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The problem of peer prediction is to elicit information from agents in settings without any objective ground
truth against which to score reports. Peer prediction mechanisms seek to exploit correlations between sig-
nals to align incentives with truthful reports. A long-standing concern has been the possibility of uninfor-
mative equilibria. For binary signals, a multi-task mechanism [Dasgupta and Ghosh 2013] achieves strong
truthfulness, so that the truthful equilibrium strictly maximizes payoff. We characterize conditions on the
signal distribution for which this mechanism remains strongly-truthful with non-binary signals, also pro-
viding a greatly simplified proof. We introduce the Correlated Agreement (CA) mechanism, which handles
multiple signals and provides informed truthfulness: no strategy profile provides more payoff in equilibrium
than truthful reporting, and the truthful equilibrium is strictly better than any uninformed strategy (where
an agent avoids the effort of obtaining a signal). The CA mechanism is maximally strongly truthful, in that
no mechanism in a broad class of mechanisms is strongly truthful on a larger family of signal distributions.
We also give a detail-free version of the mechanism that removes any knowledge requirements on the part
of the designer, using reports on many tasks to learn statistics while retaining ε-informed truthfulness.

1. INTRODUCTION
We study the problem of information elicitation without verification (“peer prediction”).
This challenging problem arises across a diverse range of multi-agent systems, in
which participants are asked to respond to an information task, and where there is
no external input available against which to score reports. Examples include complet-
ing surveys about the features of new products, providing feedback on the quality of
food or the ambience in a restaurant, sharing emotions when watching video content,
and peer assessment of assignments in Massive Open Online Courses (MOOCs).

The challenge is to provide incentives for participants to choose to invest effort in
forming an opinion (a “signal”) about a task, and to make truthful reports about their
signals. In the absence of inputs other than the reports of participants, peer-prediction
mechanisms make payments to one agent based on the reports of others, and seek to
align incentives by leveraging correlation between reports (i.e., peers are rewarded for
making reports that are, in some sense, predictive of the reports of others).

Some domains have binary signals, for example “was a restaurant noisy or not?”,
and “is an image violent or not?”. We are also interested in domains with non-binary
signals, for example:
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— Image labeling. Signals could correspond to answers to questions such as “Is the
animal in the picture a dog, a cat or a beaver”, or “Is the emotion expressed joyful,
happy, sad or angry.” These signals are categorical, potentially with some structure:
‘joyful’ is closer to ‘happy’ than ‘sad’, for example.

— Counting objects. There could be many possible signals, representing answers to
questions such as (“are there 0, 1-5, 6-10, 11-100, or >100 people in the picture”?).
The signals are ordered.

— Peer assessment in MOOCs. Multiple students evaluate their peers’ submissions to an
open-response question using a grading rubric. For example, an essay may be evalu-
ated for clarity, reasoning, and relevance, with the grade for reasoning ranging from
1 (“wild flights of fancy throughout”), through 3 (“each argument is well motivated
and logically defended.”)

We do not mean to take an absolute position that external “ground truth” inputs are
never available in these applications. We do however believe it important to under-
stand the extent to which such systems can operate using only participant reports.

The design of peer-prediction mechanisms assumes the ability to make payments
to agents, and that an agent’s utility is linear-increasing with payment and does not
depend on signal reports other than through payment. Peer prediction precludes, for
example, that an agent may prefer to misreport the quality of a restaurant because
she is interested in driving more business to the restaurant.1 The challenge of peer
prediction is timely. For example, Google launched Google Local Guides in November
2015. This provides participants with points for contributing star ratings and descrip-
tions about locations. The current design rewards quantity but not quality and it will
be interesting to see whether this attracts useful reports. After 200 contributions, par-
ticipants receive a 1 TB upgrade of Drive storage (currently valued at $9.99/month.)

We are interested in minimal peer-prediction mechanisms, which require only sig-
nal reports from participants.2 A basic desirable property is that truthful reporting of
signals is a strict, correlated equilibrium of the game induced by the peer-prediction
mechanism.3 For many years, an Achilles heel of peer prediction has been the existence
of additional equilibria that payoff-dominate truthful behavior and reveal no useful
information [Dasgupta and Ghosh 2013; Jurca and Faltings 2009; Radanovic and Falt-
ings 2015a]. An uninformative equilibrium is one in which reports do not depend on
the signals received by agents. Indeed, the equilibria of peer-prediction mechanisms
must always include an uninformative, mixed Nash equilibrium [Waggoner and Chen
2014]. Moreover, with binary signals, a single task, and two agents, Jurca and Falt-
ings [2005] show that an incentive-compatible, minimal peer-prediction mechanism
will always have an uninformative equilibrium with a higher payoff than truthful re-

1The payments need not be monetary; one could for example issue points to agents, these points conveying
some value (e.g., redeemable for awards, or conveying status). On a MOOC platform, the payments could
correspond to scores assigned as part of a student’s overall grade in the class. What is needed is a linear
relationship between payment (of whatever form) and utility, and expected-utility maximizers.
2While more complicated designs have been proposed (e.g. [Prelec 2004; Radanovic and Faltings 2015b;
Witkowski and Parkes 2012]), in which participants are also asked to report their beliefs about the signals
that others will report, we believe that peer-prediction mechanisms that require only signal reports are more
likely to be adopted in practice. It is cumbersome to design user interfaces for reporting beliefs, and people
are notoriously bad at reasoning about probabilities.
3It has been more common to refer to the equilibrium concept in peer-prediction as a Bayes-Nash equilib-
rium. But as pointed out by Jens Witkowski, there is no agent-specific, private information about payoffs
(utility is linear in payment). In a correlated equilibrium, agents get signals and a strategy is a mapping
from signals to actions. An action is a best response for a given signal if, conditioned on the signal, it maxi-
mizes an agent’s expected utility. This equilibrium concept fits peer prediction: each agent receives a signal
from the environment, signals are correlated, and strategies map signals into reported signals.



porting. Because of this, a valid concern has been that peer prediction could have the
unintended effect that agents who would otherwise be truthful now adopt strategic
misreporting behavior in order to maximize their payments.

In this light, a result due to Dasgupta and Ghosh [2013] is of interest: if agents
are each asked to respond to multiple, independent tasks (with some overlap between
assigned tasks), then in the case of binary signals there is a mechanism that ad-
dresses the problem of multiple equilibria. The binary-signal, multi-task mechanism
is strongly truthful, meaning that truthful reporting yields a higher expected payment
than any other strategy (and is tied in payoff only with strategies that report permu-
tations of signals, which in the binary case means 1→ 2, 2→ 1).

