ
) + (1− α)f(

dF

dλ
)

And the same inequality holds for the integrals∫ 1

0

f

(
α

dF

dλ
+ (1− α)

dF

dλ

)
dx <

∫ 1

0

αf

(
dF

dλ

)
+ (1− α)f

(
dF

dλ

)
dx

since it holds pointwise and applying Lemma 2 we have that the CDFs differ on an

open set and this implies their densities do, too, so the inequality is strict.
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Finally, we note that any other Radon-Nikodym derivative differs from the one

we constructed only on a Lebesgue-negligible set so the value of any such integral is

equivalent and the choice of density function is immaterial to the inequality.

This result will be used in Chapter 5. It is interesting because it lets us take an

easy to understand strictly convex function from the reals, and create a strictly convex

function of the absolutely continuous probability measures, a much more difficult class

of objects to work with.

2.2 Banach Spaces and Duality

Strict properness is a property of a relation, the association between predictions

and scoring functions or, as we saw in the last section, the association between prob-

ability measures and bounded measurable functions. Convex analysis will allow us to

study the structure of these associations because it lets us understand relationships

between the elements of a Banach space and its dual. This brief section describes

what those are, and how they apply to our interests.

2.2.1 Banach Spaces

A Banach space is a complete metric space. That is, it is a set X coupled with

a metric d where every Cauchy sequence converges to a limit in X. Elements of

a Banach space are vectors, and like all vector spaces these vectors may be added

together or multiplied by a scalar, and there always exists a zero vector.

Letting (Ω,F) be a measurable space, there are two Banach spaces we will be

28



2: Mathematical Background

interested in. The first is the ca space of (bounded, signed and) countably additive

measures, since this space contains the probability measures P as a closed convex

subset, and these represent beliefs and predictions. The metric we will use on the

probability measures is the total variation distance, defined as

||p0 − p1|| = sup
F∈F

|p0(F )− p1(F )| (total variation distance)

Intuitively, the total variation distance of two probability measures is the greatest

difference in likelihood they assign any event.6

It is important to realize that the probability measures are not, themselves, nat-

urally a Banach space: multiplying by any scalar other than one does not give us a

probability measure, nor does adding two probability measures together; plus, there

is no zero vector. Hence why we situate the probability measures in the ca space.

While we will not explicitly reference the ca space after this section, it will continue

to be important to think of the probability measures as a thin slice of a larger space,

as this geometric thinking offers valuable intuition in the next section.

The second Banach space we will be interested in is the bounded measurable

functions B, which will become our scoring functions. These are part of the dual

space of the probability measures (described below), and convex analysis will let us

study pairings between them. A norm on B is the supremum norm

||b|| = sup
ω∈Ω
|b(ω)| (supremum norm)

and we use this to define a metric that is simply the greatest difference two functions

assign any point. Our need for Banach spaces is why we must restrict attention to

6This metric is derived from the total variation norm on the ca space: ||µ|| = µ+(Ω) + |µ−(Ω)|,
where µ+ is the positive part of the measure µ, and µ− is the negative part.
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the bounded measurable functions. Boundedness lets us define our norm (and thus

our metric), and if the functions were allowed to have infinite values we could not

add them together and would not have a vector space.

Gneiting and Raftery did not require their scoring functions to be bounded (they

did require them to be measurable), and this distinction is complicated because it

is, on the one hand, less general, and yet it lets us apply the powerful tools convex

analysis has to study strict properness. I think the key to understanding this trade-off

is that allowing unbounded scoring functions is, quite simply, uninteresting, and well

worth trading off for the rich theoretical framework we gain. First, infinite scores are

impractical, and scoring functions that actually attain infinite values cannot be used

in prediction markets where the difference of two scoring functions must be taken.

Second, in the discrete setting and on the [0, 1] interval the only unbounded functions

must actually attain infinite values, and the interest of functions that are real-valued

and unbounded is then, at best, specific to domains not yet considered. Finally, in

addition to being impractical it is theoretically limiting, a special case that requires

ad hoc tools and regularity conditions. I am happy to leave unboundedness behind,

at least for now, to leverage the standard tools of convex analysis.7

As mentioned, these sets P and B, are of interest because they can be placed in

duality and studied using convex analysis. This section concludes with a discussion

of this duality.

7For those familiar with strictly proper scoring rules, the logarithmic scoring rule is commonly
used as an example strictly proper scoring rule. This rule is unsuitable to use in a prediction market,
for the reasons mentioned, even though it often appears in that context. Further, my framework still
includes the logarithmic scoring rule, it just does not allow its domain to be any possible prediction.
When its domain is restricted the logarithmic scoring rule can associate every prediction with a
bounded scoring function, and this is the only version suitable for use in a prediction market.
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2.2.2 Duality

Two compatible Banach spaces can be paired, or placed in duality, and relations

between them studied using convex analysis. In particular, we can pair the ca space,

which includes the probability measures P , with the bounded measurable functions

B. We will be interested in this pairing because it associated beliefs and predictions

with scoring functions, and these associations will be fundamental to our study of

strict properness.

The continuous dual space of a Banach space X is the set of continuous linear

functions from X to the reals. The continuous linear functions from X to the reals,

denoted X∗, is also a Banach space, and its continuous dual space contains X. Two

Banach spaces that are part of the others’ continuous dual spaces are considered

paired or placed in duality, and they have a natural bilinear form between them, a

function from X ×X∗ to the reals that is linear in both arguments.

The ca space and the bounded measurable functions can be placed in duality, and

the bilinear form between them is simply the Lebesgue integral. This is conventionally

written:

〈µ, b〉 = µ(b) =

∫
Ω

b dµ (bilinear form)

for a countably additive measure µ and bounded measurable function b.

As mentioned, convex analysis lets us study relations between spaces in dual-

ity. Since the probability measures are not the entire continuous dual space of the

bounded measurable functions, and the bounded measurable functions are not the

entire continuous dual space of the probability measures, we will exercise caution in

the next section to be sure we are only dealing with these objects of interest. This
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will become more apparent shortly.

2.3 Convex Functions and their Subdifferentials

In the previous two sections we represented the possible outcomes we are trying to

predict as a measurable space (Ω,F). The probability measures P on this measurable

space are an expert’s beliefs and the possible predictions, and the bounded measurable

functions B are the the possible scoring functions. We discussed how P and B were

part of each others’ dual spaces, and I said this meant we could study relations

between them using convex analysis. In this section we will see what convex analysis

offers us. This section, unlike the other two in this chapter, actually contains some

specialized results of my own motivated by our focus on P and B, and we will need

these results in Chapters 3 and 4.

2.3.1 Functions and Relations

In this section we will be discussing many functions and relations, and we will

need some general notation for them.

A relation between two sets X and Y is a non-empty set of ordered pairs consisting

of an element from X and an element from Y . The domain of a relation is the elements

of X in it, and its range is the elements of Y in it. A relation between X and Y

is usually introduced as R ⊆ X × Y , and I write RT for the transpose of R, where

(y, x) ∈ RT when (x, y) ∈ R. The notation R|C is the restriction of R to C ⊆ X, the

set of pairs from R such that (x, y) ∈ R and x ∈ C. Then notation R(C) is the image

of C under R, or all y such that (x, y) ∈ R for some x ∈ C.
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A function f : X → Y also defines a special type of many-to-one relation, and

we equivalently write f(x) = y and (x, y) ∈ f . Functions, unlike relations, can be

described as lower semicontinuous (l.s.c.), an extremely useful property when study-

ing convex analysis, and continuous. Whenever we discuss the continuity or lower

semicontinuity of a function it will be a function between two normed spaces, and

continuity will be with respect to the norm topologies on X and Y .

2.3.2 Convex Functions

A convex functions maps a Banach space X to the extended reals R̄ such that8

f : X → R̄ (convex function)

αf(x0) + (1− α)f(x1) ≥ f(αx0 + (1− α)x1), ∀x0, x1 ∈ X,α ∈ [0, 1]

if the inequality is strict for all x0, x1 ∈ X and α ∈ (0, 1) then we say f is strictly

convex. If the inequality is strict whenever tested on a subset W ⊆ X then I will

describe f as strictly convex on W . That is, a function is strictly convex on a set

W if the inequality is strict whenever x0, x1 and αx0 + (1 − α)x1 are in W . This is

my own generalization of strict convexity, and we will use it when characterizing the

structure of strictly proper scoring rules.

Convex functions have some special notation. The effective domain of a convex

function f is where it is real-valued and is denoted domf ⊆ X. If W ⊆ X and I

write f : W → R̄ then I mean the effective domain of f is a subset of W and it is

+∞ elsewhere. If a function is real-valued somewhere and nowhere negative infinity

8The mapping is also often described as from a convex subset of X. This distinction is uninter-
esting since the domain of such a function can be extended to all of X by defining it as +∞ outside
its original domain. This extension preserves convexity, properness and lower semicontinuity.
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then it is called proper. If a function is both l.s.c. and proper I will call it closed.

This language will be especially useful as it will avoid a profusion of “propers” in

our discussion. This language is also appropriate since a proper convex function is

l.s.c. if and only if its epigraph9 is closed, which is the case when the effective domain

of the function is a closed convex set. One incredibly useful fact is that a function

is closed and convex if and only if it is the supremum of a family of continuous

affine functions.[9, p. 80] I will actually use a family of continuous linear functions in

Chapter 3, a special case of this result.

Two useful facts about l.s.c. convex functions that I will use later are that (1)

l.s.c. convex functions are bounded below on bounded sets [13, p. 144] and (2) l.s.c.

and real-valued convex functions of Banach spaces are, in fact, continuous [9, p. 74].

2.3.3 The Subdifferential

Convex functions admit a generalization of the classical derivative known as the

subdifferential. Subgradients, elements of the subdifferential, are points from the dual

space of the convex function’s domain, and a convex function’s association between

points and subgradients describes a class of relations between two spaces placed in

duality. In our case, a convex function f : P → R will have subgradients that are

elements of B, and a convex function f : B → R will have subgradients that are

elements of P . Of course, as mentioned previously P and B are not each others’

entire dual space, and so the subdifferential of these functions may contain elements

9We will not need to know what the epigraph is. Very roughly, we can get some intuition into
what the epigraph is by saying that for a convex function f : R → R̄ the epigraph is the set in R2

defined as the space above the function.
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from outside our sets of interest. I will create a refinement of the subdifferential that

lets us restrict attention to just these sets of interest. To reiterate our goal, we are

interested in relations between predictions from P and scoring functions from B, and

these relations will be encoded or embodied or identified with an association between

points and subgradients of a convex function.

Let X∗ be the continuous dual space of X. The subdifferential of a (proper)10

convex function f is the function ∂f defined as11

∂f : domf → 2X
∗

(subdifferential)

∂f(x0) = {x∗0|x∗0 ∈ X∗, f(x)− f(x0) ≥ 〈x− x0, x
∗
0〉, ∀x ∈ X}

Following convention I let dom∂f be the subset of X where the subdifferential of f

is non-empty. An element of ∂f(x) is referred to as a subgradient of f at x, and if

dom ∂f = domf I will simply describe the function as subdifferentiable. A useful

fact is that the subgradients of a convex function always form a closed convex set in

the continuous dual space.

It is important to remember that a subgradient is a continuous linear function

of the domain of a convex function. When studying convex functions in Euclidean

space, f : Rn → R, these functions can be identified with vectors from Rn. This

is because n−dimensional Euclidean space is its own continuous dual space. Every

linear function on Rn can be represented as a vector from Rn, and the bilinear form

between these two spaces is the dot product. When working in a discrete setting,

like our meteorologist predicting rain tomorrow, we have a finite number of outcomes

10For the subdifferential of a convex function to be nonempty it must be proper.

11Following convention that 2X is the collection of all subsets of X.
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and a probability measure is also a vector in Rn. In that example it is actually an

element of R2. We also saw that its scoring functions had two values, and so could

be identified with elements of R2 as well. This is to be expected because a scoring

function comes from the continuous dual space of the probability measures. Note

that it is easy to become confused, and think of this dual space as always having the

same structure, and this example reveals how this is not the case. The continuous

dual space of the probability measures depends greatly on the measurable space we

are considering. When we consider a convex function f : R2 → R, its subgradients

will also be members of R2, and we will use the association between points on the

function and its subgradients to associate predictions with scoring functions.

On the [0, 1] interval a probability measure is a CDF, and so our convex function

will map CDFs to the extended reals, f : P → R̄. On its effective domain it may

be subdifferentiable, and where subdifferentiable it creates an association between

CDFs and elements of their continuous dual space. Unlike R2, this may or may not

be a bounded measurable function. Assuming it is, the convex function will describe

an association between CDFs and bounded measurable functions of the interval b :

[0, 1] → R. I will next introduce a refinement of the subdifferential that ensures we

do not accidentally describe an association between probability measures and other

mathematical objects.12

12There does not seem to be a good description of what, exactly, the continuous dual space of the
probability measures on an arbitrary measurable space is. Although we do know that the continuous
dual space of the bounded measurable functions is the ba space of all bounded and finitely additive
signed measures, which includes the ca space as a closed subspace.
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2.3.4 Refining the Subdifferential

As mentioned, we will need to refine the subdifferential so that we can restrict it

only to the objects we are interested in, like the probability measures and bounded

measurable functions, so we can focus on relations only between them.13

Letting Y ⊆ X∗, the Y−subdifferential of a convex function is

∂Y f : domf → 2Y (Y−subdifferential)

∂Y f(x0) = ∂f(x0) ∩ Y

In particular, the B−subdifferential of a convex function will only include the bounded

measurable functions, and the P−subdifferential will only include probability mea-

sures.

Another, further refinement will be to focus on a convex function’s association

between points and their unique subgradients. This is because it will be useful later

to be sure that only one probability measure p is associated with each bounded

measurable function b, and this association can be identified with a convex function

f : P → R̄ where b is a subgradient of f at p and only at p. In fact, it is this unique

subdifferential relation that is necessary and sufficient for there to be a strictly proper

relationship between the probability measures and bounded measurable functions,

although elaborating on this will have to wait until Chapter 3.

13Previously I mentioned that Gneiting and Raftery did not require boundedness. Maybe future
work will not even require measurability, and allow any element of the continuous dual space to
somehow be used as a scoring function. How, exactly, this would work is beyond my understanding,
as the continuous dual space of the ca space is an unknown menagerie with objects so exotic they
are unlikely to be both functions from the ca space and from our state space Ω. Our ability to
interpret the bounded measurable functions as both is essential, since as functions from the ca space
they define an expectation, and as functions from the state space they define a score.
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Formally, the unique (Y−)subdifferential of a convex function f is

∂Y f : domf × 2domf → 2Y (unique subdifferential)

∂Y f(x0;W ) = {x∗0 | x∗0 ∈ ∂Y f(x0), x∗0 6∈ ∂Y f(x), ∀x ∈ W,x 6= x0}

This says that the unique Y−subdifferential at a point x0 with respect to a set W is

the set of Y−subgradients of x0 that are not also subgradients at other points in W .

So if f : P → R̄ and b ∈ ∂Bf(p;P) then the bounded measurable function b is in the

B−subdifferential of f at p, and nowhere else.

These refinements are my own, and maybe in the future they will be standardized

better. They are needed for the particular analysis we will be doing, as will the follow-

ing little lemma that connects unique subgradients with the subgradient inequality

holding strictly. This lemma will be used in my characterization of scoring rules, and

appears to be known (used in [43] without proof) but not formalized elsewhere.

Lemma 3 (Uniqueness and Strict Subgradient Inequality). Let X be a Banach space

and X∗ its continuous dual space; let f : X → R̄ be a (proper) convex function with

x∗0 ∈ ∂f(x0). If W ⊆ X, then x∗0 ∈ ∂f(x0,W ) if and only if f(x) − f(x0) > 〈x −

x0, x
∗
0〉 for all x ∈ W,x 6= x0.

Proof. The subgradient inequality implies

f(x)− f(x0) ≥ 〈x− x0, x
∗
0〉, ∀x ∈ X (subgradient inequality)

f(x)− 〈x, x∗0〉 ≥ f(x0)− 〈x0, x
∗
0〉

So if there exists x′ ∈ W such that

f(x′)− f(x0) = 〈x′ − x0, x
∗
0〉 (Case 1)
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then

f(x)− 〈x, x∗0〉 ≥ f(x′)− 〈x′, x∗0〉, ∀x ∈ X

and so Case 1 implies x∗0 is also a subgradient of f at x′, and so not in the unique

subdifferential of f at x0 with respect to W .

Alternatively

f(x)− f(x0) > 〈x− x0, x
∗
0〉, ∀x ∈ W,x 6= x0 (Case 2)

f(x0)− f(x) < 〈x0 − x, x∗0〉

yet if x∗0 ∈ ∂f(x) then

f(x0)− f(x) ≥ 〈x0 − x, x∗0〉 (subgradient inequality)

a contradiction, and so this case implies x∗0 6∈ ∂f(x), ∀x ∈ W,x 6= x0. Thus, since

we assumed x∗0 ∈ ∂f(x0), it is in the unique subdifferential of f at x0 with respect to

W .

Before moving on, the subdifferential, being a function, is naturally a relation

between a set X and 2X
∗
. It is incredibly convenient and conventional to pretend it

is instead a relation between X and X∗ itself, with (x, x∗) ∈ ∂f when x∗ ∈ ∂f(x). I

will use the same convention for similar functions through this chapter and Chapters

3–5.

2.3.5 Gâteaux differential

There are many notions of differentiability suitable for working in Banach spaces,

one closely related with the notion of subdifferentiability is the Gâteaux differential.
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Understanding this particular differential and how it relates to strict properness is

useful because it is a familiar mathematical property, and in Chapter 5 it will offer

us a natural notion of prices for securities as well as a means of associating many

probability measures with a bounded measurable function. The details of these last

two advantages must, of course, be left for Chapter 5 since they require a great deal

of new context to be understood.

Let X be a Banach space, and f : X → R̄ a function. Assume the limit

lim
τ→0

f(x+ τh)− f(x)

τ

exists for all h ∈ X at a point x ∈ X, the Gâteaux variation of f at x is the function

∇f(x; ·) : X → R̄ (Gâteaux variation)

∇f(x;h) = lim
τ→0

f(x+ τh)− f(x)

τ

And f is Gâteaux differentiable at x if the variation is a continuous linear function

of h, in which case we refer to it as the Gâteaux differential. That is, f is Gâteaux

differentiable at x if the Gâteaux variation exists and is an element of the continuous

dual space of X. For a function f : R→ R this means the differential is simply a real

number and is, in fact, the derivative, and for a function f : Rn → R the Gâteaux

differential is the gradient.

The subdifferential and Gâteaux differential are sometimes related. If a convex

function has a single subgradient at a point where it is finite and continuous then

the function is Gâteaux differentiable there and its subgradient is the differential.

Conversely, if a convex function is Gâteaux differentiable at a point it has a single

subgradient at that point equal to the differential, and if a convex function is l.s.c.
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and Gâteaux differentiable at a point it is continuous there, too [9, p. 87][13, p. 159].

2.3.6 Cyclic Monotonicity and the Subdifferential

So far we have defined the subdifferential and a few refinements, and mentioned

that the relationship between points and subgradients of a convex function can let

us study relations between spaces in duality. This subsection describes how convex

functions lets us study cyclically monotonic relations, and importantly how any such

relation is always part of the subdifferential of some closed convex function. This

last fact will let us focus exclusively on this class of convex functions without loss,

letting us use the great additional structure we get with closed functions to study our

relation of interest, that between the probability measures and bounded measurable

functions.

I just mentioned how we interpret ∂f as a relation between a Banach space X

and its continuous dual X∗, and it turns out these relations are exactly the cyclically

monotone ones between these spaces [82]. A relation R ⊆ X × X∗ is cyclically

monotone when

∑
i∈I

〈xi, x∗i 〉 ≥
∑
i∈I

〈xσ(i), x
∗
i 〉 (cyclic monotonicity)

for every finite set of points I, (xi, x
∗
i ) ∈ R and where σ is any permutation of I. A

relation is a subset of the subdifferential relation of a convex function if and only if the

relation is cyclically monotone.14, and is the subdifferential of a closed convex function

14As a concrete example, the Rockafellar function of a relation R always encodes the relation. It
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if and only if it is maximal cyclically monotone.15 Every cyclically monotone relation

can be extended to a maximal cyclically monotone one, and a maximal cyclically

monotone relation interpreted as a subdifferential ∂f uniquely defines f up to an

additive constant [82].16 Importantly, this means that any subdifferential relation is

part of the subdifferential relation of some closed convex function, and this allows us

to restrict attention to this class, which sometimes offers valuable structure.

2.3.7 Conjugate Functions

A useful tool when studying the subdifferential relation of a convex function,

especially closed convex functions, is a function’s conjugate. Intuitively, the conjugate

of a closed convex function is also a closed convex function where the subdifferential

relationship is flipped. Conjugates will be used in Chapter 4 where I describe cost

functions, and Chapter 5 as a means of identifying the subdifferential of a particular

convex function.

is defined as

fR : X → R̄ (Rockafellar function)

f(x) = sup{〈x− xn, x∗n〉+ · · ·+ 〈x1 − x0, x
∗
0〉}

where the supremum is taken over all finite sets pairs (xi, x
∗
i ) ∈ R. If R is cyclically monotone then

fR is a closed convex function, and if also (x, x∗) ∈ R then x∗ ∈ ∂fR(x).

15This is true when X is a Banach space, as I have assumed. A relation is maximal cyclically
monotone if no additional pairs can be added to it without violating the cyclic monotonicity condi-
tion. Equivalently, a relation is maximal cyclically monotone if it is not a subset of another cyclically
monotone relation. See [12] for a good survey of and introduction to monotonic functions.

16Recall that we are treating the subdifferential as a subset of X ×X∗.
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Formally, the conjugate of a convex function f : X → R̄ is defined as

f ∗ : X∗ → R̄ (conjugate function)

f ∗(x∗) = sup
x∈X
〈x, x∗〉 − f(x)

Conjugates have many interesting properties. The conjugate of a proper convex

function is always a closed convex function. The biconjugate of f is the conjugate of

its conjugate and is written f ∗∗; if f is a closed convex function then f(x) = f ∗∗(x)

for all x ∈ X.17 In the future I will write f(x)
X
= f ∗∗(x) when two functions agree on

a set X.

As an example, a closed convex function f : P → R̄ has a conjugate function f ∗

that can be restricted to B, f ∗|B : B → R̄. We will see that if f describes the expected

score function of a scoring rule, then f ∗|B describes a cost function. Alternatively, if

f : B → R̄ is a closed convex function describing a cost function, then its restricted

conjugate f ∗|P : P → R̄ will describe the expected score function of a scoring rule.

These facts are elaborated on in Chapter 4.

What makes the conjugate so useful for the study of the subdifferential of a closed

convex function is the conjugate-subgradient theorem, adapted here from [9].

Theorem 1 (Conjugate-Subgradient Theorem). Let X be a Banach space and X∗

17I am intentionally careful not to say the two functions are identical. The biconjugate may be
well-defined outside the domain of the original function since it maps not from the original space X
but X∗∗, the bidual of X. The bidual of the ca space is not itself, for example. When a space is
its own bidual it is called reflexive and admits many special properties. Finite dimensional spaces
like Rn are always reflexive and convex analysis in these spaces admits a great deal of additional
structure. In fact, Euclidean n-space is also its own continuous (and algebraic) dual space. This
is why we often see subgradients defined as a dot product between two n-dimensional vectors: the
dot product is the bilinear form between n-dimensional Euclidean space and its continuous dual
(itself). Structural differences like this can make convex analysis in general Banach spaces difficult
to understand since we are likely to bring our Euclidean assumptions along with us to places they
no longer belong.
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its continuous dual space; also let f : X → R̄ be a proper and convex function. Then

the following three properties are equivalent:

1. x∗ ∈ ∂f(x)

2. f(x) + f ∗(x∗) = 〈x, x∗〉

If the function is also l.s.c. (closed) then the above properties are also equivalent to

3. x ∈ ∂f ∗(x∗)

The first and third equivalences state that the conjugate of a closed convex func-

tion “flips” its subdifferential relation. The second equivalence describes where the

conjugate function expression attains its supremum. That is, if x∗ ∈ ∂f(x), we have

that

f ∗(x∗) = 〈x, x∗〉 − f(x)

x ∈ arg max
x∈X

〈x, x∗〉 − f(x) (conjugate attainment)

This equivalence will be useful for understanding a convex function’s supporting sub-

gradients, and how they relate to the subdifferential. These supporting subgradients

are essential to our understanding of strict properness, and are described in the next

subsection.

2.3.8 Supporting Subgradients

A critical relationship for strict properness is that between points on a convex

function f and its supporting subgradients. These are subgradients that agree with
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the function when they are in the subdifferential or, equivalently, subgradients for

which f ∗ is zero. It is precisely these supporting subgradients that we will identify

with scoring functions, and relations between points and unique supporting subgra-

dients will describe every strictly proper association between predictions and scoring

functions.

This subsection, unlike the others in this section, specifically addresses convex

functions of the probability measures f : P → R. These functions have supporting

subgradients wherever they are subdifferentiable, and this is not generally the case.

Other functions always have supporting hyperplanes, but these are affine and not

linear functions. Working with them is difficult since they do not fit in our standard

duality framework. Luckily, when we focus exclusively on the probability measures

we can stick with more familiar linear functions for our analysis.

