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Abstract

We provide an agent-based analysis of the currently proposed combinatorial clock

auction of LaGuardia airport using results from artificial intelligence and economics.

First, we build a framework in using artificial intelligent agents in the analysis of

auction designs. We show, both experimentally and theoretically, that existence

of budget constraints would lead to inefficient outcomes under the current auction

design. Using evolutionary search to look for Nash equilibria in restricted games, we

found that many of the observed agent strategies in past auction designs were still

possible equilibrium outcomes for the agents competing in the combinatorial clock

auction.
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Chapter 1

Introduction

The Vickrey auction and the English auction are well known mechanism designs con-

ducive to optimal outcomes to all with straightforward bidding in normal single-item,

private value auctions.[32] Yet, in reality, many important markets are for multiple

goods with interacting values. In such markets, agents compete for goods that in-

teract with each other: a good may increase or decrease in value for certain agents

when purchased along with another good (deemed a complement in the first case, a

substitute in the second). Applicable scenario examples include large-scale auctions

such as the Federal Communications Commission (FCC) spectrum auctions [18] and

also day-to-day situations such as consumers bidding in simultaneous online auctions

for matching components (hotel, show tickets, airflights) of a vacation package. With

the advances in information technology, more such scenarios arise daily [12].

Yet, an efficient auction design for the multi-item bidding problem is deemed diffi-

cult. Indeed, an auction that allows bidders to bid values based on packages instead of

items (deemed a combinatorialmechanism) faces a tractability problem as the number

of packages increases exponentially with the size of goods[21]. Alternatively, research

proposals were made for simultaneous ascending auctions, implemented in the FCC

spectrum allocation auctions[18].

First run in 1994, the spectrum auctions involved huge sums of money ($617

million were generated in the first sale of 10 licenses in July 1994)[20]. Results from

1
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the auctions indicate, however, issues of concern for the efficiency of this design.

Experimental results indicate possible incentives for collusion and demand reduction

in the auction[3]. Moreover, theoretical work also shows concerns for the exposure

problem whereby agents are forced to buy items it does not value due to losing in

the auction for the complementing item [20]. In response to these problems, interest

centered on integrating combinatorial bidding into the ascending auction, with FCC

issuing even a request for comments on the subject[20]. These auctions, deemed

dynamic combinatorial auctions, combines the price discovery feature of the ascending

auction, and combinatorial bidding. So far, implementations of these designs have

been rare [12].

In the summer of 2004, the Federal Aviation Agency (henceforth FAA), commis-

sioned a study to better allocate airport landing slots in La Guardia airport while

solving the airport congestion problem, opening the possibility of implementing dy-

namic combinatorial auctions on a large-scale. 1 Analysis of an application of com-

binatorial auctions onto airport time slots is, however, difficult. First, because of the

intractability of the package bidding problem, agents participating in a simulation

need to be fairly sophisticated.2 This makes it difficult to generate experimental data

with staged laboratory settings. Second, actual airline executives participating in

simulations have strong interests in hiding their true valuation and strategies. In this

thesis, using the currently proposed auction mechanism, we will propose instead an

artificial intelligent agent-based experimental framework to better understand some

of the strategic and economic aspects of using a combinatorial auction, in particular

in its application to the La Guardia problem.

In this process, we believe that our paper contributes to the field in two ways:

first, by proposing a complete electronic framework for the simulation and analysis

1In fall 2004, a proposed combinatorial auction mechanism was laid out by a team of researchers
and then presented to airline executives and the FAA through a series of conferences. A mock
auction hosted by the National Center of Excellence for Aviation Operations Research (NEXTOR)
and based on a similar design was subsequently held in February 24-25, 2005 with industry executives,
representatives from the FAA, and academics to further discuss on using an auction to solve problems
at LGA.

2In real life, it is expected that companies will spend resources in strategizing for the auction.
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of a combinatorial auction from the agent perspective; second, by laying out possible

points of concern in the design of the current proposed combinatorial auction design

to the LGA case through our calculation of the restricted equilibrium of possible

common heuristic strategies.

Our findings in regards to the auction design include the following:

• Interaction between budget constraints and the revealed preference activity rule

were found to be problematic. In the presence of budget constraints, straight-

forward activity rules following the revealed preference rule can be problematic.

• Undersell in the auction can be severe, at 8% in our experimentations for

straightforward strategies, even after allowing for some oversell in smoothing

out results(as specified in the auction design).

• Using price predicting agents improves the payoff of the auction and reduces

undersell.

• Strategies to game on the activity rule by preserving flexibility for agents bidding

in future rounds were generally useful in improving agent expected value.

• Effective strategies differed much within an auction depending on the valuation

structure. In particular, demand reduction and shaving was found to be most

effective amongst agents with complementing valuations.

A cautionary note should be attached to any interpretation of these findings. In-

deed, most of the findings depend on characteristics of the valuation model. Although

the best was done to ensure an interesting valuation model, results may differ once

the valuation structure is changed. However, the hope it that this framework can be

used to generate further results using new valuations 3.

3As we will discuss, Barnhart and Harsha are currently working on generating realistic models
for the FAA auctions
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1.1 Related Work

Related work to this research come from research in artifical intelligence and eco-

nomics. The agent perspective to evaluating auction designs derives from methods

in experimental economics that have used laboratory experiments to provide insights

into the application of economic theory, especially in the field of mechanism design

[17]. Yet, using software agents to analyze auctions is a recent idea, sprouting from

artificial intelligence research. It is perhaps best exemplified in the Trading Agent

Competition (TAC) created in year 2000. Annually, researchers around the world cre-

ate agents to compete in a travel agency scenario where agents compete in simultane-

ous markets for the various components of a trip : flight tickets, hotel, entertainment

facilities. TAC Classic features a combinatorial problem: the traveling agent problem

of buying in simultaneous auctions various items to complete vacation packages for

its clients. A variety of techniques were developed through TAC, notably, models for

price learning, heuristics to bidding, framework for equilibrium searching, stochastic

methods to bidding,... [14, 34, 15] We modeled our price learning mechanism accord-

ing to the supervised learning model of a high-performing agent in 2001 and 2002

TAC [29].

It is important to note here that research linked to TAC differs from our research in

at least two important points. First, TAC features a simultaneous auction setting and

thus has yet to study the strategies for the combinatorial auction. Second, TAC can

serve also as a testing ground for AI techniques in pitching into competition together

(and thus ranking in efficiency) researchers from around the world. The techniques

in TAC were used in deriving our strategies. Yet, because our goal is to generate

general results on strategies for bidding in ascending combinatorial auctions, our

general framework mirrors more closely methods for deriving restricted equilibrium.

Work in applying evolutionary equilibrium to market design analysis has been

done recently by Phelps and Parsons in relation to the double-auction mechanism
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[27, 28]. Reeves et al. also worked on providing a framework to calculating re-

stricted equilibria using evolutionary equilibrium in the case of simultaneous ascend-

ing autions[10]. We extend Reeves’ proposed framework to a more complex scenario

of heterogeneous agents, and apply it to the FAA auction problem.

We also benefit from studies in mechanism design in generating the strategies used

to evaluate the auction. Heuristic strategies such as ”ZIP” and ”GD” first developed

for single item auctions had been used in many studies [31] . We decided, however,

to instead develop heuristic strategies to model more recent strategies observed in

combinatorial settings. Especially, research conducted on game theory and auctions

found many interesting strategies in the game, such as collusive activity, parking,

and shaving, which served as inspirations and strategy benchmarks for the heuristic

strategies studied in our experiments [18, 33, 23].

Another set of literature related to our research is the set of published works on the

application of the auction game to the specific case of airport slots and the expression

of airline preferences. The idea of auctioning off airport slots has been proposed as

early as in 1982 [24]. Ensuing models were developed for valuations, with various

uses of auction mechanism. Similarly, Donohue made a model for Atlanta airport by

generating revenue according to the size of the current aircraft leaving the airport [19].

Donohue assumed that airlines prefer their original schedule to any other schedule due

to long-time optimization. Ou et al. discuss a variant on this scheme by generating

a complete model for aircraft profits with a bidding language[11]. In the valuation

model they suggested, Ou et al. based the profit associated to a slot by an airline on

the type of airline involved (dominant, low-cost, or a ”regular” carrier), the revenue

and cost for the flight using the slot (determined from aircraft size, miles flown by

the flight, and unit revenue and cost for each airline), and whether the slot is at a

peak time or not. Complementarity between slots are also considered, and substitutes

between slots at neighboring times are considered. Unfortunately, Ou et al. did not

have the chance to test out their model experimentally in a combinatorial setting, a

part our project fulfills. Our project also extends their valuation by introducing the
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idea of budget constraints.

1.2 Outline of Thesis

Our work is best summarized in four stages:(1) Implementation of the current auc-

tion design proposed for FAA auctions; (2) Modeling the valuations of participating

airlines in the LGA auction ; (3) Modeling agent world knowledge in the form of a

staged learning process of price prediction; (4) Calculation of restricted equilibrium

between agents of credible heuristic strategies.

In the first stage, we implemented the auction design proposed for FAA auctions

as described in Chapter 2 of the thesis. Next, two models were explored to represent

agent valuations for time slots at La Guardia. First, there is a linear optimizing

model that estimates desired packages by solving an integer programming problem

based on existing airline network [5]. We also implemented an alternate model of

packages based on the interactions between two types of agents at LGA : incumbents

and new entrants. 4 This stage of the research is described in Chapter 3 of the paper.

The next part focused on analyzing the auction through various agent strategies.

Chapter 4 lists the issues considered in generating our agent strategies ; while chap-

ter 5 discusses our experimental setup for the simulatoins. First, we trained price

prediction models using the supervised learning framework proposed by Stone et al.

