
An Online Mechanism for Ad Slot Reservations with Cancellations

Florin Constantin∗ Jon Feldman† S. Muthukrishnan‡ Martin Pál§

July 3, 2008

Abstract

Many advertisers (bidders) use Internet systems to buy display advertisements on publishers’ webpages or
on traditional media such as radio, TV and newsprint. They seek a simple, online mechanism to reserve ad slots
in advance. On the other hand, media publishers (sellers) represent a vast and varying inventory, and they too
seek automatic, online mechanisms for pricing and allocating such reservations. Designing such mechanisms
as effective as repeated Generalized Second Price auctions that now power spot auctions in sponsored search
is a great challenge. Such a mechanism should not only have certain optimization properties (such as in
efficiency or revenue maximization), but also, crucially, have robust game-theoretic properties (such as honest
bidding, limited speculations, etc).

We propose and study a simple model for auctioning such ad slot reservations in advance. There is one
seller with a set of slots to be displayed at some point T in the future. Until T , bidders arrive sequentially and
place a bid on the slots they are interested in. The seller must decide immediately whether or not to grant a
reservation. Our model allows the seller to cancel at any time any reservation made earlier, in which case the
holder of the reservation incurs a utility loss amounting to a fraction of her value for the reservation and may
also receive a cancellation fee from the seller.

Our main result is an online mechanism for allocation and pricing in this model with many desirable game-
theoretic properties. It is individually rational; winners have an incentive to be honest and bidding one’s true
value dominates any lower bid. Further, it bounds the earnings of speculators who are in the game to obtain
the cancellation fees. The mechanism in addition has optimization guarantees. Its revenue is within a constant
fraction of the a posteriori revenue of the famed Vickrey-Clarke-Groves (VCG) auction which is known to
be truthful (in the offline case). Our mechanism’s efficiency is within a constant fraction of the a posteriori
optimally efficient solution. If efficiency also takes into account the utility losses of bidders whose reservation
was canceled, we show that our mechanism matches (for appropriate values of the parameters) an upper bound
on the competitive ratio of any deterministic online algorithm.

The technical core of the mechanism is a variant of the online weighted bipartite matching problem where
unlike prior variants in which one randomizes edge arrivals or bounds edge weights, we need to consider re-
voking previously committed edges. On top of an online competitive algorithm for this problem, we impose
an appropriate payment structure to obtain the main game-theoretic and optimization guarantees of our mech-
anism. Our results make no assumptions about the arrival order or value distribution of bidders. They still
hold if we replace items with elements of a matroid and matchings with independent sets of the matroid, or if
all bidders have linear (additive) value for a set of items.
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1 Introduction

Many advertisers now use Internet advertising systems. These take the form of advertisement (ad, henceforth)
placements either in response to users’ web search queries, or at predetermined slots on publishers’ web pages.
In addition, increasingly, advertisers use Internet systems that sell ad slots on behalf of offline publishers on TV,
radio or newsprint. In ads placed in response to users’ web search queries and in some other cases, ad slots are
typically sold via spot auctions, i.e., when a user poses a query, an auction is used to determine which ads will
show and where they will be placed. On the other hand, traditionally, advertisers seek ad slots in advance, i.e.
to reserve their slots. Product releases (such as movies, electronic gadgets, etc) and ad campaigns (e.g., creating
and testing ads, budgets) are planned ahead of time and need to coordinate with future events that target suitable
demographics. The advertisers then do not want to risk the vagrancies of spot auctions and lose ad slots at critical
events; they typically like a reasonable guarantee of ad slots at a specific time in the future within their budget
constraints today.

Our motivation arises from systems that enable such advanced ad slot reservations. In particular, our focus
is on automatic systems that have to manage ad slots in many different publishers’ properties. These properties
differ wildly in their traffic, targeting, price and effectiveness. Also, the inventory levels are massive. Slots and
impressions in web publishers’ properties as well ad slots in TV, radio, newsprint and other traditional media are in
100’s of millions and more. Not all publishers can estimate their inventory accurately: traffic to websites responds
to time-dependent events, and sometimes webpages are generated dynamically so that even the availability of a
slot in the future is not known a priori. Most web publishers are not able to estimate accurately a price for an ad
slot, or provide sales agents to negotiate terms and would like automatic methods to price ad slots. Thus, what
is desirable is a simple, automatic, online1 market-based mechanism to enable advanced ad slotting over such
varied, massive inventory. Designing such a mechanism as effective as the repeated Generalized Second Price
auctions currently used for spot auctions is a great challenge.

Inspired by these considerations, we study the problem of mechanism design for advanced ad slot reserva-
tions. Our contribution is to propose a simple model, to design a suitable mechanism and to analyze its properties.
In more detail, our contributions are as follows.

Model. We propose the following simple model for advanced ad slot reservations. An auction starts at time 0; the
seller has a set of slots for sale that will be published at time T . Bidder i arrives at some time ai < T , having a
value v(i) for exactly one slot out of a subset of slots N(i). Upon his arrival, i places a bid w(i) (which results in
N(i) becoming known to the seller) and requests an immediate response. Bidder i is either accepted or rejected;
if accepted, he may be removed (bumped) later by the seller, but in that case, he may be compensated with a
bump payment. We assume that if bumped, a bidder incurs a loss of an α fraction of her value. At time T , each
accepted bidder i that has not been bumped is published in one slot from N(i) (the slots he was interested in).

This model lets the publisher accept a reservation at time t for a slot available at a later time T , and lets the
advertiser get a reasonable guarantee. However, crucially, it lets the publisher cancel the reservation at a later
time. Cancellation is necessary for publishers to take advantage of a spike in demand and rising prices for an item
and not be forced to sell the slot below the market because of an a priori contract. In addition, in a pragmatic
sense, cancellation is crucial: for example, a website might overestimate its inventory for a later date and accept
ads, but as time progresses, its inventory may be smaller, and the publisher will not be able to honor all the
accepted ads from the past. Finally, cancellations are very much part of the business with advance bookings, both
within advertising and beyond such as in airline bookings. At the same time, it comes at a cost, which is the
bumped bidders’ utility loss. The publisher benefits from the reduction in uncertainty, and pays for this via bump
payments. We present our model formally in Section 2.

Mechanism. We present an efficiently implementable mechanism Mα(γ) for determining who is accepted, who
is bumped and also the prices and bump payments. The parameter γ represents how much higher a new bid has

1We use the word online as in online algorithm—i.e., the input arrives over time, and the algorithm makes sequential decisions —we
do not mean “on the Internet.”
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to be in order to bump an older bid. A bumped bidder will be paid an α fraction of her bid, making up for her
utility loss due to being bumped.

Properties of Our Mechanism. We show a number of important strategic as well as efficiency- and revenue-
related properties of Mα(γ). First, the strategic properties:

• Mα(γ) is individually rational and winners have an incentive to bid truthfully while losers should bid at
least their true value.

• We study speculators, that is, ones who have no interest in the items for sale but who participate in order to
earn the bump payment. We show several game theoretic properties about the behavior of the speculators,
including bounding their overall profit.

Next, optimization properties:

• With respect to the bids received, the efficiency (value of assignment) of Mα(γ) is at least a constant factor
(depending on γ and α) of the offline optimum. Under mild player rationality assumptions, we also show
that our mechanism is competitive with respect to the optimum offline efficiency on bidders’ true values.

• We prove similar bounds under the notion of effective efficiency which interprets social welfare as the sum
of the winners’ bids minus bumped bidders’ losses. We also show that for suitable γ(α), our mecha-
nism’s effective efficiency matches a numerically obtained upper bound on the effective efficiency of any
deterministic algorithm.

• The revenue of Mα(γ) is at least a constant factor (dependent on γ and α) of that of the famed Vickrey-
Clarke-Groves (VCG) mechanism on all received bids.

