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Abstract

While Dijkstra’s algorithm finds the shortest path between two
nodes on a graph with known edge weights, we approach the short-
est paths problem for graphs with random edge weights described by
known probability distributions. We introduce the idea of a budget of
size k which allows us to replace k random edges with numbers drawn
from the edges’ distributions. Our problem is to determine which
edges to replace with random realizations to minimize the minimum
expected path distance across all paths between two nodes, given the
realized edge weights. We evaluate several greedy heuristics, with dif-
ferent lookaheads, for choosing edges. We also prove that any greedy
heuristic with lookahead less than the budget has no finite approxi-
mation ratio to the optimal policy.
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1 Introduction

Many problems can be modeled as finding the shortest path between two
nodes in a graph. For example suppose we want to find the shortest route
from Los Angeles to New York along the U.S. Interstate Highway System. We
can model intermediary cities as nodes in our graph, the highways connecting
cities as edges connecting nodes, and the lengths of these highways as the
weights of the edges. Similarly we can let the nodes, edges, and edge weights
of the graph represent different things to solve a wide variety of routing
problems. The table in Figure 1 gives a few examples.

problem nodes edges weight
shortest path cities highways distance
fastest path servers  connections time
cheapest path airports airlines cost

Figure 1: Graph routing problems

When all the edge weights are known, Dijkstra’s algorithm can be used
to quickly find the shortest path in a graph. However in practice not all the
edge weights will be known. For example the amount of time servers take to
send information may depend on how much Internet traffic is going through
them at a particular time. Similarly future airfares may be hard to predict
and random automobile traffic may make shorter paths less appealing than
longer paths that have no traffic. Yet in each of these circumstances, we may
be able to model the edge weights as a random variable with some probability
distribution based on historical evidence or a predictive model.

To make this more concrete we will focus on one example problem. Sup-
pose we are an oil producer in Calgary, Canada and we need to send a large
order of oil to refineries in Houston, Texas through a system of oil pipelines,
as quickly as possible. Unfortunately the speed at which oil flows through
pipelines depends on many random factors, for example, temperature, the
presence of clogs, and pipeline damage. Suppose from our industry expe-
rience we can accurately model the flow speeds of every pipeline with a
probability distribution. Before we commit our oil to a path down to Hous-
ton we can pay local pipeline servicemen to measure the current flow speed
of k pipelines. Since we assume our probability distributions are correct,
measuring the true flow speed of a pipeline is equivalent to drawing a value
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from the pipeline’s probability distribution and replacing that distribution
with the realized value. Our problem is to choose the sequence of pipelines
to measure that will minimize the expected delivery time given the results
of the measurements.

In general we propose the following problem. We have a graph with ran-
dom edge weights modeled by known probability distributions. All of the
random weights are independent. We say the expected distance of a partic-
ular path from source node to destination node is the sum of the expected
values of every edge weight in that path. The minimum of all such path
expected distances is the metric we wish to optimize through the process of
inspection. When we inspect an edge we draw a value = from the probability
distribution of that edge, and we assign x to be the new weight of that edge,
thereby removing all randomness from that edge. Thus after we inspect an
edge, if we wish to use that edge in our path from source to destination, we
simply use x as the weight of that path instead of the previously random
quantity. We are given a budget of size k£ that will let us inspect k edges.
Intuitively an edge might be good to inspect if knowing its true value will
help us, for example, decide between two equally good paths or reveal that
some neglected path is more promising than expected. A solution to this
problem is a policy that tells us what is the optimal next edge to inspect
given the current state of the graph, or equivalently given the history of pre-
vious inspections and their results. After the budget is consumed we must
choose a final path on the final state of the graph, a graph that will have k
random edges replaced by realized constant values. Thus the distance of the
final path is the sum of random weights and up to k constant weights. We
evaluate our policy on the expected distance of this final path.

This problem is hard because the solution space grows exponentially in
the size of the budget k. For example, a reasonable policy may want to “look
ahead” by considering what the next optimal edge to inspect would be if
we were to inspect a particular edge now. The optimal policy would look &
steps ahead, considering every possible way our current and future inspection
choices could affect our final path. However for a naive implementation this
is computationally challenging except for very small graphs, so in this paper
we investigate the performance of several heuristics.