We introduce a new, slightly weaker incentive property of informed truthfulness:
no strategy profile provides more expected payment than truthful reporting, and the
truthful equilibrium is strictly better than any uninformed strategy (where agent re-
ports are signal-independent, and avoid the effort of obtaining a signal). Informed
truthfulness is responsive to what we consider to be the two main concerns of prac-
tical peer prediction design:

(a) Agents should have strict incentives to exert effort toward acquiring an informa-
tive signal, and

(b) Agents should have no incentive to misreport this information.

Relative to strong truthfulness, the relaxation to informed truthfulness is that there
may be other informed strategies that match the expected payment of truthful report-
ing. Even so, informed truthfulness retains the property of strong truthfulness that
there can be no other behavior strictly better than truthful reporting.

The binary-signal, multi-task mechanism of Dasgupta and Ghosh is constructed
from the simple building block of a score matrix, with a score of ‘1’ for agreement and
‘0’ otherwise. Some tasks are designated without knowledge of participants as bonus
tasks. The payment on a bonus task is 1 in the case of agreement with another agent.
There is also a penalty of -1 if the agent’s report on another (non-bonus) task agrees
with the report of another agent on a third (non-bonus) task. In this way, the mech-
anism rewards agents when their reports on a shared (bonus) task agree more than
would be expected based on their overall report frequencies. Dasgupta and Ghosh re-
mark that extending beyond two signals “is one of the most immediate and challenging
directions for further work.”

Our main results are as follows:

— We study the multi-signal extension of the Dasgupta-Ghosh mechanism (MSDG), and
show that MSDG is strongly truthful for domains that are categorical, where re-
ceiving one signal reduces an agent’s belief that other agents will receive any other
signal. We also show that (i) this categorical condition is tight for MSDG for agent-
symmetric signal distributions, and (ii) the peer grade distributions on a large MOOC
platform do not satisfy the categorical property.

— We generalize MSDG, obtaining the Correlated Agreement (CA) mechanism. This
provides informed truthfulness in general domains, including domains in which the
MSDG mechanism is neither informed- nor strongly-truthful. The CA mechanism
requires the designer to know the correlation structure of signals, but not the full
signal distribution. We further characterize domains where the CA mechanism is
strongly truthful, and show that no mechanism with similar structure and informa-
tion requirements can do better.

— For settings with a large number of tasks, we present a detail-free CA mechanism,
in which the designer estimates the statistics of the correlation structure from agent
reports. This mechanism is informed truthful in the limit where the number of tasks



is large (handling the concern that reports affect estimation and thus scores), and we
provide a convergence rate analysis for ε-informed truthfulness with high probability.

We believe that these are the first results on strong or informed truthfulness in
domains with non-binary signals without requiring a large population for their in-
centive properties (compare with [Kamble et al. 2015; Radanovic and Faltings 2015a;
Radanovic et al. 2016]). The robust incentives of the multi-task MSDG and CA mech-
anisms hold for as few as two agents and three tasks, whereas these previous papers
crucially rely on being able to learn statistics of the distribution from multiple reports.
Even if given the true underlying signal distribution, the mechanisms in these ear-
lier papers would still need to use a large population, with the payment rule based on
statistics estimated from reports, as this is critical for incentive alignment in these pa-
pers. Our analysis framework also provides a dramatic simplification of the techniques
used by Dasgupta and Ghosh [2013].

In a recent working paper, Kong and Schoenebeck [2016] show that a number of peer
prediction mechanisms that provide variations on strong-truthfulness can be derived
within a single information-theoretic framework, with scores determined based on the
information they provide relative to reports in the population (leveraging a measure of
mutual information between the joint distribution on signal reports and the product of
marginal distributions on signal reports). Earlier mechanisms correspond to particu-
lar information measures. Their results use different technical tools, and also include
a different, multi-signal generalization of Dasgupta and Ghosh [2013] that is indepen-
dent of our results, outside of the family of mechanisms that we consider in Section 5.2,
and provides strong truthfulness in the limit of a large number of tasks.4

1.1. Related Work
The theory of peer prediction has developed rapidly in recent years. We focus on min-
imal peer-prediction mechanisms. Beginning with the seminal work of Miller et al.
[2005], a sequence of results relax knowledge requirements on the part of the de-
signer [Jurca and Faltings 2011; Witkowski and Parkes 2012], or generalize, e.g.
to handle continuous signal domains [Radanovic and Faltings 2014]. Simple output-
agreement, where a positive payment is received if and only if two agents make the
same report (as used in the ESP game [von Ahn and Dabbish 2004]), has also received
some theoretical attention [Jain and Parkes 2013; Waggoner and Chen 2014].

Early peer prediction mechanisms had uninformative equilibria that gave better
payoff than honesty. Jurca and Faltings [2009] show how to remove uninformative,
pure-strategy Nash equilibria through a clever three-peer design. Kong et al. [2016]
show how to design strong truthful, minimal, single-task mechanisms with a known
model when there are reports from a large number of agents.

In addition to Dasgupta and Ghosh [2013] and Kong and Schoenebeck [2016], sev-
eral recent papers have tackled the problem of uninformative equilibria. Radanovic
and Faltings [2015a] establish strong truthfulness amongst symmetric strategies in a
large-market limit where both the number of tasks and the number of agents assigned
to each task grow without bound. Radanovic et al. [2016] provide complementary the-
oretical results, giving a mechanism in which truthfulness is the equilibrium with
highest payoff, based on a population that is large enough to estimate statistical prop-
erties of the report distribution. They require a self-predicting condition that limits
the correlation between differing signals. Each agent need only be assigned a single

4While they do not state or show that the mechanism does not need a large number of tasks in any special
case, the techniques employed can also be used to design a mechanism that is a linear transform of our CA
mechanism, and thus informed truthful with a known signal correlation structure and a finite number of
tasks (personal communication).



task. Kamble et al. [2015] describe a mechanism where truthfulness has higher payoff
than uninformed strategies, providing an asymptotic analysis as the number of tasks
grows without bound. The use of learning is crucial in these papers. In particular, they
must use statistics estimated from reports to design the payment rule in order to align
incentives. This is a key distinction from our work.5 Witkowski and Parkes [2013] first
introduced the combination of learning and peer prediction, coupling the estimation of
the signal prior together with the shadowing mechanism.