To the best of our knowledge our results are the first about mechanisms with strong game-theoretic properties for
advanced ad reservations (more generally, online weighted bipartite matching) with a costly cancellation feature.
We make no assumptions on the arrival order of the bidders or on their values.

We note that all our results extend to a more general setting where the items for sale are elements of a matroid;
we discuss this in Section 7.

There are specific examples of systems that implement advanced booking with cancellations, not necessarily
though an automatic mechanism. For example, this is common in the airline industry, where tickets may be
booked ahead of time, and customers may be bumped later for a payment. In the airline case, the inventory is
mostly fixed, sophisticated models are used to calculate prices over time, and often negotiations are involved in
establishing the payment for bumping, just prior to time T . In some cases, the bump payments may even be
larger than the original bid (price) of the customer. Likewise, in offline media such as TV or Radio, advanced
prices are negotiated by humans, and often if the publisher does not respect the reservation due to inventory
crunch, a payment is a posteriori arranged including possibly a better ad slot in the future. These methods are
not immediately applicable to the auction-driven automatic setting like ours.

From a technical point of view, one can view our model as an online weighted bipartite matching problem (or
more generally, an online maximum weighted independent set problem in a matroid). On one side we have slots
known ahead of time. The other side comprises advertisers whose bids (weighted nodes) arrive online. Our goal
is to find a “good” weighted matching in the eventual graph. Each time an advertiser appears we need to decide if
we should retain it or discard it; retaining it may lead to discarding a previously retained bidder. Our mechanism
builds on such an online matching algorithm [10] to determine a suitable bump payment and prices.

We have initiated the study of mechanisms for advanced reservations with cancellations. A number of tech-
nical problems remain open, within our model as well as in its extensions, which we describe later for future
study.
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1.1 Related work. Several papers consider offline settings similar to ours. Bikhchandani et al. [3] present an
ascending, efficient, truthful in equilibrium auction for selling elements of a matroid to patient bidders. Cary et
al. [4] show that a random sampling profit extraction mechanism approximates a VCG-based target profit in an
offline procurement setting on a matroid. Feige et al. [6] study an offline weighted bipartite matching problem
where the seller can partially satisfy a bidder’s request at the cost of paying a proportional penalty. They show
that it is NP-hard to approximate the optimal solution with respect to effective efficiency (see Section 2) within
any constant factor, but they provide a bi-criterion approximation result for an adaptive greedy algorithm.

There has been extensive work in the field of revenue management for advanced sale of goods (with or without
cancellations), but only under a probabilistic distribution of bidders’ values or arrivals [11]. In particular, Gallien
and Gupta [7] exhibit symmetric Bayes-Nash equilibria in online auctions with buyout prices.

Under a worst case model like ours, no nontrivial online results are possible without making additional as-
sumptions; in our case, we overcome these impossibilities by allowing cancellations. In contrast, in secretary
problems, bids may be arbitrary but their order is assumed to be uniformly random (cannot be specified by an
adversary): Dimitrov and Plaxton [5] provide an algorithm with a constant efficiency competitive ratio. General-
izing their setting to matroids, Babaioff et al. [2] provide a log r-competitive algorithm where r is the rank of the
matroid. Both these algorithms observe half of the input and then set a threshold price. A different assumption is
that of bounded values: Lavi and Nisan [9] show that a simple online posted-price auction based on exponential
scaling is optimal among online auctions for identical goods without cancellations.

Independently and concurrently, Babaioff et al. [1] study the same problem as this paper, but from an algo-
rithmic perspective only, leaving incentives and revenue considerations aside. Their paper and ours present the
same algorithm and efficiency results. Their focus is on effective efficiency, for which they analytically prove an
upper bound on any deterministic algorithm’s competitive ratio (we only present results of a numerical simula-
tion in Fig. 1 strongly suggesting this bound). Unlike us, they go on to study costly cancellations (“buyback”) in
knapsack problems. They provide an algorithm similar to Mα(γ) and prove a bi-criterion approximation result,
an informative bound since they also prove that no deterministic algorithm has a constant competitive ratio.

2 Auction Model

We define an online ad slot reservation auction as follows. There is a seller who has a finite set of non-identical
slots, which will be allocated at some future time T . The seller runs a continuous, online auction beginning at
time 0, and ending at time T .

Each bidder i arrives online, at a unique time ai ∈ [0, T ] and she reports a choice set N(i) of items she is
interested in, as well as a bid (positive amount) w(i), demanding an immediate response (i is not allowed to bid
again later). She is instantly accepted (i.e. promised an item from N(i)), or rejected. However, at any point
between time ai and T , the seller may choose to bump an accepted bidder i, in which case a bump payment p̂i

is given to the bumped bidder. Any rejection, at arrival or by being bumped, is definitive. At time T , there must
be a matching of items to accepted bidders that have not been bumped such that each such bidder i receives one
item from her choice set N(i); each such i is then charged a price pi.

A mechanism for the online ad slotting problem defines the actions of the seller: whether to accept/reject
incoming bidders, when to bump accepted bidders, and how to set bump payments and prices.
2.1 Bidder Valuation and Utility. We assume a private value model for the bidders: Each bidder i has a
private value v(i) ≥ 0 for being allocated (at time T ) any single item from her choice set N(i). The bidder does
not necessarily need to report this value as her bid if it is in her interest not to do so. Additionally, we will model
the cost incurred by a bumped bidder as a negative value −αv(i), that is, an α fraction of her value for being
allocated. We will require2 that any mechanism pays back αw(i) to a bumped bidder i, making up for her utility
loss when bumped. The parameter 0 ≤ α < 1 modeling the negative bump utility will play a central role in our

2We impose this constraint primarily to ensure that honest bidders have non-negative utility. See Example 3 for further motivation.
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mechanism and analysis. We formally model bidder i’s utility as quasilinear in money:

utility(i) = f · v(i) − x(i), where (1)

• f = 0 if i is rejected, f = 1 if i is accepted and granted an item from N(i), and f = −α if i is bumped;

• x(i) is i’s money transfer to the seller: x(i) = 0 if i is rejected, x(i) = pi ≥ 0 if i is accepted and allocated,
and x(i) = −αw(i) ≤ 0 if i is bumped.

For a mechanism run on bids w, we will denote by S = S(w) the set of survivors (bidders still accepted by
time T ) and by R = R(w) the set of bumped bidders.
2.2 Efficiency and Revenue. How do we measure the quality of an outcome? The efficiency (or social wel-
fare) of an auction is the total value derived by the bidders participating in the auction. Usually in a combinatorial
auctions setting the efficiency is the sum of the valuations of the bidders who were allocated items:

efficiency =
∑

i∈S
v(i).

However there is another interpretation in our model since the bidders lose value if they are accepted then bumped;
thus we will also consider the notion of effective efficiency:

effective efficiency =
∑

i∈S
v(i) −

∑

i∈R
αv(i).

The revenue of an auction is the total monetary gain/loss of the seller:

revenue =
∑

i∈S
pi −

∑

i∈R
αw(i)

We would like a mechanism that scores favorably in all of these metrics on all instances of the auction, under
hopefully mild conditions on strategic behavior. Following the logic of competitive analysis, we will compare
our mechanism to the standard offline solution: the VCG mechanism [8]. Mapped to our setting (but offline), this
amounts to finding a maximum matching of bidders to items, and charging prices that induce truthfulness.

Finally, we note that it is essential to the novelty of this model that the bidders derive negative utility from
having their allocation promise revoked. Indeed if α = 0, one could simply accept all bidders as they arrive,
and then at time T run the VCG mechanism (giving no bump payments). It is easy to see that in this setting a
dominant strategy for each bidder is to be truthful.

3 Main Results

In this section we will state our main results (without proof) and highlight the significance of each. In the next
section, we will define our mechanism Mα(γ). The mechanism is parameterized both by the model parameter α
as well as an additional parameter γ > 0 that can be set arbitrarily as long as 0 < α < γ

1+γ . We will state our
main results in terms of these two parameters.