A natural heuristic is some policy that looks r steps ahead for r < k.
Unfortunately, we show that for budget size k, no such policies have a finite
approximation ratio to the optimal policy. We prove this by constructing
specific graphs where this ratio can be made arbitrarily large. Nonetheless,



it is possible that for many other graphs heuristics work well. First we
formulate equivalent and simpler selection criteria for the greedy heuristic,
a policy that restricts the lookahead to 1. This helps us implement the
greedy heuristic in Python, and through simulation we find that the greedy
heuristic soundly beats randomly inspecting edges on many predefined small
graphs and randomly generated large graphs. Finally, for one graph with
discrete random weights, we compute the exact performances of all policies
with lookaheads ranging from 1 to the budget size, for all budget sizes. This
graph is small and appears simple, but it is complicated enough to reap the
benefits of larger lookaheads.

2 Related Work

2.1 Canadian Traveler Problem

Like our problem, the Canadian Traveler Problem also seeks to find the
shortest path from source to destination on a graph whose edges are given
known probability distributions. However to inspect an edge we must first
travel to the one of the end nodes of that edge. In addition, upon arriving at a
node we automatically inspect all edges emerging from that node. This causes
some edges to be more expensive to inspect because they are further away.
It also imposes an order in which we must inspect edges as we automatically
inspect all edges en route to a destination edge. Finally we may at times need
to backtrack out of a candidate path if the realized edge weights coming out
of a node are all too large to warrant further exploration. In our problem
we may inspect any edge for the same cost, and we do all our inspections
before any traveling along the edges. In addition our problem has a limit to
the number of edges to inspect, and we commit to a single final path after
all inspections are done. The Canadian Traveler Problem is #P-hard [4].
While there are no good approximation algorithms for this task, Nikolova
and Karger have found efficient exact algorithms for directed acyclic graphs
and graphs of disjoint paths from source to destination with random edges
that can take on two values [3].



2.2 Information Collection on a Graph

In a different model, graphs have random edges with prior probability dis-
tributions. Here inspections are used to update these priors by collecting
many random samples from these edges’ distributions. That is, we may in-
spect a single edge multiple times to get a more and more accurate posterior
distribution for that edge. Ryzhov and Powell have proposed a greedy infor-
mation heuristic to choose which edge to inspect next [5]. Like our model,
this model allows inspection of any edge, without traveling to one of its end
nodes. In contrast, our inspection gives the true value of the edge because
the true value is just one random realization from the edge’s distribution.
In the model by Ryzhov and Powell there is a generally a large number of
inspections available. In our problem the number of inspections is at most
the number of edges in the graph. However in the case where we may inspect
every edge, our shortest paths problem can be solved trivially with Dijkstra’s
Algorithm.

2.3 Data Procurement

The idea of introducing a budget to learn the optimal path to take from
source to destination was inspired by a paper by Chen and Waggoner that
studies data procurement in the context of machine learning. They propose
criteria for using a budget to buy specific data points in order to minimize
regret, and they prove regret bounds in terms of this budget [1]. In this model
data vendors, each offering one data point, arrive one by one in an online
fashion, and the agent must make a decision upon every arrival whether to
purchase the data point or not. In contrast, in our model we have access
to the entire marketplace of random edges. Like our problem, generally not
all of the data can be purchased, and we must decide which data points are
the most valuable. We also borrow the idea that realizations from previous
inspections can affect what we choose to inspect in the future. That is, we
allow our policy to adapt to new data.

2.4 Weitzman’s Pandora’s Box

In Weitzman’s Pandora’s Box problem there are boxes with random rewards
inside and associated costs to open them. The problem is to determine the
order in which boxes should be opened and when to stop opening boxes with



the objective of maximizing the maximum reward out of all opened boxes.
Our problem is a generalization of a modified Weitzman’s Pandora’s Box
problem that replaces the costs of opening specific boxes with an overall
budget for how many boxes we can open. For example the graph in Figure
2 is an instance of Weitzman’s Pandora’s Box problem with three boxes
with random rewards X, X5, X3. The solution to Weitzman’s Pandora’s Box
problem utilizes a heuristic that is closely related to our greedy heuristic [6].
However our problem is significantly harder because the boxes in Weitzman’s
Pandora’s Box problem are independent, but edge inspections in our problem
may have complicated interaction effects with other paths in the graph. Thus
we cannot simply enumerate all paths from source to destination and use
an index policy to optimally solve our problem, as is done in Weitzman’s

