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In this letter we sketch a brief introduction to budget feasible mechanism design. This framework

captures scenarios where the goal is to buy items or services from strategic agents under bud-
get. The setting introduces interesting challenges that arise from the tension between incentive

compatibility and the budget constraint, and leaves many interesting open questions. We will dis-
cuss several application domains that include crowdsourcing, information dissemination in social

networks, and privacy-preserving recommendation systems.
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1. INTRODUCTION

Consider the following model. There are n agents {a1, . . . , an}, each with a private
cost ci ∈ R+ for selling a unique item or performing a service. There is a buyer
with a budget B ∈ R+ and a combinatorial utility function f : 2[n] → R+ defined
over subsets of agents.1 We say that a mechanism is budget feasible if the payments
it makes to agents do not exceed the budget. The goal is to design an incentive
compatible budget feasible mechanism which yields the largest value possible to the
buyer. This model was introduced in [Singer 2010] and gives us a simple framework
to study procurement in strategic environments. We will start with a few sim-
ple examples that introduce the main ideas in the budget feasibility framework. In
the sections that follow we will describe interesting generalizations and applications.

VCG is inapplicable. We will begin by investigating the celebrated Vickrey-
Clarke-Groves (VCG) framework, adapted to our setting. One way to interpret the
class of VCG mechanisms is that they allocate resources optimally assuming agents
bid truthfully, and enforce prices that support truthful reporting. Now, consider
an instance in which all agents have some small cost ε > 0, the budget is at least
εn and the buyer’s objective is simply to maximize the number of items purchased
(i.e. f(S) = |S|). Our adaptation of VCG finds the optimal solution, which in
this case selects all agents since their costs are small in comparison to the budget.
When considering payments, each agent should be paid B − ε(n − 1), and for a

1We assume agents have quasi-linear utilities and are strategic and rational (i.e. aim to maximize

the difference between the payment they receive and their true costs and are willing to lie about
their costs if and only if it increases their utilities). The budget and utility function of the buyer

are common knowledge, as is the mechanism being implemented. We first discuss direct revelation
mechanisms, i.e. protocols where agents submit bids that represent their declared costs. A solution
is a (possibly randomization over) subset of agents and payment vector.
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sufficiently small ε the total payments exceed the budget by a factor proportional
to the number of agents! Since we require mechanisms whose sum of payments does
not exceed the budget this kind of mechanism is inapplicable.

Approximation is necessary. The above example implies something stronger
than the fact that VCG is generally inapplicable. Due to uniqueness of prices, the
example above suggests that the optimal solution – the allocation which maximizes
the utility of the buyer when all agents’ costs are known – cannot be implemented
truthfully under budget. This is true even for utility functions that are as simple
as the one above and is independent of any computational assumptions. We will
therefore aim to approximate the optimal solution. We will quantify the quality of
a mechanism in terms of its approximation ratio against the full-information opti-
mum. For α ≥ 1 we say that a mechanism is α-approximate if for any input of bids
it allocates to a set S s.t. αf(S) ≥ f(S∗) where S∗ ∈ argmax{

T :
∑

i∈T ci≤B
}f(T ). 2

In general, nothing works. Consider an instance almost identical to the one
from the previous example where again all agents have small costs ε > 0, the budget
is sufficiently large, i.e. B > εn, but now the utility function the buyer aims to
optimize is the following variant of the cardinality function:

f(S) :=

{
|S| if agent a1 is in S

0 otherwise

A buyer with the above utility function only benefits when a particular agent
a1 is allocated (think of a buyer who wishes to consume as many bottles of wine
as possible, and only a1 sells her bottle with a complementary bottle opener). It
is not hard to be convinced that any truthful mechanism which has a positive
value to the buyer must surrender its entire budget to a1 in this case. So, for
general utility functions no truthful mechanism has a reasonable approximation ra-
tio. Importantly, note that here too this is due to the conflict between truthfulness
and the budget constraint and does not depend on any computational assumptions.

The question is then:

which utility functions have budget feasible mechanisms with reasonable
approximation guarantees?

The first main result we will discuss shows that for any monotone submodular
function there exists a randomized truthful budget feasible mechanism that has a
constant factor approximation ratio. As we will soon see, this result is developed
by a careful study of what we call proportional share mechanisms.