Since we are in a game-theoretic setting, we must first reason about the strategic behavior of bidders in order
to motivate the preconditions of our results. One basic property that any reasonable mechanism must have is that
it is individually rational, which simply means that participating in the auction is always a rational thing to do
(i.e. participating is never worse than not participating). In our case we can define this in the following way: if a
bidder reports her true value (sets wi = vi), then her utility is always non-negative.

Another desirable property of an auction mechanism is for it to be truthful, which means that the optimal
strategy for participating bidders is always to report their true value. Unfortunately with bump payments (which
we just argued were necessary) we cannot hope to have a truthful mechanism since anyone with no interest in
any allocation (i.e., vi = 0) can bid hoping to get a bump payment. So, given that we cannot assume bidders
will be honest, the natural thing to do is analyze the efficiency and revenue of the mechanism in a Nash or other
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form of equilibrium. Unfortunately, a (pure-strategy) Nash equilibrium does not always exist, as we will argue
in Section 6.2. However we can still argue that our mechanism has some strong incentive properties. We use the
following standard game-theoretic terminology: a bid dominates another bid if it is at least as good a strategy
given any bids by other players; a best-response is the best possible bid given a particular set of others’ bids.

Theorem 1. [Basic Incentive Properties]

• The Mα(γ) mechanism is individually rational,

• Bidding truthfully dominates any lower bid,

• If truthful, any survivor is best-responding, and

• Bidding truthfully is a best-response unless a higher bump payment can be achieved with a higher bid.

This theorem (proved in Section 6.1) establishes individual rationality, but more importantly it rules out the
possibility that the bids will be lower than the values. To the best of our knowledge, this is a novel form of
incentive compatibility: while it does not make truthfulness a dominant strategy, it ensures that competition is no
less than if every bidder were truthful. Furthermore, it highlights truthfulness as a simple viable strategy from a
practical point of view, or for unsophisticated bidders. The only reason for not bidding truthfully is the prospect
of a higher bump payment. This motivates the following definition:

Definition 1. [Speculators] A speculator is a bidder who bids above her true value (with the intention of receiving
a bump payment). Speculators may collude with each other, lie about their choice sets N(i) or arrival times, and
may also have value v(i) = 0 (i.e., they may have no value for an item). The auctioneer does not know if a bidder
is a speculator or not.

We can now state the efficiency and revenue bounds for our mechanism under preconditions made reasonable
by Theorem 1. From Theorem 1 and the speculator definition, we can assume that non-speculators bid truthfully.
Speculators’ bids, on the other hand, are aimed towards squeezing as much money as possible from bump pay-
ments. The only additional assumption we will make for our efficiency bounds is that the set of speculators does
not incur a loss, which is quite mild an assumption: indeed, if the speculators incur a loss they would be better
off not participating at all.

For any vector w = (w(1), . . . , w(n)) of bids, we let OPT[w] denote the weight of the optimal matching.
Note that OPT[v] then gives the optimal efficiency and effective efficiency of an offline mechanism, achieved by
VCG. On bids w we denote the VCG revenue by REVvcg[w].

Theorem 2. [Efficiency] Let w be a set of bids such that all bidders bid at least their true value, and total utility
among speculators is non-negative. Then the Mα(γ) mechanism has

efficiency ≥
1 − α − α

γ

(2 − α − α
γ )(1 + γ)

· OPT[v] and effective efficiency ≥
1 − α − α

γ

(2 − α)(1 + γ)
· OPT[v].

Theorem 3. [Revenue] Let w be a set of bids such that each bidder bids at least her true value. Mα(γ) has

revenue ≥
1 − α − α

γ

1 + γ
REVvcg[w].

In Lemma 5 in Section B.3, we show REVvcg[w] ≥ REVvcg[v], implying that the revenue obtained by Mα(γ)
is also competitive with the offline VCG revenue on bidders’ true values.

Note that a limit on manipulation is needed for a lower bound on true efficiency: if low value bidders bid really
high, being allocated all the items and preventing the rightful winners from being allocated, the true efficiency
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of the mechanism is very low. We further discuss manipulations in Section 6.2, where we also give additional
results on speculator strategies.

Efficiency bounds that leave incentives aside (Theorem 4 and Corollary 1 in Section 5) are tighter than the
bounds in Theorem 2, and can be obtained more easily.

Theorems 2 and 3 are proved in Sections B and B.3. In Section B we also give a upper bound on the effective
efficiency (in terms of actual bids, rather than values) of any deterministic algorithm, for which our allocation
algorithm is tight (for a certain γ that depends on α, if α < 0.618).

As an example of instantiating these parameters, suppose α = 1
4 . Then we can set γ = 1, and be 1

6 -
competitive on efficiency, 1

7 -competitive on effective efficiency, and 1
4 -competitive on revenue.

4 Mα(γ): an Online Mechanism

We present our advance-booking online mechanism Mα(γ) in this section. The allocation algorithm follows the
Find-Weighted-Matching algorithm in [10]3, that uses an unconstrained improvement factor γ > 0. We require
α < γ

1+γ i.e. γ ∈ ( α
1−α ,∞) (recall that 0 ≤ α < 1) for non-negative lower bounds in Theorems 2 and 3.

Our mechanism Mα(γ) (given formally in Algorithm 1) maintains a set of accepted bidders for which there
exists a matching of bidders to items. For each new arriving bidder i bidding w(i), Mα(γ) adds i to the current
matching if it can do so without bumping a currently accepted bidder. Otherwise, Mα(γ) looks for some bidder
j in the accepted set with w(j) < w(i)

1+γ such that replacing j by i maintains the existence of a matching. If such
a bidder exists, the mechanism accepts i and bumps j∗, the lowest weight such bidder, who is paid the bump
payment αw(j∗). At time T , after all bidders have been processed, the accepted bidders become the survivors.
The survivors are allocated a slot from their choice set using an arbitrary matching, and they each make a payment
that we define below.

Algorithm 1 Mα(γ): Allocation algorithm and payments.
A new bidder is accepted if she improves over her lowest-bidding indirect competitor by at least a γ factor.
Bumped bidders are given a bump payment to make up for their utility loss.

Let A0 := ∅.
for each arriving bidder i ≥ 1 bidding w(i) do

if Ai−1 ∪ {i} can be matched then grant i a reservation: Ai := Ai−1 ∪ {i}.
else let j∗ be the lowest-bidding j ∈ Ai−1 such that Ai−1 ∪ {i} \ {j} can be matched

if w(i) < (1 + γ)w(j∗) then reject i: Ai := Ai−1.
else cancel j∗’s reservation and pay her αw(j∗)

grant i a reservation: Ai := Ai−1 ∪ {i} \ {j∗}.
end for
Each bidder i in S = An (i.e. survivors) is allocated an item from N(i) and charged as in Eq. (2).

Eq. (2) below establishes a survivor’s payment to the seller, and requires the following definitions.

Definition 2. Let i be a bidder and fix the bids of all other bidders. Let wac(i) (i’s acceptance weight) be the
infimum of all bids that i can make such that i is accepted given i’s arrival ai and i’s choice set Ni. Similarly,
let wsv(i) ≥ wac(i) (i’s survival weight) be the infimum of all bids that i can make such that i is accepted and
survives until time T (the end) given ai and Ni.

Note that wsv(i) always exists since it suffices to bid (1 + γ) maxj 6=i w(j). Also, wac(i) and wsv(i) are
independent of i’s actual bid, but may depend on the time i arrives and on the other bidders’ bids or arrivals.

3Unlike in [10], a bidder i’s value is the same for any slot (vertices as opposed to edges are weighted). Our mechanism may then
change the slot i is currently assigned to at various stages in the algorithm.
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We are now ready to define the prices charged by Mα(γ). If i is a survivor, we set i’s price pi as follows:

pi =

{

wsv(i)(1 − α) if wac(i) < wsv(i).
wsv(i) if wac(i) = wsv(i).