Pandora’s Box problem.
&
X
b
A

Figure 2: Graph instance of Weitzman’s Pandora’s Box problem

o
%
0
a o
O\\

o

3 Model

We now describe the mathematical model rigorously. Let G be an undirected
graph with nodes V' and edges E. We assign to every edge a unique index in
{1,2,...,|E|}, and in this paper when we refer to the edge e, we primarily
mean the index of that edge. Let every edge e € E have a random weight,
which we write as the random variable X, > 0 where E[X.] is finite. All
of the random variables are independent. Let G have a fixed source node a
and destination node b, and let P be the set of all paths from a to b. We
assume P is not empty. We define the shortest path from a to b as the path
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that minimizes the expected distance from a to b. In addition let k < |E|
be the size of the budget, which determines how many edges we can inspect.
When we inspect an edge e we replace the random variable associated with
that edge, X., with a random realization from the probability distribution
of X.. Since inspecting an edge will never increase the expected distance of
the final path in expectation, we require the entire budget to be used. We
use the terms “inspect €” and “inspect X.” interchangeably.

After k inspections we must choose a final path on the final state of the
graph, a graph that now has k£ random edges replaced by realized constant
values. The distance of this final path is the sum of random weights and up
to k constant weights. If the final path has random edges, we simply use the
mean value of those edges to compute the expected distance of this path,
since all edge weights are independent. Our goal is to minimize the expected
distance of final path. To accomplish our goal we would like a policy that
will always tell us what is the optimal edge to inspect next until the budget
is consumed. We evaluate our policy on the expected distance of the final
path.

3.1 Notation

Now we introduce some useful notation. Let

0(S) =Y X

eeS

where S is a set of edges. We define the history at time ¢, h(t), as the
set of inspected edges and their realizations, where time ¢ is the number of
edges we have inspected already. For example h(0) = (), because we have not
inspected any edges at time 0. If we have inspected X5 and realized a value of
x5, and X3 and realized a value of z3, then h(2) = {X5 = x5, X3 = x3}. For
simplicity in this paper we will write hU (X, = z.) in place of hU{(X, = x.)}
for history h. Now we define

D(h(t)) := min E[¢(p) | h(t)].

peP

This is the minimum expected distance across all paths from a to b given the
history of inspections at time ¢. Thus the distance before any inspections is

D(0) = min E[¢(p)].

peEP
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Occasionally it is useful to compute this distance metric for an arbitrary
source node u and destination node v. Thus we define
Dy(h(t)) := min E[((p) | h(t)]
PEPy v
where P, , is the set of paths from u to v. If P,,, = 0, then D, ,(h(t)) = cc.
We formalize the way we evaluate a policy, Pol, by defining the value of
Pol as
V(Pol) := E[D(H""(k))],

where H°'(k) is the random history of all inspections Pol has made by
time k. That is, a realization of HF° (k) is some history h of size k. Here
we take the expectation over the randomness of HF(k), which potentially
comes from two sources. First, Pol may use randomization to choose edges
to inspect. For example, let the policy Random choose the next edge to
inspect uniformly randomly from the remaining random edges. Second, the
realizations, x;, of the edges Pol inspects are random. Notice also that the
set of edges we inspect may change due to these two sources of randomness.

3.2 Optimal Policy

We now describe the optimal policy for a budget of size k, Opt(k). We will
write V(Opt(k)) in terms of another policy Opt(k, h), which is the optimal
policy for a budget of size k on a copy of the original graph GG with all random
edges in h replaced by their realized values.

V(Opt(k)) = E[D(H"®) (k)]
- min/Pr(Xe — )V (Opt(k — 1, {(X. = 2)})dx.

ecl
Now we are ready to define Opt(k) as the policy that at time ¢ inspects the
edge
Inspect(k —t, h(t)) :=

arg min/Pr(Xe =x)V(Opt(k —t —1,h(t) U (X, = x)))dz.
ecl
The base case for computing Inspect(k —t, h(t)) is V(Opt(0,h)) = D(h)
for some history h. We describe how to compute this in subsection 3.4.
After we inspect e = Inspect(k — t,h(t)) we replace X, with a random
realization from the distribution of X.. Then we repeat this process for time
t + 1 and so on, until we have inspected k edges.
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3.3 Lookahead Policies

Since Inspect(k—t,h(t)) can be computationally intensive to calculate when
k —t is large, we also study policies Lookahead(r) for 1 < r < k — 1, which
inspect Inspect(min(k —t,r), h(t)) at time ¢. The inspection process works
the same way as in Opt(k) until we have inspected k edges.