The subdifferential of (proper) convex functions f : P → R actually has several

interesting properties we will use. First, it may contain elements from the continuous

dual space of the ca space, and this may mean functions outside of B. Thus we will

restrict our attention to the B−subdifferential. A notable special case where this is not

required is when our measurable space (Ω,F) has a finite set Ω. In this case a convex

function of the probability measures is a function f : R|Ω| → R,18 and the continuous

dual space is also represented by R|Ω|. Our scoring functions are vectors describing

a score for each outcome, there are |Ω| outcomes, and so the scoring functions are

identified with vectors in R|Ω|. The bilinear form between the probability measures

18More precisely the function maps from the probability simplex of Ω, not any vector in the
Euclidean plane.
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and bounded measurable functions in this case is the dot product.19

A second fact about the subdifferential of a convex function f : P → R, is that if

it contains b0 ∈ B at a point p0 ∈ P , then it also contains b0 + k for all k ∈ R at that

point.20 We can check this using the subgradient inequality:

f(p)− f(p0) ≥ 〈p− p0, b0 + k〉 (subgradient inequality)

f(p)− f(p0) ≥ 〈p− p0, b0〉+ 〈p− p0, k〉

f(p)− f(p0) ≥ 〈p− p0, b0〉+ k − k

f(p)− f(p0) ≥ 〈p− p0, b0〉

the last line being true because we assumed b0 ∈ ∂f(p0). Intuitively, the expected

value of a constant function k is simply k, and using the separability of the bilinear

form shows that if one function is in the subdifferential of such a function f , then

every translation of that function is, too. Further, if b0 is in the unique subdifferential,

then all its translations are, too.

The above also tells us if f is (uniquely) B−subdifferentiable at a point p0, then it

has a (unique) supporting B−subgradient at that point, too. This requires formally

defining a supporting subgradient. Letting P ⊆ P and B ⊆ B, we can define this

mapping as

∂?Bf : P × 2P → 2B (unique supporting B−subgradients)

∂?Bf(p;P ) = {x? | x? ∈ ∂Bf(p;P ), x?(p) = f(p)}

19The dot product equals the Lebesgue integral in this case.

20That is, it contains the function defined by adding b0 with the constant function k, which can
be represented by a real value.
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and as a shorthand I will let ∂?Bf(p) = ∂?Bf(p; p) be the not necessarily unique sup-

porting B−subgradients of f at p. So letting b0 ∈ ∂f(p0) as before, then the function

b0 − f ∗(b0) is a supporting subgradient of f at p0, and this construction shows that

(unique) subdifferentiability implies the existence of a (unique) supporting subgradi-

ent.

The next chapter demonstrates these unique supporting B−subgradients describe

every scoring rule, and Chapter 4 shows they describe all of strict properness.
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The old-established way of measuring a person’s belief is to propose a bet,

and see what are the lowest odds which he will accept. This method I regard

as fundamentally sound; but it suffers from being insufficiently general, and

from being necessarily inexact.

. . .

Suppost next that the subject is capable of doubt; then we could test his degree

of belief in different propositions by making him offers of the following kind.

Would you rather have world α in any event; or world β if p is true, and

world γ if p is false?

. . .

This is, of course, a very schematic version of the situation in real life, but

it is, I think, easier to consider it in this form.

– Frank P. Ramsey, 19261

. . . one essential criterion for satisfactory verification is that the verification

scheme should influence the forecaster in no undesirable way. Unfortunately,

the criterion is difficult, if not impossible to satisfy, although some schemes

will be much worse than others in this respect.

– Glenn W. Brier, 1950

1All Ramsey’s quotations are taken from his essay Truth and Probability [81].
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Strictly proper scoring rules are a popular means of acquiring and rewarding

accurate predictions of the future. Our study of these rules is motivated by a desire

to predict the likelihood of future events, events we assume can be represented by

a measurable space (Ω,F). We ask an expert for a prediction from P , and use a

scoring rule to associate it with a scoring function from B. If the rule is strictly

proper then this association is designed to incentivize self-interested experts to offer

the most accurate prediction possible, or, equivalently, this association is designed to

reward, in expectation, more accurate predictions more than less accurate ones.

Strict properness is the essential property for eliciting and valuing predictions.

If we ask experts for predictions and attempt to score them in a non-strictly proper

fashion then we arrive back at the problem Brier was trying to solve in 1950: our

“verification scheme” influences our forecaster in undesirable ways. It may let the

expert be lazy and offer a less accurate prediction without penalty, or it may ac-

tively encourage the expert be inaccurate. Neither of these cases is desirable, and

from a narrative perspective we will remain exclusively interested in strict proper-

ness. Traditionally, however, a weaker property known simply as “properness” is

also characterized alongside strict properness, and this is mathematically so easy to

do that I will follow convention and my formal statements will describe proper and

strictly proper scoring rules.

In this chapter I characterize strictly proper scoring rules. I begin with a formal

definition in Section 3.1, then discuss how these rules can also be used to run a

prediction market in Section 3.2. Section 3.3 offers the formal characterization, and

Section 3.4 concludes by comparing my characterization to that offered in [43], which
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also characterized strictly proper scoring rules for measurable spaces. My result

stresses the relationship between predictions and scoring functions, and how it is this

relationship that a class of convex functions describes. Situating my discussion within

the realm of convex analysis offers many advantages, and one minor and arguable

disadvantage

3.1 Scoring Rules, Formally

Scoring rules have been defined and characterized many times, notably for discrete

spaces in [83] and for measurable spaces in [43]. The typical definition of a scoring

rule differs from the one I will offer, although the two are essentially the same barring

notational differences. My definition will fit much better in our narrative, however.

The classical definition appears at the end of this chapter when discussing Gneiting

and Raftery’s characterization of strictly proper scoring rules. My own definition is:

Definition 1 ((Strictly Proper) Scoring Rule). A scoring rule is any function S :

P → B.2 If S is a scoring rule with domain P and image or codomain B, it is called

(P/B−)proper when

p(Sp) ≥ p(Sp′) (properness)

for all p, p′ ∈ P . The rule is strictly (P/B−)proper when the inequality holds strictly

unless p′ = p.

We can relate this definition back to our motivating story. When using a scoring

2A scoring rule is an operator, and it will often be convenient to follow convention and write Sp
instead of S(p).
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rule we begin with a desire to predict the likelihood of future events, represented by

(Ω,F). An expert has some beliefs p ∈ P about how likely these future events, and

we ask this expert for a prediction p′ ∈ P . Our scoring rule maps this prediction to

a scoring function, b = Sp′, and after we wait and observe the actual outcome ω ∈ Ω

the expert is scored b(ω). Strict properness says the expert’s expected score, p(Sp′),

is uniquely maximized when the expert reveals its beliefs. This is a strict incentive for

self-interested (and risk neutral) experts to accurately report what they think likely

to occur. Further, a strictly proper scoring rule rewards, in expectation, an expert

reporting what it believes to be the most accurate prediction of the future.

A strictly proper scoring rule S defines a one-to-one relation between P and B.

Each prediction (probability measure) can be associated with only one scoring func-

tion (bounded measurable function), and each scoring function can only be associated

with one prediction. This is best understood as thinking of a scoring rule as offer-

ing its expert a menu of scoring functions B. The expert picks a function from this

menu, and we then infer from its choice what its beliefs are. If one scoring function

was associated with two predictions then we would be unable to infer the expert’s be-

lief. A scoring rule also must associate only one scoring function with each prediction

because it is a function of the predictions.

Thinking of scoring rules as offering a menu will be an especially useful intuition

in the next chapter on cost functions. For now, the key point is to realize that the

expert’s prediction p′ is simply the language it uses to select a scoring function. A

scoring rule is strictly proper, then, when the menu of scoring functions it offers

separates the possible predictions, with each prediction expecting its own scoring
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function to score highest. Note that I did not say “with each scoring function being

maximized by a different prediction.” This is a distinct property and it does not relate

to strict properness. Strict properness is about each prediction or belief “preferring”

a different function from the menu offered.

3.2 Prediction Markets and Scoring Rules

A prediction market is a popular mechanism for acquiring a consensus prediction

from a group of experts, not just one expert as we have been discussing. Prediction

markets using scoring rules were first proposed in [48], and have been heavily studied

since. Predictions markets often use a scoring rule or a cost function, and in this

section I will describe them using scoring rules.

A prediction market that uses a scoring rule, or more concisely a scoring rule

market, lets one or more “traders” interact with a scoring rule a countable number of

times. It begins, like always, with a desire to predict the likelihood of future events,

represented by (Ω,F). The market starts or “opens” with an initial prediction p0,

then accepts traders’ public and countable predictions as p1, p2, . . .. Eventually the

market closes with a final prediction p, either because traders stop offering predictions

or because the market stops accepting them, and afterwards we observe the actual

outcome ω ∈ Ω and score each trader the sum of the scores of their predictions minus

the sum of the scores of the immediately preceding predictions, as determined by our

scoring rule.

How traders are scored in a market and how we interpret these scores requires

elaboration. Let our scoring rule market be using a scoring rule S : P → B, then the

53



3: Scoring Rules

trader who made prediction pi receives a score of

(Spi − Spi−1)(ω) (market’s score for a prediction)

for that prediction. Prediction markets reward traders for improving over the last

prediction. If the scoring rule S is strictly proper then I will also describe the market

as strictly proper. A strictly proper market has the important property that if the last

prediction made disagrees with a trader’s beliefs, then that trader has an incentive to

adjust the market. In particular, if the market closes with a prediction p that differs

from a trader’s belief, then that trader had an opportunity to score higher than it did.

Thus, if trading stops organically in a market we are assured of a consensus among

the traders.

Our alternative motivation for strict properness was rewarding accurate predic-

tions, and a strictly proper market can be thought of as rewarding the improvement a

more accurate prediction makes upon a less accurate one. It also penalizes predictions

that are less accurate than the ones immediately preceding them. These markets are

especially clever because they reward the marginal information of a prediction. In

practice, they are also often considered cost effective because the total payout to

traders is only (Sp− Sp0)(ω).

I said that if trading stops organically in a strictly proper market then it implies

a consensus among traders. It may be, however, that trading would never stop of

traders’ own accord, or that the consensus reached is a poor one. How markets do

or do not reach consensus and aggregate information is discussed more in Chapter 6.

Still, with these classical prediction markets we think of accepting the last prediction

made as the best we will receive. Remember, though, our discussion of predictions
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markets here is just motivational and contextual. We need nor make no assumptions

about them or their use until Chapter 5 and beyond, where we will discuss particular

types of markets.

3.3 Characterizing Strictly Proper Scoring Rules

A scoring rule is a relation between P and B, two paired spaces. Chapter 2 dis-

cussed how some relations between such pairs could be studied using convex analysis,

and the following characterization of strict properness shows that strictly proper scor-

ing rules are represented by a subset of the structure of a particular class of convex

function.

Theorem 2 (Strictly Proper Scoring Rules and Convex Functions with Unique Sup-

porting Subgradients). Let P ⊆ P and B ⊆ B. A scoring rule S : P → B is

strictly P−proper if and only if there exists a convex function fS : P → R̄ such that

S ⊆ ∂?BfS(P ;P ). The rule is P−proper if and only if S ⊆ ∂?BfS(P ). (In plain English,

a scoring rule is strictly proper if and only if it is a subset of the unique supporting

subgradient relation of a convex function of the probability measures.)

Proof. Let S : P → B be a P/B−proper scoring rule (the assumption that S is onto

is without loss of generality), and let fS be the closed convex function defined as the

pointwise supremum of B, fS(p) = supb∈B p(b). Letting (p0, b0) ∈ S, properness says

〈p0, b0〉 ≥ 〈p0, b〉, ∀b ∈ B (properness)

and this implies fS(p0) = p0(b0). We now verify b0 is a supporting subgradient of fS
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at p0 by checking the subgradient inequality:

fS(p)− fS(p0) ≥ 〈p− p0, b0〉 (subgradient inequality)

sup
b∈B

p(b)− 〈p0, b0〉 ≥ 〈p, b0〉 − 〈p0, b0〉

sup
b∈B

p(b) ≥ 〈p, b0〉

which is always true, and so this convex function is such that S ⊆ ∂?BfS(P ), as desired.

When S is strictly P/B−proper we have

〈p0, b0〉 > 〈p0, b〉, ∀b ∈ B (strict properness)

still implying fS(p0) = p0(b0). Following the above b0 is a supporting subgradient of

fS at p0, and we verify it is unique with respect to P by checking the strict subgradient

inequality on P (see Lemma 3):

fS(p)− fS(p0) > 〈p− p0, b0〉, p ∈ P (strict subgradient inequality)

sup
b∈B

p(b)− 〈p0, b0〉 > 〈p, b0〉 − 〈p0, b0〉

p(b) > 〈p, b0〉, (p, b) ∈ P

which follows from strict properness. These two arguments show that every proper

scoring rule implies the existence of a (closed) convex function with a corresponding

supporting B−subgradient relation, and that every strictly proper scoring rule implies

the existence of a (closed) convex function with a corresponding unique supporting

subgradient relation.

Now let fS be a (proper) convex function fS : P → R, and let S ⊆ ∂?BfS(P )

be a non-empty one-to-one relation, and let the range of this relation be B. The
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subgradient inequality and the structure of this relation tell us

fS(p)− fS(p0) ≥ 〈p− p0, b0〉, ∀(p0, b0) ∈ S

which we substitute into using fS(p0) = p0(b0), to obtain

fS(p) ≥ 〈p, b0〉

and if (p, b) ∈ S this gives

〈p, b〉 ≥ 〈p, b0〉, ∀(p, b) ∈ S, b0 ∈ B

which is properness. If S ⊆ ∂?PfS(P ;P ) then the subgradient and following inequal-

ities are strict whenever b 6= b0, and we have strict properness. This concludes our

proof by showing that selecting any of the supporting subgradients determines a

proper scoring rule, and selecting any subset of the unique supporting subgradients

determines a strictly proper scoring rule.

In plain English, the above says that we can identify a strictly proper scoring rule

with a one-to-one subset of the unique supporting subgradient relation of a convex

function. It is important to notice that we do not identify a strictly proper scoring rule

with the unique supporting subgradient relation in its entirety, because it is possible

that the latter relation may associate one prediction with multiple scoring functions.

That is, there may be multiple unique supporting subgradients at a point. Since a

scoring rule is a function it can only map each point to one of these subgradients.

Cost functions, discussed in the next chapter, avoid this limitation.
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The proof also discusses the convex function fS defined as the pointwise supremum

of the range of a scoring rule S. This function is often called the expected score

function of S, since if an expert has beliefs p ∈ P then their expected score for

making an accurate prediction is fS(p). The expected score function of a scoring rule

is uniquely defined, and there is a many-to-one association between scoring rules and

expected score functions. That is, multiple scoring rules, even multiple strictly proper

scoring rules, may share the same expected score function. Chapter 4 will elaborate

on expected score functions further.

Now that we understand there is a structural relationship between strictly proper

scoring rules and the unique supporting subgradient relation of a convex function,

a natural follow-up is better understanding when and where a convex function has

unique supporting subgradients. As discussed in Chapter 2, this is equivalent to a

convex function f : P → R̄ having unique subgradients.

Theorem 3 (Unique Subdifferential Relations). Let X be a Banach space and X∗

its continuous dual space. Let Y ⊆ X∗ and f : X → R̄ be a closed convex function;

the following are equivalent:

1. Y is a subset of the range of the unique subdifferential relation of f

2. f is strictly convex on dom ∂Y f

3. the subgradient inequality, f(x)− f(x0) ≤ 〈x−x0, x
∗
0〉, holds strictly whenever

x 6= x0 for all x ∈ X and x∗0 ∈ ∂Y f(x0)

4. the X−subdifferentials of f ∗ on Y are singleton sets
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Proof. I first prove (1) implies (2). Assume, for a contradiction, that (2) is false

and (1) is true. Then there exists x, x0, x1 ∈ dom ∂Y f and an α ∈ (0, 1) such that

αx0 + (1− α)x1 = x and

αf(x0) + (1− α)f(x1) = f(x) (convex equality)

Let x∗ ∈ Y be a subgradient of f at x. The conjugate-subgradient theorem says

f ∗(x∗) = 〈x, x∗〉 − f(x)

f ∗(x∗) = 〈αx0 + (1− α)x1, x
∗〉 − αf(x0)− (1− α)f(x1)

〈x, x∗〉 − f(x) = α
(
〈x0, x

∗〉 − f(x0)
)

+ (1− α)
(
〈x1, x

∗〉 − f(x1)
)

and since the conjugate-subgradient theorem says x ∈ arg max
x̄

〈x̄, x∗〉− f(x̄) and the

above is a convex combination we have that both terms must be equal, and so we

conclude x0, x1 ∈ arg max
x̄

〈x̄, x∗〉− f(x̄), too, and thus x∗ is in the Y−subdifferential

of x0 and x1. This contradicts our assumption of (1) that Y is a subset of the range

of the unique subdifferential relation of f , so (1) implies (2).

Now I show (2) implies (1). Assume, for a contradiction, that (1) is false and (2)

is true. Let x, x0, x1 ∈ dom ∂Y f such that x∗ ∈ ∂Y f(x0) ∩ ∂Y f(x1) and there exists

α ∈ (0, 1) such that x = αx0 + (1− α)x1. Since (2) is true

αf(x0) + (1− α)f(x1) > f(x)

The two subgradient inequalities

f(x0)− f(x) ≤ 〈x0 − x, x∗〉

f(x1)− f(x) ≤ 〈x1 − x, x∗〉
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together with our assumptions imply

αf(x0) + (1− α)f(x1) ≤ f(x)

a contradiction of (2). Since we assume (2) true, however, this shows (1) and (2) are

equivalent.

The last two equivalences following immediately from Lemma 3 and the conjugate-

subgradient theorem.

In particular, the above shows that a strictly convex f : P → R̄ has unique sup-

porting subgradients at every point, although these subgradients may not be bounded

measurable functions. Historically, characterizations of strict properness have focused

entirely on strict convexity, and this was possible because they also assume the prob-

ability measures of interest, P ⊆ P , were a convex set. In this case the above theorem

shows strict convexity is equivalent every subgradient being unique. The next section

of this chapter will discuss one of these characterizations.

This theorem on unique subdifferentials only applies to closed convex functions,

and we need to recall that every scoring rule is a subset of the unique supporting

subgradient relation of a closed convex function, an example of which is its expected

score function. Because the subdifferential of every convex function is a subset of

the subdifferential of a closed convex function, we can focus on the closed convex

functions without loss of generality.

Lastly, before moving on, observe that although the prior theorem tells us the

convex function is uniquely subdifferential on a portion of its domain, it does not tell

us how to find the actual relation matching points from X and subgradients from

X∗. This is a real challenge in need of some active work, and I will not return to
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the problem until Chapter 5, when I need to better describe the subdifferential of a

particular convex function. Doing so requires some special tricks that may be hard

to generalize.

3.4 Gneiting and Raftery’s characterization

In [43] Gneiting and Raftery presented a characterization of scoring rules for arbi-

trary measurable spaces. They use a slightly different definition of a scoring rule, and

some unique concepts that are outside standard convex analysis. I will go through

this definition and these adjuncts, then present and compare their characterization

with my own.

Gneiting and Raftery start with an arbitrary measurable space (Ω,F) and define

a scoring rule as any function S : P × Ω → R̄, such that the partial functions

S(p, ·) : Ω → R̄ are P−quasiintegrable. This is the usual way to define such scoring

rules, with an equivalent definition appearing in [83] for discrete spaces. It is simply

easier for my narrative to have a scoring rule map predictions to scoring functions.

From our perspective, we can interpret this as saying that Gneiting and Raftery

allow a broader class of scoring functions than the bounded measurable functions,

since they allow any P−quasi-integrable function of Ω. Quasi-integrability is like

regular integrability, which applies to measurable functions that have real-valued

Lebesgue integrals, except it allows the integral to have infinite values.

Since these scoring functions are not part of the dual space of the probability

measures (ca space) they require two specialized concepts to handle. The authors

define a “subtangent” of a convex function f : P → R̄ at a point p as function
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t : Ω → R̄ that is (1) p−integrable, (2) P−quasi-integrable and (3) satisfies the

subgradient inequality. They also describe a scoring rule as “regular” if the expected

score of any scoring function is real-valued unless it differs from the experts beliefs,

in which case the expected score can be negative infinity.3

We can now state their characterization, which I present a little differently than

they do for clarity.

Theorem 4 (Gneiting and Raftery). Let P ⊆ P be a convex set. A regular scoring

rule S : P×Ω→ R̄ is P−proper if and only if there exists a convex function f : P → R̄

such that

S(p, ω) = f(p)−
∫

Ω

t dp+ t(ω)

where t is a subtangent of f at p. The rule is strictly P−proper when f is strictly

convex.

The above statement is obtuse. If we pretend that t is a bounded measurable

function and subgradient, then we can apply the conjugate-subgradient theorem,

though, which says f(x)+f ∗(x∗) = 〈x, x∗〉, and lets us interpret the above expression

as defining S(p, ·) : Ω→ R as t− f ∗(t), which is a bounded measurable function and

a supporting subgradient of f . So in this case the statement becomes similar to my

own, and reveals some of its intuition.

While Gneiting and Raftery’s characterization was a significant accomplishment in

our development of scoring rules, my own characterization has the following benefits:

3This can happen when a score of negative infinity is associated with events a prediction assigns
zero likelihood to.
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1. It shows that strictly proper scoring rules are a one-to-one subset of a convex

function’s unique supporting subgradients relation.

2. It does not use subtangents or require regularity conditions.

3. It allows P to be any subset of the probability measures, not just a convex one.

4. It will suggest a ready extension of strict properness to cost functions (see the

next chapter).

5. It ensures that any strictly proper scoring rule can be used in a prediction

market.

Of course, this last point may also be characterized a flaw in my characterization.

Gneiting and Raftery do allow a more general class of scoring function than I do. This

generalization is, however, unlikely to be interesting. Practically it is hard to think of

how we would assign or enforce a score of negative infinity, much less when we might

want to do so. Plus, we are usually interested in strictly proper scoring rules to use

in prediction markets, and scoring functions that assign scores of negative infinity

cannot be used in that setting since we must take the difference of scores, and the

difference of negative infinity and negative infinity is undefined.4

4The logarithmic scoring rule is a popular scoring rule in discrete settings, and using it in a market
requires restricting the domain of predictions it will accept. If allowed to accept any prediction it
will produce scores of negative infinity. Any restriction that requires its scores always be real-valued
is also a scoring rule in my framework, since each scoring function is then a bounded measurable
function. When there are a finite number of outcomes any regular scoring rule, in the sense of
Gneiting and Raftery, can have its domain restricted to produce a scoring rule that always assigns
real-valued scores. Regular scoring rules for arbitrary measurable spaces, however, may be such that
any prediction can produce a score of negative infinity. Restricting the domain of these scoring rules
will not let them be used in a market.
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That is not to say that my own characterization is perfect. It may still be possible

to generalize beyond P , possibly including some finitely additive measures, or go

beyond B and include other members of the dual space of the ca space. Or there may

be an alternative mathematical object that more succinctly and powerfully expresses

the structure of strictly proper scoring rules. Most likely, there might be a fascinating

notion of ε−strict properness that can be developed by studying the ε−subdifferential

of a convex function. Noting that there is still a great deal to do, I think one major

advantage of my characterization is that it places our thinking about scoring rules

firmly in the realm of convex analysis, where we have many tools available to do it

with. We will use these tools again in the next chapter to define and understand

strictly proper cost functions.
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Cost Functions

The previous chapter discussed strictly proper scoring rules and reiterated that

strict properness is the essential property for acquiring and rewarding accurate pre-

dictions of the future. Strictly proper scoring rules have been the focus of a great deal

of work, including [43] which characterized them for arbitrary measurable spaces. Our

understanding of cost functions, another popular method for eliciting predictions, has

lagged behind our knowledge of scoring rules. Until now, cost functions for measur-

able spaces were not characterized, and there was no notion of a strictly proper cost

function.

A cost function, like a scoring rule, is a means of acquiring and rewarding predic-

tions about the likelihood of future events. These functions are especially interesting

because they can allow us to create prediction markets that emulate existing futures

markets where traders can buy and sell securities. Trading securities may have two

significant advantages over using a scoring rule: (1) the interface is likely to be con-

sidered more familiar in many settings and (2) it lets traders focus on their area of
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expertise, instead of requiring their prediction specify the likelihood of every event.

As an example, we can consider running two prediction markets for the NCAA

tournament. One will use a scoring rule, and it requires traders submit predictions

specifying the likelihood of every possible event. There are more than a quintillion

of these events, and so traders using this scoring rule must submit more than a

quintillion numbers to specify their predictions.1 This market is unlikely to see much

participation.

In our second market we will act as a market maker and offer securities for each

event that pay $1 when that event occurs. We will quote prices for these securities,

and if a trader’s expected value for a security differs from our quoted price then it will

have an incentive to buy or sell it. If, say, our security for Gonzaga beating Louisville

has a price of 30 cents, and a trader thinks the likelihood of this event is 80%, then

that trader will purchase this security and increase its price. This market is far easier

to interact with than the first one, and it allows traders to focus on their areas of

expertise (like the chances Gonzaga beats Louisville).