(2)

These prices are designed with Theorem 1’s conditions in mind, as we will see in its proof.
We close this section with an example run of Mα(γ).

Example 1 (a particular instance of Mα(γ)). Suppose α < 0.5
0.5+1 and let γ = 0.5. Consider two items Ia, Ib and

the following sequence of bidders, arriving in this order (i at time ti and T = t4): B1 bids 6 on N(1) = {Ia, Ib},
B2 bids 4.4 on N(2) = {Ib}, B3 bids 10 on N(3) = {Ia} and B4 bids 7.5 on N(4) = {Ib}. . Mα(γ) accepts B1

at t1, accepts B2 at t2, accepts B3 and bumps B2 at t3 and then rejects B4 at t4. We have wac(1) = 0, wac(2) =
0, wac(3) = 1.5 · 4.4 = 6.6 (to bump B2) and wac(4) = 1.5 · 6 = 9 (to bump B1); we have wsv(1) = 7.5

1.5 = 5
(to prevent being bumped by B4), wsv(2) = 6 (to prevent being bumped by B3 and B4), wsv(3) = 6.6, and
wsv(4) = wac(4) = 9. B1 and B3 survive: B1 pays (1 − α)wsv(1) since wac(1) < wsv(1) and B3 pays wsv(3)
since wac(3) = wsv(3).

5 Online Matching with Cancellations

In order to prove our efficiency and revenue bounds from Section 3, we need to show that the Mα(γ) mechanism
finds a good matching given the declared bids w, regardless of what the true values of those bidders are. This is a
pure online-algorithms question (i.e., no game theory), which we treat in this section, providing theorems which
not only are key for our incentive-aware bounds from Section 3, but are also of independent interest.

Recall that OPT[w] denotes the optimal offline matching on the bids w. For bids w and a set of bidders B,
we let w(B) =

∑

i∈B w(i) and wsv(B) =
∑

i∈B wsv(i).
Theorem 4 shows a competitive ratio for efficiency (the difficult part of the proof is deferred to Section A):

Theorem 4. Mechanism Mα(γ) is a 1
1+γ -approximation to the optimal offline matching: w(S) ≥ 1

1 + γ
OPT[w].

Proof. The key technical lemma to establish a competitive ratio shows that if we reduce the weights of the bidders
in a particular way, then the optimal solution matches the matching given by the algorithm:

Lemma 1. Let w̃(i) =

{

wsv(i), if i ∈ S

w(i)/(1 + γ), if i /∈ S
. Then S = OPT[w̃].

We prove this Lemma in Section A. To finish the theorem, let ŵ(i) = max(wsv(i), w(i)/(1 + γ)) if i ∈ S,
and w(i)/(1+γ) otherwise. We have w(S) ≥ ŵ(S) = OPT[ŵ] ≥ OPT[w]/(1+γ): each inequality is implied
by the fact that no bidder’s contribution decreases when going from the left to the right hand side. Lemma 1
yields the equality: when going from w̃ to ŵ only bids already in the optimum (i.e. S) can increase.

The following bound assures us that not too much utility (of bumped bidders) is sacrificed for high efficiency:

Theorem 5. The total weight w(R) among bumped bidders is at most wsv(S)/γ.

Proof. For an r ∈ R, let s∗(r) ∈ S be the survivor at the end of the sequence of bumps that starts from r. For an
s ∈ S, let Rs be the refunded bidders in s’s sequence of bumps: Rs = {r ∈ R : s∗(r) = s}. As R is the disjoint
union of Rs for all s ∈ S, the theorem follows by showing:

For all s ∈ S, w(Rs) ≤ wsv(s)/γ. (3)

To show Eq. (3), fix a particular s ∈ S, and let d1, . . . , dJ = s be the elements in Rs such that: dj+1 bumps dj ,
∀ 1 ≤ j ≤ J − 1. To simplify notation, assume d1 = 1, . . . , dJ−1 = J − 1. We will show that

∑J−1
j=1 w(j) ≤

wsv(s)/γ.
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We have wJ−1 ≤ wsv(s)
1+γ as s bumped J − 1. Since j + 1 bumps j, ∀ 1 ≤ j ≤ J − 2, wj ≤ wj+1

1+γ . Thus
by induction, wj ≤ wsv(s)(1 + γ)j−J , ∀ 1 ≤ j ≤ J − 1. We get

∑J−1
j=1 wj ≤ wsv(s)

∑J−1
j=1 (1 + γ)j−J ≤

wsv(s)/γ.

Let the effective weight of a solution be the weight of the matching minus a penalty amounting to the total utility
loss by bumped bidders (αw(i) for each i ∈ R). Note that Theorem 5 implies w(S)−αw(R) ≥ w(S)(1−α/γ),
which by Theorem 4 implies the following lower bound on effective weight:

Corollary 1. The Mα(γ) Mechanism is a 1−α/γ
1+γ -approximation to the optimal offline matching in terms of effective

weight: w(S) − αw(R) ≥ 1−α/γ
1+γ OPT[w].

We also show an upper bound on the how well any deterministic algorithm can approximate the effective weight:

Theorem 6. Fix n (the number of bidders). No deterministic online algorithm can approximate the optimal
offline matching in terms of effective weight with a factor better than cn, where cn is the lowest number (if any)
in [0, 1] for which Eqs. (11) and (12) simultaneously hold (see Section C). Based on computing cn numerically,
we conjecture that the value cn approaches 2α + 1 − 2α0.5(α + 1)0.5 as n → ∞.

For α <
√

5−1
2 ' 0.618 (the golden ratio) and the best γ given α, the approximation ratio proved in Corol-

lary 1 for Mα(γ) matches this upper bound. (See Section C for further discussion.)
Bounds analogous to Theorems 4 and 5 can be found in [10]. Our constants are tighter because in our model,

a bidder’s value for any slot is the same, and all edges incident to a bidder arrive simultaneously. Our bounds are
almost tight:

Example 2 (tight bounds). Consider k + 2 truthful bidders competing on one item; bidder i is the i-th to arrive
and has value (1 + γ)i−1 unless i = k + 2, whose value is (1 + γ)k+1 − ε. Bidder i + 1 bumps i, ∀ 1 ≤ i ≤ k.
Only the k + 1-st bidder survives. The bumped bidders have total weight

∑k−1
i=0 (1 + γ)i = ((1 + γ)k − 1)/γ.

OPT is (1 + γ)k+1 − ε.

6 Detailed game-theoretic analysis

In this section we focus on the game-theoretic properties induced by our mechanism. We start by offering some
more intuition on survival and acceptance weights and then prove Theorem 1.

Recall from Section 4 that i is rejected if w(i) < wac(i), bumped if wac(i) ≤ w(i) < wsv(i) and a survivor
if wsv(i) ≤ w(i). If i bumps j∗, wac(i) = (1 + γ)w(j∗) but wsv(i) can either be (1 + γ)w(j∗), w(k) for a (past
or future) bumped bidder k or w(k)

1+γ for a future rejected k. Thus, the value wac(i) can be computed by the seller
as soon as a bidder arrives whereas wsv(i) may depend on future bidders and can only be computed at time T .

Let us focus now on a survivor i’s (w(i) ≥ wsv(i)) payment in Eq. (2). The common case is when wac(i) <
wsv(i): i gets a discount amounting to the highest bump payment she could have otherwise obtained: αwsv(i).
The special case of wac(i) = wsv(i) occurs when i’s acceptance is enough for her survival (in particular if i is
the last bidder). When wac(i) = wsv(i), from the bidder’s point of view, Mα(γ) posts a price of wsv(i).