[29] The process for price prediction is discussed in Chapter 6. Chapter 7 continues

our analysis by explaining our methods in generating payoff matrices for the heuristic

strategies and the subsequent evolutionary search for equilibria.

The thesis finishes off on a discussion of the results of our experiments.

4The first model proved too long to run for our experiments, so our experiments are based solely
on the second model. After a few improvements, the run-time for this first model has improved at
the time this thesis is handed in. We hope to be able to run on it in further research.



Chapter 2

Combinatorial Auctions

2.1 Past Auction Designs and Considerations

Past auction designs and the considerations raised from their application serve as the

motivation to the changes introduced in the FAA simulation. Of these, the most well

known use of auctions to allocate items with strong complementarities and substitutes

are the spectrum auctions run by the FCC [7]. Run since 1994, the FCC auctions

were simultaneous ascending auctions - that is, independent auctions for each of the

spectrum running at the same time. Participants were to express their preferences

taking into account of the prices of all the items they might be interested in[9].

Concerns for dynamics in simultaneous ascending auctions are, however, expressed

on at least two major issues.

First, the exposure problem made bidding strategies complex for agents [10]. The

exposure problem involved the possibility for agents to be exposed to winning only a

fraction of the package with complementing items when bidding straightforwardly its

preferences. To make the problem clearer, let us consider an example:

Agent A values X and Y together at 10. Yet, agent A values either good only at 0.

In an auction, agent A may have to bid both at 5, yet wins only one of the two goods.

In this case, agent A would suffer a disutility of -5, worse than not participating in

the auction.

7
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As we see, the exposure problem is generated by the independent nature of each

auction.

Another problem raised by the simultaneous auctions was that the transparency

of prices made it easy for the agents to collude by signaling to each other through

the last digits of the prices. It was thus noticed that during the auctions, trailing

numbers mirroring object IDs in bids recurred, as participants tried to signal to each

other and enforce collusion through the threat of punishing a rival by shifting demand

to the rival’s desired markets [8].

Taking account of these concerns, a different auction design is proposed to the

FAA in the style of the clock-proxy auction design [4]. The clock-proxy auction

design is in two parts.

First, there is a clock auction (also a price discovery phase) that is an ascending

auction with package bidding; this is followed by a proxy phase which has a proxy

taking in the preferences of the agents and then bidding on their behalf following

a simple rule. However, it was decided in December 2004 that for the simulations

before the actual auction at least 1, only the clock phase would be used as it is

simple to understand and bid. It was also expected that the combinatorial bidding

language should solve many of the inefficiencies observed in the independent ascending

simultaneous auctions. In our experiences, we decided to follow the guidelines for

these simulations.

2.2 Combinatorial Clock Auction

The combinatorial clock auction is a basic ascending-price combinatorial auction,

following a simple clock design. At its most basic form, the clock auction starts with

prices of 0 on all objects. At each round, the auctioneer announces linear prices on

individual objects. Each agent then responds with the particular bundle it would

prefer given the announced prices. Taking into account total agent demand, the

1notably, the February 2005 simulations
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auctioneer will calculate the excess demand for each item. Prices on items in excess

demand will be raised in proportion to excess demand. This process is repeated until

there is no more excess demand.

Traditionally, iterative combinatorial auctions solve a winner determination prob-

lem given the agent valuations. The combinatorial clock auction alone, without the

proxy round, is, however, only combinatorial in its bidding language. This mechanism

eliminates exposure risk by committing the auctioneer to selling off only bundles of

items as specified by the agents, but maintains possible inefficiencies due to the linear

increases of the prices. Another key difference between the clock auction design and

the spectrum simultaneous ascending auctions is in the activity rule. While the spec-

trum auctions had an activity rule that forced reduction in quantities bid on as prices

progressed, the clock auction relies instead on the revealed preference rule, hoping as

such to reduce strategies that try to game on the activity rule by maintaining flexibil-

ity. Finally, to prevent collusion, inter-round prices are determined by the auctioneer,

taking into account of the overdemand at each round. There is thus very little means

of communications between the agents to enforce a collusive scheme.

In this section, we will begin with a description of the auction, including the

activity rule, allocation, and pricing. Then, we will discuss the application of the

auction to the FAA problem and possible theoretical inefficiencies that may arise

from the auction.

2.2.1 Activity Rule

The activity rule dictates the rule agents must follow to make bids. Mostly, activ-

ity rules try to encourage truth revelation by forcing bidders to bid according to a

downward sloping demand curve. As such, in simple ascending auctions, the activity

rule restricts bids by making sure that agents cannot reenter the run for an object

after dropping out of the auction. In the case of spectrum auctions, bidders could

not increase the quantity of objects bid upon. Yet, this created incentives to parking

- to maintain flexibility, a bidder has to game the activity rule by bidding early on
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many objects with low prices.

As a suggestion to fix this activity rule, Ausubel et al. propose instead to a rule

based upon the principles of revealed preference. As such, consider two times denoted

s and t (s < t). Let ps and pt be the price vectors at these times, and let xs and xt be

the associated demands of some bidder, and let V (xi) be that bidder’s value of the

package xi. A sincere bidder prefers xs to xt when prices are ps:

V (xs)− ps · xs > V (xt)− ps · xt

and prefers xt to xs when prices are pt:

V (xt)− pt · xt > V (xs)− pt · xs

Adding these two inequalities yields the revealed preference activity rule :

(pt − ps) · (xt − xs) < 0

As such, for all times t, the bidder’s demand xmight satisfy RP for all times s ¡ t.

2.2.2 Monotonic Increase in Prices

Prices will monotonically increase through the auction for overdemanded items ac-

cording to the level of overdemand. The current price function increases the price on

an item in proportion to the overdemand observed on the item. The equation is as

follows:

Pt = Pt−1 + d

where:

d = a/b ∗ C

• a is the overdemand
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• b is the maximum overdemand that can occur given the number of participants

and publicized maximum slots available (thus Ndups* Nagents.

• C is a constant, set at 800 for the simulations we run.

2.2.3 Final Allocation

The auction ends once there is no overdemand on any item. At this point, the

auctioneer will go through all the rounds of the game. To minimize undersell, the

final allocation will be the round with the set of bids that minimizes the maximum

absolute difference between available supply and demand, subject to the constraint

that no slot can sell more than 4 overdemand). In other words, it is :

minL =
∑

i |goi− gsi| for all i.

subject to the constraint:

gsi− goi < 4 for all i.

• where gsi is the number of goods sold for good i;

• and goi is the number of goods offered, again for good i.

2.2.4 The various pieces of the auction

The setup for our mechanism is composed of three different pieces: the auction, the

agent model, and the agent strategy. At each round, the auction calculates the present

prices, along with the existing overdemand on each item (if there is overdmeand), and

passes them to the agent strategy piece. The agent strategy then queries the model

to get valuations and preferences given the current prices and predicted final prices.

Having gotten the real preferences of the agent, the agent strategy then bids according

to its strategy, giving back to the auction the package it wishes to bid on at the current

time. The auction then verifies the bid according to the activity rule. If the bid is

accepted, then the process is renewed. Otherwise, the bid is returned to the agent

who is prompted to return a different bid.
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Figure 2.1: a schema of the auction process

2.3 Application to the LaGuardia Domain

The FAA application of the auction is characterized by the large number of duplicates

of the same object, and a voucher system to compensate incumbent airlines for the

existing facilities at LGA they hold.

Slot Allocation

Originally, the auction was designed to be held for 15-minute interval slots, with

thirty-two instances of each slot. However, in the simulations presented during con-

ferences to the FAA and the airline executives, to cut computational time, while

illustrating important concepts of the auction, the number of objects was cut to
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hourly slots from 7 a.m. to 10 p.m. (16 different objects). In our own experiments,

due to concerns for computational speed and the large amount of data needed, we

used the smaller sample, with the number of duplicates also cut to 12 instances of

each object, thus making the total number of items in the auction to be 192.

Vouchers

To auction off the air slots, the FAA needed to compensate incumbent airlines for

possibly losing the use of existing facilities they had invested in at LGA. It has been

proposed that the auction awards each incumbent a voucher for all slot times they

held prior to the auction. The value of the voucher is calculated according to the

final price of the slots in the auction, as follows:

Vi = (Pfinal · xi) ∗ Ncurrent

Npast
for any agent i.

where:

• xi is the collection of slot times previously held by agent i.

• Pfinal is the vector of all the final prices of the auction

• Ncurrent is the current number of slots in the auction

• Npast is the number of slots that were regularly used before the auction. (Ncurrent

Npast
< 1 to

solve the congestion problem.)

As such, airlines receive a market value of the slots they held, normalized to the

congested problem. The value of the voucher is thus intended to be as monetary - the

voucher can be redeemed to purchase slot times at any FAA auction (LGA or future

airport auctions).

2.4 Examples and Discussion

In this section, we want to illustrate the characteristics of the auction we’ve described

thus far with a few example cases. Through these cases, we hope also to illustrate

both advantages and vulnerabilities of the auction that later guided our strategies.
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2.4.1 Example Case 1 : Simple Example with Efficient Allo-

cation

In the first example, we present an auction with two different objects, X and Y .

There are two different agent participants in the auction, A and B.

Suppose A has valuation on two substitute packages:

• either X which A values at $3

• or Y which A values at $3

(Notice that agent A has utility for only one of the items, as the items are subsitutes

of each other.)

B has valuation on one package:

• X and Y which B values at a total value of $2 (having either one is of value 0

to B; these two items are complements for B).

It is clear here that the efficient allocation is to have agent A get item Y , while

item X remains unsold, or given at price 0 to any agent.