Cost functions enable us to run this second kind of market with its simple and

natural interface. In these markets prices represent an implicit prediction, and the

price of a single security is one aspect or part of this representation. Traders no longer

need to deal with the entire prediction, only these parts. Offering this simplicity to

traders shifts some complexity from them to the market, however. When a trader

1It is possible that we could design a system that interprets succinct representations into full
predictions, and I will return to this idea in the conclusion. Currently, a significant challenge of
working in discrete spaces is their complete lack of natural structure. In the next chapter we will
heavily exploit the structure of probability measures on the [0, 1] interval in our development of a
cost function for it.
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purchases shares in Gonzaga beating Louisville they are telling us this event is more

likely than we thought, and we will want to adjust the prices of other related events

– like the chances Gonzaga wins the tournament – accordingly. Intuitively, we, as

market maker, are responsible for translating a trader’s myopic adjustment into a set

of feasible prices that reflect some reasonable prediction about the future. Instead of

traders dealing with quintillions of numbers, now the market has to.

This chapter focuses exclusively on characterizing strictly proper cost functions,

and Chapter 5 will discuss how they can emulate futures markets. It begins in Sec-

tion 4.1 with the development of scoring relations, the root objects in our study of

strict properness. Section 4.2 defines strictly proper cost functions, and Section 4.3

concludes with a brief discussion of their relation to scoring rules, scoring relations,

and expected score functions, that better reveals the structure of strict properness..

4.1 Scoring Relations

A scoring relation is a generalization of a scoring rule that allows many scoring

functions to be associated with each prediction. Scoring relations are truly the fun-

damental object in our study of strict properness, and happily it is straightforward

to generalize from scoring rules to them.

Definition 2 ((Strictly Proper) Scoring Relation). Any non-empty one-to-many re-

lation R ⊆ P × B is a scoring relation. Letting P be the domain and B the range of

R, such a relation is (P/B−)proper when

p(b) ≥ p(b′) (strict properness)
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for all (p, b) ∈ S and b′ ∈ B. The relation is strictly (P/B−)proper when the inequal-

ity is strict whenever (p, b′) 6∈ R.

A scoring relation is a lot like a scoring rule (scoring rules are simply one-to-

one scoring relations) and its definition of strict properness is analogous. A scoring

relation describes an association between predictions and scoring functions, just like

a scoring rule, and we can also think of it as offering a menu of scoring functions. If

a scoring relation is strictly proper, then the clutch of scoring functions it associates

with a prediction has two properties: (1) an expert who thinks that prediction is most

likely prefers choosing one of these scoring functions over all others and (2) the expert

is indifferent among the scoring functions in this set. Strict properness also requires

that (3) no two predictions are associated with the same (set) of scoring functions.

Thus, if we offer the range of a strictly proper scoring relation as a menu of scoring

functions we can still uniquely infer an expert’s beliefs from their choice of scoring

function: only that prediction thinks that scoring function maximizes its expected

score.

As we saw in the previous chapter, strictly proper scoring rules represent subsets

of the relation between points and unique supporting subgradients (that are also

bounded measurable functions) of a convex function. Strictly proper scoring relations

have the same characterization.

Theorem 5 (Strictly Proper Scoring Relations and Convex Functions with Unique

Supporting Subgradients). A scoring relation R is strictly P/B−proper if and only

if there exists a convex function fR : P → R such that R = ∂?BfR(P ;P ). The relation

is P/B−proper if and only if R = ∂?BfR(P ).
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The proof is immediate from the characterization of strictly proper scoring rules.

Scoring relations also admit expected score functions, which we will now need to

formalize.

Definition 3 ((Strictly Proper) Expected Score Functions). A closed convex function

fR : P → R̄ is an expected score function for a scoring relation R when (p, b) ∈ R

implies b ∈ ∂?fR(p). If fR is an expected score function then it is called (strictly)

proper exactly when R is (strictly) proper.

Given a strictly P/B−proper scoring relation R, the pointwise supremum of B is

an expected score function for R. This simple construction lets us consider only closed

functions as expected score functions without loss of generality (and see Chapter 2 for

a more general perspective on why restricting attention to this class is without loss).

The name “expected score function” is derived from the property that f(p) = p(b)

for all (p, b) ∈ R, and we can interpret this as saying that the function’s value at

a prediction p ∈ P is the highest expected score an expert holding that belief can

obtain (when choosing a function from the scoring menu B).

There may be multiple expected score functions for a scoring relation, and we knew

this since scoring rules are scoring relations and they may have multiple expected score

functions. The requirement for a function fR to be an expected score function for

our scoring relation R is that its points and unique supporting subgradients contain

the association between predictions and scoring functions described by the relation.

Importantly, any expected score function of a scoring relation has the same value on

the domain of the scoring relation. Thus, if the domain of a scoring relation is all of

P , it will uniquely define an expected score function.
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Strictly proper scoring relations are a way of capturing the complete structure

offered by the points and unique supporting subgradients of a convex function. Scor-

ing rules may not be able to accomplish this since they are one-to-one mappings,

and a convex function may have multiple unique supporting subgradients at a point.

Cost functions, described in the next section, can be thought of as extending strictly

proper scoring relations to capture the structure of a convex function’s points and

their unique subgradients.

4.2 Strictly Proper Cost Functions

Our goal with a cost function is to let traders buy and sell securities like they do in

existing futures markets, and to use this trading behavior to infer a prediction. This

goal will not be fully realized until the next chapter, and it is far from our current

understanding. It can also be difficult to see how the mathematical definitions in

this and the previous section relate to this more practical goal. I ask the reader to

bear with me as we first continue to abstract even farther away from futures markets

before returning to them.

One way to think of a cost function is as a language exposing a scoring menu.

Throughout this thesis I have described scoring rules, and now scoring relations, as

offering a menu of bounded measurable functions. Strictly proper scoring relations

actually describe all of (classical) strict properness in that they can describe every

scoring menu and how to infer a probability measure from them. Not all scoring

relations, however, immediately offer us a means of exposing this menu. Scoring rules

are useful because they provide a natural language, the language of predictions, as a
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means to access this menu.

One natural alternative idea to using a scoring rule is to let traders select a

scoring function directly from the menu. This is almost what a cost function does,

and is an excellent intuition for how they work. Of course, we could also design

other languages, possibly even ones that are many-to-one mappings into the scoring

functions. For example, we could have two scoring functions b0 and b1, and design a

silly new means of acquiring and rewarding accurate predictions that required traders

give us some object from an arbitrary set L that then mapped to one of these two

scoring functions. This is, of course, absurd, but it illustrates the point that our

systems for inferring predictions can be thought of as (1) a menu of scoring functions

and (2) a language that lets traders select a scoring function. Again, using scoring

rules as an example, their language for selecting a scoring function was the set of

predictions.

I will describe the language of cost function as securities. Mathematically these

securities are translations of scoring functions that the cost function exposes. For

example, when a cost function exposes a scoring menu B, a security will be any real-

valued translation of an element of B. So if b ∈ B, then b + k for any real k is a

security. Intuitively the language of cost functions lets traders not only request a

scoring function directly (they can ask for b itself), but also allows them to ask for

them in the apparently (for now) mathematically circuitous fashion of specifying a

translation of the scoring function instead. This roundabout language is what will let

us emulate a futures market, and this context is described in the next chapter. For

now, we can think of a trader “purchasing” the security b+k at a “cost” of k to arrive
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back at the scoring function b. This thinking gives us the name “cost function:” the

function determines how much a trader must pay for a security.

A strictly proper cost function, then, must map securities to scoring functions.

To define these functions we need a formal definition of B+, the securities generated

from the scoring menu B. We formally define these translations as:

B+ = {b+|b+ = b+ k, b ∈ B, k ∈ R} (translations of elements of B)

and it will be convenient to describe a cost function as strictly P/B+−proper even

though it exposes the scoring menu B, leading to the following definition of a strictly

proper cost function.2

Definition 4 (Strictly Proper Cost Function). Any function C : B → B is a cost

function.

Letting R be a (strictly) P/B−proper scoring relation, a cost function C : B+ → B

may also be described as (strictly) P/B+−proper when C(b + k) = b, for all b ∈ B,

k ∈ R. I will also call such cost functions “cost functions for R.”

Sometimes it will be useful to restrict the domain of C to a subset of B◦ ⊆ B+,

and in these cases I will describe C as (strictly) P/B◦−proper.

One subtle and very important thing that is easy to miss in this definition is that

simply exposing the scoring menu of a strictly P/B−proper scoring relation R makes

the cost function strictly P/B+−proper in the most meaningful way: if a trader has

beliefs p ∈ P then they will strictly prefer choosing securities b+ ∈ B+ such that

2I am abusing the idea that k is a real number and a constant-valued function represented by a
real number, and will continue to do this for the immense convenience it offers. There should be no
confusion for the reader.
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(p, C(b+)) ∈ R. The strict properness part of this definition only demands the menu

exposed be the same as some such scoring relation. It is the “cost function” part of

the definition that defines how the language of securities is mapped to the scoring

functions.

This definition follows closely on our discussion. A cost function exposes a scoring

menu B, and it does so by mapping translations of scoring functions, called “securi-

ties,” back to the original functions. We can also derive this definition geometrically

from expected score functions. Letting fR be a strictly P/B−proper expected score

function, and b ∈ B, b ∈ ∂?fR(p), the function b + k is also a subgradient of fR at p.

It is not a supporting subgradient unless k is zero, and we can think of a cost func-

tion as offering these subgradients as its language and associating them with their

corresponding supporting hyperplanes.

Yet another way of thinking about a cost function involves the conjugate of fR,

f ∗R. Applying the conjugate-subgradient theorem, we see that f ∗R maps translations

of supporting subgradients into the real values k that they are translated by. In other

words, if b ∈ B, b ∈ ∂?fR(p), then f ∗R(b+k) = k for all k ∈ R. The classical definition

of a cost function fits this idea closely.

Definition 5 (Strictly Proper Classical Cost Function). Any function Ċ : B → R is

a classical cost function.

Letting R be a (strictly) P/B−proper scoring relation, a classical cost function

Ċ : B+ → R may also be described as (strictly) P/B+−proper when Ċ(b+k) = k, for

all b ∈ B, k ∈ R. I will also call such classical cost functions “classical cost functions

for R.”
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Letting fR be an expected score function for R, this can be equivalently stated as

Ċ(b+ k)
B+

= f ∗R(b+ k). That is, Ċ agrees with the conjugate of fR on B+.

Essentially, I like to think of cost functions mapping translations of scoring func-

tions (securities) back to scoring functions, and the classical way of thinking of a cost

function actually had them map to a “cost” for each security. Translating between

these two definitions is trivial, and I will switch between the representations as is con-

venient. The next section elaborates on some properties that can make the classical

cost function representation easier to work.

4.3 Cost Functions in Duality

Scoring relations are the fundamental object of study when understanding strict

properness, and particular methods of acquiring and rewarding accurate predictions

simply offer different languages to access their menus of scoring functions. Scoring

rules use the language of predictions, and cost functions offer translations of the

scoring functions called “securities.” Both of these languages are intuitive and natural,

the first because we are, after all, attempting to acquire a prediction, and the second

since we can think of a market maker offering securities to trade, just like in a futures

market (a context we will soon return to).

Having now described scoring rules, scoring relations, expected score functions

and cost functions, it can all become too confusing how these objects relate to one

another, or what separates one from another, or how one might actually work with

these objects. Before formalizing some of these connections, let me offer a (relatively)

simple example.
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The function f(x, y) = x2 +y2 is a strictly convex and continuous two-dimensional

function. This function is about the simplest we can hope to work with, since each

dimension represents an outcome. This function has a well-defined Gâteaux differ-

ential everywhere, its gradient, and this implies it has a unique subgradient at every

point (see Chapter 2). For instance, at the point (.5, .5) it has the subgradient (1, 1).3

Since f is strictly convex, each of these subgradients are unique (see the discussion

in the previous chapter). Note that (1, 1) is not a supporting subgradient of f at (.5,

.5), and that there is no supporting subgradient at that point.

The line segment defined by x + y = 1, x > 0, y > 0 represents the probability

measures over two discrete outcomes, and so this set will be P . Restricting f to this

set we obtain f |P , which is no longer continuous or Gâteaux differentiable since it has

an empty interior. Further, it now has an infinite number of subgradients at every

point. At (.5, .5) it still has the unique subgradient (1, 1), and it also has unique

subgradients (1, 1) + k for any real-valued k. Because this function is restricted to

the probability measures it now has unique supporting subgradients everywhere, and

the unique supporting subgradient at (.5, .5) is (.5, .5). The function remains lower

semi-continuous, proper and strictly convex.

We can use f |P as an expected score function, and identifying points with the

supporting subgradients that are translations of the original function’s f gradients

defines a strictly P−proper scoring relation.4 This scoring relation is one-to-one by

construction, and so is actually a scoring rule. If an expert offers a prediction of

3The continuous dual space and, in fact, just the dual space of R2 is itself. The bilinear form is
the dot product.

4We know it is proper for all of P by our construction, and the Gâteaux differentiability of f .
We do not immediately know what scoring menu B this scoring rule exposes.
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(.5, .5) this scoring rule returns the scoring function (.5, .5), and if the first outcome

occurs the expert is scored .5 and if the second outcome occurs the expert is scored

.5. If the expert offers the prediction (.75, .25), we compute their scoring function

by finding the gradient of f at (.75, .25), which is (1.5, .5), then translating that to

be a supporting subgradient of f |P , to receive (.875,−.125). So an expert predicting

(.75, .25) receives a score of .875 if the first outcome occurs, and −.125 if the second

outcome occurs. This is to be expected: predicting one outcome is more likely than

another will result in a higher score when that outcome occurs, and a lower score

when the other does.

In general it can be very hard to understand the relation between a convex func-

tion’s points and supporting subgradients. For finite outcomes we are lucky to have

the above technique, where we can use a “nice” strictly convex function, take its gra-

dient, and then determine a supporting subgradient of the restricted function from

it.

Now we can think of using f |P to define a cost function, which accepts secu-

rities, or subgradients of f |P , and returns scoring functions (supporting subgradi-

ents). So a trader might ask for the security (1.5, .5) and receive the scoring function

(.875,−.125). This emulates the trader purchasing the security (1.5, .5) at a cost of

.625. We can compute this necessary translation using the conjugate of f |P , which

maps subgradients into the translations needed to make them supporting subgradi-

ents. So f |∗P(1.5, .5) = .625.

There are still some gaps in our analysis. First, it is not clear what the domain of

the cost function should be, since we do not know what scoring menu we are exposing.

76



4: Cost Functions

Second, in general, computing the conjugate may often be difficult. In this case we

can address both these gaps by using some results about convex programs:

f |∗P(x, y) = sup
p∈P
〈p, (x, y)〉 − f |P(p)

= sup
p∈R2

p · (x, y)− f |P(p)

which is a convex program in two variables. Further, since f |P is strictly convex and P

is closed this convex program will always have a unique solution, which implies a cost

function derived from f |P is actually strictly P/B−proper. This technique does not

tell us what scoring menu B ⊆ B is actually exposed (that would require identifying

all the supporting subgradients), but it does let us compute everything needed to run

a scoring rule or cost function derived from f |P . In the next chapter I will also rely on

our understanding of convex programs to describe a more complicated cost function.

Formally, the above example can be thought of as an instantiation of this next

theorem:

Theorem 6 (The Structure of Strict Properness). Letting R be a scoring relation

with domain P and range B, the following statements are equivalent:

1. R is a strictly P/B−proper scoring relation.

2. There exists a l.s.c. convex function fR : P → R that is a strictly P/B−proper

scoring function for R. The convex conjugate of fR restricted to B is a classical

cost function for R.

3. R is a subset of the unique supporting subgradient relation of a convex function

fR : P → R̄.
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4. There exists a continuous convex function ĊR : B → R that is a strictly P/B+−

proper classical cost function for R and whose convex conjugate restricted to P

is an expected score function for R.

The statements follows readily from my characterization of strictly proper scoring

rules and the conjugate-subgradient theorem, as well as l.s.c. convex functions on

Banach spaces being continuous.

Some prior work has investigated the connections between scoring rules and cost

functions, most notably [1], and also [3]. Both investigated the discrete case, and

their statements are not simple. Essentially, they showed that there could exist an

equivalence between strictly proper scoring rules and some cost functions, in the sense

that both could offer the same scoring functions to traders. They also showed that

“prices” in a cost function market can correspond exactly to predictions in a scoring

rule market, although this thinking will have to wait until we develop prices in the

next chapter. My treatment is more complete since it describes all of strict properness

through the structure of strictly proper scoring relations, which are analogous to the

structures between points and unique supporting subgradients of convex functions of

the probability measures. Everything else is derived from this fundamental structure.

This interest in association scoring rules and cost functions leads me to formalize the

following simple duality between them:

Theorem 7 (Scoring Rules and Cost Functions). For any strictly P/B−proper scor-

ing rule, there exists a strictly P/B+−proper cost function with the same range (scor-

ing functions).

This fact is incredibly simple when presented from the perspective developed in
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this thesis, and I think it highlights the utility of our approach. It says that for

every scoring rule there is a cost function with the same set of scoring functions, and

thus the only difference is the language used to select a scoring function. Remember,

though, that since not every scoring relation is a scoring rule, this duality is imperfect.

For every scoring rule there is a cost function, but there is not a scoring rule for every

cost function.

There are many advantages to focusing on strict properness directly. It is an

essential property for eliciting and rewarding accurate predictions, and so we would

like to understand what is a strictly proper scoring rule, what is a strictly proper cost

function, and what are strictly proper scoring relations. The greatest advantage of

this approach is understanding strictly proper mechanisms as presenting languages

that expose a scoring menu. The above theorem is a testament to the clarity of

understanding this offers us, in contrast to some convoluted historical results.5 The

next chapter further demonstrates the utility of this approach. I have also chosen

to define strict properness in such a way that we can identify strictly proper scoring

relations with the points and unique supporting subgradients of convex functions of

the probability measures. This lets us readily leverage the tools of convex analysis, like

we saw in the above example. Prior work, by not conceptualizing scoring relations,

had a more difficult time applying these tools.

Now that we understand what a strictly proper cost function is, we will use them

in the next chapter to create prediction markets that emulate futures markets. These

cost functions have more structure than we are assuming here, and we will find this

5I have written several of these convoluted historical results myself, and remain proud of them.
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structure to be incredibly useful and natural.
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Practical Cost Functions

This chapter is the culmination of our work in Chapter 2–4. So far we have been

focused exclusively on strict properness, the essential property for eliciting and re-

warding accurate predictions of the likelihood of future events. This chapter expands

this focus, showing how cost functions can closely emulate futures markets in Section

5.1, and then demonstrating the utility of all this work by creating a cost function

for bounded continuous random variables in Section 5.2.

5.1 Cost Functions as Futures Markets

In the previous chapter I described cost functions and strictly proper cost func-

tions. Strictly proper cost functions mapped securities into scoring functions, and

they did so in a way that mimicked buying and selling securities. Letting C be a

strictly P/B+−proper cost function, the security b + k being mapped to b can be

thought of as the cost function selling the security b + k at a price of k. A classical
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cost function offered another interpretation of this, simply mapping b + k to k and

describing its price directly.

This interpretation is especially nice because it provides traders with the familiar

interface of trading securities with a market. Not all strictly proper cost functions,

however, have all the nice properties we associate with a market maker. In particular,

a strictly proper cost function (1) may not reliably offer every security for trade, and

(2) it may not be able to quote meaningful prices. Consider, for example, a trivial

strictly proper cost function with a single scoring function b. Then that cost function

can sell the security once, and likely not twice, unless b + k = 2b. That is, the cost

function is not defined on 2b, and this means it cannot always trade this security.

This is likely to be considered a real deficit in practice, and we can readily construct

non-trivial examples that demonstrate this lack.

The second challenge I mentioned is that strictly proper cost functions may not

always quote meaningful prices. By “meaningful,” I mean that the market should

be able to quote a price for a security such that if a trader’s expected value for

that security differs from the price, then that trader expects to profit by trading the

security. Either buying some amount of the security if its price is lower than the

trader’s expectation, or selling some amount if the price is higher. Note that this

price is likely not the cost of a security, and that we are not considering securities

purchased in discrete units. Not every strictly proper cost function can quote a price

like this.

It turns out these two problems are related, and Section 5.1.2 describes how re-

quiring B+ be a vector space solves both. When a strictly proper cost function has a
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vector space for its domain it guarantees every security is reliably offered for trade,

and it can quote a meaningful price for each. These results are almost immediate

from the assumption. Two other desirable properties for a market maker to have are

that it cannot lose more than a bounded amount of money, and that it offers traders

no arbitrage. These problems are discussed in Section 5.1.3. Before either of those,

however, it is time we described cost function prediction markets. This will provide

the context needed for us to continue.

5.1.1 Cost Function Prediction Markets

So far we have discussed a great deal about cost functions, and in Chapter 3 I

described a scoring rules market, but we have not yet looked at prediction markets

that use cost functions, or cost function markets. This section will help us understand

exactly how these markets work, and what specialized notation we need when working

with them.

Let B ⊆ B and C : B+ → B be a cost function. I have described cost functions as

offering securities, which are elements of B+ and mapping them to scoring functions

in B. This is an excellent intuition when working with a single trader, as it mimics a

market maker who charges the trader a price of k to purchase the security b+ k, for

some scoring function b ∈ B and real k.

When a cost function is used in a market, however, it is best to think of it as

mapping liabilities to scoring functions. Mathematically nothing changes. A liability

is any element of B+, and a scoring function is still an element of B. The reason for

this change is that the term “liability” will better capture our intuition about how
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cost functions emulate existing futures markets. The market can still be thought of

as offering securities, and in Section 5.1.2 we will see how, under a very reasonable

condition, every element of B+ is also a security. In general, however, this may not

be the case.

This is almost certainly confusing, so let’s begin by adding some context. A cost

function C : B+ → B prediction market is thought of as opening with an initial

liability ` ∈ B+. Usually ` = 0, the constant zero function. Like a scoring rule

prediction market, this market then accepts a countable and public series of trades

or updates, and these updates are functions from B+ that we will call liabilities. So,

traders offer a countable and public series of liabilities `0, `1, . . ..

Offering liabilities does not connect well with our idea of trading in a futures mar-

ket. Fortunately, we can interpret these offers as traders buying and selling securities.

When a trader requests a liability `i ∈ B+, they receive the scoring function

C(`i)− C(`i−1) (cost function market score)

and we can think of this as the trader purchasing the security `i − `i−1. So securities

are now the differences between two liabilities. When we think of traders purchasing

securities, the latest liability offered is the sum of these securities, and thus represents

the market maker’s potential net payouts to the traders. Hence why I refer to them

as “liabilities.”

Eventually the market closes with a final liability ` ∈ B+, and if our cost function

is a cost function for a strictly P/B−proper scoring relation R, then we extract the

prediction p such that (p, C(B+) ∈ R. Again, this is like a prediction market that

uses a scoring rule, where the last prediction made is extracted from the market. This
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implies the market maker’s worst-case loss is

sup
`∈B+,ω∈Ω

(
C(`)− C(`0)

)
(ω) (worst-case loss)

This description of a cost function is entirely mathematically correct, and, I think,

still very unsatisfying. It is odd that traders are offering liabilities, and it is especially

strange that securities are only defined implicitly as the difference of these liabilities.

This can make for some very strange behavior. In particular, a “security” may or may

not be available depending on the market’s current liability. Again, this is because

we consider a security as a difference between two liabilities. So if the market has two

scoring functions, b0 and b1, if the market has liabilities b0 then the only meaningful

security that can be purchased is b1 − b0, and if the market has liabilities b1 the only

meaningful security that can be purchased is b0−b1. I think of these markets as being

“unreliable,” in that they do not consistently offer traders a set of securities to buy

and sell. This failure also does not let our cost function offer meaningful prices for

its securities. The next (sub)section addresses these oddities with a simple structural

assumption.

5.1.2 Prices and the Reliable Market Maker

It is desirable, in practice, to let traders reliably buy and sell securities when

interacting with a market maker. This means that, regardless of the market’s current

state, a trader can buy or sell any of a set of securities.

We might attempt to create such a market by starting with a set of basis securities

X ⊆ B. The market could then let traders purchase bundles of these securities,

bundles that are elements of the vector space B+ that is generated using X as a basis.
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This market admits an interesting interpretation. Its liabilities and its securities are

elements of B+, and since B+ is a vector space any security can be purchased or sold

regardless of the market’s current liabilities.1 In other words, this market reliably

offers a set of securities.

With our interest in strictly proper cost functions the above naturally suggests

attempting to use our scoring functions as a set of basis securities. This may not do

what is intended, however, since the vector space created from this basis may contain

elements that are not translations of the scoring functions. Consider a two outcome

state space. Then we might have two scoring functions (1, 0) and (0, 1). If we use

these scoring functions as a basis they will generate a vector space that contains (.5,

.5), which is not a translation of either scoring function. Our cost function has no

means of interpreting a request for this vector.

