
TBBL: A Tree-Based Bidding Language for Iterative Combinatorial Exchanges

Ruggiero Cavallo∗, David C. Parkes, Adam I. Juda, Adam Kirsch, Alex Kulesza,
Sébastien Lahaie, Benjamin Lubin, Loizos Michael, and Jeffrey Shneidman

Division of Engineering and Applied Sciences, Harvard University

Abstract

We present a novel tree-based logical bidding lan-
guage, TBBL, for preference elicitation in combi-
natorial exchanges (CEs). TBBL provides new ex-
pressiveness for two-sided markets with agents that
are both buying and selling goods. Moreover, the
rich semantics of TBBL allow the language to cap-
ture new structure, making it exponentially more
concise than OR* and LGB for preferences that are
realistic in important domains for CEs. With sim-
ple extensions TBBL can subsume these earlier lan-
guages. TBBL can also explicitly represent partial
information about valuations. The language is de-
signed such that the structure in TBBL bids can be
concisely captured directly in mixed-integer pro-
grams for the allocation problem. We illustrate
TBBL through examples drawn from domains to
which it can be (and is being) applied, and moti-
vate further extensions we are currently pursuing.

1 Introduction
The problem of allocating goods efficiently across a set of
agents has two central components: determining agents’ val-
ues over hypothetical allocations (preference elicitation), and
using this information to choose an allocation that satis-
fies certain criteria (winner-determination). In the case of a
single-good allocation problem, both of these tasks are rela-
tively simple and many solution methods exist, but the prob-
lem becomes significantly more difficult when we seek to
allocate multiple goods, where a bidder’s value for each in-
dividual good may depend on whether or not they receive
other goods on the market. Specifically, bidders may con-
sider groups of items substitutes or complements, leading to
sub-additive or super-additive valuation respectively.

A combinatorial auction (CA) is a compelling way of ap-
proaching allocation problems involving multiple heteroge-
neous goods. In a CA, bidders are allowed to bid on sets (or
bundles) of goods, thus theoretically eliminating the “expo-
sure problem” that results from having to bid on items inde-
pendently, when in fact the value of an item is dependent on
the acquisition of other items. If a bidder were allowed to ex-

∗Corresponding author. cavallo@eecs.harvard.edu

press a value for every possible bundle up for sale, in princi-
ple he could specify his valuation function completely and ex-
actly. However, such an explicit approach is often not feasible
given that the number of bundles is exponential in the number
of goods. Fortunately, bidders often think about valuations in
a structured way, for instance via “business plans”, and this
structure can be compactly represented through appropriate
languages. The trick is to formulate a language that is ex-
pressive and concise, but also enables efficient algorithms for
winner-determination.

In this paper we present TBBL, a tree-based bidding lan-
guage that, like some previous proposals [Nisan, 2000; Sand-
holm, 2002; Boutilier and Hoos, 2001, e.g.], provides for ex-
pressing values over logical combinations of goods, but has
several novel properties. In TBBL, valuations are expressed in
a tree structure, where internal nodes in the tree correspond
to operators for combining subsets of goods, and individual
goods are represented at the leaves. The operators on the in-
ternal nodes are instantiations of a general schema that allows
for arbitrary quantification over children nodes, and defines
a particular semantics for propagating value throughout the
tree. TBBL allows agents to express preferences for both buy-
ing and selling goods in the same tree. Thus, it is applicable
to a combinatorial exchange (CE), a generalization of a CA
that is important in many domains. TBBL also provides an
explicit semantics for partial value information: a bidder can
specify an upper and lower bound on their true valuation, to
be refined during bidding.

TBBL was developed as one crucial piece of a larger, on-
going project: the design and implementation of an iterative
CE [Parkes et al., 2005]. A method of converting TBBL bids
to a mixed-integer program (MIP) formulation of the winner-
determination problem has been developed and fully imple-
mented. Design choices for TBBL were strongly influenced
by our experience thinking about CEs for several real-world
domains, including the FAA takeoff and landing-slot alloca-
tion problem [Rassenti et al., 1982], the FCC wireless spec-
trum allocation problem [Kwerel and Williams, 2002], and
computational markets such as resource markets on the dis-
tributed testbed PlanetLab [Peterson et al., 2002].

2 Background
In a CA there is a set of heterogeneous goods up for sale. A
CE is a generalization of a CA in which there are multiple

buyers and sellers, and perhaps agents that both buy and sell.
Bidders communicate preferences over possible allocations
via bids, the syntax and semantics of which is defined by the
bidding language. Since a bid belongs to an agent, we can
consider an allocation to be a mapping from good instances
to bids. Bids both define values for allocations and constrain
the space of acceptable allocations.

The bidding language plays a key role in both central as-
pects of the allocation problem, preference elicitation and
winner-determination (WD). A bidding language can be eval-
uated according to the following criteria:

• expressiveness: does it, in principle, allow users to fully
specify any set of preferences?