Although there is disagreement in the experimental literature about whether equi-
librium selection is a problem in practice, there is compelling evidence that it mat-
ters [Gao et al. 2014]; see Faltings et al. [2014] for a study where uninformed equilibria
did not appear to be a problem.6 Shnayder et al. [2016b] use replicator dynamics as a
model of agent learning to argue that equilibrium selection is indeed important, and
that truthfulness is significantly more stable under mechanisms that ensure it has
higher payoff than other strategies. Orthogonal to concerns about equilibrium selec-
tion, Gao et al. [2016] point out a modeling limitation—when agents can coordinate on
some other, unintended source of signal, then this strategy may be better than truthful
reporting. They suggest randomly checking a fraction of reports against ground truth
as an alternative way to encourage effort. We discuss this in Section 5.5.

Turning to online peer assessment for MOOCs, research has primarily focused on
evaluating students’ skill at assessment and compensating for grader bias [Piech
et al. 2013], as well as helping students self-adjust for bias and provide better feed-
back [Kulkarni et al. 2013]. Other studies, such as the Mechanical TA [Wright et al.
2015], focus on reducing TA workload in high-stakes peer grading. A recent paper [Wu
et al. 2015] outlines an approach to peer assessment that relies on students flagging
overly harsh feedback for instructor review. We are not aware of any systematic stud-
ies of peer prediction in the context of MOOCs, though Radanovic et al. [2016] present
experimental results from an on-campus experiment.

2. MODEL
We consider two agents, 1 and 2, which are perhaps members of a larger population.
Let k ∈ M = {1, . . . ,m} index a task from a universe of m ≥ 3 tasks to which one or
both of these agents are assigned, with both agents assigned to at least one task. Each
agent receives a signal when investing effort on an assigned task. The effort model that
we adopt is binary: either an agent invests no effort and does not receive an informed
signal, or an agent invests effort and incurs a cost and receives a signal.

Let S1, S2 denote random variables for the signals to agents 1 and 2 on some task.
The signals have a finite domain, with i, j ∈ {1, . . . , n} indexing a realized signal to
agents 1 and 2, respectively.

Each task is ex ante identical, meaning that pairs of signals are i.i.d. for each task.
Let P (S1=i, S2=j) denote the joint probability distribution on signals, with marginal
probabilities P (S1=i) and P (S2=j) on the signals of agents 1 and 2, respectively. We
assume exchangeability, so that the identity of agents does not matter in defining the
signal distribution. The signal distribution is common knowledge to agents.7

5Cai et al. [2015] work in a different model, showing how to achieve optimal statistical estimation from data
provided by self-interested participants. These authors do not consider misreports and their mechanism is
not informed- (or strongly-) truthful and is vulnerable to collusion. Their model is interesting, though, in
that it adopts a richer, non-binary effort model.
6One difference is that this later study was in a many-signal domain, making it harder for agents to coordi-
nate on an uninformative strategy.
7We assume common knowledge and symmetric signal models for simplicity of exposition. Our mechanisms
do not require full information about the signal distribution, only the correlation structure of signals, and
can tolerate some user heterogeneity, as described further in Section 5.4.



We assume that the signal distribution satisfies stochastic relevance, so that for all
s′ 6= s′′, there exists at least one signal s such that

P (S1=s|S2=s′) 6= P (S1=s|S2=s′′), (1)

and symmetrically, for agent 1’s signal affecting the posterior on agent 2’s. If two sig-
nals are not stochastically relevant, they can be combined into one signal.

Our constructions and analysis will make heavy use of the following matrix, which
encodes the correlation structure of signals.

Definition 2.1 (Delta matrix). The Delta matrix ∆ is an n × n matrix, with entry
(i, j) defined as

∆ij = P (S1=i, S2=j)− P (S1=i)P (S2=j). (2)

The Delta matrix describes the correlation (positive or negative) between different
realized signal values. For example, if ∆1,2 = P (S1=1, S2=2) − P (S1=1)P (S2=2) =
P (S1=1)(P (S2=2|S1=1) − P (S2=2)) > 0, then P (S2=2|S1=1) > P (S2=2), so signal 2
is positively correlated with signal 1 (and by exchangeability, similarly for the effect
of 1 on 2). If a particular signal value increases the probability that the other agent
will receive the same signal then P (S1=i, S2=i) > P (S1=i)P (S2=i), and if this holds
for all signals the Delta matrix has a positive diagonal. Because the entries in a row i
of joint distribution P (S1=i, S2=j) and a row of product distribution P (S1=i)P (S2=j)
both sum to P (S1=i), each row in the ∆ matrix sums to 0 as the difference of the two.
The same holds for columns.

The CA mechanism will depend on the sign structure of the ∆ matrix, without
knowledge of the specific values. We will use a sign operator Sign(x), with value 1
if x > 0, 0 otherwise.8

Example 2.2. If the signal distribution is

P (S1, S2) =

[
0.4 0.15
0.15 .3

]
with marginal distribution P (S) = [0.55; 0.45], we have

∆ =

[
0.4 0.15
0.15 .3

]
−
[
0.55
0.45

]
· [0.55 0.45] ≈

[
0.1 −0.1
−0.1 0.1

]
, and Sign(∆) =

[
1 0
0 1

]
.

An agent’s strategy defines, for every signal it may receive and each task it is as-
signed, the signal it will report. We allow for mixed strategies, so that an agent’s
strategy defines a distribution over signals. Let R1 and R2 denote random variables
for the reports by agents 1 and 2, respectively, on some task. Let matrices F and G
denote the mixed strategies of agents 1 and 2, respectively, with Fir = P (R1=r|S1=i)
and Gjr = P (R2=r|S2=j) to denote the probability of making report r given signal i
is observed (signal j for agent 2). Let rk1 ∈ {1, . . . , n} and rk2 ∈ {1, . . . , n} refer to the
realized report by agent 1 and 2, respectively, on task k (if assigned).

Definition 2.3 (Permutation strategy). A permutation strategy is a deterministic
strategy in which an agent adopts a bijection between signals and reports, that is,
F (or G for agent 2) is a permutation matrix.

Definition 2.4 (Informed and uninformed strategies). An informed strategy has
Fir 6= Fjr for some i 6= j, some r ∈ {1, . . . , n} (and similarly for G for agent 2). An
uninformed strategy has the same report distribution for all signals.

8Note that this differs from the standard sign operator, which has value -1 for negative inputs.