Consider what would happen if in Example 1 a bidder B5 were to arrive after B4 bidding 10.5 on Ia. Only
wsv(3) would change to 10.5

1.5 = 7. In this case, B3’s price becomes (1 − α) · 7 which may be lower than 6.6.
Unless a bidder i’s wsv(i) price coefficient goes from 1 to 1−α (like in Example 1 for B3 if B5 arrives), i’s price
cannot go down if new bidders arrive.
6.1 Proof of Theorem 1. If bidder i bids her true value v(i), then her utility after participating in the mech-
anism is either v(i) − pi ≥ v(i) − wsv(i) ≥ 0 if she survives, 0 if she is rejected, or αv(i) − αv(i) = 0 if she is
accepted then bumped. This establishes (1).

If wac(i) < wsv(i), bidder i’s highest possible bump payment is αwsv(i). The price of (1 − α)wsv(i) has
been chosen such that i prefers winning to being paid αwsv(i) if and only if v(i) ≥ wsv(i). That is, i’s best
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response is to bid just below wsv(i) if v(i) < wsv(i) and to bid her true value otherwise. This establishes (2), (3)
and (4) for this case.

If wac(i) = wsv(i), then i can never get a bump payment and i simply faces a take-it-or-leave-it offer of
wsv(i). Bidding truthfully is a best response in this case, and (2), (3) and (4) follow.
6.2 Speculator Strategies. In this section we focus on speculators’ strategic behavior and present several
lemmas and examples that illustrate the complexity.

Prop. 1 provides an upper bound on speculators’ profit (we defer its proof to Section B.2).

Proposition 1. Speculators’ total monetary profit is at most αOPT/γ.

At first glance, it would seem that speculators’ best strategy is to induce an assignment of actual bidders of
weight as high as possible in the survivor set, since then overall bump payments would be maximized. This is
true in some cases but not always, and indeed colluding speculators may even want some of them to survive:

Theorem 7. Under the Mα(γ) mechanism,

• there exist input instances such that optimal speculator bidding induces optimal efficiency, and truthful
bidding is a Nash Equilibrium for all non-speculators;

• there exist input instances where optimal speculator bidding induces sub-optimal efficiency,

• there exist input instances where there is no pure-strategy Nash equilibrium,

• there exist input instances where speculators may be able to make more money if they “sacrifice,” i.e. some
of them intentionally survive so that others obtain high refunds.

This theorem follows from a sequence of examples and lemmas that is presented in Section D. We may
conclude from this theorem that it is unreasonable to expect stronger incentive properties than Theorem 1, such
as truthfulness or a Nash Equilibrium. However, despite all the game-theoretic complexity that can arise from
speculators, their effect on efficiency and revenue can still be bounded: implicitly via the results in Section 3 or
explicitly in Prop. 1.
6.3 Other game-theoretic considerations. We now ask a couple of “what if?” questions, whose answers
further help motivate our model choices.

The algorithm may have better incentive properties if we paid a bumped bidder αwsv(i) (a bid-independent
amount) instead of αw(i). The following example shows why this may result in a deficit:

Example 3 (Alternate bump payments). Consider two bidders on one item: B1 arrives first, bidding 1, followed
by B2 bidding L > (1 + γ)2/α. Bidder B2 survives and pays 1 + γ. If B1’s bump payment were αwsv(e) =
αL/(1 + γ) then the choice of L ensures that B1 is paid more than B2 pays, i.e. the mechanism runs a deficit.

We assumed throughout that as soon as a bidder arrives, her choice set is known. If however that is private
information as well, incentives become weaker: in Example 4, no bid by B∗ on her true choice set {i1, i2}
is a best-response if bidding on different item(s) instead is allowed. This example also suggests why a naive
generalization of Mα(γ) to the setting where bidders have a different value for each of several items would not be
able to incentivize bidders to bid at least their true value for each item.

Example 4 (Private choice sets). Consider two items i1, i2 and the following three bidders, arriving in this
order: B−3/2with value (1 + γ)−3/2 for i1, B∗ who has value x < α(1 + γ)−3/2 and choice set {i1, i2} and B1

bidding 1 on item i1. Assume B−3/2and B1 bid truthfully. We will show that, whenever B∗ bids on {i1, i2}, she
can do strictly better by bidding on i1 only.

We claim that if B∗ bids on {i1, i2} then her utility is at most α(1 + γ)−3/2. This is clear if she survives. If
she is bumped by B1, then her bid cannot be higher than (1 + γ)−3/2 (B−3/2’s bid), since B1 can replace any of
B−3/2 and B∗. But then B∗’s bump payment is at most α(1 + γ)−3/2. Let 0 < ε < 1/2. By bidding (1 + γ)−1−ε

on i1 only and being bumped by B1, B∗ can get utility α(1 + γ)−1−ε > α(1 + γ)−3/2.

9



We have however the following conjecture: if a bidder prefers surviving to being refunded, she is better off
bidding on her true choice set.

One can also show that, if bidders myopically and simultaneously best-respond (over sequences of instances
of Mα(γ)), then bid vectors where the sum of utilities is negative may be obtained.

7 Extensions

All our results extend to a setting where the items for sale are elements of a matroid, which is more general than
slot allocation. A bidder bids on exactly one element of the matroid, which is known ahead of time to the seller
and may vary across bidders. A set of bidders is then feasible if the set containing each bidder’s element forms an
independent set of the matroid. In the bipartite matching setting, the seller’s matroid contains sufficiently many
copies of one element for each subset of slots. A set of bidders (elements) is independent if the bidders can be
matched to slots such that each one receives a slot from her subset.

In a different direction, our results also extend to a (strictly bipartite matching) setting where a bidder’s value
for a set I of items is the sum of values for each item in I (no bidder can express substitute items). In this setting,
the multi-item matching problem is actually a collection of single-item matching problems since bids on two
different items can never interact. We preferred the basic setup (bipartite matching where a bidder is interested in
one out of a set of substitute items) for clarity of exposition.

8 Concluding Remarks

Advertisers seek a mechanism to reserve ad slots in advance, while the publishers present a large inventory of ad
slots and seek automatic, online methods for pricing and allocation of reservations.

In this paper, we present a simple model for auctioning such ad slots in advance, which allows canceling
allocations at the cost of a bump payment. We present an efficiently implementable online mechanism to derive
prices and bump payments that has many desirable properties of incentives, revenue and efficiency. These proper-
ties hold even though we may have speculators who are in the game for earning bump payments only. Our results
make no assumptions about order of arrival of bids or the value distribution of bidders.

Our work leaves open several technical and modeling directions to study in the future. From a technical point
of view, the main questions are about designing mechanisms with improved revenue and efficiency, perhaps under
additional assumptions about value distributions and bid arrivals. Also, mechanisms that limit further the role of
speculators will be of interest. In addition, there are other models that may be applicable as well. Interesting
directions for future research include allowing a bidder to pay more for higher γ (making it harder for future
bidders to displace this bidder) or higher α (being refunded more in case of being bumped). Other mechanisms
may allow α to be a function of time between the acceptance and bumping. Accepted advertisers may be allowed
to withdraw their bid at any time. Finally, advertisers may want a bundle of slots, say many impressions at
multiple websites simultaneously, which will result in combinatorial extension of the auctions we study here.

We believe that there is a rich collection of such mechanism design and analysis issues of interest that will
need to inform any online system for advanced ad slot reservations.
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A Survival weights and online optimum — Proof of Lemma 1.

In this section it will be simpler to have as initial matching A0 for Mα(γ) an arbitrary perfect matching on dummy
bidders instead of the empty matching. We introduce r dummy bidders (each bidding 0) whose choice set is the
whole set of items, arriving before all actual bidders. This will ensure that a perfect matching is maintained by
Mα(γ), but will not affect other arguments below4.