Instead, we can require that B+ simply be a vector space. This ensures that every

element of B+ can always be purchased as a security, since the sum of two elements in

B+ is also in B+. Thus if the market has liability `, we can take any element b+ ∈ B+

and add it to ` to achieve ` + b+ ∈ B+. So an expert can always move the market

from ` to `+ b+, effectively purchasing the security b+. Again, in this case the space

of liabilities and securities is the same, and the different words are only for intuitive

clarity. The market’s liability is the sum of all securities purchased, and we can think

of traders buying and selling securities, with the set B+ defining these securities.

It is this thinking that lets us return to why we defined cost functions as mapping

1Liabilities and securities are both elements of B+ because the difference of any two liabilities is
a security, and any such difference is also an element of the vector space B+ by construction, so the
space of liabilities and securities coincides. Any security can always be purchased because B+ is a
vector space, and the sum of any two elements must then also be in the space.
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securities back to scoring functions. At first there seemed to be no reason to let

translations of scoring functions be mapped into scoring functions. It would have been

much simpler if traders requested scoring functions directly. The scoring functions

alone, however, cannot describe a vector space, and without a vector space we cannot

reliably offer securities. Considering the same market as before, if a trader purchases

the security (1, 0), and another the security (0, 1), the market’s liabilities are (1,

1). The next trader may then also want to purchase the security (1, 0), moving

the market’s liabilities to (2, 1). These liabilities arise naturally through trading

securities, and they are not a scoring function. Thus we let cost functions map

translations of scoring functions back to scoring functions. We also can only let a

cost function map translations back to scoring functions because this mimics paying

a cost for each security. If the security mapped back to a scoring function were not a

simple translation then we could not create a cost for it that would perfectly emulate

the scoring function.

When a cost function is strictly P/B+−proper, and B+ is a vector space, then we

also obtain a natural notion of prices. This is easiest to see, as are many results on

cost functions, using the classical interpretation of a cost function. Let R be a strictly

P/B−proper scoring relation, and fR an expected score function for it. The conjugate

of fR restricted to B is a classical cost function ĊR for R, and it is a continuous convex

function of the bounded measurable functions.

Now let b+ ∈ B+. Since ĊR is strictly proper, its Gâteaux variation at b+ agrees

with the probability measure R associates with C(b+) on B+. Let p be this probability

measure, this means the Gâteaux variation of ĊR at b+, ∇ĊR(b+; ·) B+

= p. Let’s walk
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through this equivalence. The variation of ĊR at ` ∈ B+ in the direction of b+ ∈ B+

is

∇ĊR(`; b+) = lim
τ→0

ĊR(`+ τb+)− ĊR(`)

τ
(price / Gâteaux variation)

then if an expert has beliefs p such that p(b+) 6= ∇ĊR(`; b+), the above expression

implies there exists τ 6= 0 such that

τp(b+) > ĊR(`+ τb+)− ĊR(`)

demonstrating that if a trader’s expected value for a security differs from the Gâteaux

variation in the direction of that security, the trader expects to profit by trading it.

Thus, if the Gâteaux variation at ` ∈ B does not agree with the probability measure

R associates with C(`), a trader with beliefs p has a trade it expects to be profitable,

and this implies the market is not strictly proper as I assumed.

Assuming B+ is a vector space is vital for this result because it means the security

τb+ can actually be purchased. Without a vector space we can quote these prices

for the securities just fine, but they are not meaningful since we cannot guarantee

traders can act on them.

More formally, using the conjugate-subgradient theorem we can restate this argu-

ment as follows:

Theorem 8 (Strict Properness and the Gâteaux Variation). Let f be a strictly

P/B−proper expected score function, with B ⊆ B a convex set. Then the conjugate

of f restricted to B, f ∗|B is a classical cost function Ċ such that for all (p0, b0) ∈ R,

∇Ċ(b0; ·) B+

= p0.
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Recall the points of a classical cost function are bounded measurable functions (se-

curities) and its subgradients are probability measures (predictions). If a probability

measure is a subgradient of the classical cost function at a point, then it is the prob-

ability measure our implicit scoring relation associated with that point (a bounded

measurable functions). This is an easy consequence of the conjugate-subgradient the-

orem, and is a mathematical way of stating that the Gâteaux variation agrees with

the probability measure we associate with each security. Finally, note the theorem

only requires B be convex, and if B+ is a vector space then this implies B is convex.

Note also that the Gâteaux variation satisfies our notion of meaningful prices.

This implies that the prediction we associate with a liability is also how we determine

prices. The price of a security is its expected value with respect to this prediction.

Letting the domain of a cost function, B+ be a vector space adds a great deal of

structure to a cost function. It lets us reliably offer securities and quote meaningful

prices. This seem like highly desirable properties in practice, and the cost function

we will develop shortly will offer a vector space of securities for this reason.

5.1.3 Bounded Loss and Arbitrage

The last two properties I will consider before describing a particular cost function

for bounded continuous random variables are bounded loss and a lack of arbitrage.

Let’s begin with bounded loss:

Definition 6 (Bounded Loss). A P/B−proper scoring relation R has bounded loss

if B is bounded above. A cost function for R has bounded loss if and only if R does.

Note that only B must be bounded, and not the difference describing the worst-
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case loss. This is because any particular scoring function is, itself, bounded, and so

our only concern is that the set of all scoring functions is unbounded above. We now

have the following simple result.

Theorem 9 (Boundedness and Bounded Loss). Let R be a strictly P/B−proper scor-

ing relation, and fR : P → R̄ the pointwise supremum of the range of R. fR is an ex-

pected score function for R, and its conjugate restricted to B is a strictly P/B+−proper

classical cost function Ċ. Ċ has bounded worst-case loss if fR is bounded above.

Proof. If fR is bounded above then the expectation of every scoring function is

bounded above, by construction. If a scoring function were unbounded above, then

it would be unbounded above on P , too. (There must be a series of measurable sets

with increasing real values, and for every measurable set there exists a probability

measure that assigns all its mass to that set, so for any value of a scoring function

there exist probability measures whose expectation for that function is that value.)

Thus, if fR is bounded above, every scoring function is also bounded above and we

have bounded worst-case loss.

This theorem statement and proof are a nice demonstration of the utility of think-

ing about strict properness in terms of scoring relations or menus of scoring functions.

It lets us easily understand that the only possible payoffs a trader can get are de-

scribed by scoring functions, and that if these payouts are bounded above so is our

loss.

The second property, no arbitrage, is immediately satisfied by any strictly proper

cost function. We first define it as:
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Definition 7 (No Arbitrage). A strictly P/B+−proper cost function C allows no

arbitrage when

inf
ω∈Ω

(
C(`1)− C(`0)

)
(ω) ≤ 0, ∀`0, `1 ∈ B+ (no arbitrage)

In English, no arbitrage means that every trade has some possibility of being

weakly unprofitable. And we have the following formal result:

Theorem 10 (Strictly Proper Cost Functions Permit No Arbitrage). A P/B+−proper

cost function C : B+ → B permits no arbitrage.

Proof. Assume for a contradiction that there exists liabilities `0 and `1 in B+ such

that

inf
ω∈Ω

(
C(`1)− C(`0)

)
(ω) > 0

Then every probability measure expects to profit by purchasing the security C(`1)−

C(`0), but by properness (and the above argument about prices) the probability mea-

sure associated with C(`0) does not expect to profit by purchasing any security when

the market has liabilities `0, so the existence of arbitrage opportunities contradicts

properness.

In fact, when our cost function is strictly proper we can strengthen the above

result so the no arbitrage inequality becomes strict. Some papers, like [1] and [31]

relax the no arbitrage property as it can be computationally difficult to enforce. These

possibilities are discussed further in the conclusion.

Now that we have discussed a market reliably offering securities, quoting prices,

having bounded worst-case loss and admitting no arbitrage, we can discuss an actual
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cost function for bounded continuous random variables. Cost functions for this space

with properties like bounded loss have proven elusive historically.

5.2 A Cost Function for Bounded Continuous Ran-

dom Variables

Cost functions with good properties for continuous random variables have been

discussed for some time, yet no one has yet produced a cost function with bounded

loss for this space. In [38] the authors showed markets for continuous random vari-

ables could not have bounded loss when satisfying some other economically motivated

properties. In [68] a continuous outcome space was discretized, which is a common

approach to the problem, and in [67] a cost function for continuous random vari-

ables with bounded loss was mistakenly claimed, a claim corrected in the author’s

thesis [66]. Most work on cost functions has been for discrete spaces, like the best

characterization of cost functions for discrete spaces [1], and work especially focused

on making cost functions for large discrete spaces tractable [31, 53].

In the previous chapter, however, we saw that describing a cost function for a

measurable space is as simple as describing a scoring rule for one, and such scoring

rules have been known for some time [58] and were characterized in [43]. In fact, we

can begin with any strictly convex function of the probability measures on the [0, 1]

interval, like

S(p) =

∫
0,1

F 2
p dλ (expected score function)

where Fp is the cumulative distribution function (CDF) identified with the probability
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measure p ∈ P . The conjugate of this function restricted to B is a classical cost

function for the interval

Ċ(b) = sup
p∈P
〈p, b〉 −

∫
[0,1]

F 2
p dλ (classical cost function)

and since S is bounded above this classical cost function has bounded worst-case loss.

It is not so clear what other properties this market has, however. It is not even clear,

for instance, where the original expected score function is subdifferentiable, or what

its subgradients are, and this means we do not understand what sets P ⊆ P and

B ⊆ B it is strictly P/B+−proper for.

In this section I will develop a more practical cost function for bounded continuous

random variables whose properties we can understand. On a broad, natural class of

securities this cost function can be solved for using a convex program with a finite

number of variables, too. While this cost function is imperfect, I think it represents

an important first step in our understanding of cost functions for continuous outcome

spaces.

5.2.1 Unbiased Cost Functions

The classical cost function

Ċ(b) = sup
p∈P
〈p, b〉 −

∫
[0,1]

F 2
p dλ (classical cost function)

also has an odd property we have not previously discussed. If the market opens with

the constant zero function, as we usually expect, then the probability measure the

market will initially assume assigns probability one to the event one occurring. That

is, it assigns the single point one a probability of one, and the price of securities like
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[0, .99] is zero! I will call markets like these biased, since despite uniform liabilities

they assume non-uniform beliefs. Unbiased markets may be considered more natural

to work with, and admit a nice computational interpretation, as we will see shortly.

Formally, we define bias as:

Definition 8 (Unbiased Market). Let P be the set of probability measures, and B the

set of bounded measurable functions, on ([0, 1],L). A scoring relation R ⊆ P × B is

unbiased when (p, b) ∈ R implies that for any two measurable sets L0, L1 ∈ L where

b is constant-valued and b(L0) = b(L1), we have

1. if λ(L0) = λ(L1) = 0, then p(L0) = p(L1),

2. and if λ(L0), λ(L1) > 0, then p(L0)/λ(L0) = p(L1)/λ(L1).

A cost function is unbiased when it is the cost function for an unbiased scoring rela-

tion.

This formal definition of unbiasedness is a mouthful. It says that if the market’s

liabilities are the same on two measurable sets with positive Lebesgue measure, then

the price of these sets is in proportion to their “size,” as determined by Lebesgue

measure. For example, if the market’s liabilities are 3 on [0, .1] and [.2, .6], being

unbiased implies the market assigns four times the probability to the interval [.2, .6]

since it is four times as large.

When two sets are Lebesgue-negligible, unbiasedness requires their price be the

same if their liabilities are the same. This has some interesting implications about the

prices of these Lebesgue-negligible sets, like that every Lebesgue-negligible set with a

positive price contains a countable number of point masses whose prices sum to the
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price of the set. This in turn means that no market that assumes prices consistent

with a singular continuous measure can be unbiased. The market we construct will

exclude these measures from consideration.

Before moving on, note that this definition of unbiasedness is particular to markets

for the [0, 1] interval. The idea of something being unbiased is always a matter of

perspective, and in an arbitrary measurable space it is not clear what perspective is

natural, or even if there is always a notion of uniformity. Our familiarity with the [0,

1] interval, Lebesgue measure, and identifying probability measures with CDFs are

all reasons why constructing a market for it may be much easier than constructing

cost functions in other measurable spaces.

5.2.2 A New Cost Function

The cost function I will soon describe requires some new notation. Instead of ac-

cepting securities from all of B, it only accepts securities that are composed of a finite

number of constant real-valued segments. I will call these “interval functions” and

denote the set of them by Binterval. These functions can be described as a collection

of tuples associating non-overlapping subintervals of [0, 1] with real numbers, like

([0, .1], 5), ((.1, .3),−3), ([.3, .3], 0) . . ..2 Crucially, this set of of securities is a vector

2Note that this class is not the set of piecewise-constant functions, since these have no requirement
that they consist of a finite number of segments. Further, it is also not the class of simple functions.
This latter class is any function (usually circumscribed to the bounded and measurable functions)
that only attains a finite number of values. The difficulty with simple functions is that these values
can be obtained in unusual ways. For example, the Dirichlet function is simple because it only
attains the values zero or one, and it is one on rational numbers and zero on irrational numbers.
The practical market I will propose cannot handle this kind of erratic behavior. Unfortunately, my
conference paper [23] that this chapter draws heavily from has an error where it uses the simple
functions instead of these interval functions.
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space.

Correspondingly, I will let Pinterval be the set of “interval” probability mea-

sures. These are probability measures p that can also be described by tuples of

non-overlapping subintervals of [0, 1] with real numbers, and the real value associ-

ated with a subinterval specifies the measure p assigns uniformly to that interval. For

instance, Lebesgue measure would be
(
([0, 1], 1)

)
, since it is uniform on the entire in-

terval. Importantly, these measures admit only pure point and absolutely continuous

parts in Lebesgue decomposition, and they are a convex set.

Now I can define my new cost function for the [0, 1] interval. Since it is useful to

have a name for it, I will call it a dynamic discretization market, since it effectively

allows traders to arbitrarily discretize the interval with their securities. I will define

this market as the classical cost function:

Ċ : Binterval → R (dynamic discretization market)

Ċ(b) = max
p∈Pinterval

〈p, b〉 −

∑
ω∈ppp

p2(ω)−
∫

Ω

arctan(
dpcont

dλ
) dλ


where ppp is the pure point part of p, which is also treated as a countable set of points

in the interval in a minute abuse of notation,3 and pcont is the absolutely continuous

part of p. Again, measures in Pinterval have no singular continuous parts.

Intuitively, this market lets traders define their own discretization of the interval.

Importantly, unlike an ex ante discretization, traders can define this discretization

multiple times ex interim. This means traders can create the precise discretization

they like to best express their beliefs (as long as those beliefs are in Pinterval). An

3Recall that in Chapter 2 we saw this set was always a countable collection of point masses.

96



5: Practical Cost Functions

ex ante discretization may not accomplish this. How valuable, exactly, this is, is

a matter for debate. Developing a framework for describing the value of offering a

broader set of predictions would be an interesting area for future work.

We are now, of course, interested in what properties this cost function has. Its

securities are a vector space, and it is strictly proper, but it’s not clear if it exhibits

bounded loss, or what set P ⊆ P it is strictly proper for, or how we might readily

compute it. The next two subsubsections do precisely this.

Bounded Loss

For a market to have bounded loss its scoring functions must be bounded above.

In this case, bounded loss is equivalent to showing that there exists some k ∈ R such

that

k > sup
b∈Binterval,ω∈[0,1]

b(ω)− sup
p∈Pinterval

〈p, b〉 −

∑
ω∈ppp

p2(ω)−
∫

Ω

arctan(
dpcont

dλ
) dλ


which follows quickly since the negative arctan function is bounded below, the sum-

mation is bounded above, and so the entire term in large parentheses is bounded for

all probability measures and can be removed. This leaves the difference:

k > sup
b∈Binterval,ω∈[0,1]

b(ω)− sup
p∈Pinterval

〈p, b〉

which is always less than or equal to zero, since supp∈Pinterval
〈p, b〉 = supω∈[0,1] b(ω).

Thus the market has bounded loss, which we state formally:

Theorem 11 (The Dynamic Discretization Market has Bounded Loss). The dynamic

discretization market has bounded worst-case loss.
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Using the negative arctan function may have seemed like an odd choice. Here we

see that it is useful since it is bounded below. In the next subsubsection we will also

see how important it is that it is a negative strictly convex function.

Strictly Pinterval/Binterval−Proper

This subsubsection is complicated, complicated enough to be confusing. Before

leaping into our narrative, it will help to describe what we will be doing:

1. Proving the conjugate of the dynamic discretization market is strictly convex

on Pinterval.

2. Showing the market is unbiased.

3. Demonstrating the market is strictly Pinterval/Binterval−proper.

As a side effect, I will show that the market can be computed using a convex program

with a finite number of variables, one variable per every interval described by the

market’s current liabilities.

First, we need to show the market’s conjugate is strictly convex on Pinterval. This

result will be needed for the next two.

Lemma 4. The function

S : Pinterval → R

S(p) =
∑
ω∈ppp

p2(ω)−
∫

Ω

arctan(
dpcont

dλ
) dλ

is a strictly convex function of the interval probability measures.
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Proof. Let p0, p1 be two distinct probability measures in Pinterval. We need to show

that

α

 ∑
ω∈(p0)pp

p2
0(ω)−

∫
Ω

arctan(
d(p0)cont

dλ
) dλ

+ (1− α)

 ∑
ω∈(p1)pp

p2
1(ω)−

∫
Ω

arctan(
d(p1)cont

dλ
) dλ


>

∑
ω∈(p0+p1)pp

(αp0 + (1− α)p1)2(ω)−
∫

Ω

arctan(
d(αp0 + (1− α)p1)cont

dλ
) dλ

and proceed by analyzing two cases. First, assume that (p0 + p1) has a pure point

part where p0 and p1 differ, then

α
∑

ω∈(p0)pp

p2
0(ω) + (1− α)

∑
ω∈(p1)pp

p2
1(ω) >

∑
ω∈(p0+p1)pp

(αp0 + (1− α)p1)2(ω)

since f(x) = x2 is strictly convex, so αp2
0(ω) + (1− α)p2

1(ω) ≥ (αp0 + (1− α)p1)2(ω)

for all ω ∈ Ω and the inequality holds strictly where the measures are distinct, and

thus the inequality holds for the sum, too (since the sum is finite and bounded).

Alternatively if (p0 +p1) has an absolutely continuous part where p0 and p1 differ,

then

−α
∫

Ω

arctan(
d(p0)cont

dλ
) dλ− (1− α)

∫
Ω

arctan(
d(p1)cont

dλ
) dλ

> −
∫

Ω

arctan(
d(αp0 + (1− α)p1)cont

dλ
) dλ

because − arctan is a strictly convex function, allowing us to apply Lemma 1.

Since we assumed p0 6= p1 they must differ on their pure point or absolutely

continuous parts, so one of the last two inequalities above must hold strictly and

their summation proves the desired original inequality.

A helpful way to think of this conjugate is as a “regularization” or “penalty”

function for our cost function. It prevents the cost function from assuming extremal
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beliefs by penalizing them. The strict properness of this penalty function will be

crucial to the next two proofs.

Next on our list was showing the market is unbiased.

Theorem 12 (Unbiasedness of the Dynamic Discretization Market). The dynamic

discretization market is unbiased.

Proof. The proof proceeds by contradiction in two cases. First assume that there

exists b ∈ Binterval such that the corresponding probability measure pb is biased. One

possibility is that there exist two Lebesgue-negligible measurable sets L0 and L1 where

b is constant and equally valued on both sets, yet pb is such that that p(L0) 6= p(L1).

I will show we can improve on this supremum, since

〈p, b〉 − p2(L0)− p2(L1) < 〈p, b〉 − 2(αp0 + (1− α)p1)2(L0 + L1)

for all α ∈ (0, 1) by the strict convexity of f(x) = x2. Thus we can improve on

this probability measure by equalizing the probability assigned to the sets L0 and

L1, contradicting our assumption that the market would create such an unbiased

measure.

Alternatively, there are two Lebesgue-measurable sets L0 and L1 such that λ(L0)

and λ(L1) are both greater than zero, b is constant and equally valued on both sets,

yet pb is such that p(L0)
λ(L0)

6= p(L1)
λ(L1)

. Again, we can improve on this supremum, since

〈p, b〉 −
∫
L0

arctan(
dp

dλ
) dλ−

∫
L1

arctan(
dp

dλ
) dλ < 〈p, b〉 − arctan(

p(L0 + L1)

λ(L0 + L1)
)

for all α ∈ (0, 1), following again by the strict convexity of the negative arctan

function.
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So any unbiased probability measure can be improved upon, and thus we conclude

that the market cannot assume such a measure as the solution to its supremum

expression. Hence, the market is unbiased.

Unbiasedness is a natural property for a market to have, and it will also let us

solve the market using a convex program. The next proof is interesting because it

first shows we can use a convex program to find a solution for the market, then takes

some results from convex analysis in Euclidean spaces to prove the market is strictly

Pinterval/Binterval−proper.

Theorem 13 (Strict Pinterval/Binterval−properness of the Dynamic Discretization

Market). The dynamic discretization market is strictly Pinterval/Binterval−proper.

Proof. We begin by showing we can solve the dynamic discretization market using a

convex program, which requires showing that the solution to the supremum

sup
p∈P
〈p, b〉 −

∑
ω∈ppp

p2(ω)−
∫

Ω

arctan(
dpcont

dλ
) dλ


is always in Pinterval.

Every function in Binterval can be described as a finite subset of non-overlapping

subintervals I of [0, 1] associated with real values (I0, r0), (I1, r1), . . .). Any possible

solution, then, is distinguished by how much probability it assigns to each interval

and how it does so. If an interval is degenerate, the only mass that can be assigned to

it is through a pure point part. If the interval has positive length, on the other hand,

mass can be assigned to it through a combination of pure point, singular continuous or

absolutely continuous parts. The first lowers the value of the supremum, the second
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leaves it unchanged, and the last actually increases it.4

This thinking implies any mass assigned to a non-degenerate interval must be in

an absolutely continuous part, and now we need to see this absolutely continuous

part is uniform on each interval. Luckily, this follows immediately from the definition

of unbiasedness, which we just proved. This argument shows that if the supremum

attains a solution it does so in Pinterval.

We can now use this fact to solve for Ċ using a convex program:

Ċ(b) = max
p∈∆(R|N|)

∑
i∈N

ripi −

(∑
i∈M

p2
i −

∑
i∈O

arctan
pi

λ(Li)

)

where N indexes all the pairings of intervals and reals defining b, and M indexes the

degenerate intervals and O indexes the non-degenerate intervals. This program can

alternatively be expressed as minimizing a strictly convex function minus a linear

function over a closed convex space, and this implies it always attains a solution.

Thus we conclude that the solutions to the practical security market are in Pinterval,

and the market attains such solutions for any b ∈ Binterval.

We can now use this result to investigate the strict properness of our dynamic

discretization market. The market attaining a unique maximum in Pinterval at each

point in Binterval implies it is strictly ?/Binterval−proper, where ? is some (still unknown

to us) subset of Pinterval. We will use another result about convex programs to identify

the space of beliefs.

Let Π be a partition of the [0, 1] interval, and BΠ the functions that are constant-

valued on each element of this partition, representable as functions b : Π → R. A

4These features are vital for my argument. I need the pure point part be penalized with a positive
strictly convex function, and the absolutely continuous part to be “rewarded” with another strictly
convex function.
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convex program with |Π| variables can solve for Ċ over BΠ, and can be written as

Ċ(b) = max
p∈∆(Π)

∑
π∈Π

b(π)p(π)−

 ∑
π∈Π,λ(π)=0

p2(π)−
∑

π∈Π,λ(π)>0

arctan
p(π)

λ(π)


Importantly, any probability measure in ∆(Π) can be obtained as a solution to this

expression, because any Dirac measure is obtainable and the subdifferential of a con-

vex function is a closed and convex set. This implies that any measure in Pinterval is

obtainable as a solution, and our cost function is strictly Pinterval/Binterval−proper,

as desired.

I think the above proof is incredibly interesting. It begins by showing that a

convex program can solve for the classical cost function at any point, then using facts

about convex programs to prove properties of the function as a whole. It is truly a

fascinating technique that I have not seen elsewhere.

5.3 Practical Cost Functions in Review

The dynamic discretization market just discussed is a strictly Pinterval/Binterval−proper

cost function for the [0, 1] interval. It has bounded loss and is unbiased. Being strictly

proper it also admits no arbitrage. Since Binterval is a vector space, it can be thought

of as reliably offering every security for trade, and it can quote meaningful prices,

too. Finally, at any point we can use a convex program to solve for both the classical

cost function and cost function version of the market, letting us extract a prediction

and obtain a cost readily.

Before this, markets for [0, 1] that experienced bounded loss were unknown. Some

prior work, notably [2, 3] and the unpublished [36], has begun to approach my char-
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acterization of strict properness, and could likely be developed into a similar result.

It seems the community has been getting ready for this moment, and that we are all

collectively on its threshold. This thesis is simply one of the first past the post, and

I am sure there will soon be many more.

The idea of a market being biased or unbiased is new. Unbiased markets can occur

even in discrete spaces, and these markets were likely not noticed because in those

settings it is very natural to work with a probability distributions PDF over its CDF.

Working with a PDF avoids many of the issues of bias, and working with a CDF

makes developing unbiased markets far trickier. Not only do unbiased markets make

more intuitive sense, they also offer practical computational speedups by letting us

solve them using convex programs.