3.4 Calculating D(h(t))

Conceptually to calculate D(h(t)), we must find the path of minimum ex-
pected length given some history. No matter what path edge e is in, its
contribution to the expected length of that path is E[X,] if e has not been
inspected, and its realized constant value if it has. This means we can calcu-
late D(()) using Dijkstra’s algorithm on a copy of the random graph where all
edge weights X, are replaced by E[X.]. We can calculate D(h(t)) similarly
except we first replace all inspected edges with their realizations as given in
h(t), and then we replace the remaining edge weights with their expectations.

3.5 Simple Example

Figure 3: Simple random graph

We present a simple example using the graph in Figure 3. This graph has
three vertices: 1, 2, and 3. Let the source node be 1 and the destination node
be 3. The edges have random weights X; ~ Unif(0,1), X5 ~ Unif(0,1), X5 ~
Unif(0,2). Suppose we have a budget of 1. This means we will first inspect
one edge, then pick the path in {{(1,2),(2,3)},{(1,3)}} that has smaller
expected length given what we learned from inspecting that edge. Now we
choose which edge to inspect. By symmetry inspecting X; and X5 will give
the same result, so our choice is effectively between X; and X3.
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If we inspect X7, 50% of the time we will realize a value less than F[X;] =
0.5 from its Unif(0,1) distribution. In this case {(1,2),(2,3)} is the final
path, and the expected length of this path is 0.75 because E[X5] = 0.5 and
E[X; | X; <0.5] = 0.25. The other 50% of the time we draw a value greater
than 0.5. In this case the final path is {(1,3)} and has expected length 1.
Averaging the expected lengths in these two equally likely cases, we calculate
that the value of the policy that inspects X; is 0.875.

Now if we inspect X3, 50% of the time we will get a value less than
E[X5] = 1. In this case the final path is {(1,3)}. The expected length of
this path is E[X3 | X3 < 1] = 0.5. The other 50% of the time, we get a value
greater than 1. In this case the final path is {(1,2),(2,3)} and has expected
length 1. Averaging the expected lengths in these two equally likely cases,
we calculate that the value of the policy that inspects X3 is 0.75. Thus for
the graph in Figure 3 with a budget of 1, the optimal policy inspects X3.

3.6 Adaptive Example

When the budget is greater than 1 the choice of the optimal next edge to
inspect may depend on the history. In Figure 4 we draw a graph where
the optimal second edge to inspect depends on the realized value of the first
edge we inspect. The weights for edges (1,4) and (1,2) are constant, or
equivalently, random variables that only take on one value. Let the source
node be 1 and the destination node be 4.

3
1
104
2

Figure 4: Graph with adaptive optimal policy

Here X, X, each have 80% chance of being 0 and 20% chance of being
25. On the other hand, X3 has 50% chance of being 0 and 50% chance of
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being 2. The optimal policy is adaptive. We first inspect X;. Then if the
realized value of edge X is 25, we inspect X3. Otherwise we inspect Xs.

4 Results

4.1 A Negative Result

Theorem For all £ > 1,7 < k, there is no constant C' where

V(Lookahead(r))
V(Opt(k))

<C

for all graphs. That is, V(Lookahead(r)) has no finite approximation ratio
to V(Opt(k)).

Proof First we define two discrete probability density functions y and z in
terms of a small positive constant ¢ > 0.

y(0) = 1—e,y(1/2) = ¢

(o) =ee (Ferm)
2\——¢|=¢c,2| -+ =1-c¢
r r 1l—e¢

Now we construct a graph Gy, with k4741 nodes labeled a,b,1,2, ..., k+
r — 1. Let Gy, have the edges in Y U Z U {(a,b), (k+r —1,b)} where

Y ={(a,1),(1,2),(2,3),...,(k—2,k—1),(k—1,b)}
and
Z ={(a, k), (k,k+1), (k+1,k+2),..., (k+r—3,k+r—2), (k+r—2,k+r—1)}.