Permutation strategies are merely relabelings of the signals; in particular, truthful-
ness (denoted I below) is a permutation strategy. Note also that by definition, deter-
ministic uniformed strategies are those that give the same report for all signals.

Each agent is assigned to two or more tasks, and the agents overlap on at least one
task. Let Mb ⊆ M denote a non-empty set of “bonus tasks”, a subset of the tasks to
which both agents are assigned. Let M1 ⊆M \Mb and M2 ⊆M \Mb, with M1 ∩M2 = ∅
denote non-empty sets of tasks to which agents 1 and 2 are assigned, respectively.
These will form the “penalty tasks.” For example, if both agents are assigned to each
of three tasks, A,B and C, then we could choose Mb = {A}, M1 = {B} and M2 = {C}.

We assume that tasks are a priori identical, so that there is nothing to distinguish
two tasks other than their signals. In particular, agents have no information about
which tasks are shared, or which are designated bonus or penalty. This can be achieved
by choosing Mb,M1 and M2 randomly after task assignment. This can also be moti-
vated in largely anonymous settings, such as peer assessment and crowdsourcing.

A multi-task peer-prediction mechanism defines a total payment to each agent based
on the reports made across all tasks. The mechanisms that we study assign a total
payment to an agent based on the sum of payments for each bonus task, but where the
payment for a bonus task is adjusted downwards by the consideration of its report on
a penalty task and that of another agent on a different penalty task.

For the mechanisms we consider in this paper, it is without loss of generality for
each agent to adopt a uniform strategy across each assigned task. Changing a strategy
from task to task is equivalent in terms of expected payment to adopting a linear
combination over these strategies, given that tasks are presented in a random order,
and given that tasks are equivalent, conditioned on signal. We prove this in extended
version of the paper [Shnayder et al. 2016a].

Given this uniformity, we write E(F,G) to denote the expected payment to an agent
for any bonus task. The expectation is taken with respect to both the signal distribu-
tion and any randomization in agent strategies. Let I denote the truthful reporting
strategy, which corresponds to the identity matrix.

Definition 2.5 (Strictly Proper). A multi-task peer-prediction mechanism is proper
if and only if truthful strategies form a correlated equilibrium, so that E(I, I) ≥ E(F, I),
for all strategies F 6= I, and similarly when reversing the roles of agents 1 and 2. For
strict properness, the inequality must be strict.

This insists that the expected payment on a bonus task is (strictly) higher when re-
porting truthfully than when using any other strategy, given that the other agent is
truthful.

Definition 2.6 (Strongly-truthful). A multi-task peer-prediction mechanism is
strongly-truthful if and only if for all strategies F,G we have E(I, I) ≥ E(F,G), and
equality may only occur when F and G are both the same permutation strategy.

In words, strong-truthfulness requires that both agents being truthful has strictly
greater expected payment than any other strategy profile, unless both agents play the
same permutation strategy, in which case equality is allowed.9 From the definition, it
follows that any strongly-truthful mechanism is strictly proper.

Definition 2.7 (Informed-truthful). A multi-task peer-prediction mechanism is
informed-truthful if and only if for all strategies F,G, E(I, I) ≥ E(F,G), and equal-
ity may only occur when both F and G are informed strategies.

9Permutation strategies seem unlikely to be a practical concern, since permutation strategies require coor-
dination and provide no benefit over being truthful.



In words, informed-truthfulness requires that the truthful strategy profile has strictly
higher expected payment than any profile in which one or both agents play an unin-
formed strategy, and weakly greater expected payment than all other strategy profiles.
It follows that any informed-truthful mechanism is proper.

Although weaker than strong-truthfulness, informed truthfulness is responsive to
the primary, practical concern in peer-prediction applications: avoiding equilibria
where agents achieve the same (or greater) payment as a truthful informed agent but
without putting in the effort of forming a careful opinion about the task. For example,
it would be undesirable for agents to be able to do just as well or better by reporting the
same signal all the time. Once agents exert effort and observe a signal, it is reasonable
to expect them to make truthful reports as long as this is an equilibrium and there is
no other equilibrium with higher expected payment. Informed-truthful peer-prediction
mechanisms provide this guarantee.10

3. MULTI-TASK PEER-PREDICTION MECHANISMS
We define a class of multi-task peer-prediction mechanisms that is parametrized by a
score matrix, S : {1, . . . , n} × {1, . . . , n} → R, that maps a pair of reports into a score,
the same score for both agents. This class of mechanisms extends the binary-signal
multi-task mechanism due to Dasgupta and Ghosh [2013] in a natural way.

Definition 3.1 (Multi-task mechanisms). These mechanisms are parametrized by
score matrix S.

(1) Assign each agent to two or more tasks, with at least one task in common, and at
least three tasks total.

(2) Let rk1 denote the report received from agent 1 on task k (and similarly for agent
2). Designate one or more tasks assigned to both agents as bonus tasks (set Mb).
Partition the remaining tasks into penalty tasks M1 and M2, where |M1| > 0 and
|M2| > 0 and M1 tasks have a report from agent 1 and M2 a report from agent 2.

(3) For each bonus task k ∈ Mb, pick a random ` ∈ M1 and `′ ∈ M2. The payment to
both agent 1 and agent 2 for task k is S(rk1 , r

k
2 )− S(r`1, r

`′

2 ).
(4) The total payment to an agent is the sum total payment across all bonus tasks.11

As discussed above, it is important that agents do not know which tasks will become
bonus tasks and which become penalty tasks. The expected payment on a bonus task
for strategies F,G is

E(F,G) =

n∑
i=1

n∑
j=1

P (S1=i, S2=j)

n∑
r1=1

n∑
r2=1

P (R1=r1|S1=i)P (R2=r2|S2=j)S(r1, r2)

−
n∑
i=1

n∑
j=1

P (S1=i)P (S2=j)

n∑
r1=1

n∑
r2=1

P (R1=r1|S1=i)P (R2=r2|S2=j)S(r1, r2)

10For simplicity of presentation, we do not model the cost of effort explicitly, but it is a straightforward
extension to handle the cost of effort as suggested in previous work [Dasgupta and Ghosh 2013]. In our
proposed mechanisms, an agent that does not exert effort receives an expected payment of zero, while the
expected payment for agents that exert effort and play the truthful equilibrium is strictly positive. With
knowledge of the maximum possible cost of effort, scaling the payments appropriately incentivizes effort.
11A variation with the same expected payoff and the same incentive analysis is to compute the expectation
of the scores on all pairs of penalty tasks, rather than sampling. We adopt the simpler design for ease of
exposition. This alternate design would reduce score variance if there are many non-bonus tasks, and may
be preferable in practice.