We show that the dynamics of the clock auction proposed will lead to this efficient

allocation, while a simultaneous ascending auction will not if it does not allow for

quantity reduction on items whose prices have not increased, especially if agent B is

sunk-aware. The above table summarizes the results that we should observe round-

to-round from a simultaneous ascending auction and a combinatorial auction.

We suppose here, without loss of generality in the auction (assuming that the

auction increases prices slowly), that the prices increase by $1 at each round when

there is overdemand.

As we see from the table, the clock auction allocates the efficient allocation. How-

ever, in the simultaneous ascending auction, if agent B is blindly responding, there

is an efficient allocation with agent A obtaining item X. However, agent B then gets

a disutility of −1.
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Round agent A bid agent B bid Price of Price of Y Comments
1 Y X and Y 0 0
2 X X and Y 0 1
3 X X and Y 0 1
4 X 2 1 END for Combinatorial Clock or Sim. Auction
5 X X and Y 2 1
6 Y none 3 1 END for Sunk Awareness, Sim. Auction

Table 2.1: Example 1 : Progress of Auction

Notice here that agent B has an incentive to bid with sunk-awareness, whereby B

calculates the utility from bidding while taking into account of the fact that he cannot

withdraw bids on items whose prices do not increase. In this case, B would continue

to bid on its package even past the optimum point as there is the same disutility of

−1 for the two possible outcomes: whether it wins the entire package at a price of 3,

or if it has to pay the price of −1 for something for which it has no value. If agent B

bids with sunk-awareness, then the system pushes instead item Y to agent A while

agent B does not pay for anything - an inefficient outcome by all means.

2.4.2 Example 2 : An Undersell Problem

A major shortfall of this combinatorial clock auction is that the auction imposes

monotonically increasing linear prices - long deemed problematic. Indeed, research

has shown that linear prices are generally not rich enough to capture the efficient

allocation. In particular, undersell can occur. The following example illustrates this

dynamic.

Suppose that we now have three agents, but still with two objects.

A has valuation on two substitute packages:

• or Y which A values at $5

(Notice that agent A has utility for only one of the items, as the items are subsitutes

of each other.)

B has valuation on one package:
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Round agent A bid agent B bid agent C bid Price of Price of Y
1 Y X and Y X 0 0
2 Y X and Y X 1 1
3 Y X and Y X 2 2
4 Y X and Y 3 3
5 Y 3 4

Table 2.2: Example 2 : Progress of Auction

• X and Y which B values at a total value of $4 (having either one is of value 0

to B; these two items are complements for B).

C has valuation on one package:

• X which C values at $2

It is clear here that the efficient allocation of the auction has agent A winning

item Y , and agent C winning item X. Yet, if we look at the progress of the bidding

in the following table, the final allocation of a clock auction with no smoothing for

undersell (continuing until there is no more overdemand, disregarding undersell), is

merely an allocation of Y to agent A, but item X is not sold to anyone. In the

FAA auction design, a dampening effect (by allowing for mild oversell), is used to

help mitigate such an inefficient allocation. For more pronounced and complicated

valuations models, however, allowing for limited oversell may not solve this problem.

2.4.3 Example 3: Adding Budget Constraints

A key component of our valuation model is the introduction of budget constraints.

The interaction between the activity rule and the budget constraint is an important

one that we would emphasize later in the auction. It is thus fitting that we also

illustrate an example with budget constraints and the activity rule here.

Again, we present an auction with three different objects, X, Y and Z. There

are many agents participating in the auction, notably agent A who values X and Y

together at $20; or Z alone at $10. A has a budget constraint of $8. It is clear that
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agent would start bidding on X and Y first. Assume that prices go up at uneven

paces (some agents drop out and some come in on certain items). It is possible that,

at a round t, the price of X and Y is $8, whereas the price on Z is still only $2.

Suppose that at this round, many agents move from bidding on X or Y to bidding

on Z. Consequently, at t + 1, X increases its price by $1, such that X and Y is now

priced at $9, beyond the budget of A. On the other hand, Z increases by $3 to $5.

It is clear here that agent A would want to shift bidding to Z. However,the revealed

preference rule indicates:

(pt − ps) · (xt − xs) < 0

for all s < t.

As such, agent A would not be able to bid on Z anymore. This is the budget-

revealed preference conflict that we will discuss in more details in the next chapters.



Chapter 3

Valuations for the LaGuardia

Domain

3.1 History of the Problem

Overcrowding at U.S. airports had been an issue for decades. Unfortunately, some of

these problems cannot be solved in the foreseeable future without a reduction in the

demand. Indeed, for many airports, such as La Guardia, extensive expansion of the

airport to accomodate rising demand is physically impossible (the Federal Aviation

Association (FAA) predicted that by 2010, technology improvements can improve

the capacity by 10%, while the predicted increase in demand for the same period

is 17%)[25]. Yet, reducing demand efficiently also holds many challenges. In 1968,

several US airports were subject to ”High Density Rules” with limits to the number

of take-offs and landings per hour. Since then, airports distribute slots at particular

times, which is defined as ”a reservation for an instrument flight rule takeoff or landing

by an air carrier or an aircraft in air transportation”.[16] This code was criticized as

inefficient. Yet, when a reform to the high density rule was enacted in 2000, thereby

reducing the restrictions of the code, demand soared in La Guardia with escalating

delays. In September 2000, LaGuardia faced more than 9,000 delays, representing 25

percent of delays in the United States[1].

18
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Although a re-enactment of HDR in 2001 followed by the September 11 terrorist

attacks soothed the delays, it is expected for the demand to soar anew after the HDR

rule expires in 2007. [2] It is clear that the status quo for LGA is unsustainable,

especially with the escalating effects on other airports due to the network nature

of the airline industry. Yet, reducing demand also holds also many challenges - in

particular, there is a need to ensure that the rare resource that these time slots have

become are used to the maximum of their value, thereby falling into the right hands

perpetually. A market mechanism using auctions is currently a favored solution for

a more efficient use of the airport, creating lower barriers to entry into the market.

3.2 Models used for valuating airport slots

There are two major challenges in generating valuation models for airlines. The first

is in understanding the actual microeconomics that guide the airline sector. There

are clearly strong incentives for airlines to protect this information. It is thus natural

that, in the conferences used to discuss the use of auctions so far, airlines have not

been straightforward in showing the actual valuations they have on the slots. The

second challenge is in the sheer number of possible bundles on which an agent can

calculate preferences on. Indeed, the number of bundles possible is exponential in the

number of objects available in the auction - and as such intractable. For the FAA

simulations, two models were developed to estimate the value of air slots hoping to

bypass these two problems.

The first proposed model, and the one originally intended to be used for the

simulations was a maximization problem model formulated as a integer programming

problem. The model was developed by Barnhart and Harsha in a partnership research

project and designed to take into account of the existing network of airlines, complete

with the design of flows of fleets of airplanes from one airport to another. Unfortu-

nately, the model was not completed in time for the running of the experiments. 1

1Due to the NP-hardness of the problem, the querying of model preferences took very long
computational time to arrive at a solution. At the time of the end of writing of this paper, the
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Therefore, a second model based upon interactions between incumbent airlines and

new entrants was developed to both reduce the runtime for performing the experi-

ments, and also to simulate the decisions a human bidder with limited instructions

(thus bounded rational) might have to make while bidding in the auction. Indeed,

if, in the first model, valuations had to be computed electronically by sophisticated

computers at each round, it is possible, given the precedence of the FCC auctions,

that bidders in an actual FAA auction could be executives who have in mind a finite

number of business plans each with a specific complement and substitute structure.

3.2.1 Budget Constraints

An important characteristic common to both the simple bounded rational model and

the linear optimization model is the presence of budget constraints - a characteristic

we’d like to take a moment to justify.

In standard auction literature, budget constraints have not been much considered.

Indeed, although budget constraints are constantly held out in consumer utility max-

imization models, most auction designs for large-scale commercial auctions assume

that company bidders should be constrained only by the productive power of the item

bidded upon. This is an assumption for an efficient financial market, and thus, for un-

constrained liquidity. In reality, however, it is unclear that companies with troubled

recent history (especially ones in the current airline industry), can actually raise the

money necessary to win a slot on which they can make money in the future. This is an

especially critical case given the comments made by airline executives participating

in the National Center of Excellence for Aviation Operations Research (NEXTOR)

conferences on the cash constraints under which they currently operate.2

valuation model has become more tractable, with solutions for auctions for 4 time slots and a
restricted number of 3-5 cities and 3 fleets in the agent network considerations. However, there was
no time to run tests with the strategies on it.

2Two conferences have been held so far. The first one was held in November 2004, discussed
administrative solutions to LGA such as a Passengers Bill of Rights that will force airlines to com-
pensate travelers financially for delays. The second was the mock auction held on February 24-25,
2005.
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While the conclusions to be drawn from the various arguments on efficient markets

are unclear, there has been research that the complications that arise from budget

constraints can be potent [6]. As such, given the current particular position of the

airline industry, with major airlines having filed bankruptcy protection within the

past two years, we believe that the presence of budget constraints are an important

concern to address and study for an LGA auction.

3.2.2 Model 1: A Linear Optimization Model

In the first model, an integer programming problem is posed with the goal of op-

timizing an objective function in a network of cities. Although we did not get to

test this model with our strategies, the model was plugged and integrated into the

auction system. We present here the model both in hopes of being able to pursue

further agent-based research on it in the future, and to show also the potential for

agent-based analysis in studying even complex valuation functions.