2. THE PROPORTIONAL SHARE MECHANISM

Consider the following mechanism: Sort the n bids so that b1 ≤ b2 ≤ . . . ≤ bn,
and let k be the largest index for which bk ≤ B/k. That is, k is the place where

2We note that similar impossibilities to the ones presented in this letter apply to Bayesian mech-

anisms, implying that positive results for worst-case analysis would be particularly strong.
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Fig. 1. An illustration of the allocation rule of the proportional share mechanism for f(S) = |S|.
The blue line is the curve B/k which is the border of budget feasibility when sharing the budget
equality between agents. The red line is the value of the function we aim to optimize f(S) = |S|.

the curve of the increasing costs intersects the hyperbola B/k (see Figure 1). The
set allocated here is S = {1, 2, . . . , k} and for every agent ai ∈ S the payment that
supports truthful reporting is min{B/k, bk+1}. It is not difficult to verify that this
mechanism is truthful and importantly that it has the property we seek: summing
over the payments that support truthfulness satisfies the budget constraint, and
we therefore have a budget feasible mechanism. Importantly, this mechanism has
a good approximation ratio.

Proposition 2.1. For f(S) = |S| the mechanism is a two-approximation.

Proof. Observe that the optimal solution is obtained by greedily choosing the
lowest-priced items until the budget is exhausted. Assume for purpose of contra-
diction that the optimal solution has ` items, and the mechanism returns less than
`/2 items. It follows that cd`/2e > 2B/`. Note however, that this is impossible

since we assume that cd`/2e ≤ . . . ≤ c`, and
∑`

i=d`/2e ci ≤ B which implies that

cd`/2e ≤ 2B/`, a contradiction.

Somewhat surprisingly, this simple mechanism is in fact optimal.

Proposition 2.2. For f(S) = |S|, no budget feasible mechanism can guarantee
an approximation ratio strictly better than two.

Proof. Suppose c1 = c2 = · · · = cn = B/2 + δ, for some positive δ < B/2.
Let M be a mechanism with a finite approximation ratio and w.l.o.g. assume M
allocates to agent a1. By monotonicity, a1 can reduce her bid to b′1 < B/2− δ and
remain allocated. For this bid vector, (b′1, c−1), Myerson’s characterization [Myer-
son 1981] implies that the payment for agent a1 should be at least B/2 + δ. By
individual rationality and budget feasibilityM cannot allocate to any other agent.
Observe that the optimal solution in this case includes two agents.
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We call the mechanism above a proportional share mechanism since it shares the
budget among agents proportionally to their contribution. We will now develop
this idea further and show how it can be applied to monotone submodular utility
functions (f(S) = |S| is a very special case of a submodular function). As we will
briefly discuss, this requires overcoming some fundamental challenges that empha-
size the clash between incentive compatibility and the budget constraint.

Submodular functions. Recall that a function f : 2[n] → R+ is submodular if
f(S∪T ) ≤ f(S)+f(T )−f(S∩T ), and monotone if S ⊆ T implies f(S) ≤ f(T ). For
monotone submodular functions, the marginal contribution of an agent ai given a
subset S, is fS(ai) = f(S∪{ai})−f(S). In an analogous manner to the way in which
we sorted agents according to their bids, when the buyer has a general monotone
submodular utility function we can consider bids by a marginal-contribution-per-
cost order. That is, a sorting where the agent that appears in position i+ 1 is the
agent aj for which fSi

(aj)/cj is maximal, where Si = {a1, a2 . . . , ai} and S0 = ∅. To
simplify notation, we will write fi instead of fSi−1(ai). Note that f(Sk) =

∑
i≤k fi.

In the presence of submodularity this sorting implies:

f1
c1
≥ f2
c2
≥ . . . ≥ fn

cn
(1)

The proportional share allocation rule. The proportional share allocation
rule sorts agents according to (1) and allocates to agents i ∈ {1, . . . , k} that respect
ci ≤ B · fi/f(Si). For concreteness consider the special case when the utility
function is additive, i.e. each agent ai is associated with a fixed value vi and
f(S) =

∑
i∈S vi. Here the marginal contribution of each agent is independent of

their place in the sorting, and we simply have that fi = vi for all agents. In this
case the proportional share allocation rule produces a budget-feasible mechanism.
The reason is, it assures us that for each agent ai, the payments that support
truthfulness θi do not exceed the agent’s proportional share:

θi = min
{ vi ·B∑

i∈S vi
,
vi · bk+1

vk+1

}
which is budget feasible since

∑
i θi ≤ B, and bi ≤ θi.