At time t, we call currently accepted bidders alive, and denote the set of alive bidders as At. Let Xt = {b ∈
At−1 : At−1 ∪ {t} \ {b} can be matched}; Xt is the set of alive bidders at t − 1 that can be swapped for t and
j∗ = argminj∈Xi

w(j) (see Algorithm 1).
Assume wlog that bidder i arrives at time i. We will denote by wsv

≤t(b) the minimum bid bidder b must make
in order to survive up to and including time t. Then wac(b) = wsv

≤b(b) and wsv(b) = wsv
≤T (b). It is clear that

wsv
≤t(b) ≤ wsv

≤t+1(b).

Definition 3. Let B be a set of bidders. We say that B is tight for a bidder i at time t if all bidders in B are alive
at t, B can be matched but B ∪ {i} cannot be matched. We say that B γ-dominates a bidder i at time t if B is
tight for i at t and ∀ b ∈ B, we have wsv

≤t(b) ≥ w(i)/(1 + γ).

Lemma 2. Xt is tight for t at t.

Proof. Xt can be matched since Xt ⊆ At−1. Suppose for a contradiction that Xt ∪ {t} can be matched. Then
Xt 6= At−1 since At−1 is a perfect matching by assumption. Therefore there exists X ⊂ At−1 \ Xt, |X| =
|At−1|−|Xt|−1 such that Xt∪{t}∪X can be matched. There exists exactly one bidder {y} = At−1 \(Xt∪X)
and we have that Xt ∪ {t} ∪ X = At−1 ∪ {t} \ {y} is a perfect matching, implying y ∈ Xt, contradiction.

4When bidder t arrives, assume At−1 = A ∪ D where D only contains dummy bidders and there exists a matching It of A ∪ {t}
which matches t to some item it. By reassigning dummy bidders, we can assume that actual bidders are matched according to It. Then
bidder t can bump at least the dummy bidder d ∈ D that is matched to it in At−1.
In fact, by assigning the dummy bidders non-zero values, the seller effectively sets reserve prices on items.
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Let i∗ be the time step when i ceases to be alive (i.e. i∗ = i if i is not accepted or the time i is bumped if i
was accepted). We inductively construct a sequence {Bt}i∗≤t≤n as follows: if i is not accepted, Bi = Xi; if i is
bumped by i∗ then Bi∗ = Xi∗ ∪ {i∗} \ {i}. At time t ≥ i∗ + 1,

• if no bidder in Bt−1 is bumped, then we let Bt = Bt−1.

• if t bumps some b ∈ Bt−1 then we let Bt = (Bt−1 ∪ Xt ∪ {t}) \ {b}
We will prove inductively on t that
Lemma 3. Bt γ-dominates i at time t.

Proof. By definition, all bidders in Bt are alive at t. We proceed by induction starting with the base case t = i∗.
If i is not accepted (i∗ = i), i cannot bump any bidder in Xi: therefore ∀ b ∈ Xi, w

sv
≤i(b) ≥ w(i)/(1 + γ). Xi

is tight for i at i by Lemma 2. If i is bumped, then w(i) ≤ wsv
≤i∗(r), ∀ r ∈ Xi∗ . Bi∗ = Xi∗ ∪ {i∗} \ {i} can be

matched since they are all alive at i∗. Xi∗ ∪ {i∗} cannot be matched: otherwise i∗ would not bump i ∈ Xi∗ .
In the inductive step, we assume that Bt−1 γ-dominates i at t − 1. If at time t, no bidder in Bt−1 is bumped,

then the claim obviously holds by the induction hypothesis. Otherwise, let b ∈ Bt−1 be the bidder that is bumped
by t. Clearly, (Bt−1 ∪ Xt ∪ {t}) \ {b} can be matched since they are alive at t. Suppose for a contradiction that
Bt ∪ {i} = (Bt−1 ∪ Xt ∪ {t}) ∪ {i} \ {b} could be matched. i /∈ Bt since i is no longer alive. Bt−1 ∪ Xt

can be matched since they are all alive at t − 1. As |Bt−1 ∪ Xt| = |Bt ∪ {i}| − 1, either Bt−1 ∪ Xt ∪ {i} or
Bt−1 ∪ Xt ∪ {t} can be matched. The first case is not possible since a subset, Bt−1 ∪ {i}, cannot be matched
(by the induction hypothesis); the second case is not possible since Xt ∪ {t} cannot be matched (Lemma 2). We
have reached a contradiction, so Bt must be tight for i.

By the induction hypothesis, ∀ b′ ∈ Bt−1, wsv(b′)≤t−1 ≥ w(i)/(1+γ). As noted before, survival thresholds
can only increase from t − 1 to t and w(t) ≥ (1 + γ)w(b).

Proof of Lemma 1. Let V be the OPT[w̃] assignment (where ties are broken in favor of bidders in S). Suppose
for a contradiction that there exists a non-survivor i ∈ V . By Lemma 3 for time n, i is dominated by a set Bn ⊆ S
at time n. Since i /∈ S, but Bn ⊆ S, in w̃ any bidder in Bn has a higher weight than i.

Since V is a perfect matching and Bn can be matched there must exist V ′ ⊂ V \ Bn, |V ′| = |V | − |Bn|
(V ′ = ∅ if Bn is a perfect matching) such that Bn ∪V ′ is a (perfect) matching. We know that Bn ∪{i} cannot be
matched, therefore i /∈ V ′. However, i ∈ V therefore i ∈ V \ V ′. V \ {i} can be matched and has size |V | − 1.
Therefore there ∃b ∈ Bn ∪ V ′, b /∈ V \ {i} such that V ∪ {b} \ {i} can be matched. That implies b ∈ Bn ⊆ S,
i.e. w̃(b) ≥ w̃(i). But then V ∪ {b} \ {i} is a perfect matching of higher weight than V , contradiction. That is,
V \ S = ∅, i.e. V = S since both are perfect matchings.

B Proofs of Optimization Results

The purely algorithmic (non-game-theoretic) results of Section 5 showed bounds in terms of the declared bids w.
In this section we use these bounds, together with our conditions on incentives, to prove our main results. Here
we bound the efficiency and revenue of the outcome of the mechanism in terms of the true values v.

By assumption, all bidders bid at least their true value; thus all non-speculators bid truthfully. We will denote
by H be the set of honest bidders (non-speculators) and by H be the set of speculators.
B.1 Efficiency

Lemma 4. v(S) + wsv(S) =
∑

s∈S v(s) +
∑

s∈S wsv(s) ≥ OPT[v]/(1 + γ).

Proof. Let w′(x) :=

{

max(v(x), wsv(x)), if x ∈ S

w(x), if x /∈ S
.

Clearly, v(s) + wsv(s) ≥ w′(s) ∀ s ∈ S. S(w) = S(w′) since only survivors in S(w) change their bid, still
bidding above their survival thresholds. By Theorem 4,

∑

s∈S w′(s) ≥ OPT[w′]/(1 + γ). The claim follows by
noting that OPT[w′] ≥ OPT[v] since w′(x) = w(x) ≥ v(x), ∀x /∈ S.
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Proof of Theorem 2. The non-negativity of total speculator utility amounts to

v(S ∩ H) − (1 − α)wsv(S ∩ H) + αw(R ∩ H) − αv(R ∩ H) ≥ 0 (4)

In the remainder of the proof, we will often use Theorem 5 and the fact that w(x) ≥ v(x) for any bidder x.
Efficiency. After rewriting Eq. (4), we get v(S ∩ H) ≥ (1 − α)wsv(S ∩ H) − αw(R). By Theorem 5,

γw(R) ≤ wsv(S) = wsv(S ∩ H) + wsv(S ∩ H) which implies

v(S ∩ H) +
α

γ
wsv(S ∩ H) ≥ (1 − α − α

γ
)wsv(S ∩ H)

As v(S ∩ H) − α
γ wsv(S ∩ H) ≥ (1 − α

γ )wsv(S ∩ H) we get v(S) ≥ (1 − α − α
γ )wsv(S). Focusing on v(S) in

Lemma 4, this implies v(S) ≥ 1−α−α
γ

2−α−α
γ

OPT[v]
1+γ , i.e. the efficiency claim.