The objective function in the model predicts the profits an airline can make given

a bundle bm at prices pm. As such, the object is :

max

∑
i,j,t

Faret
i,jP

t
i,j −

∑
i,j,k,s,t

Ct
i,j,kx

s,t
i,j,k −

∑
m

pm max{0, bm − vm}+

∑
m

r.pF
m max{0, vm − bm}

)

where :

• the first term refers to the expected revenue from representative fares flying

from city i to city j with P passengers.

• the second term estimates the cost of operations for maintaining the route

between city i to city j scaled by the number of flights x flown daily.

• the third term is the cash paid to buying the bundle bm in the auction at prices

pm and with vouchers vm;
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• and finally, a fourth term to indicate the amount obtained from the unused

vouchers provided to the agents in the auction design.

Constraints applied to the objective are the following:

• the budget constraint that takes into account of the vouchers incumbents get

from flying:

∑
m

pmbm ≤ B +
∑
m

pm min{vm, bm}+
∑
m

r.pF
m max{0, vm − bm} (3.1)

There is a differentiation here in the valuation between the amount of vouchers

used in the auction (the second term), and non-used vouchers. This is due to

the FAA rule that vouchers can only be redeemed within an FAA auction which

reduces the liquidity of non-used vouchers.

• the bidding limit and operational limit constraints which restricts the maximum

number of slots an airline can bid on (due to supply of objects in auction and a

limit on the number of flights the airline can operate in an airport at any single

time):

Bidding Limit ∑
m

bm ≤ L (3.2)

Operational Limit

bm ≤ Om (3.3)

• and a series of balancing constraints that conserve the flow of aircraft to ensure

that fleets used for all flights arrive and leave an airport within a reasonable

window of time so that all flights requiring the specific fleet find it available.

These constraints make for the network effects of the airport.

This model provides a fairly complex model of airport valuations with strong

considerations of network effects in the airport. At the time of the writing of

this thesis, the model runs in reasonable time for small problems with 4 airslot
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times, and small network considerations (with 3-5 cities, and 3 fleet types).

The challenge is still present for expanding the model to make the runtime

reasonable for the size of the real auction problem.

3.2.3 Model 2 : Bounded Rationality with Incumbents and

Entrants

For this simpler model, we took inspiration from the work from Ou et al. [11] and built

a bidding language in the form of XOR-AND-XOR to express a valuation function.

We will describe the bidding language in more details at a later point in this chapter,

after we present the microeconomics employed in building numbers for the model

itself.

Valuation Tree

To use a tractable bidding language, we employ a valuation tree, which is expressed

in the tree-based bidding language proposed by Parkes et al.[13] The language is one

of XOR-AND-XOR, expressing both substitutes and complements in the auction.

The tree representing the valuation has goods as leaves. The leaves are the only

object in the tree with a value on them. This is important in the calculation of the

total value attached to the tree.

One level above the leaf level is an XOR of substitutes. In particular, neighboring

slot times can also be used to substitute each other, albeit at a discount. Thus, the

XOR would have children the substitute goods, each with a different value should it

be won.

The parent of the XOR is an AND. This represents all the slots that the agent

needs to satisfy a particular business plan. This is the complementarity factor: an

agent needs to satisfy all the nodes to obtain the implied utility from these nodes.

Notice that an agent gets zero utility should a single node be missed.

Finally, at the top of the tree is an XOR of all the business plans the agent can

follow. In particular, the plans differ by the cities that the agent plans to serve in
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each case. Currently, the number of business plans an agent considers depends on

the number of cities the agent plans to fly to, fluctuating between 1 to 15. We will

return to this point later, after discussing the role of cities in the model design.

An example of a valuation tree can be illustrated as follows:

BUSINESS PLAN 1

Flight 1: (800, 200) XOR (0900, 130) XOR (0700, 130) (City 1)

AND

Flight 2 : (1200, 200) XOR (1300, 130) XOR (1100, 130) (City 1)

AND

Flight 3: (1700, 200) XOR (1600, 130) XOR (1800, 130) (City 1)

AND

Flight 4: (800, 100) XOR (0900, 70) XOR (0700, 70) (City 2)

AND

Flight 5: (1600, 100) XOR (1700, 70) XOR (1500, 70) (City 2)

XOR

BUSINESS PLAN 2 :

XOR...
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Incumbents and Entrants

In the literature on airport slot valuation, generally three types of airlines are iden-

tified: a dominant airline, or hub airline; a regular airline, and a low-cost airline. As

92% of the travelers are local origin/destination traffic, LaGuardia does not serve as

hub to any airline [25]. Indeed, while there are three major carriers at LaGuardia,

covering about 40.5% of the market share, none of them dominate the market. In-

deed, American carries about 20% of the passengers, with USAirways and Delta

each contributing about 10%. The remaining passengers are distributed among a few

smaller carriers, each with less than 7% of the market share, notably United, Spirit,

Northwestern [22].

Thus, given this special nature of LGA, we decided to split the market instead

into two types of airlines : the incumbent airline that already has slots at LGA, and

the new entrant airline. We differ these airlines, first by their CASM and RASM

(the cost per available seat-mile and revenue per available seat-mile, respectively, two

constants generated randomly); and also by their general strategy. Below is a table

with numbers taken from [11].

Type Revenue per ASM Cost per ASM
Regular U[0.09, 0.11] U[0.08, 0.10]

Low-Cost U[0.08, 0.09] U[0.06, 0.08]

Table 3.1: Differences between the incumbents and entrants

The incumbent airlines (apart from Spirit) are regular airlines, whereas entrants

are all deemed to be low-cost carriers. In general, the two types of agents also

differ in their schedules. Indeed, we assume that the incumbents have basically non-

overlapping schedules that they wish to maintain post-auction (due to the costs of

changing schedules), whereas the entrants have identified one to three cities with

which they would like to start serving La Guardia. More precisely, at the beginning

of a simulation, a past schedule is built encompassing all the incumbents, splitting on

average the allocation of slots according to the present market share of each airline.
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For this part, we assign the owner of a past slot by sampling uniformly the incumbent

airlines for a particular slot, such that the probability an airline gets assigned the slot

is equal to the market share it currently holds at LGA. The market share is divided

as follows:

Airline Market Share
American 45%

Delta 12.5%
Usair 13%

Incumbents 1-6 (each) 7%

Table 3.2: Incumbent Market Shares

For the entrants, we assume that entrant airlines are mostly economy airlines look-

ing for a few slots to pair with their existing networks. As such, their desired number

of slots is sampled randomly from an uniform distribution U [1, 21]. In addition to this

base demand, additional demand is also generated randomly for both the incumbent

and economy airlines to bias demand towards currently observed bias in scheduling

(overdemand in morning and early evening).

After a desired schedule is assigned, the values attached to the air slots is generated

by assigning cities that each agent flies to. The value attached to a slot is highly

dependent on the city to which the airline flies to from this slot. We assume that

all flights leaving from the same city exhibit strong complementarity as airlines are

able to maintain their presence in that city. (This is especially true of frequent

shuttle services, such as the Delta shuttle between Boston and LGA). Each city is

characterized by the following variables:

• numflights per day: Distributed as U [1, 10]

• scheduleOfFlights: a set of times agent finds most desirable to fly to this city,

sample randomly from the slots available to the agent.

• complementarityFactor: The complementarity factor agent gets from being able

to fly the number of flights per day to the city. Distributed as U [0, 0.5].
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• distance : Sampled from N (1170, 1000) This is the distance between the city

to LGA.

• numSeats: Sampled from U [30, 200]. This is the number of seats the average

aircraft connecting this city and LGA has.

Once the entire existing schedule has been generated for the incumbents, values

at the leaves are generated as follows:

Profit(i, xi,j) = V (i, xi,j) ∗ Compi,j

∀ participants i, and time slots x for city j to which airline flies to.

where:

• Compi,j is the complementarity factor for winning all the slots airline currently

flies to city j.

• V (i, xi,j) is the value depending on the network of i, such that :

– if x is the time in the schedule that airline i wishes to fly to city j on :

V (i, xi,j) = (RASMi − CASMi) ∗ distancej ∗ numSeatsj,i

– Otherwise, for all x such that C(x± 1, i) = C(y, i) exists, we have:

V (i, xi,j) = (RASMi − CASMi) ∗ distancej ∗ numSeatsj,i ∗ subsFactor

where 0 < subsFactor < 1, is the substitute factor for neighboring times-

lots to the one desired.

In other words, an agent values slots depending on the network of cities it currently

has planned for. Substitutes are for neighboring times of most desired time slots.

There are ten incumbents and four entrants in any given simulation. In building

this model, we took care of encompassing three key characteritics: first, credible

complements and substitutes are expressed for all agents; second, there is a budget

constraint on the model related to the voucher scheme prescribed by the auction

design; and third, that microeconomics explain the values generated for the various

time slots.
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Budget Constraint

In our bounded rational model, budget constraints are generated first by an assigned

cash constraint on the agents which is increased for the incumbents by the vouchers

on previously held time slots, as described in the auction design in the last chapter.

The initial cash constraint is generated by by randomly sampling from a Gaussian

distribution built upon the efficient average payoff of agents in the auction. In par-

ticular, we generated 200 different games that we solved for the efficient allocation by

converting the games into integer programming problems, and solving with CPLEX.

From there, we calculated the average payoff (P̄ ) and variance (σ2
p) for the system,

under efficient allocations. The budget for the incumbent is distributed as follows:

B ∼ N(P̄ /4, σ2
p/16)

while the budget for the entrant is the following:

B ∼ N(P̄ /2, σ2
p/4)

We chose here the budget for the incumbent as half the budget of the entrant

for two reasons. First, given the nature of the incumbents at LGA (mostly regular

airlines who have filed bankruptcy in the last two years), it was natural to find them

more budget constrained. Second, incumbents had access to vouchers in the auction

which would increase the budget available to them in the game in general. The

budget chosen as such should be binding, but should also allow for the same efficient

allocations as the normal circumstances.