For many special cases of submodular functions, minor adjustments to the pro-
portional share allocation rule produce budget feasible mechanisms with good ap-
proximation guarantees, which in some cases are even optimal (e.g. when f(S) =
|S|). For the more intricate cases of submodular functions however, the propor-
tional share allocation rule does not guarantee budget feasibility. For coverage
functions for example, where each agent is associated with some set of elements Ti
and f(S) = | ∪i∈S Ti|, the marginal contribution of an agent is not fixed, but de-
pends on the subset allocated by the algorithm in the previous stages. In this case,
paying θi as above with fi instead of vi will be under budget but will not support
truthfulness. This is because the payment depends on the marginal contribution
fi, which is determined by ai’s position in the sorting. Since the position in the
sorting depends on the agent’s bid paying fi ·min{B/f(Sk), bk+1/fk+1} is budget
feasible but cannot be truthful (see Figure 2).
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Fig. 2. An illustration of a coverage function. Assume each agent ai contributes the set Ti,
and the order in which the proportional share allocation rule selects agents is (a1, a2, a3, a4).

If the mechanism paid agents proportionally to their marginal contribution, agent a4 may wish

to bid 0, which would maximize her marginal contribution since this bid places her first in the
marginal-contribution-per-cost sorting.

For utility functions like coverage the fact that agents’ contributions heavily de-
pend on their bids make it seem like there is little hope in exploring proportional
share mechanisms. Fortunately, it turns out that the proportional share allocation
rule can be modified into a budget feasible mechanism with constant factor approx-
imation guarantee for monotone submodular functions. This is the main technical
result in [Singer 2010] and can be summarized as follows:

(1) Payment characterization. First, we derive a characterization of the truth-
ful payments of the proportional share allocation rule. The characterization
reveals an underlying structure which plays an important role in our design.

(2) Bounding payments. Using the above characterization, we show that for any
monotone submodular function, we can slightly modify the proportional share
allocation rule so that its truthful payments are only a constant factor away
from the agents’ proportional contributions B · fi/f(Sk). We can therefore run
this modified version of the proportional share allocation rule with a constant
fraction of the budget, and the payments will be budget feasible.

(3) Approximation guarantee. Finally, we apply the variation of the propor-
tional share rule over a particular subset of agents and use randomization to
provide a good approximation guarantee without breaking monotonicity of the
allocation rule.3

Theorem 2.3 [Singer 2010]. For any monotone submodular function there ex-
ists a randomized universally truthful budget feasible mechanism with a constant
factor approximation ratio.

3. BEYOND SUBMODULARITY

The positive result for submodular functions opens the possibility for broader classes
of functions to have budget feasible mechanisms. In our introduction we saw a
simple example of a superadditive utility function where no budget feasible with

3The approximation ratio shown in [Singer 2010] was 117.7. Chen, Gravin, and Lu later gave a

much tighter bound of 7.91 using clever analysis [Chen et al. 2011].
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approximation ratio better than n can be obtained (and a similar function can be
constructed to show such a lower bound for randomized mechanisms). It there-
fore seems like the natural class of functions that can potentially allow for budget
feasibility is that of subadditive functions, i.e. f(S ∪ T ) ≤ f(S) + f(T ).

For subadditive utility functions budget feasible mechanisms with polylogarith-
mic approximation ratios were presented in [Dobzinski et al. 2011]. Bei et al. give
a mechanism with a sublogarithmic approximation ratio, and a mechanism with
a constant factor approximation ratio for a class known as fractionally subadditive
functions [Bei et al. 2012]. Interestingly, they also show a budget feasible mech-
anism for subadditive functions with a constant factor approximation ratio when
agents’ costs are drawn from a known distribution. This result opens a new and
exciting direction for Bayesian budget feasible mechanism design. 4

It is in fact an open question whether there exists a budget feasible mechanism
with a constant factor approximation guarantee for subadditive utility functions.
It is important to note that without incentive constraints, a constant factor ap-
proximation algorithm (which relies on access to demand oracles) for maximizing
subadditive functions under a budget constraint exists [Bei et al. 2012]. Since
subadditive functions are arguably the most natural class where budget feasibility
seems possible, whether a constant factor budget feasible mechanism for this class
exists is a fundamental open question.