=

n∑
i=1

n∑
j=1

∆ij

n∑
r1=1

n∑
r2=1

S(r1, r2)Fir1Gjr2 . (3)

The expected payment can also be written succinctly as E(F,G) = tr(F>∆GS>). In
words, the expected payment on a bonus task is the sum, over all pairs of possible
signals, of the product of the correlation (negative or positive) for the signal pair and
the (expected) score given the signal pair and agent strategies.

For intuition, note that for the identity score matrix which pays $1 in the case of
matching reports and $0 otherwise, agents are incentivized to give matching reports
for signal pairs with positive correlation and non-matching reports for signals with
negative correlation. Now consider a general score matrix S, and suppose that all
agents always report 1. They always get S(1, 1) and the expected value E(F,G) is a
multiple of the sum of entries in the ∆ matrix, which is exactly zero. Because indi-
vidual rows and columns of ∆ also sum to zero, this also holds whenever a single
agent uses an uninformed strategy. In comparison, truthful behavior provides pay-
ment E(I, I) =

∑
ij ∆ijS(i, j), and will be positive if the score matrix is bigger where

signals are positively correlated than where they are not.
While agent strategies in our model can be randomized, the linearity of the expected

payments allows us to restrict our attention to deterministic strategies.

LEMMA 3.2. For any world model and any score matrix S, there exists a determin-
istic, optimal joint strategy for a multi-task mechanism.

The proof is in the extended version of the paper, and relies on solutions to convex
maximization problems being extremal. Lemma 3.2 has several consequences:

— It is without loss of generality to focus on deterministic strategies when establishing
strongly truthful or informed truthful properties of a mechanism.

— There is a deterministic, perhaps asymmetric equilibrium, because the optimal so-
lution that maximizes E(F,G) is also an equilibrium.

— It is without loss of generality to consider deterministic deviations when checking
whether or not truthful play is an equilibrium.

We will henceforth assume deterministic strategies. By a slight abuse of notation,
let Fi ∈ {1, . . . , n} and Gj ∈ {1, . . . , n} denote the reported signals by agent 1 for signal
i and agent 2 for signal j, respectively. The expected score then simplifies to

E(F,G) =

n∑
i=1

n∑
j=1

∆ijS(Fi, Gj). (4)

We can think of deterministic strategies as mapping signal pairs to reported signal
pairs. Strategy profile (F,G) picks out a report pair (and thus score) for each signal
pair i, j with its corresponding ∆ij . That is, strategies F and G map signals to reports,
and the score matrix S maps reports to scores, so together they map signals to scores,
and we then dot those scores with ∆.

4. THE DASGUPTA-GHOSH MECHANISM
We first study the natural extension of the Dasgupta and Ghosh [2013] mechanism
from binary to multi-signals. This multi-task mechanism uses as the score matrix S
the identity matrix (‘1’ for agreement, ‘0’ for disagreement.)

Definition 4.1 (The Multi-Signal Dasgupta-Ghosh mechanism (MSDG)). This is a
multi-task mechanism with score matrix S(i, j) = 1 if i = j, 0 otherwise.



Example 4.2. Suppose agent 1 is assigned to tasks {A,B} and agent 2 to tasks
{B,C,D}, so that Mb = {B},M1 = {A} and M2 = {C,D}. Now, if the reports on B
are both 1, and the reports on A,C, and D were 0, 0, and 1, respectively, the expected
payment to each agent for bonus task B is 1− (1 · 0.5 + 0 · 0.5) = 0.5. In contrast, if both
agents use an uninformed coordinating strategy and always report 1, the expected
score for both is 1− (1 · 0.5 + 1 · 0.5) = 0.

The expected payment in the MSDG mechanism on a bonus task is

E(F,G) =
∑
i,j

∆ij1[Fi=Gj ], (5)

where 1x=y is 1 if x = y, 0 otherwise. An equivalent expression is tr(F>∆G).

Definition 4.3 (Categorical model). A world model is categorical if, when an agent
sees a signal, all other signals become less likely than their prior probability; i.e.,
P (S2 = j|S1 = i) < P (S2 = j), for all i, for all j 6= i (and analogously for agent 2).
This implies positive correlation for identical signals: P (S2 = i|S1 = i) > P (S2 = i).

Two equivalent definitions of categorical are that the Delta matrix has positive di-
agonal and negative off-diagonal elements, or that Sign(∆) = I.

THEOREM 4.4. If the world is categorical, then the MSDG mechanism is strongly
truthful and strictly proper. Conversely, if the Delta matrix ∆ is symmetric and the
world is not categorical, then the MSDG mechanism is not strongly truthful.

PROOF. First, we show that truthfulness maximizes expected payment. We have
E(F,G) =

∑
i,j ∆ij1[Fi=Gj ]. The truthful strategy corresponds to the identity matrix

I, and results in a payment equal to the trace of ∆: E(I, I) = tr(∆) =
∑
i ∆ii. By the

categorical assumption, ∆ has positive diagonal and negative off-diagonal elements,
so this is the sum of all the positive elements of ∆. Because 1[Fi=Gj ] ≤ 1, this is the
maximum possible payment for any pair of strategies.

To show strong truthfulness, first consider an asymmetric joint strategy, with F 6= G.
Then there exists i s.t. Fi 6= Gi, reducing the expected payment by at least ∆ii > 0. Now
consider symmetric, non-permutation strategies F = G. Then there exist i 6= j with
Fi = Fj . The expected payment will then include ∆ij < 0. This shows that truthfulness
and symmetric permutation strategies are the only optimal strategy profiles. Strict
properness follows from strong truthfulness.

For the tightness of the categorical assumption, first consider a symmetric ∆ with
positive off-diagonal elements ∆ij and ∆ji. Then agents can benefit by both “merging”
signals i and j. Let F̄ be the strategy that is truthful on all signals other than j, and
reports i when the signal is j. Then E(F̄ , F̄ ) = ∆ij + ∆ji + tr(∆) > E(I, I) = tr(∆), so
MSDG is not strongly truthful. Now consider a ∆ where one of the on-diagonal entries
is negative, say ∆ii < 0. Then, because all rows and columns of ∆ must add to 0, there
must be a j such that ∆ij > 0, and this reduces to the previous case where “merging” i
and j is useful.