Critique of Model 2

The model provides a simple and flexible framework built upon microeconomic prin-

ciples. In particular, the idea of multiple business plans may capture well a certain

part of the bounded rational reality of the managers actually participating in the

auction, with a constrained number of predefined plans to take their companies. This
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representation also cut on the computational time to run the experiments we will

describe in chapter 5.

To provide basic micro-foundations to justifying the values assigned to the slots,

we used a network of cities and fleets, combined with the airline ASM. Credible

complements and substitutes are expressed in the valuation tree in terms of business

plans and neighboring slots, respectively. We also built a budget constraint to reflect

possible liquidity constraints in the current airline industry.

However, the simplicity of the model glosses over many aspects of reality. For ex-

ample, the difference between the incumbents and entrants may be more pronounced

than model: it seems more realistic for entrants to have more broader valuations

(maybe not for a flight at a particular time, but rather for a number of flights per

day at many different types of time). If this is the case, another valuation generation

scheme would need to be used. Also, the AND component of the model at the second

level seems overly rigid- a human agent may have more flexible business plans than

a specific number of slots that must be won. An ”OR” may be more expressive - but

also brings greater computational complexity. In the end, however, we aimed for a

model that can capture key characteristics of the auction - and this model serves well

for this purpose.



Chapter 4

Vulnerabilities of the Auction and

Possible Trading Strategies

To better understand the effect of common strategies seen in past auctions, as well as

to explore possible gaming effects of the current activity rule, we devise two sets of

experiments. In the first part, we focus on the strategy of price prediction. Indeed, one

of the most common techniques TAC agents used to solve the exposure problem when

playing in simultaneous ascending auctions was to learn forms of price prediction and

bid accordingly. Price prediction was also useful in general when activity rules can

be constraining even in terms of truth expression. Thus, although the combinatorial

clock auction does not have an exposure problem in the style of simultaneous auctions,

we found that the interaction between the binding nature of the activity rule and the

budget constraints made it useful for the agent to price predict its budget. Our first

part of the experiments was thus to build this baseline strategy of price prediction

and compare it with the straightforward maximization strategy.

Apart from price prediction, we also wanted to better understand the effects of

other strategies found useful in the auction. For this part, we devised a set of para-

metrized trading strategies within which we calculate a restricted evolutionary equi-

librium. The strategies we paid attention to can be classified into four categories:

30
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’straightforward’ bidding which is based on simple maximization ; ’flexibility retain-

ing’ in order to gain more flexibility in future bidding; ’shaving’ to try to free-ride in

cooperating bids; and ’demand reduction’. The following section discusses in details

the role of price prediction in a trading strategy, and the logic and implementation

behind each of the other strategies in the restricted equilibrium experiments.

4.1 Price Prediction

4.1.1 Motivation for Price Prediction

Price prediction can be seen generally as a profit predictor that can help guide agent

decisions in the bidding. This is particularly useful if the activity rules can constrain

the bids the agent is allowed to bid upon in the future. As such, in simultaneous

ascending auctions, price prediction can help prevent exposure to sunk losses by

helping the agent make decisions on a broader level than myopically responding. It is

thus not surprising that price prediction is among the most commonly used strategies

to calculate the optimal bid in the TAC competitions[14].

The interaction between the budget constraints and the revealed preference activ-

ity rule motivate for us the use of price prediction. As we saw in the auction design,

the revealed preference rule forces participants to always bid on packages whose price

increase is less than the price increases of packages participants had previously bid

upon. This was based on the revealed preference principle - that participants must

prefer a package at a time than others if its utility on that package was higher. Yet,

this activity rule does not take into account of a budget constraint. Indeed, with a

budget constraint, a participant may have a higher utility from consuming a package

A than package B at time B, but cannot do so because of the budget constraint.

In this case, if the revealed preference rule is enforced strictly, the agent may be

forbidden to express its true preferences under budget constraint 1.

1Refer back to example presented in chapter 2
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This is particularly true if budget constraints are particularly constraining, or un-

known. This is the case for the LaGuardia auctions as incumbents’ budget constraint

depend directly on the amount of money generated from the vouchers. In real life,

market knowledge may help give bidders an idea of the amount to expect from the

auction as well as other information as to what the agent can expect to win. In the

trading agent problem, this knowledge can be simulated through price predictions -

indeed, if the agent is able to predict the final prices, it could use that information

to better optimize its bid.

4.1.2 Process to Simulate Price Prediction

Most forms of price prediction look at history of games played[14]. However, because

price prediction formed the base strategy of our games, there were no examples of

past games to learn from. As such, we devised a 6-stage-learning process for the price

prediction. In the first stage, games were played without the activity rule and with

all agents myopically optimizing at each round. The results from these games were

then learned through a machine learning algorithm. The resulting model was then

used as the price predicting algorithm for games played in the subsequent stage. This

process was repeated six times. The process and algorithm would be discussed in

deeper details in the next chapter.

The resulting model served the basis for price prediction in all our heuristic strate-

gies. Although we were worried first that the accuracy of the price prediction algo-

rithm is lessened as agents using heuristic strategies are introduced in the environ-

ment, we found the error of prediction in these circumstances quite stable.

4.1.3 Price Prediction and Budgets

As described in Stone’s paper[29], there are many ways to use predicted prices. In

particular, one may bid according to the predicted prices, using them as prices when

bidding in the auction. Also, predicted prices can be calculated as a distribution

through which one can calculate the expected optimal bid.
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In our case, however, we wanted a simple baseline agent with price prediction

with which to test the various heuristic strategies - one with which a parallel can

be drawn between this agent to the traditional straightforward agent often used in

auction research. Moreover, while price prediction could also be used to guide bidding

on the likely objects agent can win, we felt that this would cut on the benefit of clock

auction itself- price discovery. As such, using price prediction to predict budgets but

myopically calculating utility from the current prices proved a good compromise.

It is clear that a baseline strategy involving only budget constraints does not

resolve the problematic interactions between the budget constraints and the activity

rule. This permitted us to test further heuristics that can further improve on this

problem.

4.2 Strategy Class 1 : ’Flexibility Preservation’

The first heuristic class of strategy addresses further the problem of interacting budget

constraints and activity rule discussed earlier. Interestingly, this problem has similar

qualities to the constraints imposed by the spectrum activity rules which dictated that

agents could not increase the number of objects bid upon. One of the most common

ways agents used to game these constraints was to try to bid to preserve flexibility in

the beginning of the auction rather than to reveal their true preferences[3]. This is a

technique often referred to as parking.

In the aftermath of the spectrum auctions, researchers found that ”parking” was

one of the main problems created by the activity rule. Parking is commonly defined

as a bid ”that the bidder does not intend to win- made to preserve enough eligibility

so that the bidder can bid on its desired markets later in the auction.”[8] Yet, parking

can also be used for collusion enforcement and demand reduction purposes - such that

the bidder prevents price increases on the items it cares about, pushing instead rivals

onto concentrating their capital in their territory.
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In general, parking was found problematic as it could sometimes force price distor-

tions that exclude the high-value bidder from winning the item it should get. It was

actually to eliminate incentives for parking that the proposal for the FAA auctions

included an alternate activity rule based upon principles of revealed preferences as

presented in chapter 2. Yet, in support of the problem found with interacting budget

constraints and the revealed preference activity rule, we found in our experiments

that parking remained a dominant strategy for incumbents in the auction.

4.2.1 Implementation of ’parking ’

In our implementation of a parametrized parking strategy, we define the bid on a

package as follows:

1. Choose an α

2. For each round:

• bestBid = getBestBid(Pcurrent, Ppredicted) which is the true package wanted

given present prices following straightforward base strategy.

• if Mean
(

Ppredicted−Pcurrent

Ppredicted)

)
> α then:

– choose bid such that : Qbid = QbestBid (quantity of objects bid upon is

the same as the quantity of object agent would have bid upon given

these bids) AND Pbid < PbestBid

– In other words, agent bids on objects whose prices are lowest at the

present round up to the quantity of objects agent would have bid on

if it was playing the straightforward strategy.

• otherwise, bid bestBid.
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4.2.2 OverdemandMore - Another strategy to maintain flex-

ibility

Another strategy we also devised to try to test the value of more flexibility for the

agent was to weigh utilities on bundles of items to take into account of the flexibility

gained for the agent. In this strategy, given two bundles close in utility value, the

agent would bid upon the package that allows it to preserve more flexbility in the

future given the current activity rules. The proxy we used to measure flexibility was

the overdemand of the price of the item. As such, higher overdemand meant faster

growing prices that would let agent switch onto the slower price-increasing bundles

in the future. As such, we measure the weighted utility U ′(x) of an agent for bundle

x as such:

U ′(x) = U(x) ∗ 1
k∗O(x)+1

where:

• O(x) is the average overdemand of x.

• U(x) is the actual utility of x.

4.3 Strategy Class 2: ”Increasing Payoff ”

The second strategy class tries to increase payoff using two common strategies ob-

served in auctions that can be gamed upon. The first is shaving the utility when

bidding, and the second is demand reduction.

4.3.1 Shaving

Shaving is often deemed helpful in auctions where the Vickrey outcome is not guar-

anteed with straightforward bidding. In combinatorial auctions, shaving is seen most

useful to try to free-ride on a bidder with complementing valuations. To illustrate an

situation where shaving may be useful, let us consider the following example:
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Let this be a world of two agents, two objects again. Agent A values item X at

4. Agent B values item Y at 5. Agent C values item X and Y together at 4, with

no value for either one by itself.