In [1] (the best paper characterizing classical cost functions for discrete spaces)

the authors also discuss how they can solve for their classical cost functions of interest

using a convex program. They go farther than I do in this analysis, describing it for

the entire class of classical cost functions on discrete spaces. They also suggest a

fascinating way of relaxing the convex program so that it is easier to compute. This

sacrifices no arbitrage, although it maintains other desirable properties. For discrete

spaces this is a superb practical guide, and it suggests a great opportunity for further

work.

The dynamic discretization market, despite all its nice new properties, is still far

from ideal. It only offers securities from Binterval, and can only express beliefs from

Pinterval. This may or may not be an issue in practice, depending on the complexity

of traders’ beliefs. In settings where beliefs are especially complicated it may be
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preferable to use a scoring rule over a cost function. The value of a cost function is

implicitly predicated on traders not holding complete beliefs, and when they are so

complex it suggests it is easier for traders to specify their beliefs directly than trade

securities. Matheson’s scoring rule [58] is an extremely easy to compute and strictly

proper scoring rule for this setting.

Clearly there is still a great deal of work to do on developing cost functions, and

I will return to this discussion in the conclusion.
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Designing Informative and Simple

Prediction Markets

Chapters 3–5 have discussed strict properness. As we saw in Chapter 5, however,

strict properness is not the only property of interest for prediction markets. This

chapter investigates the design of markets that are both simple and informative.

These are markets where we learn the likelihood of our events of interest as if we knew

all the traders’ private information, and we do so using as few securities as possible.

Running a market with fewer securities is computationally easier than running one

with many securities, and so removing superfluous securities is a natural design goal.

This chapter’s setting is distinct from the previous chapters’. I will assume only a

finite number of states of the world Ω,1, and that traders are Bayesian agents with a

common prior and knowledge of how their private information is structured. Further,

1Implicitly interpreted as part of the measurable space (Ω, 2Ω) since we are working in a discrete
setting.
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I will use the same mathematical abstraction as [65], which has traders predicting

the expected future prices of the securities. This prediction market does not at first

resemble the scoring rule or cost function markets we have described so far, although

we can think of it as a cost function market where the market maker does not enforce

feasible prices. This setting offers the necessary structure to formalize our discussion

of information aggregation in prediction markets and let us use results from [65]

without a great deal of work translating them to another abstraction.

Semi-formally, in this chapter I consider there are some events of interest we are

interested in learning the likelihood of. We offer a bundle of securities to the traders,

and they begin exchanging information about their private information / signals by

offering public predictions in the market. The more securities available the more

expressive the traders can be, and the more likely they will reach a consensus that

reveals the likelihood of the events of interest as if we knew all the traders’ private

information. Of course, having too many securities is undesirable, so our goal is to

find the fewest securities we can offer such that traders’ will most accurately reveal

what we would like to know.

As mentioned in the introduction, a good example of this design challenge is creat-

ing a market for corn futures. There are many variables that impact the future price

of corn. The amount of sunshine and rain, future demand for corn, the introduction

of new varieties of corn and growing techniques, etc.. Traders may have varying levels

of knowledge about each of these variables. Some may be experts at predicting the

weather (meteorologists), others are experts at understanding future demand (cereal

producers). To pool all their information, then, we must offer them enough securities
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so they can express this knowledge. At the same time, however, we do not want to

offer superfluous securities, and there may be clever ways to offer one security instead

of two. Finding just the right, minimal set of securities to let the market best reveal

the future price of corn is our challenge.

The above informal example provides a helpful intuition, and I think the math-

ematical complexities also suggest a more precise and formal example that demon-

strates the tension between informativeness and simplicity. This example is derived

from [41].

Example 1. Consider a market offering a single security worth $1 if a particular

candidate wins the U.S. presidential election and $0 otherwise. The market has two

participants: a political analyst in Washington and an Iowa caucus-goer who is well-

informed on local politics. The analyst understands the importance of Iowa on the

campaign and knows whether a win or loss there will mean the candidate is elected.

The caucus-goer, on the other hand, knows whether the candidate will win or lose the

caucus, but not its broader effect.

This situation can be described by defining four states of the world, ω1, ω2, ω3,

and ω4: The analyst knows if the true state of the world is on the diagonal or not

Iowa
Wins Loses

General Election
Wins ω1 ω2

Loses ω3 ω4

(the effect of the caucus) and the caucus-goer knows which column the true state is

in (the results of the caucus). If they could reveal their private information they

would learn the true state of the world, ω∗. But with a uniform prior over the state
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space, both think the likelihood of election is 1/2 and value the security at $0.50 no

matter what their private information is, since every signal contains a state where the

candidate wins the election and another where the candidate loses. Thus the market

closes without accomplishing anything useful, with the final security price still being

$0.50.

This market is clearly very simple, and it is not informative. If, instead, it offered

one security for each state of the world, however, then the traders could perfectly

express their private beliefs and combine their knowledge to better predict the likely

results of the presidential race.

Semi-formally, I will call a market informative if it does two things:

1. It offers a set of securities so that, in perfect Bayesian equilibrium, as traders

continue trading the value of these securities converges to their expectation

conditional on all traders’ private information / signals. Markets with this

property are said to aggregate their information.

2. The prices of these securities always reveals the likelihood of each event of

interest.

This first property was studied by [65], who showed it was dependent on the securities

being separable, a technical condition we will review shortly. One problem with prices

being accurate alone, however, is they may not reveal what we need to know, hence

the second property. It may sound odd that a market can aggregate information ins

a useless manner. Trivially, we might only decide to offer securities related to the

weather when trying to predict the price of corn. The market may perfectly aggregate

all traders’ knowledge about these securities and accurately determine their prices,
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but we can infer nothing from them about the future price of corn. More generally,

we are concerned that while prices may be correct, they can be consistent with many

possible interpretations of the likelihood of our events of interest. Informativeness

requires both that (1) prices always aggregate all traders’ information and (2) we can

use these prices to uniquely infer a single interpretation of the likelihood of our events

of interest.

This chapter also focuses on simplicity, and a market is both simple and informa-

tive when

1. it is informative,

2. it offers as few securities as possible,

3. and these securities are associated with events, offering $1 if an event occurs

and $0 otherwise.

I already mentioned the first two properties; the third is a naturalness condition on

the type of securities we may offer. These securities appear common in practice, and

I will show that with more exotic securities odd results are possible. We might, for

example, be able to use a single carefully and strangely designed security to represent

a lot of complex information, and it is unlikely real traders would be able to work

with such a security.2

The rest of this chapter is organized as follows. A discussion of related work

appears in Section 6.1, followed by a formal description of our model in Section 6.2.

Section 6.3 discusses information aggregation in prediction markets, building on prior

work to show the importance of offering securities that are separable. Section 6.4

2We rarely see a single security acting as a summary statistic for an entire market.
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begins our discussion of designing simple and informative markets, and Section 6.5

concludes.

How we are able to design markets that are simple and informative depends on

our understanding of the structure of trader’s knowledge. Returning to our corn

example, it depends on how well we understand what variables are relevant to future

corn prices. Our mathematical example also shows it requires understanding how

traders information is related. This leads to the following breakdown of Section 6.4

on design:

• In Section 6.4.2, I assume we know nothing of how traders’ information is struc-

tured. In this setting determining the likelihood of an event requires as many

securities as there are outcomes in that event or its complement (minus one),

possibly a prohibitive number in practice. This section also discusses complete

markets, and how they are the only markets that always reveal the likelihood

of every event.

• Section 6.4.3 shows that with perfect knowledge of traders’ signal structure a

single security can create an informative market. This security is likely too

strange to use in practice, however, and this market should not be considered

simple. This section motivates our restriction to only use securities associated

with an events, paying $1 if that event occurs and $0 otherwise.

• Finally, Section 6.4.4 considers designing simple and informative markets given

perfect knowledge of the trader’s signal structure. In this case, designing a

simple and informative market is NP-hard.

These results are a little disheartening. Designing simple and informative markets
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is either trivial when we know nothing about how traders’ knowledge is structured,

but requires a prohibitive number of securities. On the other hand, when we know

everything about how traders’ knowledge is structured their design is NP-hard. Still,

I think this chapter is interesting as it introduces this natural problem of how we can

create markets that are informative and simple. Perhaps these results will inspire

future work to look harder at information aggregation occurring outside the market,

or develop a formal theory of partial aggregation that is more tractable, or provide

further motivation for developing markets that can handle very large outcome spaces,

like the work of [53] and [31].

This chapter references some material in an appendix that appears on Yiling

Chen’s website3. I have decided not to include this material for the sake of a stream-

lined narrative.

6.1 Related Work

Information aggregation and the design of prediction markets have been discussed

in many other papers. A series of papers have shown that prediction markets are

empirically effective in settings like politics [10], business [86, 26], disease surveil-

lance [79], and entertainment [73]. Experiments with predictions markets have also

shown them effective [76, 77, 78], and substantial work has analyzed the theory of

how markets aggregate information, including at rational expectations [80, 6, 45],

competitive [87, 74], and game theory equilibria [65, 51, 18].

The early foundations for the study of information aggregation come from [8],

3http://yiling.seas.harvard.edu/wp-content/uploads/informativesecurities.pdf
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whose abstract results are refined and extended by [41, 62, 60] and [63]. These papers

show that a set of Bayesian agents regularly announcing their posterior probability

distributions over a set of outcomes will eventually converge in their beliefs. Critically,

these papers do not discuss whether this convergence is informative, only that the

agents reach some impassable consensus.

In a prediction market the above is analogous to traders agreeing on the price of

each security. As mentioned in the preface to this chapter, this agreement may not

reveal anything useful. Some prior work on prediction markets has investigated what

I call “informativeness,” where traders reach a revealing consensus. In [32] informa-

tive Shapley-Shubik markets (see [84]) were characterized, assuming straightforward,

non-strategic traders. And [65] characterized information aggregation in prediction

markets with strategic, risk-neutral traders at perfect Bayesian equilibrium. This

latter paper demonstrated the importance of a market being sufficiently expressive

to let this aggregation occur, and the separability property it develops is essential to

my work. An extended discussion of this paper and its results appears in Section 6.3.

[51] generalized this model to risk-averse agents.

The work of [32], [65], and [51] focuses on understanding the aggregation of in-

formation relevant to the value of a given, fixed security. My work differs because

it considers design: how we can simplify markets for large outcome spaces like the

9.2. quintillion outcomes of the NCAA tournament [88], the over 250 ways for states

to vote in the U.S. Presidential election, and the n! rankings for a competition with

n candidates, while keeping these markets informative. Offering a security for each

state would be theoretically informative and practically unmanageable. Prior work
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on simplifying markets, like [19], has not considered whether the result is informative.

6.2 Formal Model

In this section, I describe my model of traders’ information and the market mecha-

nism. This model closely follows [65], but is generalized to handle a vector of securities

(often simply referred to as a set of securities) instead of a single security.

6.2.1 Modeling Traders’ Information

We will consider n traders, 1, · · · , n, and a finite set Ω of mutually exclusive and

exhaustive states of the world. Traders share a common knowledge prior distribution

P0 over Ω. Before the market opens Nature draws a state ω∗ from Ω according

to P0 and traders learn some information about ω∗ that, following [8], is based on

partitions of Ω. A partition of a set Ω is a set of nonempty subsets of Ω such that every

element of Ω is contained in exactly one subset. For example, {{A,B}, {C}, {D}}

and {{A,D}, {B,C}} are both partitions of {A,B,C,D}. I assume that every trader

i receives Πi(ω
∗) as their private signal, where Πi(ω) denotes the element of the

partition Πi that contains ω. In other words, trader i learns that the true state of

the world lies in the set Πi(ω
∗).

I refer to the vector Π = (Π1, · · · ,Πn) as the traders’ signal structure, which is

assumed to be common knowledge for all traders. The join of the signal structure,

denoted join(Π), is the coarsest common refinement of Π, that is, the partition with

the smallest number of elements satisfying the property that for any ω1 and ω2 in the

same element of the partition, Πi(ω1) = Πi(ω2) for all i. For example, the join of the
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partitions {{A,D}, {B,C}} and {{A,C,D}, {B}} is {{A,D}, {B}, {C}}. The join

is unique. I use Π(ω) to denote the element of the join containing ω. Note that if

two states appear in the same element of the join, no trader can distinguish between

these states.

6.2.2 Market Scoring Rules

The market mechanism that we will consider is a market scoring rule [48, 49]. In

this chapter, I will describe a market scoring rule as a mechanism that allows traders

to sequentially report their probability distributions or expectations. While focusing

on market scoring rules may seem restrictive, market scoring rules are surprisingly

general. In particular, any market scoring rule that allows traders to report proba-

bility distributions over Ω has an equivalent implementation as a cost-function-based

market where the mechanism acts as an automated market maker who sets prices for

|Ω| Arrow-Debreu securities, one for each state and taking value 1 in that state and

0 otherwise, and is willing to buy and sell securities at the set prices [48, 25].

This result can easily be extended to general scoring rules by applying the re-

sults of [2, 3]. In particular, their results imply that any market scoring rule that

allows traders to report their expectations has an equivalent implementation as a

cost-function-based market that allows traders to trade securities with the market

maker. Thus, without loss of generality, my model and analysis are presented for

market scoring rules.

Before describing the market scoring rule mechanism, let’s first review the idea of

a strictly proper scoring rule. Scoring rules are most frequently used to evaluate and
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incentivize probabilistic forecasts [39, 43], but can also be used to elicit the mean or

other statistics of a random variable [54]. The scoring rules that we consider will be

used to elicit the mean of a vector of random variables [83]. Let X = (x1, · · · , xm) be a

vector of bounded real-valued random variables. A scoring rule s maps a forecast ~y in

some convex region K ⊆ Rm (e.g., the probability simplex in the case of probabilistic

forecasts) and a realization of X to a score s(~y,X(ω)) in R.4 A scoring rule for eliciting

an expectation is said to be proper if a risk neutral forecaster who believes that the

true distribution over states Ω is P maximizes his expected score by reporting ~y =

EP [X], that is, if EP [X] ∈ arg max~y∈K
∑

ω∈Ω P (ω)s(~y,X(ω)). (For random vectors X,

I use EP [X] to denote the expected value Σω∈ΩP (ω)X(ω).) A scoring rule is strictly

proper if EP [X] is the unique maximizer.5

One common example of a strictly proper scoring rule is the Brier scoring rule [16],

which is based on Euclidean distance and can be written, for any b > 0, as s(~y,X(ω)) =

−b
∑m

j=1(yj − xj(ω))2 = −b||~y −X(ω)||2.

Strictly proper scoring rules incentivize myopic traders to report truthfully, but

do not provide a mechanism for aggregating predictions from multiple traders. Han-

son [48, 49] introduced market scoring rules to address this problem. A market scoring

rule is a sequentially shared strictly proper scoring rule.6

4Technically, the region K should include the convex hull of the possible realizations of X, a set
equivalent to the possible expected values of X. A full discussion of this and other properties of
scoring rules is beyond the scope of this thesis, but interested readers can see [83].

5This discussion is mathematically redundant with my discussion earlier in the thesis. I think it
is valuable to contextualize the prior work into the setting of discrete probability theory, however.
Also note that earlier I did not discuss eliciting a statistic, only eliciting the complete belief. Eliciting
a statistic is a common goal for a scoring rule, and the earlier analysis can be easily extended to this
case.

6The descriptor “sequentially shared . . . ” is meaningless. It has been adopted as a kind of cant
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Formally, let X be a vector of random variables.7 The market operator specifies a

strictly proper scoring rule s and chooses an initial prediction ~y0 for the expected value

of X; when there is a known common prior P0, it is most natural to set ~y0 = EP0 [X].

The market opens with initial prediction ~y0, and traders take turns submitting predic-

tions. The order in which traders make predictions is common knowledge. Without

loss of generality, I assume that traders 1, 2, · · · , n take turns, in order, submitting

predictions ~y1, ~y2, · · · , ~yn, then the process repeats and the traders, in the same or-

der, submit predictions ~yn+1, ~yn+2, · · · , ~y2n. Traders repeat this process an infinite

number of times before the market closes and Nature reveals ω∗. Each trader then

receives a score s(~yt,X(ω∗)) for each prediction made at some time t, but must pay

s(~yt−1,X(ω∗)), the score of the previous trader. The total payment to trader i (which

may be negative) is then
∑∞

t=0 s(~ytn+i,X(ω∗))− s(~ytn+i−1,X(ω∗)).

6.2.3 Modeling Traders’ Behavior

Together, the traders, state space, signal structure, security vector, and market

scoring rule mechanism define an extensive form game with incomplete information.

I consider Bayesian traders either acting in perfect Bayesian equilibrium or behav-

ing myopically in this game. A perfect Bayesian equilibrium is a subgame perfect

Bayesian Nash equilibrium. Loosely speaking, at a perfect Bayesian equilibrium, it

must be the case that each player’s strategy is optimal (i.e., maximizes expected

to describe how prediction markets work. I think this is simply because the literature has done
such a poor job formalizing these mechanisms it has turned to magical insider language as its best
recourse.

7Typically market scoring rules are used for probabilistic forecasts in which case X would be a
vector of indicator random variables, but this need not be the case.
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utility) given the player’s beliefs and the strategies of other players at any stage

of the game, and that players’ beliefs are derived from strategies using Bayes’ rule

whenever possible. See Gonzálex-Dı́az and Meléndez-Jiménez [44] for a more formal

description.8

Perfect Bayesian equilibria can be difficult to compute and it is an open question

whether they always exist in prediction markets, although in some special cases they

do [18]. An alternative is to consider myopic Bayesian traders who simply maximize

their expected payoff for the current round. Since strictly proper scoring rules my-

opically incentivize honest reports, these traders report their current posteriors each

time they make a prediction.

6.3 Information Aggregation

Separability is used to characterize the conditions under which securities aggregate

information about their own values. Building on ideas from DeMarzo and Skiadas [29,

30], [65] characterized separability for a single security. [65] showed that in every

perfect Bayesian equilibrium market prices will, in the limit, reflect the value of the

security as if traders had revealed their private signals if and only if the security is

separable. If a security is not separable, then there always exist priors and equilibrium

strategies where no information aggregation occurs.

In this section, I generalize these prior definitions to multiple securities and ar-

bitrary signal structures. Ostrovsky assumed a restricted class of signal structures

without loss of generality, and my generalizations are uninteresting when only consid-

8Finding a good, formal description of PBE is very, very, very hard.
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ering aggregation. They will be necessary to discuss informativeness, however, as the

results of the next section demonstrate. I will then restate Ostrovsky’s equilibrium

aggregation result in this setting. As previously discussed, perfect Bayesian equilib-

rium may or may not exist in prediction markets, and I also adapt and formalize

prior work on information aggregation to show separability is also the necessary and

sufficient condition for myopic traders to always aggregate their information.

Informative markets require separable securities. If a market uses separable securi-

ties then both Bayesian traders acting myopically and in perfect Bayesian equilibrium

will, in the limit, value the security as if their private signals were revealed, and this

allows a market designer to directly infer the likelihood of his events of interest from

the securities’ value. If a set of non-separable securities were used then the market

designer could be required instead to perform additional inference and know the prior

and traders’ strategies.

As mentioned, I say a market aggregates information if, in the limit as time goes

to infinity, the value of the securities approaches their value conditional on all the

traders’ private signals. Since each trader i receives the signal Πi(ω
∗), their pooled

signal is
⋂
i Πi(ω

∗) = Π(ω∗).

Definition 9 (Aggregation). Information is aggregated with respect to a set of se-

curities X, signal structure Π, and common prior P0, if the sequence of predictions

~y0, ~y1, ~y2, · · · converges in probability to the random vector EP0 [X|Π(ω∗)].

A set of securities is separable if and only if the traders only agree on their value

when it reflects their pooled information. That is, for any prior distribution there

must be at least one trader whose private information causes them to dissent from a
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consensus, unless that consensus is the traders’ collective best estimate.

Definition 10 (Separability). A set of securities X is non-separable under partition

structure Π if there exists a distribution P over Ω and vector ~v such that P (ω) > 0

on at least one state ω ∈ Ω in which EP [X|Π(ω)] 6= ~v, and for every trader i and

state ω, P (ω) > 0,

EP [X|Πi(ω)] =

∑
ω′∈Πi(ω) P (ω′)X(ω′)∑

ω′∈Πi(ω) P (ω′)
= ~v. (6.1)

If a security is not non-separable then it is separable.

Here the vector ~v represents a possible consensus, only agreed upon if there is no

alternative when the securities are separable.

Separability is a property of the entire set of securities, as Example 2 demonstrates.

Example 2. Let Ω = {ω′1, ω∗2, ω3, ω
′
4, ω

∗
5, ω6}. Two traders have partitions as

follows:

Π1 = {{ω′1, ω∗2, ω3}, {ω′4, ω∗5, ω6}}

Π2 = {{ω′1, ω∗5}, {ω3, ω
′
4}, {ω∗2, ω6}}

and there are two securities: x∗ with value one when ω∗2 or ω∗5 occurs and zero other-

wise, and x′ with value one when ω′1 or ω′4 occurs and zero otherwise.

Both securities are individually non-separable with respect to Π. If the prior P

is uniform over ω′1, ω∗2, ω∗5, and ω6, then EP [x∗|Πi(ω)] = 1/2 for i ∈ {1, 2} and all

ω such that P (ω) > 0. Similarly, if P is uniform over ω′1, ω3, ω′4, and ω∗5, then

EP [x′|Πi(ω)] = 1/2 for i ∈ {1, 2} and all ω such that P (ω) > 0. The join of traders’
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partitions, however, consists of singletons. Hence, both EP [x∗|Π(ω)] and EP [x′|Π(ω)]

have value 0 or 1, not 1/2, for all ω.

But taken together the set of securities is separable with respect to Π. Given

any prior distribution P and a state ω, trader 2 either identifies ω with certain,

which happens when P assigns 0 probability to the other state in its signal Π2(ω), or

assigns positive probability to both states in Π2(ω). In the former case, EP [X|Π2(ω)] =

EP [X|Π(ω)]. In the latter case, trader 2’s expected value for the securities is positive

for both when ω ∈ (ω′1, ω
∗
5), positive for only x′ when ω ∈ (ω3, ω

′
4), and positive

for only x∗ when ω ∈ (ω′2, ω6). If the set of securities is non-separable there must

exist a distribution P̃ and a vector ~v such that ~v 6= EP̃ [X|Π(ω̃)] for some state ω̃ ∈

{ω|P (ω) > 0} and EP̃ [X|Π2(ω)] = ~v for any state ω ∈ {ω|P (ω) > 0}. This is possible

only when P̃ assigns positive probability to the two states in Π2(ω̃) and 0 probability

for all other states because each signal of player 2 has a distinct expectation of the

securities. Given such a P̃ , however, trader 1 always uniquely identifies the true

state and has the correct expectation of the securities. Hence, the set of securities is

separable with respect to Π.

6.3.1 Aggregation

Separability is a necessary and sufficient property for aggregation in two natural

cases.

Theorem 14 (Equilibrium Aggregation, [65]). Consider a market with securities

X and traders with signal structure Π. Information is aggregated in every perfect

Bayesian equilibrium of this market if and only if the securities X are separable under
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Π.

Theorem 15 (Myopic Aggregation). Consider a market with securities X and myopic

traders with signal structure Π. Information is aggregated in finite rounds if and only

if the securities X are separable under Π.

Ostrovsky [65] proved a special case of Theorem 14 for markets with one security.

Theorem 14 stated above accommodates any finite set of securities and is proved using

a simple extension of Ostrovsky’s proof. Specifically, the proof shows that traders’

sequences of predictions at any perfect Bayesian equilibrium are bounded martingales

and must converge. Separability implies that if information is not aggregated in the

limit, there exists an agent who can make an arbitrarily large profit by deviating from

his equilibrium strategy, a contradiction to traders being in equilibrium.

The proof of Theorem 15 makes use of prior work on convergence to common

knowledge (particularly [40]) and shows not only that myopic traders’ sequences of

predictions are bounded martingales but also that they must converge to the same

random vector in a finite number of periods. Then, by separability, it is shown that

this consensus prediction must equal E[X|Π(ω∗)], implying aggregation. A full proof

appears in the appendix mentioned at the beginning of this chapter.

If the securities are not separable then there exists a distribution P satisfying

(6.1) in the definition of separability. Letting this distribution be the prior, a perfect

Bayesian equilibrium is simply for traders to report the common consensus value,

not allowing any meaningful Bayesian updating and preventing aggregation from

occurring. Myopic traders are constrained to report this same value.

122



6: Designing Informative and Simple Prediction Markets

6.4 Designing Securities

In this section I discuss the design of informative markets. While separability is

a sufficient and necessary condition for aggregation in two natural settings, it only

implies the value of the securities reflects all the traders’ private information, not

that the market designer can use this value to infer that private information or the

likelihood of the events of interests. I define informative securities as securities that

are both separable and allow for the likelihood of the events of interest to be inferred

directly from their value.