The edge (a,b) has constant weight 1, and the edge (k+r—1,b) has constant
weight (r — 1)e.

Let every edge in Y have random weight independently and identically
distributed with density y. We assign each of these random weights a unique
identifier Y;, 1 < ¢ < k. Similarly let every edge in Z have random weight
independently and identically distributed with density z. We assign each of
these random weights a unique identifier Z;, 1 < i < r. Note that E[Y;] =
1,E[Z;] = 1/r. As an example we draw G4 3 in Figure 5.
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Za 73

Figure 5: Lookahead(3) performs much worse than Opt(4) on Gy3.

Note that Y and Z' = Z U {(k +r — 1,b)} are paths from a to b. Before
any inspections path Y has expected length k, path Z’ has expected length
1+ (r — 1)e, and path {(a,b)} has constant length 1.

Consider the policy of inspecting every edge in Y. This policy has value
0(1 —&)* + 1(1 — (1 — £)¥) because if all realizations are 0, then the shortest
path is Y with distance 0, but if any realization is 1/e then a shortest path
is {(a,b)} with distance 1. Thus V(Opt(k)) <1 — (1 —e)*.

Now we determine the first edge Lookahead(r) inspects, which is

Inspect(r, () =
arg min/Pr(Xe =x)V(Opt(r — 1,{(X. = 2)}))dx.

ecE

For convenience let
J(X) = /Pr(X — D V(Opt(r — 1, {(X = 2)}))dx.

We can evaluate J(X) recursively with base cases V(Opt(0,h)) = D(h)
for some history of inspections h where |h| = r. Note that D(h) < 1 no
matter what h is because we can always take path {(a,b)} with distance 1.
Two facts will help us show J(Z;) < J(Y;) for all ¢,j. First, the expected
distance of path Y is only less than 1 if all edges in Y are inspected and all
realized values are 0. Second, the expected distance of path Z’ is only less
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than 1 if all edges in Z are inspected and all realized values are (1/r) — e.
Thus the only history hqy such that D(hg) < 1 and |ho| = 7 is

h():{(ZZ:l—€> V1SZ§T},
r

because if we inspect every edge in Z, and every realization is (1/r) —e, then
path Z' has expected distance 1 —e. Since D(hy) < 1 is a base case of J(Z;)
and D(h) <1V h, J(Z;) < 1. Finally J(Z;) < 1V i, as all of the J(Z;) are
the same by symmetry.

On the other hand J(Y;) = 1 for all 7, because after any history of r < k
inspections that includes the inspection of some Y;, there is no way for ei-
ther path Y or Z’ to have expected distance less than 1. Thus the first
edge Lookahead(r) inspects is some Z;. Intuitively this makes sense as
Lookahead(r) can only consider the potential realizations of at most r edges
at a time, and the only set of r edges to inspect that could ever result in a
path with expected distance less than 1 is Z.

Now Lookahead(r) must choose k — 1 more edges to inspect. Since we
only have k£ — 1 inspections left we cannot inspect all edges in Y. Thus the
minimum possible expected distance of final path is 1 — . This distance is
achieved when we inspect the remaining r—1 edges in Z and k—r edges in Y,
and the realized values of the Z; are all 1 —e. Thus V(Lookahead(r)) > 1—c¢.
Finally

lim V(Lookahead(r)) lim l—e -

e—0 V(Opt(k)) T 0l —(1—¢)k

4.2 Greedy Heuristic
We describe how to find Inspect(1, h), which is used in Lookahead(1), the
greedy policy. By definition

Inspect(1, h) :=arg min/Pr(Xe =2)V(Opt(0,hU (X, =x)))dx

eeE

=arg min/f(m)D(h U (X, =z))dx

ecE

where f(x) is the probability density function of X.. We will use F(x) =
Pr(X. < z) to mean the cumulative density function of X.. To evaluate

15



Inspect(1, h), it is useful to first compute d = D(h) and the baseline path

B(h) := argmin E[{(p) | h]

peP

of the current state of the graph. For convenience define

K(X) = /f(a:)D(hU (X = 2))dz

for a given history h, where X is some random weight in the graph. Thus
finding Inspect(1, h) is equivalent to finding the random weight X that min-
imizes K (X). Now we describe how to evaluate K (X).