4. ONLINE LEARNING AND POSTED PRICE MECHANISMS

Throughout our discussion we considered direct revelation mechanisms where the
agents bid their costs. An alternative is posted price mechanisms where the mecha-
nism makes agents “take-it-or-leave-it” offers. In this model we assume agents are
drawn sequentially from an unknown distribution that describes their costs, and
for each agent ai the mechanism posts a price pi. If pi ≥ ci the agent accepts and
the buyer receives the item or service ai sells at the expense of losing pi from the
remaining budget. Otherwise the agent rejects the offer, and the budget and utility
of the buyer remain as they were before making the offer.

The main open question here is whether posted price mechanisms can do asymp-
totically as well as (i.e. a constant factor away from) direct revelation mechanisms.
The technical challenge is to learn enough about distribution under the budget: high
offers quickly exhaust the budget, and low offers can quickly exhaust the pool of
agents. Surprisingly, it turns out that for simple utility functions such as f(S) = |S|,
posted prices are as asymptotically powerful as direct revelation [Badanidiyuru et al.
2012]. Whether this is also true for broader classes of utility functions is open.

4Throughout our discussion we ignored computational and information theoretic considerations.

To give a quick overview, submodular functions and their superclasses may have exponential
representation and thus an efficient algorithm requires an oracle to evaluate these functions. The

results discussed above for submodular functions are obtained using value oracles. For slightly

broader classes there are known impossibility results for optimization with value oracles [Mirrokni
et al. 2008] which apply to our setting as well. The mechanisms described in this section use the

stronger demand oracle model. For more details see [Blumrosen and Nisan 2009].
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5. APPLICATIONS

Influence in Social Networks. In this setting, formalized in [Kempe et al. 2003],
the goal is to select a small set of individuals to become initial adopters or recom-
mend a technology so that the word-of-mouth effect is maximized. In their seminal
work Kempe, Kleinberg, and Tardos showed that for many natural word-of-mouth
processes the task of maximizing influence reduces to maximizing a submodular
function under a cardinality constraint. The underlying assumption in influence
maximization is that every individual has some inherent cost for being a recom-
mender or an initial adopter. Despite the growing availability of personalized data
and the emergence of sophisticated machine learning techniques, inferring personal
costs is a difficult task. The results for submodular functions here imply that indi-
viduals’ costs can be elicited through a truthful mechanism with good performance
guarantees. Budget feasible mechanisms for particular classes of influence functions
as well as experiments on large-scale data are shown in [Singer 2012].

Crowdsourcing. In crowdsourcing markets like Amazon’s Mechanical Turk, re-
questers typically seek to outsource simple human computation tasks such as image
labeling, in a cost-effective manner. Requesters often face task completion dead-
lines and must account for dramatic elasticity in the workforce supply. In addition,
requesters must accommodate the large variance in effort required to complete dif-
ferent tasks, which largely depends workers’ heterogenous skill levels. To automate
the process of pricing crowdsourcing tasks the Mechanical PerkTM platform im-
plements budget feasible mechanisms tailored for crowdsourcing markets that max-
imize requesters’ utilities and minimize payments [Singer and Mittal 2011; 2013].
Singla and Krause develop direct revelation as well as posted price mechanisms
that minimize regret [Singla and Krause 2013b], and applications of budget feasible
mechanisms for crowdsourcing with mobile devices are shown in [Yang et al. 2012].

Data Analysis. There are several interesting applications where data is pro-
cured from strategic agents and the goal is to optimize estimations and predictions.
Roth and Schoenebeck assume costs are drawn from a known distribution and
use a posted price budget feasible mechanism for minimizing variance of an esti-
mator [Roth and Schoenebeck 2012]. Recent work by Horel et al. shows budget
feasible mechanisms for experimental design, and manage to elegantly optimize ob-
jectives such as entropy minimization [Horel et al. 2013].

Privacy-Preserving Systems. In a data-rich era, recommendation systems
aim to strike a fine balance between making useful recommendations while pre-
serving privacy. Budget feasible mechanisms that procure data from users and
maximize prediction in a privacy-preserving manner were developed in [Dandekar
et al. 2013]. For a different set of problems known as community sensing Singla and
Krause develop budget feasible mechanisms for adaptive submodular utilities [Singla
and Krause 2013a].
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6. CONCLUSION

Our goal in this letter is to provide a taste of the challenges and applications of
budget feasible mechanism design. The model fits scenarios in which the buyer
is limited by a budget, or ones where budget feasible mechanism design can serve
other objectives, such as minimizing costs as in the crowdsourcing example. Of
course, our focus in this brief survey was intentionally narrow and one can certainly
consider procurement models with different objectives and different constraints.
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