As I will show, complete markets are always informative, but deployed predic-

tion markets are rarely complete. These markets require too many securities to be

practical, and their securities present challenges for traders. A prediction market for

the U.S. presidential election, for example, may need one state per outcome in the

electoral college. This is over 250 states and requires traders to bid on securities like

“The President wins Ohio, not Florida, Illinois, not Indiana . . . ” Even if alternative

bidding methods were developed, traders would still be required to review the value

of each security for aggregation to be formally implied. This is impractical, and so I

consider good designs as those using a few natural securities. I first discuss the design

requirements of markets that are always informative, and markets that are informa-

tive for a particular signal structure. The latter market allows a single security to

be informative on any set of events, but arguably appears “unnatural.” To describe

the challenges of designing using only natural securities I then consider a constrained

design process instead, where the market designer is restricted to an arbitrary subset

of (possibly natural) securities.
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6.4.1 Informative Markets

Informally, I would like to say that a market’s securities are informative on a set of

events with respect to a signal structure if the market organizer learns the likelihood

of the events as if it knew all the traders’ private signals. Assuming the values of

the securities reflect traders’ pooled information, if the likelihood of the events is

unambiguously implied from these values then functionally all the private signals are

revealed. I call this latter property distinguishability.

Definition 11 (Distinguishability). Let Π be a signal structure over states Ω and

Pjoin(Π) be the set of all probability distributions over Ω that assign positive probability

only to a subset of states in one element of join(Π) (i.e., a trader’s possible posteriors

after aggregation). A set of securities X on Ω distinguishes a set of events E with

respect to Π if and only if for any P, P ′ ∈ Pjoin(Π),EP [X] = EP ′ [X] implies P (E) =

P ′(E),∀E ∈ E.

Equivalently a set of securities distinguishes a set of events if there exists a function

from the securities’ values to the likelihood of the events. When a set of securities is

both separable and distinguishable I will describe it as informative.

Definition 12 (Informativeness). A set of securities X is informative on a set of

events E with respect to a signal structure Π if and only if X both distinguishes E and

is separable with respect to Π.

Informativeness is a strong condition. Even if securities are not informative it

might be possible for a market designer to infer some information from the market,

or for the market to be described as partially informative. Generalizing our framework
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to account for partial aggregation would be an interesting line of future work.

6.4.2 Always Informative Markets

I first address the problem of designing a set of securities that is informative on

a set of events with respect to any signal structure. I will call such securities always

informative. These securities may be of practical interest if the market designer is

unsure of the traders’ signal structure; using a set of always informative securities

implies aggregation will occur no matter what the true signal structure is.

A market is said to be complete if by trading securities, agents can freely transfer

wealth across states [57]. Rigorously, consider the set of securities that contains a

constant payoff security plus all of the securities offered by a market. The market

is complete if and only if this set includes |Ω| linearly independent securities. The

most common is a market with |Ω| Arrow-Debreu securities, each associated with a

different state of the world, taking value 1 on that state and 0 everywhere else. For

an overview of complete markets, see [33] or [57].

Complete markets are theoretically appealing because they allow traders to ex-

press any information about their beliefs. I formalize this well-known idea in our

framework in the following proposition.

Proposition 1. A market over state space Ω with securities X is complete if and

only if for all distinct probability distributions P and P ′ over Ω, EP [X] 6= EP ′ [X].

Proof. Let M be a matrix containing the payoffs of X, with one row for each outcome

and one column for each security. The element at row i and column j of M takes

value xj(ωi).
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Consider a probability distribution P represented as a row vector so, PM =

EP [X]. The system of linear equations

P ′M = EP [X]
∑
ω∈Ω

P ′(ω) = 1

has a unique solution P ′ = P if and only if the matrix M ′, which is M augmented by

a column of 1s to represent the summation constraint, has rank |Ω|.

If the market is complete, M ′ has this rank so any distinct probability distribution

has distinct expectation.

Now assume EP [X] 6= EP ′ [X],∀P 6= P ′, and, for a contradiction, that the market

is not complete. Then the system of equations has at least two solutions, one of which

is the probability distribution P and a distinct solution Q, such that PM = QM =

EP [X]. Let U be the uniform distribution over Ω. Then there exists c > 0 such

that (1 − c)U + cQ is a probability distribution (since Q satisfies
∑

ω∈ΩQ(ω) = 1).

Moreover, (1− c)U + cP is also a probability distribution and

(
(1− c)U + cP

)
M =

(
(1− c)U + cQ

)
M,

contradicting EP [X] 6= EP ′ [X],∀P 6= P ′. Thus, the market must be complete.

This expressiveness is a necessary and sufficient condition for the likelihood of

every event to be inferred, and suggests an alternative characterization of complete

markets as those markets that are always informative on every event.

Theorem 16. A market is always informative on every event E with respect to every

signal structure Π if and only if it is complete.

Proof. Distinguishing every event E is equivalent to distinguishing each state of the

world ω ∈ Ω; the latter are also events and so must be distinguished, and if each is
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distinguished then the likelihood of any event can be inferred. Proposition 1 shows

that completeness is a necessary and sufficient condition for distinguishing each state

of the world.

It remains to show that complete markets are also separable with respect to any

signal structure Π. Assume, for a contradiction, there exists a signal structure Π and

a complete market with securities X such that X is non-separable with respect to Π.

Since X is non-separable there must exist distinct probability distributions P and P ′

over Ω such that EP [X] = EP ′ [X]; but by Proposition 1, in a complete market this

equality only holds if P = P ′, a contradiction. So complete markets are separable

with respect to any signal structure and always distinguish every event, implying they

are always informative on every event.

Complete markets are often impractical, but rarely is every event of interest. Even

if a single event is of interest, however, as many securities as almost half the states in

the market may be required to create an always informative market. I let Ē denote

the complement of E.

Theorem 17. Any market that is always informative on an event E must have at

least min(|E|, |Ē|)− 1 linearly independent securities.

Proof. Let X be a set of securities, fewer than min(|E|, |Ē|))−1 of which are linearly

independent, and assume, for a contradiction, that X is always informative on E.

Restricting attention to states in E, the argument from Proposition 1 implies this

market has too few securities to distinguish every probability distribution over E and

there exist probability distributions PE and P ′E such that EPE
[X] = EP ′E [X]. Let the

difference between these distributions be the vector ∆E = PE−P ′E, and define vectors
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∆+
E and ∆−E such that ∆+

E(ω) = max(0,∆E(ω)) and ∆−E(ω) = min(0,∆E(ω)). Since

∆E is the difference of two probability distributions with the same expected value,

∑
ω∈E

∆+
E(ω)

||∆+
E||1

X(ω) =
∑
ω∈E

−∆−E(ω)

||∆−E||1
X(ω). (6.2)

That is,
∆+

E(ω)

||∆+
E ||1

and
−∆−E(ω)

||∆−E ||1
are disjoint probability distributions over states in E with

the same expected value, and the same argument can be made, mutatis mutandi for

two such probability distributions over states in Ē. Let these distributions over E be

QE and Q′E, and the ones over Ē be QĒ and Q′
Ē

. Although I have been referring to

these as distributions over E and Ē I will also consider them to be distributions over Ω

that assign zero probability to all states not previously included in the distributions,

and I will use these names to stand for both these distributions and the states they

assign positive probability to to reduce notation.

Now suppose there are two traders with signal structure

Π1 = {{QE, QĒ}, {Q′E, Q′Ē}}

Π2 = {{QE, Q
′
Ē}, {Q

′
E, QĒ}}

and prior

P0 =
QE +Q′E +QĒ +Q′

Ē

4
.

Each trader’s expectation conditional on any signal is the same since EQE
[X] =

EQ′E
[X] and EQĒ

[X] = EQ′
Ē

[X] and each signal contains one distribution over states in

E and another over states in Ē. But the join of the signal structure is {{QE}, {Q′E}, {QĒ}, {Q′Ē}},

and if X is separable with respect to Π the expectation conditional on any such ele-

ment must also, then, be the same. This implies EQE
[X] = EQĒ

[X], but by construc-
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tion QE(E) 6= QĒ(E), so if X is separable with respect to Π it does not distinguish

E, contradicting our assumption that X is always informative on E.

This result demonstrates the need for a market designer to allow traders to express

information it finds uninteresting. It also suggests that, in practice, few markets are

acquiring all of their participants’ information. This is unsurprising, but I think

better designs will extract more information, and that this result shows knowledge of

or assumptions about the traders’ signal structure may be necessary to inform those

designs.

6.4.3 Fixed Signal Structures

If the join of the traders’ signal structure is known and has singleton sets for its

elements, then there exists a single security that is informative on every event.

Theorem 18. For any signal structure Π such that join(Π) consists only of singleton

sets there exists a security x that is informative on every event E with respect to Π.

The proof uses a result from [65].

Theorem 19 ([65]). Let Π be a signal structure such that join(Π) consists of singleton

sets of states, and let x be a security that can be expressed as x(ω) = Σif(Πi(ω)) for

an arbitrary function f mapping signals to reals. Then x is separable under Π.

Proof of Theorem 18. To construct the security, first assign a unique identifier s0, s1, s2, . . .

to every signal of every trader, and define f(sj) = 10j for all j. Let Sω denote the

set of indices of the identifiers corresponding to the signals of each trader for state

ω, i.e, corresponding to Πi(ω) for each trader i. The security x(ω) = Σj∈Sωf(sj) is
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separable by Theorem 19. Additionally, the sum Σj∈Jf(sj) for any J ⊂ {0, 1, 2, . . .}

is unique, and each state ω has a unique associated set of signals since I assumed the

join consists of singletons. This implies the value of the security for each element of

the join is unique, so the security also distinguishes every event.

The assumption that the join of traders’ signal structure consists only of singleton

sets is not without loss of generality. If the signal structure is known, however, the

market designer can treat elements of the join as states of the world, identify the

correct element of the join by running the market with a single security, then apply

the prior to that element to learn the likelihood of each state as if he knew all the

traders’ private signals. If the prior is unknown this distribution can also be solicited

from any single trader using a scoring rule.

6.4.4 Constrained Design

A single security acting as a summary statistic for an entire market is unlikely

to be considered natural by any criterion. Real markets, like those on Intrade, use

multiple securities. Instead of imposing our own definition of natural, in this section I

consider adding a design constraint that the market’s securities must be picked from

a predefined set. The market designer is then challenged to find the fewest securities

from this set that are informative on the events of interest with respect to the given

signal structure. I call this the informative set optimization problem. If the set

of predefined securities is empty or has no informative subset then the problem is

simply infeasible, so I assume there exists at least one such subset.

Demonstrating informative set is hard would not be very interesting if exotic
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and unnatural securities were required for the proof. One commonly used class of

securities are event securities which pay $1 if an event occurs and $0 otherwise. The

corresponding optimization problem is informative event set, a restriction of

informative set, and even solving this restricted version of the problem is np-

hard.

More formally, informative set takes as input a finite outcome space Ω, a set

of events of interest E, each a subset of Ω, and a set of possible securities X, each of

which maps Ω→ R. The challenge is finding a minimal set of securities from X that

is informative for the events of interest E. The informative event set problem

is the same, except the set of possible securities X is restricted to maps Ω→ {0, 1}.

Now we can state the following results.

Theorem 20. informative event set is np-hard.

This immediately implies that the more general informative set problem is

also hard.

Corollary 1. informative set is np-hard.

The proof appears in the appendix and demonstrates a one-to-one correspondence

between set cover instances and a minimal informative set of securities for a single

fully informed trader.

The complexity of these problems suggests that while knowledge of the traders’

signal structure allows for better designs, a perfect design will be intractable to com-

pute or require additional assumptions about the relationship between traders’ signal

structure and the set of possible securities. Practically we can only ever hope to offer
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better (but not perfect) designs that extract more information from traders than cur-

rent markets do. These results confirm we will always have to settle for some degree

of error in our designs even if the traders’ signal structure could be perfectly observed.

6.5 Designing Markets in Review

The formal framework presented here is an early step in our understanding of how

to design prediction markets. In hindsight, it may be most interesting for what it does

not say, and what gaps it reveals in our understanding of these markets. After all, in

practice strict properness seems sufficient for markets to be accurate in practice. This

suggests that either (1) a substantial amount of information aggregation and signalling

occurs outside the market, and/or (2) even when the markets are not completely

formally information, they are usually partially informative. That is, in practice,

even if we are not extracting all the traders information, it appears we are getting a

lot of it.

Two suggested areas for future work are extending the formal framework pre-

sented here to describe partial information aggregation, and empirically determining

whether markets only respond to outside signals or traders aggregate information

within the market itself. Reviewers for the conference version of this chapter also

agreed that extending it to consider partial information aggregation would be very

interesting. Empirically, this is likely what is occurring, and given the empirical suc-

cess of prediction markets I have also wondered if a random set of securities is, with

high probability, likely to aggregate a good deal of information.

Another possibility is that markets simply respond to outside signals. In a pres-
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idential election, for example, traders can review the predictions of Nate Silver, and

they might set the price in the market equal to the value he predicts. In these cases

markets are more about expressing one’s confidence in a belief, rather than inferring

and exchanging signals. An empirical study that could reveal whether outside signals

or internal signals or both were used in markets would be fascinating.

Both questions appear deeply natural and essential to our understanding of pre-

diction markets.
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Decision Making

The options God gives us are always conditional on our guessing whether a

certain proposition is true.

– Frank P. Ramsey, Truth and Probability

This chapter, like the one preceding it, is a self-contained discussion of how pre-

dictions and techniques closely related to prediction markets can be used to assist

decision making. It also uses only the discrete theory, unlike Chapters 2–5, and again

like Chapter 6. Written recently, and being farther from the material presented else-

where in this thesis, this chapter stands on its own almost completely unchanged.

This version references an appendix, available on Yiling Chen’s website.1 I have not

included the material from this appendix since I think it bogs down our narrative.

1http://yiling.seas.harvard.edu/wp-content/uploads/DM_full_version.pdf
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7.1 Introduction

Consider a company attempting to decide whether to invest in solar or wind

energy. To improve its chances of making the right decision it would like to acquire

some expert advice. The company needs, however, some method of incentivizing

experts to be accurate. That is, it needs some means of paying experts so that they

honestly reveal their private beliefs or information.

In this chapter I characterize two methods of accurately soliciting expert advice

for decision making. The first elicits predictions from one or more experts about

the likely effects of each available action. If these predictions are accurate then the

company can use them to make an informed decision. The second simply asks a

single expert to recommend an action. If the expert’s incentives are aligned with the

decision maker’s then this action will profit them both. So with the first method

our challenge is incentivizing accuracy, and in the second method it is aligning the

expert’s most profitable recommendation with the decision maker’s most preferred

action.

The first part of this Chapter (Sections 6.2–.4) focuses on eliciting predictions for

decision making. One popular method of eliciting accurate forecasts of the future is

a prediction market. In a prediction market, traders or experts produce a series of

forecasts about future outcomes of interest. For instance, traders may be asked to

predict whether it will rain or not on Friday next week, or which nominated film will

win the best picture Oscar. These predictions are probability distributions over the

outcomes and are made publicly, allowing experts to review each other’s forecasts

and update their own predictions accordingly. Eventually the market closes and the
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future becomes the present and is observed.

A fundamental property of well-designed prediction markets is that they pay or

score predictions for accuracy. If providing an accurate forecast maximizes an expert’s

score for that prediction, I say the market is proper, and if an accurate forecast

uniquely maximizes the score the market is strictly proper. Strictly proper prediction

markets are theoretically effective at aggregating expert information and providing

an accurate forecast of the future under some general conditions [65, 24, 51].

Since strictly proper prediction markets are so useful for forecasting the future,

we would like to provide the same incentives to experts when eliciting predictions to

make a decision. Extending these incentives is not straightforward: the predictions

necessary for decision making are different than those made in a classical prediction

market, and making a decision changes the observed future. Put another way, in a

prediction market an expert predicts the future, but a decision maker is interested in

the many possible futures that can result from its choice. This implies the same tech-

niques that make a prediction market strictly proper do not apply for the elicitation

of predictions for decision making. The differences between the classical prediction

and decision making settings are detailed in Section 2.

In Section 3 I introduce a model of eliciting predictions for decision making, and

in Section 4 I use this model to characterize strictly proper decision making, extend-

ing the incentives of strictly proper prediction markets to decision making with both

a single expert and many experts in a market (a decision market). Unfortunately,

creating this incentive requires the decision maker use a completely mixed strategy

to choose an action. Essentially, the decision maker must implement an unbiased
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estimator of the future, and this requires stochastically sampling from it. This lim-

itation suggests that eliciting predictions for decision making lets a decision maker

understand its choice, but requires the decision maker not always act on this under-

standing. If the decision maker is initially likely to take any action, however, then

eliciting predictions may increase the likelihood it makes the best available choice.

In Section 5 I discuss an alternative method of acquiring expert advice where

the decision maker simply asks a single expert to recommend an action. In this

setting I will explicitly model the decision maker’s preferences, and our goal is for the

expert to accurately reveal the decision maker’s most preferred action. I show that

we can incentivize an expert to accurately reveal this action if and only if the decision

maker’s preferences admit a convex weak utility representation, and that this method

no longer requires the decision maker choose an action stochastically.

Related Work Decision markets were first proposed by [47] without an analysis

of their incentives. [69] showed these proposed decision markets did not provide the

same incentive for accuracy as a strictly proper prediction market, and I elaborate on

this insight in Section 2. They also described a special case of expert recommendation

that I detail and generalize in Section 5.

Other work related to eliciting predictions for decision making has considered

external incentives in addition to the market’s intrinsic incentives. [85] considered

a prediction market where experts can affect the future by taking some actions and

defined principal-aligned scoring rules that incentivized them to only take “helpful”

actions. These rules are spiritually similar to the methods I develop in Section 5,

but in this chapter’s setting experts cannot take actions to affect the future except by
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influencing the decision maker’s action through their predictions or recommendations.

More recently, Boutilier[14] has discussed decision making with an expert who has

its own preferences over the decision maker’s actions. Intuitively, if our experts are

solar energy lobbyists they may prefer we invest in solar energy even if they must

mislead our decision and receive a lower score for doing so. He (Boutilier) introduces

compensation rules that redress the expert’s loss of utility for letting other actions

occur to make the expert indifferent again. He also details some realistic complexities

of this setting, like the decision maker not precisely knowing the expert’s utility

function. Different from [14], experts in this chapter’s setting do not have preferences

over actions.

7.2 Prediction and Decision Markets

In this section I formally compare classical prediction elicitation and eliciting

predictions for decision making. This comparison illuminates the new incentive chal-

lenges that come with making a decision. I begin by describing the classical setting.

There are many methods of eliciting predictions about the future. One popular

method uses a scoring rule [16, 43] to evaluate a forecast, and similar rules will be the

focus of this chapter. Formally, let Ω be a finite, mutually exclusive and exhaustive

set of outcomes and ∆(Ω) the probability simplex over Ω. A forecast or prediction

is a probability distribution over Ω (an element of ∆(Ω)), and a scoring rule is any
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function2

S : ∆(Ω)× Ω→ R (scoring rule)

that maps a forecast and observed outcome to the reals. Intuitively, a scoring rule

compares the forecast to the observed outcome and assigns a real-valued score. For

example, we might be curious if it will be sunny or cloudy tomorrow3. In this case

Ω = {Sunny, Cloudy} and a forecast is a binary probability distribution like (1
3

:

Sunny, 2
3

: Cloudy). If tomorrow is sunny then this forecast’s score would be S((1
3

:

Sunny, 2
3

: Cloudy), Sunny).

Predictions from a single expert and many experts in a market are scored differ-

ently. I describe working with a single expert first. A single expert produces one

prediction p ∈ ∆(Ω), after which we observe the outcome ω ∈ Ω and score the expert

S(p, ω). If the expert believes a forecast q is the true forecast, then its expected score

for a prediction p is

S(p, q) =
∑
ω∈Ω

q(ω)S(p, ω) (expected score)

where q(ω) is the likelihood the belief q assigns to outcome ω. Not every scoring

rule is useful. A desirable property is that a risk-neutral expert is incentivized to

accurately reveal its belief. A scoring rule that provides such incentive is proper and

satisfies

arg max
p∈∆(Ω)

S(p, q) ⊇ {q}, ∀q ∈ ∆(Ω). (properness)

2See Chapter 3 for why I define scoring rules to be real-valued.

3I assume these outcomes are mutually exclusive (no sunny cloudy days or cloudy sunny days)
and exhaustive (it is either sunny or cloudy).
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That is, I treat the arg max function as returning a set of maximizing arguments to

the expression, and a scoring rule is proper when the expected score is maximized

by accurately reporting the belief q. Even a proper scoring rule may not be useful.

Always paying or scoring an expert $5 is proper, but it provides no real incentive to

be accurate. Instead, we are interested in strictly proper scoring rules where

arg max
p∈∆(Ω)

S(p, q) = {q}, ∀q ∈ ∆(Ω) (strict properness)

The expected score of a strictly proper scoring rule is uniquely maximized by ac-

curate reporting. (Strictly) Proper scoring rules have been characterized previously

in [43], [59] and [83] with convex functions. I will use the following results in later

sections of this chapter.

Theorem 21 ([43]). A scoring rule is (strictly) proper if and only if

S(p, ω) = g(p)− g?p · p+ g?p(ω)

where g : ∆(Ω)→ R is a (strictly) convex function and g?p is a subgradient of g at the

point p.4

Corollary 2 ([43]). Any proper scoring rule

S(p, ω) = g(p)− g?p · p+ g?p(ω)

satisfies ∑
ω∈Ω

p(ω)S(p, ω) = g(p), ∀p ∈ ∆(Ω)

4A subgradient of a convex function g : Rn → R at a point p ∈ Rn is a vector g?p such that

g(p)− g(q) ≤ g?p · (p− q) for all p, q ∈ Rn.
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As mentioned, many experts participating in a market are scored differently from

a single expert. A prediction market 5 operated using a market scoring rule mech-

anism [48, 49] opens with an initial forecast p0 and lets experts make a series of

forecasts p1, p2, . . .. These forecasts are public so experts can review prior predictions

and update their own accordingly. Eventually the market closes and an outcome

ω ∈ Ω is revealed. Instead of being scored for accuracy, however, each forecast in

a market is scored for how much it improves the accuracy of the preceding forecast ;

the expert who produces forecast pi is scored or paid S(pi, ω) − S(pi−1, ω) for the

forecast.6 An expert may make multiple forecasts in the market and its total score is

the sum of the scores for its forecasts.

This method of scoring is useful since it only rewards experts for improving the

accuracy of the prior prediction. Further, we can interpret the last prediction made

in the market as a current market or consensus expert belief. After all, if an expert

disagrees with the current prediction they have an incentive to change it. If the

scoring rule S is proper then this method of scoring is also proper for experts since

arg max
p∈∆(Ω)

S(p, q)− S(p′, q) = arg max
p∈∆(Ω)

S(p, q), ∀p, q, p′ ∈ ∆(Ω)

Intuitively, the score of the previous forecast is fixed and so does not affect the

optimization. If the scoring rule S is strictly proper then this method is strictly

proper, too. I describe markets using (strictly) proper scoring rules as (strictly)

proper markets.

5Prediction markets can also be operated using continuous double auctions [34, 11], automated
market makers [68, 71], and other wagering mechanisms [78, 72, 56]. In this chapter, we are interested
in prediction markets that use scoring rules.

6It is known that market scoring rules can be equivalently implemented as automated market
makers [21, 25]. I restrict my discussion to the former for technical tractability.
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Note that even in a (strictly) proper market it may be that an expert still expects

to profit by misrepresenting its belief. An expert in a proper prediction market

maximizes its score for a forecast by being as accurate as possible, and it does not

follow that it maximizes its total score by being accurate if it can make more than

one prediction in the market. In fact, an expert may find misleading other experts

with false predictions to be worthwhile [18], since by leading other experts astray

the expert can create an opportunity for a large correction. If experts are acting

myopically however, then we always expect them to accurately report their beliefs in

a strictly proper prediction market.

Forecasts for decision making are different from those in the classical prediction

setting just detailed. When making a decision we have a set of actionsA and outcomes

Ω. I assume both sets are finite, mutually exclusive and exhaustive. Instead of

predicting the unique future, when making a decision, experts are asked to predict

the possible futures resulting from a decision maker’s choices. This prediction can be

represented by a |A|×|Ω| action-outcome matrix like the one in Figure 7.1, with each

row representing a probability distribution over possible outcomes if the associated

action is taken. The matrix in Figure 7.1 contains all the information relevant to

Outcomes Ω

Profit Loss

Actions A Solar 2
3

1
3

Wind 2
5

3
5

Figure 7.1: An example action-outcome matrix showing an expert’s prediction of
two possible futures: one resulting from investing in solar energy and the other from
investing in wind.
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making a decision. In this case, if the decision maker believes the prediction is

accurate it will prefer investing in solar energy. These forecasts are elicited in a

decision market just like in a classical prediction setting, except after elicitation the

decision maker selects an action based on the final market prediction. Only the

outcome of this action is then observed. One intuitive way to think of a decision

market is as a collection of predictions markets with one prediction market per action.

Instead of observing the outcome of each market, however, we only observe it in one.

We have not discussed how these forecasts are scored. We’d like to design a means

of scoring that offers the same incentives for accuracy as strictly proper prediction

markets; that is, we want to incentivize experts to accurately reveal their beliefs. [47],

when introducing the idea of decision markets, suggested that forecasts in a decision

market could be treated like forecasts in a set of strictly proper prediction markets,

one for each action, and the markets for unchosen actions would simply be voided and

unscored. This is a natural proposal, but these markets do not incentivize accuracy,

as the following example describes.

Let our decision maker still be deciding whether to invest in solar or wind energy.