Edges not in the Baseline Path Let the edge (u,v) ¢ B(h) have random
weight X, and let ¢ = min(D; ,(h)+Dy¢(h), Dsy(h)+Dyi(h)). Let m = d—c.
Then for /' = hU (X = ), D(W) < D(h) if © < m and D(R') = D(h) if
x> m. If m <0 then

K(X)=d.

Otherwise

K(X)= /Om fx)D(hU (X :x))dx—i—/oo f(x)D(hU (X = x))dx
:/Omf(:c)(d—m—l—x)das—{—(l—F(m))d
:F(m)d+/0mf(ac)(m—m)dx+(1—F(m))d

=d+ /Om f(z)xdx — F(m)m.

Now if F'(m) = 0, then
/ f(z)xdx = 0.
0

Otherwise

" FOm) [ f()ada
/0 f(z)xdr = F0m)

=Fm)E[X | X <m].
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Finally

Edges in the Baseline Path For any edge e € B(h), let c = D(hU (X, =
00)). If ¢ = oo, then
K(X)=d.

Suppose ¢ is finite, and let E[X] = p. Let m = ¢ — (d — p). Then for
h'=hU(X =zx), D) =cif x > m. Note that m = p+ (¢ — d) > p. Now

= x))dx + /°° f(@)D(hU (X =x))dx

- /m F@)D(h U (X j
/ fle

)d—p+x)de+ (1 — F(m))c

(m)(d — ) /f \odz + (1 — F(m))e
F(m)(d — p) + F(m)E[X | X <m] + (1 — Fm))(d+ ¢ — d)
ot o e
=d+ F(u)E[X —p | X < pl+

(F(m) = F(u)EIX —p|p < X <m]+ (1= F(m))(c—d)

For both cases the right hand side of the expressions for K(X) are easy
to calculate for simple probability distributions. We make extensive use of
these formulas in our simulations.

5 Simulation

5.1 Methods

We use Python to implement random graphs, run simulations of policies,
and evaluate policy performance. We specify by hand the structures of small
random graphs and randomly generate large ones. We plot the estimated
values of several policies against budget size, and we discuss the results for
representative graphs in each section below. The remaining results can be
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found in the Appendix. We estimate the value of a policy by taking the
average expected distance of the final path across all trials of a simulation.
Python code for running simulations is available at https://github.com/
HarvardEconCS/adam_su_senior_thesis.

5.2 Lookahead(1) Small Graphs

We test the performance of Lookahead(1) by comparing it to the policy
Random, which we described in subsection 3.1. We do this for all budgets
0 < k < |E|. We include budgets 0 and |E| for completeness and for bench-
marking. In this subsection and subsection 5.3, for every trial of a simulation
we first draw a number from the probability distribution of every edge in the
graph. These numbers are hidden until revealed by inspection but are the
same for both policies for a given trial. We simulate both policies on the 8
graphs in Figures 6 and 7 10,000 times each.
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Figure 6: Small graphs
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Figure 7: More small graphs

We choose these graph structures because they are all graphs with at most
4 nodes where every node has degree at least 2. We require the degree of
every node to be at least 2 because if a node n, with neighbor m, has degree
1, then we either never need to include the edge (n,m) in our final path, or
that node is the source or destination. In the latter case we never need to
inspect (n, m) because we must take that edge no matter what. Thus we can
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remove n from the graph, call m respectively the new source or destination.
Then we proceed with the same policy on the new graph with budget the
minimum of the original budget and the number of edges in the new graph.

After choosing the graph structures we assign a and b to two nodes in
all possible ways up to symmetry. In Figures 6 and 7 an edge label of ¢
represents a Unif(0,i) random weight for ¢ = 1,2,3. We choose these weights
so no single path from a to b is the clear favorite before inspections.