It is clear here that the optimal allocation is to give X to A and Y to B. However,

because C only values the two items together, if B bids up to his value (4), A will

not have to bid up X at all (except at the first round to express interest) to have Y

allocated to him. In this case, it might have been advantageous for either A or B to

only bid up to a shaved value of their true valuation.

Implementation of Shaving

At the most basic level, shaving involves determining an α such that agents bid only

up to a value V (x) in the auction for every bundle x such that:

V (x) = U(x) ∗ α

The first implementation that we wanted to do was to try shaving while varying

alpha (possibly from 0.5 to 1) in the various games to create a payoff matrix of the

various profiles and expected valuation an agent playing alpha can obtain. However,

we found that the resulting payoff matrix would require too many entries (the size of

a payoff matrix for a two-strategy game with the 14 agents we used in the model is

50; for a 3-strategy game, it would be 1800). Especially, since each game needs an

average of 4 minutes to complete, we did not have enough time to populate a payoff

matrix with the number of entries required.

Instead, we chose α to be the theoretical Vickrey payment the agent could expect

in a Vickrey auction: α = (N − 1)/N where N is the number of agents participating

in the auction. It is certain that in the future, research into the variation on the

effect variations in the shaving have on the expected payoff of the auction should be

interesting.
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4.3.2 Demand Reduction

The final strategy we tested was demand reduction. Demand reduction refers to a

collusive process by which bidders drop out of the race for items that have yet to

have reached the bidder’s threshold value. Such an incentive can be illustrated in the

following example:

Assume a two-agent, 3-item world. Both agents A and B either value a package

of two of the objects at $5, or value each object at $2. If both are prepared to bid

the two cheapest up to a total of $5, there is an incentive for them to instead agree

to separate the three objects amongst themselves in the first round such that both

have a utility of either $5 or $2. This can be done by having one of them drop out of

the auction.

This is an unstable equilibrium - either agent has an incentive to deviate and cap-

ture a greater part of the pie. Yet, in the FCC auctions, demand reduction has been

seen as a problem, as evidence of collusive behavior enforcement has been observed

amongst the participants [3]. In particular, agents may be threatening punishment on

agents bidding in their territory. In the present auction, collusive behavior has been

made more difficult to enforce as the pricing is done by the auctioneer (there is thus

no means of communication between agents in the auction), and agents do not see

which agents are bidding on which objects. However, there is still clearly an incentive

for agents to try to demand reduce each other using information available during price

discovery. We try to calculate the restricted equilibrium between demand reduction

and straightforward bidding by making demand reduction a parametrized heuristic.

Implementation of Demand Reduction

We used overdemand as a proxy to implement demand reduction. Indeed, it seemed

that, given two packages of close value, it could be advantageous for the agent to

move to the least overdemanded item. This would reduce the demand on the former

package, and could lead to a better distribution of the items amongst the agents.

Indeed, if we took the former example, if one of the agents moved to bidding on one
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of the cheapest items since there is no overdemand on it, instead of bidding on both,

the auction could be led to a better allocation for both of the agents than if they

competed neck to neck up to the end.

Our model based on overdemand is very close to the model used for a heuristic to

preserve flexibility. It is the following:

U ′(x) = U(x) ∗ 1
k∗O(x)+1

k < 0, andsmall

where:

• O(x) is the average overdemand of x.

• U(x) is the actual utility of x.

It should be noticed that this strategy is close to OverdemandMore which we used

to preserve flexibility in bidding. Interesting, as part of our experiments, we found

that both strategies are relevant strategies to the agent.



Chapter 5

Experimental Setup

In this chapter, we’d like to give a general overview of the general experimental setup

of our simulations, along with some technical details. Our system is, at its core, a

Monte-Carlo simulation of auction games with two types of agents (incumbent and

entrants). We have already discussed the generation of valuation models and the

auction mechanism. After the system is running, we set a straightforward baseline

strategy. We saw in chapter 4 that we defined this baseline strategy by a price predic-

tion model(in our case, a budget-predicting agent trained with supervised learning).

Hereon, heuristic strategies are generated to form a complete agent strategy. Finally,

we calculate the restricted equilibrium between these heuristic strategies and the de-

fault strategy by generating payoff matrices and calculating the resulting evolutionary

equilibrium.

In a round, the process for determining the bid for an agent is as follows: first,

prices are past from the auction to the strategy agent. The strategy agent passes

the current status into the price prediction box which returns back a set of predicted

final prices. The strategy agent then prompts the valuation model with the current

prices, the predicted final prices, and also any heuristic bias on utility the valuation

model is to incorporate when looking for the bundle optimizing utility. For example,

if the strategy is for the agent to shave its true value, the strategy agent passes the

shaving constant α along with an indication that the valuation model shaves all its

39



40

Figure 5.1: A schema of the experimental process.

Figure 5.2: The process of selecting a bid.

values. Finally, the heuristic strategy modifies the bid according to the strategy and

passes it back to the auction.

Different AI techniques and algorithms are used at each step of our experiments.

The model optimization itself is formulated as an integer programming problem that

we solve using CPLEX - necessary due to budget constraints and activity rules. For

price prediction, we use machine-learning weka packages to train models. Parame-

trized heuristic strategies that can easily be changed through one parameter are then

generated to simulate traditionally popular auction strategies. Running simulations

over these restricted parametrized strategies generates for us payoff matrices for the
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various strategy profiles of a game. To find the Nash equilibria within this small set

of bidding strategies, we employ replicator dynamics.

Finally, to evaluate results for efficient outcome, we calculate the efficient outcome

of games by solving the winner determination problem over all agents’ honest valu-

ations. This is calculated following the winner determination process as described

in Parkes et al. [13] whereby the problem is formulated as a mixed-integer problem

(MIP) solved using CPLEX, with the structure of the valuations trees captured in

the formulation of the problem.

In the following chapters, we will explore in more details the process of developing

price predicting models and restricted game equilibria.



Chapter 6

Chapter 6 - Price Prediction with

Machine Learning

Many techniques for price prediction have been developed for the TAC games[14].

Our approach follows the machine learning process developed by Stone et al. and

implemented for top-scoring agents in TAC from 2001-2002[29]. However, while Stone

et al. were able to use past data from past TAC games and pre-competition seeding

games TAC participants played, we had to generate data and train our model instead

using a staged price prediction process. In this chapter, we will first describe this

staged learning process, then go through the learning algorithm itself, to present

evidence of the effectiveness of our approarch.

6.1 A Staged Approach to Price Prediction

Most price prediction algorithms are based on past games. In our case, however, we

needed to have a budget predicting algorithm in order to play games and generate

results relevant to an environment where all agents actually budget predict. In par-

ticular, we needed prior results with which we can train a price prediction model

first, before playing the games to generate the results to train the prediction model.

A staged approach where the environment is gradually generated proved a useful
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approach.

In our staged experience, the prior used was generated by running straightforward

myopically optimizing agents in auctions from which the activity rule wasn’t used.

A price predicting agent was then trained from this prior. In stage 2, we used the

agent trained from stage 1 to run further simulations and generate results. This

method is repeated for stage 3 through 6. As the stages progressed, we expected that

the environment the agent bid in became more akin to the actual environment of

price predicting agents, and that the error of price prediction converges, which was

observed experimentally.

6.2 Price Prediction - Machine-Learning Techniques

6.2.1 Training Data Format

To set up the our price prediction as a learning problem, we gathered training data

from games run at each stage. In this training data was defined a set of features or

attributes known at each round and that can thus be used to predict the final price.

The following basic attributes were used to predict the price on an item t :

• t ; the ID of the time slot we’re price predicting.

• currentPrice; the current price of the item t.

• overDemand ; the current level of overdemand of the item t.

• averageOverDemand ; the average level of overdemand of the auction (averaged

over all the items on sale in the auction).

• numRounds ; the number of rounds that have past since the beginning of the

auction.

• averagePriceChange ; the average change in price of item t over the past three

rounds.
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A training data instance is created for each item each round in a game, storing

all these attributes and the end price of the item of the game. Over the six stages,

we generated around 40,000 training instances at each stage. We found this amount

of data appropriate for the model to learn a model adapted to the instances.

Figure 6.1: Convergence of Learning within A Stage

This set of training data was then used on a learning algorithm. Following Stone

et al, which found M5 trees to be most useful in price prediction during TAC games,

we tried both the M5Rules and M5P tree algorithms implemented in weka. After ex-

perimentation, we found M5P regression trees to be most effective in price predicting

in our games.

6.3 Results from Price Prediction

The results from our staged price predicting experiences are presented in figure 6.2.

We see that the price prediction stabilized after 4 stages in our staged error process.

With a root mean error of around 0.25, we found the final model to be effective at

predicting the final prices of the auction.

As shown in figures 6.3 and 6.4, we also found that, as the price prediction became
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Figure 6.2: Convergence of price prediction results

more effective, underdemand in the auction fell, while the average payoff increased.

This indicates that the accuracy of budget constraint price prediction in itself may be

important in improving the efficiency in the outcome of the auction. It is also further

indication that myopic straightforward bidding does not lead to the efficient Vickrey

allocation.

Finally, the price prediction algorithms were fairly robust to the heuristic strategies

we introduced. Indeed, we found that the price prediction error remained low in all

strategy cases, with the root mean squared error at less than .28 across the board.
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Figure 6.3: Relationship between undersell and quality of price prediction

Figure 6.4: Relationship between average agent payoff and quality of price prediction



Chapter 7

Heuristic Strategy Equilibrium

To evaluate the heuristic strategies proposed in chapter 4, we follow the methodology

proposed by Reeves et al. in calculating the restricted equilibrium for a small set of

bidding strategies[10]. As such, we first convert this game from extensive to strategic

form, using Monte Carlo simulation to generate an expected payoff matrix for every

combination of the strategies playing against each other. Given the expected payoff

matrices, we calculate existing Nash equilibria through replicator dynamics.