• ease of use: how hard is it, in practice, for bidders to
express their preferences? This relates naturally to the
conciseness of the language for structured preferences.

• computational-efficiency: does the language capture the
underlying structure in bidder preferences in a way that
allows a computationally tractable winner-determination
algorithm to effectively discover the efficient (i.e., value-
maximizing) allocation?

It should be noted that the winner-determination problem is
equivalent to weighted set-packing, and thus is NP-complete.
It tends to be solvable in many practical cases, but care is
often required in formulating the problem to capture structure
that is present in the domain [Rothkopf et al., 1998; de Vries
and Vohra, 2003; Boutilier, 2002].

2.1 Previous logical bidding languages for CAs
Several bidding languages for CAs have previously been pro-
posed, arguably the most compelling of which allow bidders
to explicitly represent the logical structure of their valuation
over goods via standard logical operators. We refer to these as
“logical bidding languages” [Nisan, 2000; Sandholm, 2002;
Fujishima et al., 1999]. For instance, an OR bid specifies
a set of <bundle, price> pairs, where the bidder is will-
ing to buy any number of the specified bundles for their re-
spectively specified prices. This is equivalent to specifying
a set of single-bundle bids. An XOR bid specifies a set of
<bundle, price> pairs, where the bidder is willing to pay for
only one of the bundles for its corresponding price. Nisan’s
OR* language [2000] provides constraints within an OR bid
via “phantom variables” (see also [Fujishima et al., 1999]).

One may wonder, given the logical framework adopted by
these languages, why they restrict operators to just OR and
XOR. The explanation seems to involve characteristics of
the accompanying WD-solving methodology the language-
designers proposed. Boutilier and Hoos [2000] made the
next logical step with the LGB language, which allows for
arbitrarily nested levels combining goods and bundles by the
standard propositional logic operators: OR, XOR, and AND.
They suggest a further extension that allows bids with a k-
of operator, used to represent a willingness to pay for any k
bundles it quantifies over. In a key insight, Boutilier [2002]
specifies a MIP formulation for WD using LGB , and provides
positive empirical performance results using a commercial
solver, suggesting the computational feasibility of moving to
this more expressive logical language.

2.2 What’s Missing?

While we believe these previously proposed languages, and
particularly LGB , were good steps towards achieving expres-
sive, easy-to-use and efficient representations of bidder pref-
erences, there are still several areas in which they are insuf-
ficient. Perhaps most importantly, all of these languages are
for the allocation of goods, i.e., transfers from a single seller
to (potentially) multiple buyers. They do not address the re-
allocation problem – the task of exchanging goods between
agents that may seek to both buy and sell. In other words,
none of the previous languages are geared towards CEs, and
none would be applicable there without extension. In working
in practical domains we also discovered structured valuations
that were not concisely represented with existing languages.
Finally, the existing languages were not designed with partial-
value revelation in mind; this is important in domains where
the valuation problem is hard, and can also provide privacy
benefits.

3 The TBBL Language
TBBL is a logical tree-based bidding language for CEs. It
is fully expressive, yet designed to be as concise and struc-
tured as possible. It allows for specification of both bids
and asks (a seller’s price demand) in a single structure, and
allows agents to specify upper and lower bounds on their
values for trades. A single TBBL bid defines an agent’s
value (or range of values) for every possible trade. In many
cases, it achieves a greater degree of conciseness than previ-
ous proposals because of its constraint semantics and general
“interval-choose” (IC) class of logical operators, instantia-
tions of which include the standard XOR, OR, and AND. In
this section we define the semantics of a TBBL bid, and then
illustrate these three main novel functional contributions of
the language through a series of examples.

3.1 Semantics of a TBBL bid

In a TBBL bid, individual item trades are represented at the
leaves, and internal (non-leaf) nodes correspond to ways of
quantifying over lower-level nodes. Every internal node has
three properties: an IC operator, a value lower bound, and
a value upper bound. The IC operator defines a range of
children nodes the bidder is willing to have satisfied. An IC

y
x

node (where x and y are non-negative integers) indicates that
the bidder is willing to pay for the satisfaction of at least x
and at most y of its children. More specifically, satisfaction
of an IC

y
x node accords to the following rules:

R1 An IC
y
x may be satisfied only if at least x and at most y

of its children are satisfied.

R2 If a node is not satisfied, then none of its children may
be satisfied.

One can consider R1 as a “first pass” that defines a set of
candidates for satisfaction, which is then refined by R2. R1
naturally generalizes the approach taken in LGB , where an
internal node is satisfied according to its operator and the sub-
set of its children that are satisfied. The semantics of LGB ,
however, treat logical operators only as a way of specifying
when “added value” (positive or negative) results from attain-

ing combinations of goods. In principle, any allocation is “ac-
ceptable” to an LGB bid. We take a different approach. Be-
sides defining how value is propagated, by virtue of R2 our
logical operators act as constraints on what allocations are
acceptable. As we demonstrate in Section 3.2, this can pro-
vide an exponentially more concise representation in domain-
motivated examples. The rule provides a richer semantics.