For simplicity I’ll assume the outcome space of interest is simply how likely each is

to return a profit, Ω = {Profit, Loss}. We’ll be running a market, and we let the

prior prediction and an expert’s belief be as in Figure 7.2. In this example, I further

assume that this expert is the last expert in the market and its prediction will be

used by the decision maker to select an action.

We can adopt Hanson’s proposed scoring scheme using the strictly proper quadratic
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Prior prediction

Profit Loss
Solar 2

3
1
3

Wind 2
5

3
5

Expert belief

Profit Loss
1
3

2
3

2
5

3
5

Figure 7.2: A hypothetical prior prediction (left) and expert belief (right). The expert
can improve the market’s prediction for what will occur if solar energy is invested in
and agrees with the current prediction for wind energy.

scoring rule

S(p, ω) = 2p(ω)−
∑
ω∈Ω

p2(ω) (quadratic score)

and assume the decision maker chooses the action most likely to be profitable. Unfor-

tunately, if our expert reports accurately then its expected score is zero: the decision

maker will invest in wind energy and the expert did not improve that prediction.

Alternatively, the expert can lie and claim wind energy has no chance of becoming

profitable. The decision maker will then invest in solar and the expert will expect to

score

1

3

(
2/3− (1/3)2 − (2/3)2

)
+

2

3

(
4/3− (1/3)2 − (2/3)2

)
− 1

3

(
4/3− (1/3)2 − (2/3)2

)
− 2

3

(
2/3− (1/3)2 − (2/3)2

)
= 2/9 > 0

Thus, misreporting in this decision market is preferred to reporting accurately, and

we cannot claim such a market incentivizes accuracy. The intuition of this example
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was first noted by [69] for working with a single expert. When an expert is not the last

trader in a market, an additional complication is that the expert’s prediction is not

the final prediction that is used by the decision maker to select an action, although

it may affect future predictions.

Experts’ ability to affect which of several possible futures is observed is the salient

distinguishing feature of a decision market. Eliciting predictions for decision mak-

ing has the potential to improve our decisions, but without the right incentives are

unlikely to be useful. In the next two sections I characterize strictly proper decision

making that provides the same incentives as strictly proper prediction markets to

experts. Section 7.3 starts by formalizing the decision making and scoring process.

7.3 Eliciting Predictions for Strictly Proper Deci-

sion Making

The key distinction between decision making and the classical prediction setting

is that in the latter there is one possible future and in the former experts influence

which of multiple possible futures is observed. To adapt the incentives of a strictly

proper prediction market to decision making, then, requires accounting both for how

the decision maker chooses an action and how accurate an expert’s forecast is. In

this section I first formalize my model of eliciting predictions for decision making

and selecting an action, then describe how experts are scored and what it means for

decision making to be strictly proper. We will see that this definition is different if

we are working with a single expert or many experts in a decision market.
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7.3.1 Eliciting Predictions and Decision Making

Until now I have been informal with describing how a decision maker uses the

predictions it acquires to make a decision. In this subsection I formalize this process.

I begin by describing what a forecast for decision making is, how these forecasts are

acquired in the single expert and market settings, and then conclude with how a

decision maker uses these forecasts to select an action.

LetA be a finite set of possible actions that a decision maker can take and Ω a finite

set of mutually exclusive and exhaustive outcomes of interest to the decision maker. In

our running energy investment example A = {Solar, Wind} and Ω = {Profit, Loss}.

Experts are risk-neutral, rational agents and have private beliefs representable

by an |A| × |Ω| action-outcome matrix associating actions with distributions over

the outcomes.7 Examples of these matrices appear in Figures 1 and 2. Each row of

an expert’s action-outcome matrix is a probability distribution over outcomes and

represents the expert’s subjective belief on likely outcomes when the row’s action

is taken. I denote the set of action-outcome matrices as P . Experts are asked to

produce forecasts or predictions, which are also action-outcome matrices in P , but

may not be the same as their beliefs.

I consider eliciting predictions from both a single expert and many experts in a

market. When working with a single expert, that expert makes a single prediction

P ∈ P . The decision maker then applies a decision rule to this forecast to construct

a decision strategy—a probability distribution over the available actions.

7Some prior work considers a setting where experts can incur cost to improve their beliefs and
studies how to induce an appropriate degree of learning as well as accurate predictions [64]. I do not
consider cost of obtaining additional information and assume that experts are endowed with their
beliefs.
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Definition 13 (Decision Rule). A decision rule is any function

R : P → ∆(A),

mapping predictions in P to decision strategies from ∆(A). Let R(P, a) be the prob-

ability the decision strategy R(P ) assigns to taking action a, and say a decision rule

has full support if R(P, a) > 0 for all P ∈ P and a ∈ A.

Once the decision maker has its strategy it selects an action according to it and

then an outcome ω ∈ Ω is observed. Intuitively, this outcome is the result of the

action taken.

Multiple experts in a decision market are treated differently. A decision market

opens with an initial prediction P0 and lets experts make a series of public predictions

P1, P2, . . .. This is similar to how prediction markets operate, but with matrix fore-

casts instead of vectors. Eventually the market closes with a final prediction P and

the decision maker applies its decision rule to this prediction to construct its decision

strategy. I make no assumption on market dynamics or how this final prediction is

formed.

I further assume that experts know the decision rule used by the decision maker

prior to making their predictions. In Section 7.4, I will show that this assumption

can be relaxed and my results hold as long as experts know that the decision maker

will use a decision rule with full support.
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7.3.2 Scoring Predictions

In classical prediction elicitation, forecasts are scored using a scoring rule, a func-

tion

S : ∆(Ω)× Ω→ R. (scoring rule)

In eliciting predictions for decision making, a decision maker uses the following gen-

eralization of a scoring rule instead.

Definition 14 (Decision Scoring Rule). A decision scoring rule is a function

S : ∆(A)×A× P × Ω→ R (decision scoring rule)

mapping a decision strategy, an action taken, a forecast and an observed outcome to

a real number.

A decision scoring rule lets us account for how the decision maker selects its action

as well as how accurate the expert’s forecast is. In the next section, we’ll see that

this generalization is essential for strictly proper decision making. Throughout the

chapter, I assume that experts know the decision scoring rule used prior to making

their predictions.

When working with a single expert, the decision maker pays the expert who

provides forecast P a score S(R(P ), a, P, ω), when action a, drawn according to the

decision strategy R(P ), is taken and outcome ω is observed. The expected score of

an expert who believes Q and predicts P is

∑
a∈A,ω∈Ω

R(P, a)Q(a, ω)S(R(P ), a, P, ω). (expected score)
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Unpacking the above, each term is the likelihood an action and an outcome jointly

occur, R(P, a)Q(a, ω), times the value to the expert for that outcome occurring

S(R(P ), a, P, ω).

In a decision market, like in a prediction market, experts receive a net score that

is the difference of their and the previous predictions’ scores. The net score for

prediction Pi is S(R(P ), a, Pi, ω)−S(R(P ), a, Pi−1, ω), when the final prediction is P ,

the decision maker takes action a according to decision strategy R(P ), and outcome

ω is observed. The expected net score of an expert in a decision market who believes

Q and predicts Pi, with final prediction P , is

∑
a∈A,ω∈Ω

R(P )Q(a, ω)
(
S(R(P ), a, Pi, ω)− S(R(P ), a, Pi−1, ω)

)
(expected net score)

Note that, unlike the single expert setting, there is a separation between the prediction

the decision maker creates a decision strategy from P , and an expert’s prediction Pi.

7.3.3 Incentives and Strict Properness

In this subsection I define strictly proper decision making. Unlike the classical

prediction setting, I will use three definitions of strict properness. One for working

with a single expert, one for running a market, and one that works for both settings.

Also unlike a market, strict properness is not just a function of the scoring rule or

even the decision scoring rule. Instead, an expert’s incentives will depend on both

the decision rule and the decision scoring rule used. As a result I will describe (R, S)

pairs as either strictly proper for an expert, for a market, or simply as strictly proper

if they work for both. This is a whirlwind of specialized terms, but by going through

each one, their necessity should become clear. Also, shortly after introducing pairs
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that are strictly proper for a market, we will see that we can safely forget about them

to focus on the other two. Each version of strict properness, however, brings the

same expert incentives as strict properness for the classical prediction setting to the

relevant decision making setting.

To begin, I say a decision rule and a decision scoring rule pair is strictly proper for

an expert when a single expert uniquely maximizes its expected score for a prediction

by revealing its beliefs. Thus, exactly as with a strictly proper scoring rule, truthful

revelation is strictly optimal for a single expert facing such a pair.

Definition 15 (Strictly Proper for an Expert). A decision rule and decision scoring

rule pair (R, S) is strictly proper for an expert when

{Q} = arg max
P∈P

∑
a∈A,ω∈Ω

R(P, a)Q(a, ω)S(R(P ), a, P, ω), ∀Q ∈ P

Strict properness for a market is defined very differently, and in the next we’ll see

these differences are meaningful.

Definition 16 (Strictly Proper for a Market). A decision rule and decision scoring

rule pair (R, S) is strictly proper for a market when

∑
a∈A,ω∈Ω

R(P )Q(a, ω)
(
S(R(P ), a,Q, ω)− S(R(P ), a, Pi−1, ω)

)
≥

∑
a∈A,ω∈Ω

R(P ′)Q(a, ω)
(
S(R(P ′), a, Pi, ω)− S(R(P ′), a, Pi−1, ω)

)
for all Q,Pi−1, Pi, P, P

′ ∈ P, with the inequality strict if Pi 6= Q.

Understanding this definition and how it is different from the prior strict proper-

ness for an expert is useful. The expected score of an expert in a market is most
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notably different because the decision rule may not be applied to the forecast being

scored. Instead it is applied to the final forecast made, and for strict properness I

require an expert always expects to strictly maximize its net score by revealing its

beliefs no matter what the decision strategy is.

Intuitively, it is possible that an expect can change the final prediction to affect

the decision strategy. Since I make no assumptions on the market dynamics and how

the final prediction is formed, when an expert changes its prediction from Q to Pi,

the final prediction may change from P to P ′. What I am ruling out with the above

definition is that an expert might have an incentive to change the final prediction by

predicting against its belief.

I note that the focus of this chapter is not on analyzing whether and when a

decision market aggregates all private information and produces a consensus predic-

tion with rational participants. Instead, I aim to understand when a decision market

provides incentives for any myopic expert to predict its belief if the expert only cares

about its expected payoff of the current prediction, a property that strictly proper

prediction markets have but Hanson’s decision markets lack. While strict proper-

ness for a market does not allow one to immediately conclude that the final market

prediction aggregates all information of rational participants in a decision market,

such incentive is necessary for information aggregation — without it, as shown by

the example in Section 7.2, the last participant of the market may manipulate the

market prediction — and hence is fundamental to understand. In Section 7.6, I will

discuss the implication of strict properness for a market on information aggregation

in decision markets with forward-looking rational agents.
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Carrying around two definitions of strict properness is cumbersome. We’d like to

combine them into one, and we can almost accomplish this with the following.

Definition 17 (Strictly Proper Pair). A decision rule and decision scoring rule pair

(R, S) is strictly proper when a prediction’s expected score is independent of the deci-

sion strategy

∑
a∈A,ω∈Ω

R(P, a)Q(a, ω)S(R(P ), a, Pi, ω)

=
∑

a∈A,ω∈Ω

R(P ′, a)Q(a, ω)S(R(P ′), a, Pi, ω), ∀Q,Pi, P, P ′ ∈ P (7.1)

and uniquely maximized when an expert predicts its belief

{Q} = arg max
Pi∈P

∑
a∈A,ω∈Ω

R(P, a)Q(a, ω)S(R(P ), a, Pi, ω), ∀Q,P, Pi ∈ P . (7.2)

Intuitively, this notion of strict properness makes decision making resemble the

classical prediction setting. Like in that setting I require that future predictions

cannot affect the score of prior predictions, and I demand an expert uniquely maximize

its score for a prediction by revealing its beliefs. Also, this definition nearly combines

the previous two, and every strictly proper pair (R, S) is strictly proper for both an

expert and a market, as the following proposition formalizes.

Proposition 2. Every strictly proper pair (R, S) is strictly proper for both an expert

and a market.
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Proof. Let (R, S) be a strictly proper pair. For any P 6= Q, We have

∑
a∈A,ω∈Ω

R(P, a)Q(a, ω)S(R(P ), a, P, ω)

<
∑

a∈A,ω∈Ω

R(P, a)Q(a, ω)S(R(P ), a,Q, ω)

=
∑

a∈A,ω∈Ω

R(Q, a)Q(a, ω)S(R(Q), a,Q, ω)

The inequality following from Equation 7.2 and the equality from Equation 7.1. This

implies (R, S) is strictly proper for an expert.

Strict properness for a market requires

∑
a∈A,ω∈Ω

R(P, a)Q(a, ω)
(
S(R(P ), a,Q, ω)− S(R(P ), a, Pi−1, ω)

)
≥

∑
a∈A,ω∈Ω

R(P ′, a)Q(a, ω)
(
S(R(P ′), a, Pi, ω)− S(R(P ′), a, Pi−1, ω),

for all Q,P, P ′, Pi−1, Pi ∈ P , with the inequality strict if P 6= Q.

From the definition of strictly proper pairs, we have

∑
a∈A,ω∈Ω

R(P, a)Q(a, ω)
(
S(R(P ), a,Q, ω)− S(R(P ), a, Pi−1, ω)

)
− R(P ′, a)Q(a, ω)

(
S(R(P ′), a, Pi, ω)− S(R(P ′), a, Pi−1, ω)

)
=

∑
a∈A,ω∈Ω

R(P, a)Q(a, ω)S(R(P ), a,Q, ω)−R(P, a)Q(a, ω)S(R(P ), a, Pi, ω) ≥ 0

for all Q,P, P ′, Pi−1, Pi ∈ P . The equality follows from Equation 7.1 and the inequal-

ity from Equation 7.2, and this inequality is strict if Pi 6= Q. Thus (R, S) is strictly

proper for a market, too.

In fact, we can go further and say this definition of strict properness defines most

of strictly proper decision making. For any pair that is strictly proper for a market
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there is a strictly proper pair that uses the same decision rule and a decision scoring

rule that provides experts the same expected net scores as before.

Proposition 3. For every pair (R, S̄) that is strictly proper for a market, there exists

a strictly proper pair (R, S) such that every prediction has the same expected net score

∑
a∈A,ω∈Ω

R(P, a)Q(a, ω)
(
S̄(R(P ), a, Pi, ω)− S̄(R(P ), a, Pi−1, ω)

)
=

∑
a∈A,ω∈Ω

R(P, a)Q(a, ω)
(
S(R(P ), a, Pi, ω)− S(R(P ), a, Pi−1, ω)

)
for all P,Q, Pi−1, Pi ∈ P.

The proof appears in the appendix.

For all practical purposes, then, we no longer need to consider pairs that are

strictly proper for a market. A similar proposition cannot be shown for pairs that

are strictly proper for an expert. In the next section I show that strictly proper pairs

always have decision rules with full support, but some pairs that are strictly proper

for an expert do not. These pairs do, however, create decision strategies with full

support for almost all predictions. Hence this distinction is unlikely to be important

in practice. I thus say strictly proper pairs describe most of strictly proper decision

making.

7.4 Strictly Proper Decision Making

In this section I characterize strictly proper decision making with both many

experts in a decision market and a single expert. I show that any decision rule

with full support is part of a strictly proper pair, and it is easy to construct such
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pairs using a strictly proper scoring rule. Unfortunately, a fundamental limitation of

this approach to decision making is that it requires the decision maker always use a

completely mixed strategy to select an action when running a market, and most of

the time when working with a single expert. This suggests that eliciting predictions

for decision making can improve the likelihood a decision maker takes a preferred

action, but cannot guarantee it does so.

7.4.1 Strictly Proper Decision Markets

In this subsection I characterize strictly proper decision markets. Following our

discussion in the previous section, instead of working with pairs that are strictly

proper for a market, I restrict my attention in this subsection to pairs that are simply

strictly proper. I start by showing that if and only if a decision rule has full support

is it part of a strictly proper pair, and provide an easy means of constructing such

a pair given a strictly proper scoring rule. I conclude this section with the detailed

characterization of these pairs.

I begin by showing a decision rule must have full support to be part of a strictly

proper pair.

Theorem 22 (Full Support is Necessary for a Strictly Proper Pair). If a pair (R, S)

is strictly proper then R has full support.

Proof. Assume, for a contradiction, that R is a decision rule without full support and

S is a decision scoring rule such that (R, S) is strictly proper. Let P ∗ be a prediction

such that R(P ∗, a′) = 0 for some action a′, which must exist by my assumption that R

does not have full support, and let Q and Q′ be two action-outcome matrices differing
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only on action a′. Then we have

∑
a∈A,ω∈Ω

R(P ∗, a)Q(a, ω)
(
S(R(P ∗), a, Pi, ω)− S(R(P ∗), a, Pi−1, ω)

)
=

∑
a∈A,ω∈Ω

R(P ∗, a)Q′(a, ω)
(
S(R(P ∗), a, Pi, ω)− S(R(P ∗), a, Pi−1, ω)

)
for all Pi, Pi−1 ∈ P . This implies the same prediction maximizes the expected score

of an expert who believes Q and an expert who believes Q′, yet since this prediction

cannot be both Q and Q′ the pair (R, S) violates Equation (7.2) and so must not be

strictly proper, contradicting our assumption.

Simply put, experts have no incentive to be accurate on actions that are never

tested, so a decision rule without full support cannot be strictly proper. This intuition

is the same one mentioned by Othman and Sandholm [69], who showed that any

deterministic decision rule cannot be part of a pair that is strictly proper for an

expert.

On the other hand, we can constructively demonstrate that any decision rule with

full support is part of a strictly proper pair. Given a decision rule R with full support

and any strictly proper scoring rule S̄, we can create a decision scoring rule

S(R(P ), a, Pi, ω) =
1

R(P, a)
S̄(Pi(a), ω), (7.3)

and the pair (R, S) is strictly proper since the expected score for a prediction Pi given

beliefs Q and decision strategy R(P ) is then

∑
a∈A,ω∈Ω

R(P, a)Q(a, ω)
( 1

R(P, a)
S̄(Pi(a), ω)

)
=

∑
a∈A,ω∈Ω

Q(a, ω)S̄(Pi(a), ω)

the same expected score as if an expert were participating in |A| independent and

strictly proper prediction markets, one for each action. Intuitively, dividing the scor-
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ing rule’s score by the likelihood that the decision maker takes an action unbiases how

the score is sampled. The following complete characterization shows that all strictly

proper pairs are constructed using a similar intuition.

Some additional notation is needed before stating the theorem. I use a colon be-

tween two matrices to denote their Frobenius inner product, A : B =
∑

i,j A(i, j)B(i, j),

and let G?
P be a subgradient of the convex function G : P → R at P . This subgradient

is also a matrix with the same dimensions as matrices in P .

Theorem 23 (Strictly Proper Pair Characterization). A pair (R, S) is strictly proper

if and only if R has full support and there exists a subdifferentiable strictly convex

function G such that

S(R(P ), a, Pi, ω) = G(Pi)−G?
Pi

: Pi +
G?
P (a, ω)

R(P, a)
(7.4)

Proof. I begin by showing that given a decision rule R with full support and a strictly

convex G, defining a decision scoring rule S as in Equation 7.4 makes (R, S) a strictly

proper pair.

An expert’s expected score for predicting P with beliefs Q and decision policy

R(P ) is ∑
a∈A,ω∈Ω

R(P, a)Q(a, ω)S(R(P ), a, Pi, ω)

=
∑

a∈A,ω∈Ω

R(P, a)Q(a, ω)
(
G(Pi)−G?

Pi
: Pi +

G?
Pi

(a, ω)

R(P, a)

)
=

∑
a∈A,ω∈Ω

{R(P, a)Q(a, ω)
(
G(Pi)−G?

Pi
: Pi
)
}+Q : G?

Pi

= G(Pi)−G?
Pi

: Pi +Q : G?
Pi

(since
∑

a∈A,ω∈ΩR(P, a)Q(a, ω) = 1)

= G(Pi) + (Q− Pi) : G?
Pi
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which is independent of the decision strategy, and the expert’s expected score for

accurately predicting Q is then

G(Q) + (Q−Q) : G?
Q = G(Q)

and applying the subgradient inequality we have

G(Q) > G(Pi) + (Q− Pi) : g?Pi
, ∀Pi 6= Q ∈ P

implying (R, S) is a strictly proper pair.

Now I show that given a strictly proper pair (R, S) it is necessary that R have full

support and there exists a strictly convex G such that S is as defined in Equation 7.4.

Since Theorem 22 proved the necessity of R having full support, we only need prove

the latter condition.

As a shorthand, I define an expected score function

V (R(P ), Q, Pi) =
∑

a∈A,ω∈Ω

R(P, a)Q(a, ω)S(R(P ), a, Pi, ω)

and recall from Definition 17 that

V (R(P ), Q, Pi) = V (R(P ′), Q, Pi),∀P, P ′, Pi, Q ∈ P

allowing us to write simply V (Q,Pi); our strictly convex function G will be G(Pi) =

V (Pi, Pi), which is convex (and I will verify is strictly convex shortly), and we’ll use

G?
Pi

(a, ω) = R(P )S(R(P ), a, P, ω)

for any P ∈ P as our subgradient at Pi. We verify it is a subgradient by checking the
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subgradient inequality:

G(Pi) + (Q− Pi) : G?
Pi

= V (Pi, Pi) +
∑

a∈A,ω∈Ω

(Q(a, ω)− Pi(a, ω))R(P, a)S(R(P ), a, Pi, ω)

= V (Pi, Pi) + V (Q,Pi)− V (Pi, Pi)

= V (Q,Pi)

< V (Q,Q)

for all Pi 6= Q ∈ P . The strict inequality following since (R, S) is a strictly proper

pair and this strict inequality implies G is strictly convex [50].

Before concluding, I note that since (R, S) is a strictly proper pair

R(P, a)S(R(P ), a, Pi, ω) = R(P ′)S(R(P )′, a, Pi, ω), ∀P, P ′, Pi ∈ P , a ∈ A, ω ∈ Ω

(otherwise there exist beliefs Q such that V (R(P ), Q, Pi) 6= V (R(P ′), Q, Pi)), and I

use this fact to verify that G with subgradients as given is, in fact, equal to S

G(Pi)−G?
Pi

: Pi +
G?
P (a, ω)

R(P, a)

= V (Pi, Pi)−
∑

a∈A,ω∈Ω

{R(P, a)Pi(a, ω)S(R(P ), a, Pi, ω)}+
R(P, a)S(R(P ), a, Pi, ω)

R(P, a)

= V (Pi, Pi)− V (Pi, Pi) + S(R(P ), a, Pi, ω)

= S(R(P ), a, P, ω)

So from any strictly proper pair we can construct a strictly convex G satisfying

Equation 7.4.

Theorem 23 shows that while a decision maker can take a preferred action with

probability arbitrarily close to one, it must commit to a completely mixed decision
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strategy. In short, the decision maker must implement an unbiased estimator of the

future, and this requires stochastically sampling the actions. Note, however, that

it is sufficient for experts to believe they will be scored in a strictly proper fashion,

and the decision maker does not have to ex ante design its decision rule. Instead,

it can simply review the final prediction, construct any decision strategy with full

support, and then score the experts using an appropriate decision scoring rule to

create a strictly proper decision market. This insight is spiritually analogous to the

observation made by [14] on using compensations rules for prediction elicitation when

an expert has preferences over actions. [14] noted that the expert does not need to

know the decision rule to be strictly incentivized to predict its belief.

A fun analogy to the decision maker in a strictly proper decision market is to an

overwhelmed teaching assistant grading a midterm. The teaching assistant does not

have the time to grade every question and instead must pick one from each test. If

some questions are more likely to be graded than others then students will spend

more time on those and neglect the rest, biasing their scores. Only by (1) possibly

grading any question and (2) weighting that question’s score by the inverse likelihood

that the question is graded will the teaching assistant create an unbiased estimator,

where the student’s expected grade is the same as if every question were reviewed.

This encourages students to pay equal attention to each question and not “game the

system.”
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7.4.2 Strictly Proper Decision Making with a Single Expert

Working with a single expert is different than running a decision market since the

expert knows the decision maker will apply the decision rule to its prediction. In a

decision market, on the other hand, the decision rule is applied to the final prediction.

This distinction allows pairs that are strictly proper for an expert to use decision rules

that do not have full support, although we can formally demonstrate that it is rare

for these rules to create decision strategies that are not completely mixed.

Theorem 24. For any pair (R, S) that is strictly proper for an expert, define a set

P0 ⊂ P as the forecasts that R maps to decision strategies that are not completely

mixed. The set P0 is nowhere dense in P with its natural Euclidean topology.8

Intuitively, this means that for any forecast that the decision rule maps to a not

completely mixed decision strategy, there is another arbitrarily close forecast that

does map to a completely mixed strategy. I think it is unlikely this ability to avoid

some actions will be useful in practice.

I conclude this subsection with a complete characterization of strictly proper for

an expert pairs. The statement and its proof are similar to those of Theorem 23.