7.1 Generating Payoff Matrices

Reeves et al. generated payoff matrices for what they call ”restricted games”, char-

acterized by specific auction rules, distribution of the domain, and a finite set of

strategies permitted to agents[10]. We have discussed in detail each of these of these

characteristics of the auction in application to our research in the earlier chapters.

To estimate entries of the payoff matrix, we repeatedly sample valuations for agents

and simulate games for each game profile.

An entry in the profile matrix is characterized by a strategy profile and an agent

strategy. A strategy profile indicates the environment in which the simulation is

played. For example, a strategy profile of (0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 1, 1, 1) for a simu-

lation indicates that 10 incumbent agents play the strategy 0, while 4 entrant agents
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play the strategy 1 in the game. Notice here that symmetry amongst the agents helps

to reduce the number of strategy profiles to populate the payoff matrix. As such, a

profile of

(0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 1, 1, 1, 0)

is equivalent to

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 1, 1, 0, 1)

as both indicate 9 incumbent agents playing strategy 0, 1 playing strategy 1; and 3

new entrant agents playing strategy 1, 1 new entrant agent playing 0.

An entry in the matrix would be characterized by a strategy profile and an agent

strategy, indicating the expected payoff for an agent playing a certain strategy in a

particular environment of strategy profile.

To calculate each entry in the payoff matrix, payoffs for the specified profile and

strategy are averaged over all simulations played. To reduce variances in results due

to the abnormalities in the generation of the valuations, the same set of valuations

are used to calculate the payoff matrix of every single profile.

Payoff matrices were the part the most time-consuming of our simulations, and

the limiting factor on the number of strategies we could vary per game. For their

simulations, Reeves et al. used perfectly symmetrical agents[10]. This symmetry

made it easier to generate payoff matrices - a profile of (0, 1) was deemed the same

as a profile of (1,0) . Moreover, their simple problem reduced greatly the run-time

of a single auction. Still, they found that it took many cpu-weeks to generate payoff

matrices of 286 profiles - ten-players with four strategies.

Yet, our valuation really held two very different types of agents - the incumbents

and the entrants. Moreover, the model we developed had 14 agents. This greatly con-

strained the number of strategies we could feasibly run. Indeed, for 2 strategies, the

payoff matrix has 55 different strategy profiles. For 3 strategies, this number jumps

to 2200, a number that would take many cpu-months to calculate payoff matrices

for. Due to the time constraints, we decided to run simulations only for games of 2
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Figure 7.1: Example of a Payoff Matrix for Incumbents: each point presents an entry in the matrix.
Neighboring data points indicate different strategies. On the x-axis, X Y0 the expected return of
an incumbent agent playing strategy 0 when X number of incumbent agents playing strategy 1 and
Y number new entrant agents playing strategy 1. Each X Y0 is followed on the right by X Y1 (the
payoff for strategy 1 in that same environment)

strategies, for all the heuristic strategies described in chapter 4, 1100 games run per

simulation.

7.2 Evolutionary Search

After payoff matrices are generated, we calculate the Nash equilibria through replica-

tor dynamics. The replicator dynamics were first credited to Taylor and Jonker [30]

and Schuster and Sigmund [26]. Our work in this part follows closely the framework

applied to calculate restricted equilibriums in the market-based scheduling mecha-

nism developed by Reeves et al [10]. In this framework, an iterative (evolutionary)

algorithm is developed to find the Nash equilibria of the system presented.

Because we have two types of population (the incumbents and the entrants), we
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varied the proportions in each population independently from each other. The total

strategy profile is thus a joint strategy with NI incumbents and NNE new entrants.

An initial population proportion in a population (either incumbent or entrant) is

chosen at time t = 1. At each generation, the proportion of people playing strategy

si in population i, pg(s, i), is updated such that:

pg(si, i) ∝ pg−1(si, i) ∗ (EPsi
−W )

and normalized such that:

∑
pg(si, i) = 1 over all strategies si for population i.

where EPsi
is the expected payoff for playing strategy s in the population i, and

W is the minimum value in the payoff matrix, serving as a lower bound on payoffs.

To calculate EPs, the average of all the payoffs for s is taken, weighted by the

probabilities that these profiles can occur given the proportions pg−1 observed for all

the different strategies. The payoff from each profile is weighted by the the factor M

calculated as :

M = MI ∗MNE

where MI and MNE are the probabilities for the incumbent strategy profile

(n1, ...n
I
s) where nI

s is the number of incumbent participants playing strategy sI .

Similarly, the new entrant strategy profile (n1, ...n
NE
s ), for nNE

s entrant participants

playing strategy sNE. As such, the weights are calculated following:

MI = NI !
n1!..nI

s !
∗ pg−1(1, I)n1 . . . pg−1(sI , I)nI

s and

MNE = NNE !
n1!..nNE

s !
∗ pg−1(1, I)n1 . . . pg−1(sNE, I)nNE

s

Once a population update reaches a fixed point, then the population has reached

a candidate mixed population equilibrium. Although reaching a fixed point is a

necessary condition for finding a Nash equilibrium, it is not a sufficient condition. As

such, we verify directly that the fixed point is a best response to itself to make sure

that it is indeed a Nash equilibrium.



Chapter 8

Results

Through our experiments we obtain two sets of results. In the first set, we analyze

the Nash equilibrium generated for the heuristic strategies. In most cases, the Nash

equilibrium yields more complex results than expected. In the second set, we ana-

lyze the problems and vulnerabilities of the auction as such observed through these

experimentations.

8.1 Nash Equilibria Over Heuristic Stratgies

In general, the Nash equilibria in heuristic strategies indicated the use of heuristic

strategies. However, the strategies employed differed greatly from type of agent to

type of agent. This indicated to us the importance in the valuation model in de-

termining the interactions between agents within the model. In this section, we will

present the results we found in each heuristic case, followed by a tentative theoreti-

cal explanation to these equilibria. These results, however, should be verified using

alternate valuation models.
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8.1.1 Result 1 : Flexibility Preservation

In general, we found the strategies for flexibility preservation useful for the agents

in the auction. The strategies differed, however, on the proxy chosen to preserve

flexbility within each type of agent.

Overdemand as Proxy for Price Increase

One of the ways to preserve flexibility was to use overdemand as a proxy for flexibil-

ity. Indeed, overdemanded packages tended to have higher price increase - and thus

promised more flexibility in the future. This was the heuristic we named Overdemand-

More in chapter 4. Experimentally, we found that entrants who overweighted utility

on packages with fast increasing prices had the advantage in playing the heuristic,

while the incumbents had two pure equilibria with equal expected outcome- to all

play the heuristic, or to all not play the heuristic. We can see these effets from the

figures 8.1 and 8.2:

In figure 8.1, we see that when started with a mixed population of 50/50, both in-

cumbents and new entrants would move to a pure equilibrium of playing the heuristic

strategy. Yet, in figure 8.2, when starting the initial population with the major-

ity playing the straightforward strategy, the incumbent stayed at using the default

strategy, while the entrants moved completely towards the other strategy - using the

heuristic to preserve flexibility. We attribute the results for the incumbents to the

advantage observed experimentally that incumbents may obtain in playing the oppo-

site strategy for demand reduction (moving to the items with the least fast increasing

prices), thereby reducing potential gains from preserving flexibility this way.

Parking

On the other hand, in the implementation of the parking strategy, incumbents were

found to prefer to use the heuristic strategy of parking, while entrants preferred to

use straightforward bidding. This can be seen again in figures 8.3-8.5.
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Figure 8.1: Evolution of proportions of strategies in population after generational updating with
an initial proportion of 50/50)

At first, this seemed surprising. Yet, intuitively, it is natural that parking can

only work if some agents in the auction do reveal their true preferences. Otherwise,

prices will only be raised on all items without any agent gaining true flexibility or

true information from it. It is possible, therefore, that given the structure of the

valuations, it is more profitable for the entire system for the entrants to reveal their

valuations first. This is probably due to two factors.

First, entrants probably have a higher expected profit on the flights they take in-

terest in than incumbents 1 This makes them more likely to win the item anyway. It is

thus better for them to express this interest in the beginning to keep the incumbents

off from increasing the price on the item - while incumbents are better off keeping

off since they are less likely to win it in the first place. The edge entrants have in

bidding is further confirmed by the higher average payoff entrants have compared to

1Due to the cost structure in the valuation model, entrants are deemed economy airlines with
lower costs, which, according to our model, translates into lower CASM, and probably higher profits.
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Figure 8.2: Evolution of proportions of strategies in population after generational updating with
initial proportion of all default strategies.)

the incumbents (at an average of 9953 for entrants, versus 6301 for incumbents at

equilibrium in this set of experiences), despite entrants starting off with less valua-

tions.

Second, due to the way our valuation is constructed, the incumbents have more

total number of business plans than the entrants. Subsequent analysis shows that the

entrants had on average 45% the number of business plans as the incumbents. This

was an unintended consequence due to the incumbents valuing larger packages and

more slots than the entrants had at the beginning. Yet, this can translate into more

flexibility - and therefore more gain in waiting for more information before deciding

what to bid on. This characteristic of the model may not reflect reality (it is very

possible that new entrants, without any established schedules are the actual ones with

more flexibility) - an overlook when generating the model that should be corrected

in future research. Nevertheless, our experiences showed that cooperation between
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Figure 8.3: Evolution of proportions of strategies in population after generational updating with
initial proportion of 50% straightforward agents, 50% parking agents.)

these two different types of agents in terms of parking, can lead to better results for

both.