For binary signals (‘1’ and ‘2’), any positively correlated model, such that ∆1,1 > 0
and ∆2,2 > 0, is categorical, and thus we obtain a substantially simpler proof of the
main result in Dasgupta and Ghosh [2013].

4.1. Discussion: Applicability of the MSDG mechanism
Which world models are categorical? One example is a noisy observation model, where
each agent observes the “true” signal t with probability q greater than 1/n, and other-
wise makes a mistake uniformly at random, receiving any signal s 6= t with probability



(1−q)/(n−1). Such model makes sense for classification tasks in which the classes are
fairly distinct. For example, we would expect a categorical model for a question such
as “Does the animal in this photo swim, fly, or walk?”

On the other hand, a classification problem such as the ImageNet challenge [Rus-
sakovsky et al. 2015], with 1000 nuanced and often similar image labels, is unlikely to
be categorical. For example, if “Ape” and “Monkey” are possible labels, one agent seeing
“Ape” is likely to increase the probability that another says “Monkey”, when compared
to the prior for “Monkey” in a generic set of photos. The categorical property is also
unlikely to hold when signals have a natural order, which we dub ordinal worlds.

Example 4.5. If two evaluators grade essays on a scale from one to five, when one
decides that an essay should get a particular grade, e.g. one, this may increase the
likelihood that their peer decides on that or an adjacent grade, e.g. one or two. In this
case, the sign of the delta matrix would be

Sign(∆) =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

 . (6)

Under the MSDG mechanism, evaluators increase their expected payoff by agreeing
to always report one whenever they thought the score was either one or two, and doing
a similar “merge” for other pairs of reports. We will return to this example below.

The categorical condition is a stronger requirement than previously proposed as-
sumptions in the literature (see extended version of the paper). To see if it is a reason-
able assumption in practice, we look at the correlation structure in a dataset from a
large MOOC provider, focusing on 104 questions with over 100 submissions each, for a
total of 325,523 assessments from 17 courses. Each assessment consists of a numerical
score, which we examine, and an optional comment, which we do not study here. As
an example, one assessment task for a writing assignment asks how well the student
presented their ideas, with options “Not much of a style at all”, “Communicative style”,
and “Strong, flowing writing style”, and a paragraph of detailed explanation for each.
These correspond to 0, 1, and 2 points on this rubric element.12

We estimate ∆ matrices on each of the 104 questions from the assessments. We
can think about each question as corresponding to a different signal distribution, and
assessing a particular student’s response to the question as an information task that
is performed by several peers. The questions in our data set had five or fewer rubric
options (signals), with three being most common (Figure 1L).

This analysis confirms that the categorical condition only holds for about one third
of our three-signal models and for none of the larger models (Figure 1L). We also com-
puted the average ∆ matrix for each model size, as visualized in Figure 1R. The bands
of positive correlation around the diagonal are typical of what we refer to as an ordinal
rather than categorical domain.

5. HANDLING THE GENERAL CASE
In this section, we present a mechanism that is informed-truthful for general domains.
We then discuss when it is strongly-truthful, give a version of it requiring no domain
knowledge, and discuss other considerations.

12While we only see student reports, we take as an assumption that these reasonably approximate the true
world model. As MOOCs develop along with valuable credentials based on their peer-assessed work, we
believe it will nevertheless become increasingly important to provide explicit credit mechanisms for peer
assessment.
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Fig. 1: Left: MOOC peer assessment is an ordinal domain, with most models with three
or more signals not categorical. Right: Averaged ∆ matrices, grouped by the number
of signals in a domain. The positive diagonals show that users tend to agree on their
assessments. For models of size 4 and 5, the ordinal nature of peer assessment is clear
(e.g., an assessment of 2/5 is positively correlated with an assessment of 3/5).

5.1. The Correlated Agreement Mechanism
Based on the intuition given in Section 3, and the success of MSDG for categorical do-
mains, it seems promising to base the construction of a mechanism on the correlation
structure of the signals, and in particular, directly on ∆ itself. This is precisely our ap-
proach. In fact, we will see that essentially the simplest possible mechanism following
this prescription is informed-truthful for all domains.

Definition 5.1 (CA mechanism). The Correlated Agreement (CA) mechanism is a
multi-task mechanism with score matrix S = Sign(∆).

THEOREM 5.2. The CA mechanism is informed-truthful and proper for all worlds.

PROOF. The truthful strategy F ∗, G∗ has higher payment than any other pair F,G:

E(F ∗, G∗) =
∑
i,j

∆i,jS(i, j) =
∑

i,j:∆ij>0

∆i,j ≥
∑
i,j

∆i,jS(Fi, Gj) = E(F,G),

where the inequality follows from the fact that S(i, j) ∈ {0, 1}.
The truthful score is positive, while any uninformed strategy has score zero. Con-

sider an uninformed strategy F , with Fi = r for all i. Then, for any G,

E(F,G) =
∑
i

∑
j

∆i,jS(r,Gj) =
∑
j

S(r,Gj)
∑
i

∆i,j =
∑
j

S(r,Gj) · 0 = 0,

where the next-to-last equality follows because rows and columns of ∆ sum to zero.

While informed-truthful, the CA mechanism is not always strictly proper. As dis-
cussed at the end of Section 2, we do not find this problematic; let us revisit this point.
The peer prediction literature makes a distinction between proper and strictly proper,
and insists on the latter. This comes from two motivations: (i) properness is trivial in
standard models: one can simply pay the same amount all the time and this would
be proper (since truthful reporting would be as good as anything else); and (ii) strict
properness provides incentives to bother to acquire a useful signal or belief before mak-
ing a report. Neither (i) nor (ii) is a critique of the CA mechanism; consider (i) paying
a fixed amount does not give informed truthfulness, and (ii) the mechanism provides
strict incentives to invest effort in acquiring a signal.

Example 5.3. Continuing with Example 4.5, we can see why CA is not manipulable.
CA considers signals that are positively correlated on bonus tasks (and thus have a
positive entry in ∆) to be matching, so there is no need to agents to misreport to ensure
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Fig. 2: The blue and red nodes represent signals of agent 1 and 2, respectively. An edge
between two signals represents that there is positive correlation between those sig-
nals. Left: A signal distribution for an image classification task with clustered signals.
Right: A signal distribution for a MOOC peer assessment task or object counting task
with ordinal signals and without clustered signals.

matching. In simple cases, e.g. if only the two signals 1 and 2 are positively correlated,
they are “merged,” and reports of one treated equivalently to the other. In cases such
as Equation 6, the correlation structure is more complex, and the result is not simply
merging.