Theorem 25 (Strictly Proper for an Expert Characterization). A pair (R, S) is

strictly proper for an expert if and only if there exists a subdifferentiable strictly

convex function G and subgradients such that G?
P (a) = ~0 whenever R(P, a) = 0 and

S(R(P ), a, P, ω) = G(P )−G?
P : P +

G?
P (a, ω)

R(P, a)
, ∀R(P, a) > 0. (7.5)

8A set is nowhere dense in a topological space if the interior of its closure, with respect to the
topological space, is empty.
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This concludes our discussion of strictly proper decision making, where a deci-

sion maker solicits a complete mapping from actions to outcomes. In the next sec-

tion I discuss an alternative where, instead of this mapping, a decision strategy or

recommendation is directly solicited. This alternative allows the decision maker to

deterministically take a preferred action, instead of doing so with high probability.

7.5 Recommendations for Decision Making

The previous section demonstrated that strictly proper decision making (almost

always) requires the decision maker use a completely mixed strategy to select an ac-

tion. Put another way, even if the decision maker learns some actions are undesirable

it must risk taking them. This is certainly not ideal and possibly non-credible for the

decision maker.

In this section I describe an alternative method of using expert advice to make

a decision. Instead of asking experts to predict the likely outcome of each action, I

instead simply ask a single expert to recommend an action. This allows the decision

maker to always take its most preferred action.

When deciding to invest in wind or solar energy in our running example, the

decision maker can run a strictly proper decision market and ask experts to predict

the likely outcome of each investment. This can increase the decision maker’s chances

of making the right investment, but with some positive chance it must take the

“wrong” or less preferred action simply to test the experts’ accuracy. A simple and

useful alternative is to offer a single expert a percentage of the realized profit, and ask

them to suggest an action. This expert is no longer interested in making an accurate
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prediction; instead its incentives are perfectly aligned with the decision maker’s to

produce a “good” or preferred outcome. This alignment of expert’s and decision

maker’s incentives will let the decision maker deterministically act on the expert’s

recommendation. Formalizing this model of decision making is the topic of this

section. I stress that if the expert recommends a single action, the decision maker can

deterministically take it, in contrast to the previous result. This is a great benefit of

asking for a recommendation. In fact, we’ll see that an expert can always recommend

a single action since a decision maker will have one action it (weakly) prefers more

than the others.

This approach, like eliciting predictions for decision making, also has its limita-

tions. It only lets us solicit a recommendation from a single expert, and eliciting an

accurate recommendation is possible if and only if the decision maker’s preferences

admit a subdifferentiable convex weak utility representation. Still, I think it is an

especially interesting option since it uses ideas from scoring rules without asking for

a prediction. Instead – intuitively – a scoring rule is used to rank the actions so the

expert is incentivized to choose the one the decision maker prefers most—aligning the

expert’s and the decision maker’s preferences.

7.5.1 A Model for Recommendations

When working with expert recommendations I consider a single expert reporting

a decision strategy σ ∈ ∆(A) and a prediction p ∈ ∆(Ω) of what is likely to occur if

that strategy is adopted. The decision maker then draws an action according to the

strategy, observes the outcome ω, and scores the expert using a scoring rule S(p, ω).
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Our goal is not to elicit any decision strategy, however, but a decision strategy that,

if followed, results in the most preferred possible distribution p.

Formalizing this statement requires specifying the decision maker’s preferences. I

let the decision maker’s preferences be a binary relation � on ∆(Ω), the probability

distributions or lotteries over Ω. The decision maker weakly prefers p1 to p0 if and

only if p0 � p1 and strictly prefers p1 to p0 if and only if p0 ≺ p1. These ordinal

preferences admit a weak utility representation [75, 5] if there exists a function u :

∆(Ω) → R such that if p0 ≺ p1 then u(p0) < u(p1) for all p0, p1 ∈ ∆(Ω). Further,

I say these preferences admit a (strictly) convex weak utility representation if there

exists a (strictly) convex function u that is also a weak utility representation. I note

that an expected value maximizing decision maker always has preferences that admit

a convex weak utility representation. I continue to assume the expert is a risk-neutral

expected value maximizer. While this assumption may not always hold, it is arguably

reasonable for settings where the reward that the expert can receive is relatively small.

The decision maker’s goal is to elicit the decision strategy that if followed results

in its most preferred distribution. If the expert has belief Q, then the decision maker

wants to find a decision strategy σ∗ ∈ ∆(A) – a column vector – such that

QT · σ∗ � QT · σ, ∀σ ∈ ∆(A) (preferred strategies)

where QT is the transpose of Q and hence QT ·σ is the lottery over outcomes created

by selecting decision strategy σ. I let Σ∗Q denote the set of such preferred strategies

σ∗ and

ΦQ = arg max
σ∈∆(A)

sup
p∈∆(Ω)

∑
a∈A,ω∈Ω

σ(a)Q(a, ω)S(p, ω)

164



7: Decision Making

denote the set of decision strategies that maximize the expert’s expected score. I say

a scoring rule is a recommendation rule for preferences � if it always incentivizes the

expert to reveal a strategy in Σ∗Q.

Definition 18 (Recommendation Rule). A scoring rule S is a recommendation rule

for preferences � over ∆(Ω) when ΦQ ⊆ Σ∗Q for all Q ∈ P.

Intuitively, a recommendation rule translates the decision maker’s preferences into

a payoff function (scoring rule) for the expert that incentivizes it to reveal the decision

maker’s most preferred strategy.

To recap, in our recommendation setting there is a decision maker and a single

expert. The decision maker shows the expert a scoring rule, and the expert reports

a decision strategy and makes a prediction about the outcome of this strategy. The

decision maker acts according to the strategy, observes the outcome, and pays the

expert based on its prediction and the observed outcome using the scoring rule. If the

scoring rule is a recommendation rule then the expert has an incentive to reveal the

strategy the decision maker would most prefer taking if it had the same information

the expert did. I note that the expert does not need to know the decision maker’s

preferences.

7.5.2 Characterizing Recommendation Rules

In this subsection I describe the preferences for which we can construct a rec-

ommendation rule where an expert maximizes its expected score by reporting the

decision maker’s most preferred decision strategy. That is, I describe the preferences

for which we can strictly incentivize the expert to reveal strategies in Σ∗Q. It turns out
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this is precisely the set of of preferences admitting a subdifferentiable convex weak

utility representation.

I first show that if we know a subdifferentiable convex function9 that is a weak

utility representation of the decision maker’s preferences, we can use it to construct

a recommendation rule.

Proposition 4 (Recommendation Rule Construction). If a sub differentiable con-

vex function G : R|Ω| → R is a weak utility representation of the decision maker’s

preferences �, then the scoring rule

S(p, ω) = G(p)−G?
p · p+G?

p(ω)

is a recommendation rule for its preferences.

Proof. G is a weak utility representation of � means that p0 ≺ p1 implies G(p0) <

G(p1). By Theorem 21 and Corollary 2, the scoring rule

S(p, ω) = G(p)−G?
p · p+G?

p(ω)

is proper (in the classical sense) with expected score function

G(p) =
∑
ω∈Ω

p(ω)S(p, ω).

An expert with belief Q maximizes its expected score by solving

max
σ∈∆(A),p∈∆(Ω)

∑
ω∈Ω

(QT · σ)(ω)S(p, ω)

9A convex function G : Rn → R is subdifferentiable everywhere in its relative interior. I am
requiring, for notational simplicity, it also be subdifferentiable at its relative boundary.
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and since S is proper, given any σ

∑
ω∈Ω

(QT · σ)(ω)S(QT · σ, ω) ≥
∑
ω∈Ω

(QT · σ)(ω)S(p, ω)

for all Q and p. By our construction,

∑
ω∈Ω

(QT · σ∗)(ω)S(QT · σ∗, ω) ≥
∑
ω∈Ω

(QT · σ)(ω)S(p, ω)

for some σ∗ ∈ Σ∗Q, with the inequality strict if σ 6∈ Σ∗Q, since

QT · σ∗ � QT · σ, ∀σ 6∈ Σ∗Q

and

G(QT · σ∗) > G(QT · σ), ∀σ 6∈ Σ∗Q

which then, by Corollary 2, gives the desired inequality. Thus, S is a recommendation

rule.

Proposition 4 indicates that the decision maker’s preferences admitting a subdif-

ferentiable convex utility representation is a sufficient condition for the existence of

a recommendation rule for the preferences. In fact, it is also a necessary condition.

Theorem 26 gives the complete characterization.

Theorem 26 (Recommendation Rule Characterization). If the decision maker is

considering at least two actions, there exists a recommendation rule S for its prefer-

ences � if and only if these preferences admit a subdifferentiable convex weak utility

representation.
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Proof. Proposition 4 proves that if the decision maker’s preferences admit a subdif-

ferentiable convex weak utility representation there exists a recommendation rule for

them. Here I only prove the necessity of this condition.

Assume, for a contradiction, that the preferences � do not admit a subdifferen-

tiable convex weak utility representation but there is a recommendation rule S for

them. Let there be an expert with belief Q such that Q(a) = q1 and Q(a′) = q2 for

all a′ 6= a. Assume the expert recommends a single action, then its expected score

function given that action is

V (q) = sup
p∈∆(Ω)

∑
ω∈Ω

q(ω)S(p, ω)

which is a subdifferentiable convex function of the lotteries. Since I assumed that

� does not admit a subdifferentiable convex weak utility representation, this implies

that there exists q1 and q2 such that

V (q1) ≥ V (q2), and

q1 ≺ q2.

That is, the expert expects a (weakly) higher score by recommending a less preferred

action a. Further, the expert expects to score (weakly) higher by recommending

action a than any convex combination of actions because

V (q1) ≥ αV (q1) + (1− α)V (q2) ≥ V (αq1 + (1− α)q2),

where the second inequality is due to the convexity of V . Thus, the decision strategy

of taking action a with probability 1 is an element in ΦQ but not in Σ∗Q. This

contradicts our assumption that S is a recommendation rule for preferences �.
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It is interesting that a scoring rule is used to “rank” lotteries in a way that matches

the decision maker’s preferences over lotteries. This lets us incentivize an expert to

reveal the decision maker’s most preferred decision strategy. Furthermore, because

the decision maker’s preferences must admit a convex weak utility representation, it is

without loss of generality to restrict the expert to reporting a single action instead of

a decision strategy. To see this, let u be the convex function representing the decision

maker’s preferences, and whenever p1 ≺ p2, we have u(p1) < u(p2). By convexity of u,

we know that u(αp1 + (1− α)p2) < u(p2), which implies αp1 + (1− α)p2 � p2. Thus,

any mixed decision strategy (which will create a convex combination of lotteries)

is always (weakly) less preferred to the best single action (which leads to the most

favorable lottery). The expert can simply recommend a single action for the decision

maker to deterministically take.

7.5.3 Quasi-Strict Properness and Strictly Proper Recom-

mendation Rules

Recommendation rules incentivize an expert to reveal the decision maker’s best

decision strategy, but not necessarily to accurately reveal their prediction on likely

outcomes if that decision strategy is followed. In [69], scoring rules that the authors

called quasi-strictly proper incentivized an expert to reveal both for a special case of

decision making. In their paper, a decision maker has a finite set of actions and only

two outcomes, “good” and “bad.” The decision maker solicits an action-outcome

matrix from a single expert, then applies a deterministic decision rule to select an

action (i.e. no mixed decision strategy is allowed). The authors focus on the natural
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special case of their model where the decision rule selects the action most likely to

result in the “good” outcome, and show they can create a quasi-strictly proper rule

with two nice properties: (1) the action that the expert believes will most likely

result in the “good” action is always chosen by the decision maker, (2) the expert

accurately reports the likely results of this action. These rules are “quasi-strictly”

instead of “strictly” proper since the rest of the action-outcome matrix may not be

accurate.

In this setting, we no longer request an entire action-outcome matrix when an

expert makes a recommendation, and so we can simply describe recommendation

rules as strictly proper when they incentivize the expert to accurately reveal its belief

about the strategy’s outcome.

Definition 19 (Strictly Proper Recommendation Rule). A scoring rule S is a strictly

proper recommendation rule for preferences � if it is a recommendation rule for �,

that is, ΦQ ⊆ Σ∗Q for all Q ∈ P, and for all σ∗ ∈ ΦQ,

arg max
p∈∆(Ω)

∑
a∈A,ω∈Ω

σ∗(a)Q(a, ω)S(p, ω) = {QT · σ∗}

for all Q ∈ P.

In practice, strictly proper recommendation rules may be interesting as they allow

the decision maker to understand and plan for the likely affects of its decision. These

rules can be partially characterized immediately as a corollary of my recommendation

rule characterization.

Corollary 3 (Strictly Proper Recommendation Rule Characterization). If prefer-

ences � admit a subdifferentiable and strictly convex weak utility representation, then
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there exists a strictly proper recommendation rule for �.

The proof is immediate from the first part of Theorem 26, since a strictly convex

function implies that the expert uniquely maximizes its expected score when the

prediction p is equal to the resultant lottery QT · σ∗. Note, however, this result is

not tight, and we leave open the possibility that other types of preferences may have

strictly proper recommendation rules.

7.6 Decision Making in Review

This chapter studied the elicitions of predictions and recommendations for deci-

sion making. It showed that when eliciting predictions for decision making, strict

properness generally required the decision maker risk taking an action at random.

This is best interpreted as telling us that a decision maker can improve the likeli-

hood it takes a preferred or “best” action by running a decision market, even though

it cannot guarantee it takes such an action. Thus, decision markets are useful, if

imperfect.

When working with a single expert, on the other hand, we can acquire a rec-

ommended decision strategy and simply take that action. This suggests a trade-off

between working with multiple experts, who may combine their knowledge in brilliant

ways, and working with a single expert, where there is no risk of taking an action our

consultant thinks will be a poor one.

Several avenues of future work are suggested by this chapter. First, the prior

chapters of this thesis consider strict properness very generally (Chapters 2–4) and

also the challenge of designing securities where information is aggregated. This chap-
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ter ducks both challenges. It is not clear that strictly proper decision markets will

aggregate information, and the extension from a discrete setting to a more general

one is likely interesting.

Second, also in Chapter 4 the duality between scoring rules and cost functions

was expressed. When making a decision, however, it is not clear what a cost function

market would look like. Decision markets are a generalization of prediction markets,

and a cost function for making decisions may also illustrate interesting properties of

cost functions.

Finally, my discussion of using a single expert to make recommendations is inter-

esting since our goal is no longer to elicit a prediction, nor even a statistic. This is far

from the classical setting where we are trying to elicit a belief, and other techniques

may be useful when we are asking for a recommendation. Further, our understanding

of strict properness and prediction markets does not provide any method for working

with multiple experts when asking for a recommendation. If this could be done it

would be of great interest, not only because it would suggest a new means of aggre-

gating information, but also because it would pool multiple experts’ information and

let a decision maker deterministically take an action. That is likely to be valuable

in practice. I also left two immediate mathematical questions open: (1) character-

izing the necessary conditions for the existence of strictly proper recommendation

rules, and (2) understanding when preferences have a strictly convex weak utility

representation.

In the near future it may be that prediction markets are presented through a gen-

eralization that accommodates decision making. In fact, I no longer think decision
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making is necessarily the most natural lens through which to approach the mathe-

matical discussion in this chapter. We might alternatively think of it as a discussion

of how to run a prediction market when the future is imperfectly observed. That is,

instead of the classical setting where we observe the outcome perfectly, we might con-

sider some noise, or that the true state of the world is beyond us and we only receive

some signal about it. This is essentially what is happening here, with the added

challenge that we both (1) chose what observation of the true state of the world to

make and (2) have preferences about the signal received from doing so.

In short, I think there is a great deal of exciting future work that can begin from

this humble chapter, and I hope it will have a substantial impact on the developing

field.
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Conclusion

This thesis covered a great deal of material, from the discussion of fundamental

strict properness in Chapters 3 and 4, the development of a cost function for bounded

continuous random variables in Chapter 5, the design of simple and informative mar-

kets in Chapter 6, and lastly the use of predictions for decision making in Chapter

7. In this conclusion I will review the results of these chapters and add a great deal

about possible extensions. I hope these extensions clarify the current work and are

interesting to future researchers.

8.1 Strict Properness

This thesis offers a new perspective on strict properness, a perspective where the

fundamental object of study is the scoring relation or menu of scoring functions.

Both scoring rules and cost functions can be derived from these relations, and are

best thought of as offering different languages to access the scoring functions. Scoring
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rules use the language of predictions, and cost functions mimic futures markets where

traders can buy and sell securities.

Strictly proper scoring relations can be identified with subsets of the points and

unique supporting B−subgradients of convex functions of the probability measures.

Functions of the probability measures are incredibly special because they always have

these supporting subgradients wherever they are subdifferentiable. We also have to

be careful to use the B−subgradients since the continuous dual space of the ca space

is not well understood, and may contain other objects. This thinking led to a simpler,

more geometric characterization of strict properness than that offered by [43]. One

interesting distinction in their favor, though, is that they allowed some unbounded

functions to be scoring functions, and I will return to this as an opportunity for future

work.

This fundamental understanding of strict properness let us define strictly proper

cost functions, and clarify their relationship to strictly proper scoring rules. Connec-

tions between cost functions and scoring rules had been made previously [2, 1], but

none as simply or completely as we were able to offer.

Strict properness is the essential property for eliciting and rewarding accurate

predictions of the future, but as we saw in Chapter 5 it is not the only one. Not every

strictly proper cost function reliably offers securities, or is able to quote meaningful

prices. If the space of securities admits a basis, however, then they do. Chapter 5 also

developed a cost function for bounded continuous random variables called a dynamic

discretization market since it effectively let traders decide on ex interim discretizations

of the continuous outcome space. This market was strictly proper, had bounded loss
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and was unbiased, a new property that is both natural and implied the market could

be computed using a convex program. Prior work on developing reasonable cost

functions for continuous outcome spaces suggested they all had bounded loss [? ] or

were mistaken [67]. Some more recent work like [2] is closer to my own, and could

plausibly be developed to obtain a cost function with bounded loss for a continuous

outcome space, although I believe this would be a substantial amount of work.

There is a considerable amount of work left undone and extensions suggested by

these developments. In particular:

Understanding the Subdifferential

It is difficult to understand the subdifferential of convex functions for non-Euclidean

spaces. This relation is at the heart of strict properness, and it is possible that progress

could be made considering only functions of the probability measures. We saw this

difficulty in Chapter 5, where we had use results from convex programs to obtain

an existence result about the subdifferential of the dynamic discretization market.

In particular, we need fast ways of understanding this relation so we can map from

securities to scoring functions, predictions to scoring functions, and scoring functions

to predictions.

The Existence of Convex Functions

Our characterization of strict properness requires a particular type of convex func-

tion exist, and it is not always clear if convex functions like it exist or not for arbitrary

measurable spaces. Work here may reveal some universal techniques for constructing

such functions. Unfortunately, it is not yet clear what domains, other than discrete
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and continuous Euclidean space, it is interesting to apply the techniques of this thesis

to. In these cases the desired convex functions certainly exist.

Extending Scoring Relations

I required scoring relations associate predictions with the bounded measurable

functions. This was an elegant way to identify them with standard convex analy-

sis concepts, but many generalizations are possible. The idea of strict properness

readily supports using measurable functions, as opposed to the bounded measurable

functions, for instance, although these would present many challenges and likely for

little gain. More interesting would be extending scoring relations to handle statistics

(also discussed below) or objects other than predictions. This may be very difficult,

or even impossible in some cases, yet is likely to have improve our understanding of

strict properness.

Generalizing Strict Properness

I have been saying strict properness is the essential property for eliciting and

rewarding accurate predictions, and it is, but maybe ε−strict properness is the essen-

tially property for eliciting and rewarding ε−accurate predictions. There are many

possible generalizations of strict properness that might provide predictions accurate

enough for our purposes. Mathematically, these might connect in a fascinating way

to the notion of the ε−subdifferential. These relaxations of strict properness might

also have practical computational advantages.
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Liquidity Sensitivity

As mentioned, strictly proper cost function are liquidity insensitive—they do not

respond to market depth. This is an immediate consequence of strict properness and

the way it translates securities to scoring functions. Both the security b and b + k

translate to the same scoring function, and thus the market assumes the same prices

for both. With two outcomes, that means if one thousand and one securities for the

first are sold, and one thousand for the second, the market has the same prices as if

just one security for the first outcome were sold. Even though one out of a thousand

securities seems insignificant, it has as much impact as if it were the first sold. I

cannot immediately think of a solution to this, although there has been some work

on liquidity sensitive markets [71, 70, 55].

Hybridizing Scoring Rules and Cost Functions

Understanding scoring relations offers us the possibility of hybridizing both scoring

rules and cost functions, obtaining the benefits of both. For example, we might let

traders offer predictions or trade securities, and let the market handle translations

between these languages. This may even lead to scoring rules that do not require

an entire probability measure but, more like the work in Chapter 6, can let traders

specify only part of a probability measure, with the market supplying the rest in a

clever way.
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8.1.1 Valuing the Class of Elicitable Predictions

In Chapter 5 we saw a cost function that let us elicit predictions from the class

Pinterval. It is not clear how valuable this class of predictions is, or how much more

valuable it is versus offering a market that discretizes the interval ex ante. For in-

stance, when eliciting a prediction for the outcome of a continuous random variable

on [0, 1], how should we value a market that elicits predictions from Pinterval versus

one that asks for predictions of how likely the result is to be in [0, .5] or (.5, 1].

Intuitively, greater prediction precision seems better, and it would be nice to make a

formal claim or argument that it actually is better.

Statistic Elicitation

One problem recently formalized is the accurate elicitation of statistics instead of

entire probability measures [54]. This is a more general problem than acquiring a

probability measures, and one that could likely benefit from this thesis’ perspective

on strict properness.

Understanding Other Markets

There is a great deal of work on prediction markets other than those described

here: dynamic pari-mutuel markets [72], markets that set prices based on trader

behavior [15, 28], and call markets [35, 20, 4, 42] are some examples. Understanding

whether or not these markets are strictly proper, and what incentive challenges they

face, could be fascinating.
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8.1.2 Relaxing No Arbitrage

Some other markets [1, 31] suggest relaxing the no arbitrage property to improve

how quickly the market can be computed. Computing a market quickly is a serious

issue, and creating a framework for strict properness that incorporates relaxations

like this would like be interesting.

8.2 Simple and Informative Markets

Chapter 6 discussed the design of simple and informative markets with Bayesian

traders. Unfortunately, it showed that designing these markets was trivial and un-

helpful if we knew nothing about traders’ information structure, and it was NP-hard

if we knew everything. Chapter 6 also allowed no opportunity for work in between.

This chapter likely suggests more questions than it answers, including these two:

Empirically Understanding Internal vs. External Aggregation in Markets

We lack a good understanding of whether markets aggregate information inter-

nally, because traders are reviewing past trades and price updates, or simply respond-

ing to external signals. The observed effectiveness of simple markets seems to suggest

a great deal of the latter. It may also be interesting to attempt to understand the sig-

nal structures traders have in practice, or at least how they interpret the information

they are presented with, and how they think others are interpreting this information.
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Notions of Partial Aggregation

As mentioned, Chapter 6’s idea of informativeness is all-or-nothing. It may be

useful and interesting to develop an idea of partial aggregation, where some if not

all of traders’ information appears in the market. Reviewers of Chapter 6 regularly

suggested this extension.

I believe there is a great deal of empirical work required first before we can usefully

return to aggregation in prediction markets. Theoretical work like [65] is fascinating

and uses neat mathematical techniques, but it may be too far from the reality of the

situation to be interesting other than as a mathematical investigation. Learning that

markets mostly respond to outside sources would have dramatic implications for our

field, drastically changing how we approach it. Even if only some information came

from outside, this would be fascinating. Investigating the use of external sources in

markets is likely the most important problem in the field today.

8.3 Expert Advice and Decision Making

Chapter 7 described how we could use techniques related to scoring predictions

to make decisions. It began by describing decision markets, where a decision maker

elicits predictions about the likely results of each of a set of possible actions. The

decision maker can then review these predictions to help it decide on a course of

action, although it must also risk taking any action with some chance. Intuitively,

the market must implement an unbiased estimator of the future. This means that a

decision market can improve the likelihood a decision maker takes a preferred action,
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although the market cannot guarantee it will.

In the second part of Chapter 5 an alternative model where a single expert made

a recommendation was considered. In this setting the prediction is secondary to the

recommendation, and I showed that we could elicit what the expert believed to be

the best available action and deterministically take it. The technique used, however,

does not generalize to work with multiple experts, and so there is at trade-off between

leveraging the expertise of many experts or deterministically taking the action a single

expert believes optimal.

There are two particularly interesting possible extensions for this work:

Decision Markets in Practice

Running a decision market would be fascinating, both to see how well it would

work, and whether a decision maker would actually be willing to risk taking any action

ex post. Perhaps also, in practice, strict properness is not necessary because traders

are altruistic, and we can safely deterministically take an action in many cases.

Alternatives to Recommendation Rules

The recommendation rules described in the second part of Chapter 5 let a single

expert recommend an action to the decision maker. These rules cannot be immedi-

ately extended to handle multiple experts. What is left open as a possibility, however,

is that there are alternatives to decision markets and recommendation rules that do

let multiple experts pool their information and recommend an action. Such a method

would be of considerable interest.
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8.4 In Conclusion

Thank you for reading; I hope some parts of this thesis resonated and excite you

about the many possibilities here for future work.
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