Notice that for Pol € { Random, Lookahead(1)}, if we run Pol with two
different budgets k, k" on the same graph with the same hidden realized
values, HT°!(t) is the same for both budgets for all ¢ < min(k,k’). This
property lets us simulate Pol for all budgets when we run one trial with
budget size |E|. In Figure 8 we plot the results of a few trials that show
how the expected distance of the minimum path changes as we inspect more
edges. Figure 9 is a boxplot that gives summary statistics that describe the
distribution of results for 100 trials. After understanding where the data
comes from and what the data looks like, we are ready to analyze the plots
in Figures 10, 11, and 12. These plot the mean expected distance of the
final path across all 10,000 trials for three example graphs along with the
standard error of the mean. Plots for the remaining graphs can be found in
the Appendix.

Most of the time, the greedy policy outperforms the random policy sig-
nificantly. The performance gap is greatest for graphs with a small number
of edges with high variance. Because the graphs we run simulations on start
with many potential baseline paths, the greedy algorithm can risk inspecting
high-variance edges, knowing that even if a large value is realized, it can
always fall back on a baseline path. The performance gap is especially large
when there are a small number of these high-variance edges, because then
the random policy is unlikely to choose them by chance, while the greedy
policy will always find them.
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5 Greedy Trials on n4x5
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Figure 8: This is the result of 5 independent trials of running the greedy
policy on graph nda5 with budget |E|. On the x-axis is the number of edges
inspected so far. Equivalently, we can think of this as running the same policy
with smaller budget. Thus each trial with budget 6 produces simulation data
for budgets 0 to 5 as well. On the y-axis is the expected distance of the final
path. Sometimes as we inspect we realize large values (magenta), so the
expected distance of the final path goes up. Other times the first inspection
leads to a great baseline path (green), and future inspections do not find any
better paths.
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100 Greedy Trials on n4x5
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Figure 9: This is a boxplot of the distances achieved in the first 100 trials
of the greedy policy. For each budget we give the minimum, 25 percentile,
median, 75" percentile, and maximum values of the expected distance of the
final path. The purpose of this plot is to give an idea of what the distribution
of our results looks like, because in our full simulation results we only plot
the mean distance for every budget and its standard error.
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Figure 10: The performance gap is large with budget 1 because there is only
1 high variance edge weight, distributed Unif(0,3). The greedy policy always
inspects this first, and the random policy is unlikely to choose it.
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Figure 11: The performance gap is intermediate for a range of budgets
because there is 1 high variance edge weight, distributed Unif(0,3), and 2
medium-variance edge weights, distributed Unif(0,2). The presence of these
higher-variance edge weights helps the greedy policy perform better, but the
random policy may still make a good choice by chance.
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Figure 12: Sometimes the random and greedy policies have identical perfor-
mances, for example in graph n4x6.

5.3 Lookahead(1) Large Graphs

To construct a large random graph we follow the Erdés-Rényi model [2]. Our
process is to randomly generate many Erdos-Rényi graphs with 50 nodes and
connectivity 0.05 until we find 10 with diameter greater than 10 in its largest
component and greater than 40 nodes in its largest component. We set a and
b to be the endpoints of the diameter. We produce graphs with large diam-
eters because we think they are more likely to have many promising paths
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from a to b. Every edge weight is independently and identically distributed
Unif(0,1).
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Figure 13: For graph 4, the greedy policy clearly performs better than the
random policy almost across the entire range of budgets. With budget 20,
the greedy policy almost achieves the value of either policy with budget |E|.
Seven other graphs (1, 2, 5, 6, 8, 9, and 10) have results that look similar,
and their plots are in the Appendix.
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Graph 3
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Figure 14: For graph 3 it is not clear whether the greedy policy performs bet-
ter than the random policy across all budgets. For small budgets randomly
inspecting edges may even be a better policy than following the greedy heuris-
tic. However it appears that greedy does outperform random for medium
sized budgets. Graph 7 has results that look similar, and its plot is in the
Appendix.

In summary for most graphs we found that the greedy policy soundly
beats the random policy. In the remaining graphs it was not clear if the
greedy policy was significantly better than the random policy.
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5.4 All Lookaheads and Opt(k)

For budget 1 < k < 7 and lookahead 1 < r < k we simulate Opt(k)
and Lookahead(r) with a budget of k on the graph in Figure 15, whose
edge weights are all Bern(0.5). For convenience we may refer to Opt(k) as
Lookahead(k) in this subsection. We chose to simulate on this graph because,
before any inspections, there are many reasonable ways to get from a to b.
In addition every edge is part of multiple paths, which we expect to create
interesting interaction effects between inspections. This helps highlight the
benefits of policies with higher lookaheads.

o

Figure 15: We simulate the optimal policy and policies of all possible looka-
heads on this graph.