5.2. Strong Truthfulness of the CA Mechanism
The CA mechanism is always informed truthful. In this section we characterize when
it is also strongly truthful (and thus strictly proper), and show that it is maximal in
this sense across a large class of mechanisms.

Definition 5.4 (Clustered signals). A signal distribution has clustered signals when
there exist at least two identical rows or columns in Sign(∆).

Equivalently, two signals i and i′ of an agent are clustered if i is positively correlated
with the same set of matched agent’s signals as i′.

Example 5.5. See Figure 2. The first example corresponds to an image classification
task where there are categories such as “Monkey”, “Ape”, “Leopard”, “Cheetah” etc.
The signals “Monkey” and “Ape” are clustered: for each agent, seeing one is positively
correlated with the other agent having one of the two, and negatively correlated with
the other possible signals. The second example concerns models with ordinal signals,
such as peer assessment or counting objects. In this example there are no clustered
signals for either agent. For example, signal 1 is positively correlated with signals 1
and 2, while signal 2 with signals 1, 2, and 3.

LEMMA 5.6. If ∆ij 6= 0, ∀i, j, then a joint strategy where at least one agent uses a
non-permutation strategy and matches the expected score of truthful reporting exists if
and only if there are clustered signals.

PROOF. Suppose clustered signals, so there exists i 6= i′ such that Sign(∆i,·) =
Sign(∆i′,·). Then if agent 2 is truthful, agent 1’s expected score is the same for be-
ing truthful or for reporting i′ whenever she receives either i or i′. Formally, consider
the strategies G = I and F formed by replacing the i-th row in I by the i′-th row.
Observe that S(i, j) = S(Fi, Gj) as the i-th and i′-th row in S are identical. Hence,
E(F,G) = E(I, I). The same argument holds for clustered signals for agent 2.



If the world does not have clustered signals, any agent using a non-permutation
strategy leads to lower expected score than being truthful. Suppose F is a non-
permutation strategy, such that E(F,G) = E(I, I) for some G. Then there exist signals
i 6= i′ such Fi = Fi′ = r, for some r. No clustered signals implies that ∃j such that
Sign(∆i,j) 6= Sign(∆i′,j). Let G(j) = j′, for some j′. Without loss of generality assume
that ∆(i, j) > 0, then we get ∆(i′, j) < 0 as ∆(i′, j) 6= 0. The score for signal pair
(S1 = i, S2 = j) is S(r, j′) and for (S1 = i′, S2 = j) is also S(r, j′). Either S(r, j′) = 1
or S(r, j′) = 0. In both cases the strategy profile F,G will lead to a strictly smaller
expected score as compared to the score of truthful strategy, since ∆(i, j) > 0 and
∆(i′, j) < 0. Similarly, we can show that if the second agent uses a non-permutation
strategy, that also leads to strictly lower expected scores for both agents.

We now give a condition under which there are asymmetric permutation strategy
profiles that give the same expected score as truthful reporting.

Definition 5.7 (Paired permutations). A signal distribution has paired permuta-
tions if there exist distinct permutation matrices P,Q s.t. P · Sign(∆) = Sign(∆) ·Q.

LEMMA 5.8. If ∆ij 6= 0, ∀i, j, then there exist asymmetric permutation strategy pro-
files with the same expected score under the CA mechanism as truthful reporting if and
only if the signal distribution has paired permutations.

Lemma 5.6 shows that when the world has clustered signals, the CA mechanism
cannot differentiate between individual signals in a cluster, and is not strongly truth-
ful. Similarly, Lemma 5.8 shows that under paired permutations this mechanism is
not able to distinguish whether an agent is reporting the true signals or a particular
permutation of the signals. In domains without clustered signals and paired permu-
tations, all strategies (except symmetric permutations) lead to a strictly lesser score
than truthful strategies, and hence, the CA mechanism is strongly truthful.

The CA mechanism is informed truthful, but not strongly truthful, for the image
classification example in Figure 2 as there are clustered signals in the model. For the
peer assessment example, it is strongly truthful because there are no clustered signals
and a further analysis reveals that there are no paired permutations.

A natural question is whether we can do better by somehow ‘separating’ clustered
signals from each other, and ‘distinguishing’ permuted signals from true signals, by
giving different scores to different signal pairs, while retaining the property that the
designer only needs to know Sign(∆). Specifically, can we do better if we allow the
score for each signal pair (S1 = i, S2 = j) to depend on i, j in addition to Sign(∆ij)? We
show that this extension does not add any additional power over the CA mechanism
in terms of strong truthfulness.

THEOREM 5.9. If ∆ij 6= 0, ∀i, j, then CA is maximally strong truthful amongst
multi-task mechanisms that only use knowledge of the correlation structure of signals,
i.e. mechanisms that decide S(i, j) using Sign(∆ij) and index (i, j).

We use Lemmas 5.6 and 5.8 to argue that if a model has neither clustered signals
nor paired permutations then CA is strongly truthful. To show maximality we prove
that if a model has either clustered signals or paired permutations then there do not
exist any strongly truthful multi-task mechanisms that only use knowledge of the
correlation structure. The proof is included in the extended paper.

This result shows that if a multi-task mechanism only relies on the correlation struc-
ture and is strongly truthful in some world model then the CA mechanism will also be
strongly truthful in that world model. Therefore, even if one uses 2 · n2 parameters in
the design of scoring matrices from Sign(∆), one can only be strongly truthful in the
worlds where CA mechanism is strongly truthful, which only uses 2 parameters.
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Fig. 3: Number of MOOC peer as-
sessment models with clustered
signals (CA is informed truthful)
and without clustered signals (CA
is strongly truthful up to paired
permutations).

A remaining question is whether strongly
truthful mechanisms can be designed when the
score matrix can depend on the exact value of the
∆ matrix. We answer this question negatively;
see the extended paper.

THEOREM 5.10. There exist symmetric signal
distributions such that no multi-task mechanism
is strongly truthful.

Figure 3 evaluates the sign structure of the ∆
matrix for the 104 MOOC questions described
earlier. The CA mechanism is strongly truthful
up to paired permutations when signals are not
clustered, and thus in roughly half of the worlds.

5.3. Detail-Free Implementation of the CA Mechanism
So far we have assumed that the CA mechanism has access to the sign structure of
∆. In practice, the signs may be unknown, or partially known (e.g. the designer may
know or assume that the diagonal of ∆ is positive, but be uncertain about other signs).