Effective weight. Let E = {r ∈ R : s∗(r) ∈ H} and E = {r ∈ R : s∗(r) ∈ H}; E and E form a partition of
R. Also, let λ =

1+ α
γ

2−α and λ∗ = λ(1− α)− α
γ = 1− λ =

1−α−α
γ

2−α (λ∗ is a tradeoff-revealing constant). We have

v(S ∩ H) − αv(R ∩ H) = λ(v(S ∩ H) − αv(R ∩ H)) + (1 − λ)(v(S ∩ H) − αv(R ∩ H))

≥ λ((1 − α)wsv(S ∩ H) − αw(R ∩ H)) + (1 − λ)(v(S ∩ H) − αv(R ∩ H)) (5)
≥ λ(1 − α)wsv(S ∩ H) + (1 − λ)v(S ∩ H) − αw(R ∩ H)

= λ(1 − α)wsv(S ∩ H) + (1 − λ)v(S ∩ H) − α(w(H ∩ E) + w(H ∩ E))

where Eq. (5) follows from Eq. (4). We also have

v(S ∩ H) − αv(R ∩ H) = v(S ∩ H) − α(w(H ∩ E) + w(H ∩ E)) (6)

Adding Eqs. (5) and (6), we get

v(S) − αv(R) = v(S ∩ H) − αv(R ∩ H) + v(S ∩ H) − αv(R ∩ H)

≥ v(S ∩ H) − α(w(H ∩ E) + w(H ∩ E))+

+ λ(1 − α)wsv(S ∩ H) + (1 − λ)v(S ∩ H) − α(w(H ∩ E) + w(H ∩ E))

= v(S ∩ H) − αw(E) + λ(1 − α)wsv(S ∩ H) + (1 − λ)v(S ∩ H) − αw(E)

≥ v(S ∩ H) − α

γ
wsv(S ∩ H) + λ(1 − α)wsv(S ∩ H) + (1 − λ)v(S ∩ H) − α

γ
wsv(S ∩ H)

= v(S ∩ H) − α

γ
wsv(S ∩ H) + (λ(1 − α) − α

γ
)wsv(S ∩ H) + (1 − λ)v(S ∩ H) (7)

where we used w(E) ≤ wsv(S∩H)
γ and w(E) ≤ wsv(S∩H)

γ (by Eq. (3)). We have

v(S ∩ H) − α

γ
wsv(S ∩ H) − λ∗(v(S ∩ H) + wsv(S ∩ H))

= (1 − λ∗)v(S ∩ H) − (
α

γ
+ λ∗)wsv(S ∩ H) ≥ (1 − 2λ∗ − α

γ
)v(S ∩ H) ≥ 0 since (8)

1 − 2λ∗ − α

γ
= 1 − 2

1 − α − α
γ

2 − α
− α

γ
= 1 − 2 − 2α

2 − α
+

2

2 − α

α

γ
− α

γ
≥ 0

Recalling that λ∗ = λ(1 − α) − α
γ = 1 − λ, from Eqs. (7) and (8) we get

v(S) − αv(R) ≥ v(S ∩ H) − α

γ
wsv(S ∩ H) + (λ(1 − α) − α

γ
)wsv(S ∩ H) + (1 − λ)v(S ∩ H)

≥ λ∗(v(S ∩ H) + wsv(S ∩ H)) + λ∗(v(S ∩ H) + wsv(S ∩ H)) = λ∗(v(S) + wsv(S)) (9)

Finally, Lemma 4 implies v(S) − αv(R) ≥ 1−α−α
γ

(2−α)(1+γ)OPT[v].
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We conjecture that v(S) − αv(R) ≥ 1−α−α
γ

1+γ OPT[v]: one can show that v(S) − αv(R) ≥ 1−α−α
γ

1+γ wsv(S).

Note that
1−α−α

γ

(2−α)(1+γ) ≤ 1−α−α
γ

(2−α−α
γ

)(1+γ) ≤ 1−α−α
γ

1+γ .

B.2 Bound on Speculator profit - proof of Prop. 1. Denote speculators’ profit by Π ≤ −(1−α)wsv(S∩
H) + αw(R). By Theorem 5, w(R) ≤ (wsv(S ∩H) + w(S ∩H))/γ. We get Π ≤ −(1−α− α

γ )wsv(S ∩H) +
α
γ w(S ∩ H). The claim follows since (1 − α − α

γ )wsv(S ∩ H) ≥ 0 and w(S ∩ H) ≤ OPT.
B.3 Revenue - proof of Theorem 3. As a revenue benchmark, we use the offline Vickrey-Clarke-Groves
(VCG) mechanism [8]. Theorem 3 will show that our mechanism is competitive with respect to revenue with
VCG on bidders’ true values. We now define VCG more formally. Let w′ be a sequence of bids—when defining
VCG on w

′ we will assume that all bids are received at once by VCG. Let w
′
−i denote the set of all bids in w

′

except bidder i’s. The VCG mechanism implements an efficient allocation and thus the matching it outputs is
optimal. If i ∈ OPT[w′] then VCG charges bidder i her externality on the other bidders:

∑

k∈OPT[w′
−i]

w
′(k) −

∑

j 6=i,j∈OPT[w′]

w
′(j) (10)

Lemma 5. A winning bidder’s VCG payment is a losing bid. The VCG revenue can only increase if some bids in
w

′ are increased.

Proof. An optimal matching can be found by adding bidders greedily to the matching in decreasing order of
their values. This implies the following well-known (see e.g. [4], Fact 3.2) combinatorial property of our setting:
∀ i 6= x, if x ∈ OPT[w′] then x ∈ OPT[w′

−i].
This fact implies that there exists a bidder k such that OPT[w′

−i] = {k} ∪ (OPT[w′] \ {i}). But then i’s
VCG price in Eq. (10) must be w′(k), i.e. a losing bid.

If OPT changes when bidder i’s bid is increased, then i must displace a single lower bid by another bidder j
since OPT is constructed greedily in decreasing order of bids.

Proof of Theorem 3. The payments received by Mα(γ) are at least wsv(S)(1 − α) and Theorem 5 implies that
bump payments sum to at most wsv(S)α/γ. Thus the theorem follows from showing wsv(S) ≥ REVvcg[w]/(1+
γ). We argue this in three steps below.

Let ŵ(i) = max(wsv(i), w(i)/(1 + γ)) if i ∈ S, and w(i)/(1 + γ) otherwise.

1. We have wsv(S) = w̃(S) = OPT[w̃] ≥ REVvcg[w̃], where the second equality follows from Lemma 1,
and the final inequality follows from the fact that VCG payments cannot be higher than VCG efficiency.

2. We claim that REVvcg[w̃] = REVvcg[ŵ]. To see this note that when going from w̃ to ŵ, only VCG winners
may increase their bid. Increasing the bid of a winner has no effect on the allocation, and no effect on that
winner’s price. Furthermore it has no effect on any other price, since any price is a losing bid.

3. Finally, Lemma 5 implies REVvcg[ŵ] ≥ REVvcg[w/(1 + γ)] = REVvcg[w]/(1 + γ) since VCG payments
scale linearly if all the bids are multiplied by a scalar.

C An Upper Bound on Effective Weight—Proof of Theorem 6

For c ∈ R+, consider one item and a sequence of bids {ak(c)}1≤k≤n on it (bidder k bids ak = ak(c)) such that
a1 = 1, a2 = 1

c > 1 and cak+1(c) = ak(c) − α
∑k−1

j=1 aj(c) ∀ k ≥ 2, implying

cak+1 = (1 + c)ak − (1 + α)ak−1 ∀ k ≥ 2 (11)
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Analytical upper bound (3 bidders)
Numerical upper bound (n bidders)

2α +1 − 2 α0.5 (α + 1)0.5

Mα(γ) for best γ 
 = max(α + (α2 + α)0.5, α/(1−α))

Figure 1: Effective efficiency competitive ratio (EECR) bounds as a function of α. The top curve is c3 =
1/(1 + 2α). The middle curve is a numerical upper bound (c = cn of Eq. (12)) on any deterministic algorithm’s
EECR. The bottom curve shows (a lower bound on) our algorithm’s EECR for the best γα: it matches the upper
bound for α < 0.618. γ is constrained by α < γ/(γ + 1); if it were not, the bounds would match for all α.