Now for graphs with discrete random weights, the integrals in the defini-
tion of Inspect(r,h) from subsection 3.2 become sums and are much easier
to evaluate. For such graphs we can also compute the exact value of any de-
terministic policy by averaging the expected distance of the final path across
all realizations of the graph. Because there are only 2/¥| = 256 different
realizations of all the edges in the graph in Figure 15, we can compute exact
policy values for every pair of lookahead and budget in a reasonable amount
of time.

First we compare the performance of different lookaheads for the same
budget in Figure 16. Then we compare the performance of different budgets
for the same lookahead in Figure 17.
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Performance of Lookahead(r) Policies
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Figure 16: For budgets 4, 5, and 6, policies with higher lookaheads perform
better than policies with lower lookaheads.
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Budget vs. Value
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Figure 17: For budgets 4, 5, and 6, policies with higher lookaheads perform
better than policies with lower lookaheads.

These results demonstrate that even in a graph as simple as the one in
Figure 15, a policy will need to look up to 4 steps ahead to spend its budget
optimally. On the other hand for budgets 1, 2, 3, and 7 a lookahead of 1 is
enough to achieve optimal results. Numerical results can be found in Figures
18 and 19. We can compare these results to two benchmarks. If no edges
are inspected, the value (of any policy) is 1. If all edges are inspected the
value (of any policy) is 11/32. With a budget of 7, all lookahead policies
achieve a value of 11/32. In addition even the greedy policy with a budget
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of 2 achieves a value closer to 11/32 than 1.

Lookahead
Budget | 1 2 3 4 5 6 7
0.75
0.625 | 0.625

0.563 | 0.563 | 0.563
0.5 0.5 0.438 | 0.438
0.453 | 0.438 | 0.406 | 0.375 | 0.375
0.383 | 0.375 | 0.359 | 0.359 | 0.359 | 0.359
0.344 | 0.344 | 0.344 | 0.344 | 0.344 | 0.344 | 0.344

~N O T Wi

Figure 18: Simulation results rounded to 3 decimal places

Lookahead
Budget | 1 2 3 4 5 6 7
3/4
5/8 5/8

9/16 | 9/16 |9/16
1/2 1/2 | 7/16 | 7/16
29/64 | 7/16 |13/32 | 3/8 | 3/8
49/128 | 3/8 | 23/64 | 23/64 | 23/64 | 23/64
11/32 | 11/32 | 11/32 | 11/32 | 11/32 | 11/32 | 11/32

N O Ol W N~

Figure 19: Exact simulation results

6 Conclusion and Future Work

In this paper we show that V(Lookahead(r)) has no finite approximation
ratio to V(Opt(k)) for budget size k and r < k by constructing specific
graphs where this ratio can be made arbitrarily large. However Lookahead(r)
policies could perform quite well on other graphs or in expectation over a class
of randomly generated graphs. Thus an interesting problem is to determine
for what types of graph does V' (Lookahead(r)) equal or approximately equal
V(Opt(k)) for some r < k. For randomly generated graphs we might take
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expectations over the randomness or prove that Lookahead(r) performs well
relative to Opt(k) with high probability.

Later we simplify Lookahead(1) enough to implement it effectively, and
we simulate this policy on small graphs and large graphs with an underlying
Erdés-Rényi structure. The results of the simulations suggest that the greedy
heuristic is generally much better than randomly inspecting edges. However
other simulations show that even small and seemingly simple graphs need
relatively large lookaheads to perform optimally. In general we still do not
understand very well how the graph structure affects the optimal policy and
the effectiveness of heuristics.

We study Lookahead(r) because the naive implementation of Opt(k) is
computationally challenging. Even Lookahead(r) can be computationally
challenging for large r. Thus another potential research direction is devel-
oping policies that can be evaluated faster. Such policies might need to be
restricted to certain types of graphs, and improvements in speed may require
accepting slightly suboptimal solutions. Finally one strong assumption we
make is that all edges weights are independent. This can be relaxed for a
more general version of our problem.

7 Appendix

Plots begin on the next page.
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