The CA mechanism can be made detail-free in a straightforward way by estimating
correlation and thus the score matrix from reports; it remains informed truthful if the
number of tasks is large (even allowing for the new concern that reports affect the
estimation of the distribution and thus the choice of score matrix.)

Definition 5.11 (The CA Detail-Free Mechanism (CA-DF)). As usual, we state the
mechanism for two agents for notational simplicity:

(1) Each agent completes m tasks, providing m pairs of reports.
(2) Randomly split the tasks into sets A and B of equal size.
(3) Let TA, TB be the empirical joint distributions of reports on the bonus tasks in A

and B, with TA(i, j) the observed frequency of signals i, j. Also, let TAM , TBM be the
empirical marginal distribution of reports computed on the penalty tasks in A and
B, respectively, with TAM (i) the observed frequency of signal i. Note that we only
take one sample per task to ensure the independence of samples.

(4) Compute the empirical estimate of the Delta matrix, based on reports rather than
signals: ΓAij = TA(i, j)− TAM (i)TAM (j), and similarly for ΓB .

(5) Define score matrices, swapping task sets: SA = Sign(ΓB), SB = Sign(ΓA). Note
that SA does not depend on the reports on tasks in A.

(6) Apply the CA mechanism separately to tasks in set A and set B, using score matrix
SA and SB for tasks in set A and B, respectively.

LEMMA 5.12. For all strategies F,G and all score matrices S ∈ {0, 1}n×n,
E(S∗, I, I) ≥ E(S, F,G) in the multi-task mechanism, where E(S, F,G) is the expected
score of the mechanism with a fixed score matrix S.

PROOF. The expected score for arbitrary score matrix and strategies is:

E(S, F,G) =

n∑
i=1

n∑
j=1

∆ijS(Fi, Gj)



The expected score for truthful reporting with S∗ is

E(S∗, I, I) =

n∑
i=1

n∑
j=1

∆ij Sign(∆)ij =
∑

i,j:∆ij>0

∆ij ≥
n∑
i=1

n∑
j=1

∆ijS(Fi, Gj),

where the inequality follows because S is a 0/1 matrix.

The lemma gives the main intuition for why CA-DF is informed truthful for large m:
even if agents could set the score matrix completely independently of their strategies,
the “truthful” score matrix S∗ is the one that maximizes payoffs. To get a precise result,
the following theorem shows that a score matrix “close” to S∗ will be chosen with high
enough probability. The proof is in the extended version of the paper.

THEOREM 5.13 (MECHANISM CA-DF IS (ε, δ)-INFORMED TRUTHFUL). Let ε > 0
and δ > 0 be parameters. Then there exists a number of tasks m = O(n3 log(1/δ)/ε2)
(for n signals), such that with probability at least 1 − δ, there is no strategy profile
with expected score more than ε above truthful reporting, and any uninformed strat-
egy has expected score strictly less than truthful. Formally, with probability at least
1 − δ, E(F,G) ≤ E(I, I) + ε, for all strategy pairs F,G; for any uninformed strategy F0

(equivalently G0), E(F0, G) < E(I, I).

5.4. Agent heterogeneity
The CA mechanism only uses the signs of the entries of ∆ to compute scores, not the
exact values. This means that the results can handle some variability across agent
“sensing technology,” as long as the sign structure of the ∆ matrix is uniform across all
pairwise matchings of peers. In the binary signal case, this reduces to agents having
positive correlation between their signals, giving exactly the heterogeneity results in
Dasgupta and Ghosh [2013]. Moreover, the agents themselves do not need to know
the detailed signal model to know how to act; as long as they believe that the scoring
mechanism is using the correct correlation structure, they can be confident in investing
effort and simply report their signals truthfully.

5.5. Unintended Signals
Finally, we discuss a seemingly pervasive problem in peer prediction: in practice, tasks
may have many distinctive attributes on which agents may base their reports, in ad-
dition to the intended signal, and yet all models in the literature assume away the
possibility that agents can choose to acquire such unintended signals. For example, in
online peer assessment where students are asked to evaluate the quality of student
assignments, students could instead base their assessments on the length of an es-
say or the average number of syllables per word. In an image categorization system,
users could base their reports on the color of the top-left pixel, or the number of kit-
tens present (!), rather than on the features they are asked to evaluate. Alternative
assessments can benefit agents in two ways: they may require less effort, and they
may result in higher expected scores via more favorable Delta matrices.13

We can characterize when this kind of manipulation cannot be beneficial to agents
in the CA mechanism. The idea is that the amount of correlation coupled with vari-
ability across tasks should be large enough for the intended signal. Let η represent
a particular task evaluation strategy, which may involve acquiring different signals
from the task than intended. Let ∆η be the corresponding ∆ matrix that would be de-
signed if this was the signal distribution. This is defined on a domain of signals that
may be distinct from that in the designed mechanism. In comparison, let η∗ define the

13This issue is related to the perennial problem of spurious correlations in classification and regression.



task evaluation strategy intended by the designer (i.e., acquiring signals consistent
with the mechanism’s message space), coupled with truthful reporting. The expected
payment from this behavior is

∑
ij:∆η

∗
ij >0

∆η∗

ij .

The maximal expected score for an alternate task evaluation strategy η may require
a strategy remapping signal pairs in the signal space associated with η to signal pairs
in the intended mechanism (e.g., if the signal space under η is different than that
provided by the mechanism’s message space). The expected payment is bounded above
by
∑
ij:∆ηij>0 ∆η

ij . Therefore, if the expected score for the intended η∗ is higher than the
maximum possible score for other η, there will be no reason to deviate.

6. CONCLUSION
We study the design of peer prediction mechanisms that leverage signal reports on
multiple tasks to ensure informed truthfulness, where truthful reporting is the joint
strategy with highest payoff across all joint strategies, and strictly higher payoff than
all uninformed strategies (i.e., those that do not depend on signals or require effort).
We introduce the CA mechanism, which is informed-truthful in general multi-signal
domains. The mechanism reduces to the Dasgupta and Ghosh [2013] mechanism in
binary domains, is strongly truthful in categorical domains, and maximally strongly
truthful among a broad class of multi-task mechanisms. We also present a detail-free
version of the mechanism that works without knowledge of the signal distribution
while retaining ε-informed truthfulness. Interesting directions for future work include:
(i) adopting a non-binary model of effort, and (ii) combining learning with models of
agent heterogeneity.
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