8.1.2 Result 2 : Increasing Payoff

For our strategies to increase payoff, the results were harder to interpret. For shaving,

there was a single equilibrium with incumbents shaving, while entrants preferred the

straightforward results. For demand reduction, the results were equally divisive -

incumbents had two equilibria, while entrants were quite indifferent to either strategy.

Shaving

We were quite surprised by the results for shaving. Indeed, shaving normally is

profitable for small agents for whom free-riding upon an agent with complementing
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Figure 8.4: Evolution of proportions of strategies in population after generational updating with
initial proportion of 100% straightforward agents.)

valuations is possible to outbid a large agent. In our case, however, incumbents

(agents with more valuations in general), seemed to do better than entrants. This is

illustrated in figures 8.6-8.8.

One explanation to this result would be that the size of a bundle does not matter

as much as two agents’ potential for complements. In our case, because incumbents

stick to their own schedules, they have more potential for complementing each other

on the goods desired than the entrants. As such, it is more advantageous for an

incumbent agent to deviate from the straightforward strategy to shave and force

another incumbent agent with complementing valuations to win the goods than for

the entrant agent to do so. Instead, entrant agents may benefit from consistently

bidding their true valuations stealing the items that incumbents would win, had they

bidded truthfully.

One cause of concern of this model is the reduction in general system payoff at

the equilibrium. The race to shaving on the incumbents’ side may lead to inefficient
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Figure 8.5: Evolution of proportions of strategies in population after generational updating with
initial proportion of 100% parking agents.)

allocations in the auction. Indeed, while agent payoff for straightforward strategy

in the experiments performed was 7000 for incumbents, and 6800 for entrants, the

equilibrium payoff was reduced for both at 6500 for incumbents, and 5900 for entrants.

Demand Reduction

For demand reduction, the entrants were mostly indifferent to either strategy - playing

a mixed equilibrium hovering at around 50/50. The incumbents, on the other hand,

had two pure equilibria again, but with a greater probability of playing the heuristic

than not. This can be seen in figures 8.9-8.11 figures indicating the equilibria with

different values for original population proportions.

Part of these results may be attributed to the conflicting goals of flexibility pre-

serving and demand reduction. Indeed, we’ve measured above the equilibrium for



58

Figure 8.6: Evolution of proportions of strategies in population after generational updating with
initial proportions of 50% straightforward agents, 50% shaving agents.)

Figure 8.7: Evolution of proportions of strategies in population after generational updating with
initial proportion of 90% straightforward agents.)
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Figure 8.8: Evolution of proportions of strategies in population after generational updating with
initial proportion of 100% shaving agents.)

using overdemand as a proxy for flexibility preserving, leading to the same two equi-

libria for incumbents as in this case. It is interesting, however, in either case, that

the equilibria involve playing the same strategy as everyone else.

The difference in results between the incumbents and the entrants can again be

attributed to their valuation structures. Indeed, there is an existing niche for the

incumbents designed in the auction - incumbents had preferences mostly for comple-

ments of one another since they wanted to stick to their original schedule. For the

entrants, the advantage in trying to demand reduce is less obvious - their valuation

bundles may intersect with many other agents’ preferences and ways to avoid con-

frontation are fairly complex. In this case, entrants may benefit instead from bidding

their true value, picking up items that incumbents lost due to shaving.
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Figure 8.9: Evolution of proportions of strategies in population after generational updating with
initial proportion of 50% straightforward, 50% demand reducing agents.)



61

Figure 8.10: Evolution of proportions of strategies in population after generational updating with
initial proportions of 20% demand reduction, 80% straightforward.)

8.2 Vulnerabilities of the Auction

There are strong indications through our work that bidding myopically is not the

equilibrium strategy in this auction, and may not lead to the equilibrium result.

Although any result from these experiments is tied also closely with the quality of

the valuation model, there are also causes for general concern.

First, the problem from the interaction between the budget constraint and the

activity rule discussed in chapter 4 is mostly confirmed in the experiments we ran.

As shown in chapter 6, payoffs in the auction improved as price prediction became

more accurate. The same happened to the problem of undersell.

Moreover, results from running heuristic strategies for preserving flexibility in-

dicate that preserving flexibility is, generally, an advantageous strategy to play in

the game. This was especially true for agents who have more options of packages to

consider, less competitive, and therefore more likely to need to switch business plans
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Figure 8.11: Evolution of proportions of strategies in population after generational updating with
initial proportions of 100% strategizing agents.)



63

within the game (the incumbents, in our study). The profile of these agents fits well

with the characteristics we’d expect to find within agents for whom the activity rule

is more likely to be constraining.

Another problem occurs purely as the undersell problem due to linear pricing. It

is possible that the problem of undersell is worsened by our bounded rational model

which only considers a finite number of business plans. Further studies should test this

framework we developed on variations of the valuation model. However, no strategy

we explored so far has been able to correct for the undersell, this is a problem that

the auction design needs to take more heed to. Indeed, at 5.2%, the undersell is quite

significant, especially in the context of rare resources such as the LGA air slots.

Finally, we found that straightforward bidding, even with budget prediction, leads

to a suboptimal outcome, with the expected total utility of the system reduced (figures

8.12 and 8.13). However, the Nash equilibrium outcome for strategies that aimed to

preserve flexibility (OverdemandMore and Parking) was found to improve on the

expected utility. Expected total utility in the equilibrium for Demand reduction was

found to even slightly surpass the utility of the expected optimum. However, we did

not verify here whether the items followed the optimum allocation, and the increase

could potentially come from decreases in prices. We also found that shaving could

reduce the total utility from the straightforward strategy with budget prediction.

This can be a cause of concern as shaving was a Nash equilibrium for the incumbents,

even as it reduced their expected utility by 9%.

We recognize, however, that our heuristic strategy experiments are far from com-

plete - using the parametrized function to make compete together various degrees of

shaving would yield a more robust and complete answer. Moreover, the number of

games played to calculate the payoff matrices were still quite limited in context. Yet,

the results do give an indication of trends and causes of concern for the combinatorial

clock auction.
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Figure 8.12: Comparison of expected system payoffs under various strategies. (Optimum indicates
efficient allocation, normalied at 100% or 1.0. Results from Nash equilibrium of Heuristic strategies
presented here.)

Figure 8.13: Comparison of total system payoffs under various strategies. (Optimum indicates
efficient allocation, results from Nash equilibrium of Heuristic strategies presented here.)



Chapter 9

Conclusion

In this paper, we provide an agent-based analysis of the currently proposed combina-

torial clock auction of LaGuardia airport. Our framework is inspired from research

results from various sources. In our general agent-based framework design, we took

ideas developed in response to the trading agent problem [10, 29, 14, 34]. We also ex-

tend previous work on FAA valuation models in application to LaGuardia airport[19].

To model our agents, we provide adaptations of the supervised learning techniques

developed in TAC to the LGA problem [29, 14], introducing their use in predicting

budget constraints in the LGA case. Then, heuristic strategies are developed from

observed agent behavior in auctions [3, 23, 33]. Finally, we extend Wellman’s [10]

description of finding equilibria in homogeneous populations with restricted strategy

spaces to a heterogeneous population in the combinatorial auction framework.

Our analysis of the model provided results on different levels of the model. One

major problem found in the model relates budget constraints and the proposed activ-

ity rule. In particular, we showed, both experimentally and theoretically, that agents

would be forbidden from bidding their honest valuation by the activity rule if they

are subject to budget constraints. Accordingly, agents who have better information

of the market (who price predict better) have greater expected value in joining the

auction. Moreover, heuristic strategies to preserve flexibility also help in raising the

utility generated by the market.

65



66

Another potential problem is in terms of undersell. Undersell is probably exacer-

bated by the budget/activity rule problem such that markets with better informed

agent could expect less undersell. However, the percentage of undersell, even after

the completion of our staged price learning, was still important, at 5.2%.

In terms of agent strategy, we found that many of the observed agent strategies in

past auction designs were still possible equilibrium outcomes for the agents competing

in the combinatorial clock auction. The results here, however, are a bit confounding

and differ according to characteristics of the agent valuation model. We proposed

from the observed results that strategies such as shaving and demand reduction may

be affected by how complementary agent valuations are within the game. Moreover,

benefits to parking are also probably affected by the flexibility within agent valuation.

From this study, we feel that agent-based analysis of the auction can be useful in

generating results that have been difficult to generate in live experiments. In our case,

this was caused by two factors. First, due to industry secrets, airline executives may

be reticent in showing their true strategies in pre-game simulations. This was already

observed in the first simulation in February 2005. Second, due to the complexity in

managing package bidding, controlled experiments with random subjects are hard to

implement with complex valuation models. This last problem is inherent in combi-

natorial auctions which are difficult to solve. In these cases, automated agent-based

analysis can be useful in generating experimental results.

Future Work

This paper leaves multiple directions to pursue related agent-based analysis of mech-

anism designs. We list here some possibilities:

• Due to the large number of entries to populate in a payoff matrix, we did not

have the time to explore restricted equilibriums on more than two strategies.

Yet, we offered parametrized heuristics for three large classes of strategies. At

a future date, experiences should be made on varying these parameters to cal-

culate the optimal α in each case. This is especially important for the shaving
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strategy.

• The work here is performed based on a single valuation model. However, we

found that the optimal agent strategies is much dependent on characteristics of

the valuation model. Future work should test our results on alternate valuation

models.

• Designing or extending new heuristic strategies to test the model.

• Extending our agent-based analysis to other forms of auctions, notably full

combinatorial auctions with winner determination.

• The study of interaction between budget constraints and other possible activity

rules.

We hope that our work will encourage further work in the agent-based analysis of

auctions.
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