For a fixed n ≥ 1, we will look for a c = cn such that

an(c) − α
n−1
∑

j=1

aj(c) = can(c) ⇐⇒ an = (1 + α)an−1 (12)

E.g. c2 =
1

1 + α
> c3 =

1

1 + 2α
> c4 = 2

1+3α+
√

(1+5α)(1+α)
. Unfortunately, cn does not have a nice closed

form for n ≥ 4 (in addition, cn may be not be unique - the smallest cn ∈ [0, 1] is then of interest). Furthermore,
for certain c and n no such sequence may exist.

Proof of Theorem 6. Suppose towards a contradiction that there was a deterministic algorithm A with a compet-
itive ratio c′ > cn. Assume that the bids that arrive are a1, . . . , ak0

for some 1 ≤ k0 ≤ n. Then at each k, the
algorithm A must accept ak, or its competitive ratio will be smaller than cn when k = k0. This is clear for k = 1.
Fix k ∈ [2, n− 1]. Let Mk be the highest (i.e. the offline optimum) of a1, . . . , ak. If A does not accept k then the
competitive ratio on input a1, . . . , ak will be at most

ak−1(cn) − α
∑k−2

j=1 aj(cn)

Mk(cn)
=

cnak(cn)

Mk(cn)
≤ cn

where the equality follows from Eq. (11). Now we claim that whether or not A accepts an, the competitive ratio
will be at most cn, which contradicts our assumption. If an is accepted, α

∑n−1
j=1 aj has been lost due to bumping

bidders 1, . . . , n − 1; if an is rejected the effective efficiency is an−1 − α
∑n−2

j=1 aj . By Eqs. (11) and (12), both
quantities are a cn fraction of an, which in turn is at most Mn, the optimal (effective) efficiency.

Figure 1 strongly suggests that the competitive ratio of any algorithm cannot be higher than 2α+1−2α0.5(α+
1)0.5, shown as squares in the figure. Note that for this c the characteristic equation of Eq. (11) has a double root.
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The triangles plot the minimum c found for the corresponding α for different values of n (we used Fibonacci
values up to rank 12, i.e. largest n was 144). The c values were found via binary search. It was true in general,
although not always, that the higher n, the lower cn. We suspect that there exists an increasing sequence of
integers {ni}i≥1 such that a solution cni

to Eqs. (11) and (12) converges from above to 2α + 1− 2α0.5(α + 1)0.5

as i → ∞.
Let u(γ) = 1

1+γ

(

1 − α
γ

)

, the competitive ratio from Corollary 1. Subject to the constraint α ≤ γ
γ+1 , u(γ)

is maximized for γ0 = max{α +
√

α2 + α, α
1−α}. u(γ0) is displayed in Fig. 1 by circles. The value 0.618 (the

golden ratio) is where α
1−α becomes higher than α+

√
α2 + α. If α < 0.618, u(γ0) = 2α+1− 2α0.5(α+1)0.5,

which matches the numerical upper bound. The top curve plots c3 = 1/(1 + 2α).

D Speculator Strategies

In this section we prove Theorem 7, which is implied by a series of lemmas and examples on speculator strategies.
We begin by showing an instance where the order of bidders arriving also influences the maximum refunds
attainable by speculators.

Example 5 (bidding order). Consider two bidders, one bidding 1, the other C > 1, on two items and assume
that speculators cannot collude. If C arrives first, no speculator can have higher revenue if bumped than when
bidding 1/(1 + γ) on both items: this is actually a Nash equilibrium (NE) for them. If 1 however arrives first,
then speculators could participate with two identities bidding 1/(1+γ) and C/(1+γ) on both items, both being
bumped. One can show via a case analysis that there is no pure strategy NE for speculators.

This example also shows that there may not be a pure strategy NE when only actual bidders participate: if
two bidders with low values arrive, followed by the 1 bidder and after that the C bidder, then the two low value
bidders are essentially speculators and the argument in the example applies.

A speculator who is bumped with a bid of x could have obtained more bump payment by entering an earlier
bid of at most x/(1 + γ); likewise, he could have obtained yet more by bidding earlier x/(1 + γ)2; and so on:

Definition 4. Let x > 0. We say that the speculator σ is an x-geometric speculator with choice set N(i) if σ
places bids as follows on choice set N(i). Let ε be the minimum strictly positive bid that can be made and

l = 1 +

⌊

log(x/ε)

log(1 + γ)

⌋

i.e. l is integer &
x

(1 + γ)l
≥ ε >

x

(1 + γ)l+1

Then σ places consecutive bids (each under a different identity) of x
(1+γ)l ,

x
(1+γ)l−1 , . . . , x

(1+γ) , x on N(i).

If speculators have full information on bidders’ values and bidders in OPT arrive in increasing order of their
values, the outcome has many desirable properties:

Lemma 6. Fix a set of actual bids such that OPT[v] bids arrive in increasing order. Suppose that speculators
collude and want to maximize their joint revenue. Then optimal speculator bidding implies that:

• no speculator survives, no actual bidder is bumped; all OPT bidders and only them are accepted.

• speculators can achieve the highest payoff possible as given by Prop. 1.

• truthful bidding is a NE for all actual bidders.

Optimal speculator bidding in this case is as follows. For each bidder i ∈ OPT with choice set N(i) there will
be one w(i)/(1+γ)-geometric speculator σi with the same choice set. This result has an appealing interpretation.
If very well informed, speculators can overcome the efficiency loss due to late bidders not being able to improve
by a 1 + γ factor over their earlier competitors.

In general however, speculators may prefer to induce a suboptimal perfect matching:
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Example 6 (suboptimal matching preferred by speculators). Consider two items i1, i2 and three bidders
b1, b2, b3 arriving in this order; bidder k;s choice set is ik, k = 1, 2, while bidder 3’s choice set is {i1, i2}. Note
that any matching that does not match all three bidders is valid. Assume that w(b1) < w(b3) < (1 + γ)w(b1)
and w(b2) > 2w(b3). The following analysis shows that speculators prefer the suboptimal set of actual bidders
b1 and b2 to the optimal one with b2 and b3.

• If both b2 and b3 survive, then speculators’ profit is at most 2w(b3)/γ: the speculator bumped by b2 must
have a lower weight than the one bumped by b3, which is at most w(b3)/(1 + γ). Even if speculators are
geometric, speculator profit can only go as high as 2w(b3)/γ.

• If however b1 and b2 are alive when b3 arrives, b3 cannot bump b1. By simply having one geometric
w(b2)/(1 + γ)-speculator which is bumped by b2, speculator profit is w(b2)/γ > 2w(b3)/γ.

The following example shows that speculators may be able to make more money if they “sacrifice”, i.e. some
of them intentionally survive so that others obtain high refunds:

Example 7 (profitable sacrifice by speculators). Consider set I with k items, k − 1 bidders bidding C > 1
all arriving before a bidder bidding 1; all k have choice set I . If speculators coordinate and participate with k
identities as C/(1+γ)-geometric speculators on all the items then total speculator payoff is (k−1)αC/γ− (1−
α)C/γ = (kα − 1)C/γ, since k − 1 will be bumped, but one will survive. If no speculator survives, the most
money speculators can make is k/γ, by participating as k 1/(1 + γ)-geometric speculators. For any α > 1/k,
for a large enough C, speculators’ profit is higher when one of them is sacrificed.
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