Leaves of a TBBL bid tree are annotated as either buy or sell
nodes; an agent may only specify a sell node for a good that
he owns. Typically (i.e., for normal goods), negative value
will be declared for sell nodes, and positive for buy nodes. In-
tuitively, the declared value indicates the amount the bidder is
willing to pay for a trade, so a negative value is a payment de-
mand. Leaves can also be annotated with an (all-or-nothing)
quantity.

The bid-value of a bid tree is defined relative to an alloca-
tion, which constrains the set of leaf nodes that can be satis-
fied. Every new good assigned to an agent in an allocation
will allow an additional buy leaf in that agent’s bid tree to
be satisfied. Every new good given up by an agent in an al-
location requires that an additional sell leaf in that agent’s
bid tree be considered satisfied. Given an allocation, the bid-
value is defined as the sum of the bidder-specified values of
all satisfied nodes, where the set of satisfied nodes is chosen
to provide the maximal total value.

Formally, for a node β, let vβ denote the value specified at
β, and let satβ equal 1 if the node is satisfied and 0 if not.
For a bid tree T and allocation A, the bid-value of T given A
is defined as follows:

v(T,A) = max
sat∈valid(T,A)

∑

β∈T

vβ · satβ , (1)

where valid(T,A) defines all ways of choosing the set of
satisfied leaf nodes in T consistent with A, and consistent
with rules R1 and R2. A mapping to a MIP formulation for
TBBL is provided in Parkes et al. [2005].

TBBL allows expression of partial value information, with
a lower bound vβ and upper bound vβ specified for each node
β. Lower bounds can be viewed as guarantees on the pay-
ment a bidder is willing to make for a given allocation. Upper
bounds can be viewed as guarantees on the payment a bidder
is not willing to make for a given allocation. For instance,
Figure 1 portrays the bid tree of a mixed buyer-seller pursu-
ing a swap of good A for good B. The bidder’s reported value
for A is between 1 and 4, and the value for B is between 2
and 6.

IC2
2 (0,0)

A
(-4,-1)

B
(2,6)

Figure 1: Mixed buyer-seller example with partial value revelation.
The shaded node indicates a good the bidder owns.

3.2 Ease-of-Use: Conciseness
Consider the following scenario. An airline has interest in
a set of takeoff times at an airport that regulates the number

of takeoffs and landings by allocating “time-slots” to differ-
ent airlines. There are five evening slots (E1, E2, E3, E4, E5)
and one morning slot (M) on the market, and the airline has
a business plan that requires acquisition of the morning slot
and 2 or 3 of the evening slots, but no more, where the pre-
cise value of the allocation depends on which evening slots
are received. The evening slots yield value 1, 2, 3, 4, and 5
respectively to the airline if two or three are acquired along
with the morning slot, and there is a bonus of 10 for achieving
such a business plan.

Figure 2 portrays the most concise way of representing
these preferences in OR*, LGB , and TBBL. Both OR* and
LGB must enumerate all combinations of size 2 and 3 of the
evening time-slots; TBBL need not, because of our specifi-
cation that no node can be satisfied if its parent is not (R2
above). Note that even if LGB shared these semantics, the
TBBL bid would still be significantly more concise due to the
increased power of the IC operator over LGB ’s k-of. The k-of
operator is equivalent to an IC

∞

k operator; there is no way of
specifying interest in “2 or 3” without applying both a 2-of
and a 3-of operator.

3.3 Representing Trades

TBBL is capable of concisely expressing valuations that de-
pend on complex combinations of trades. Consider now a
different scenario in which an airline flying out of the slot-
controlled airport owns the takeoff rights to three morn-
ing time-slots (Tm1,Tm2,Tm3) and two evening slots
(Te1,Te2), and landing rights to three corresponding morn-
ing slots (Lm1,Lm2,Lm3). The airline would naturally want
to balance its schedule by acquiring two matching evening
landing slots, and may be willing to sell off one morning
takeoff-landing pair to do so, but no more than one, and
only if it can get the evening slot. If there are three different
evening landing slots available, (Le4,Le5,Le6), the airline’s
valuation function may take the form in Figure 3.

3.4 Partial Value Revelation

Exact value information is only required to determine the effi-
cient allocation in pathological cases in which all allocations
are basically tied in value. Typically, to choose between two
hypothetical allocations we need only know that the value of
one is higher than the other. For instance, Figure 4 portrays
an allocation problem with 2 agents, each of which has inter-
est in the other bidder’s goods. Bidder 1 will potentially sell
one of his items (A or B) if he can get Bidder 2’s item, C,
at the right price. Bidder 2 is interested in buying either of
Bidder 1’s goods or selling his own good, with no structural
constraints. With the information provided we already know
the efficient trade.1

The most significant benefits from this partial revelation
functionality are brought to bear in iterative allocation mech-

1A should be transferred to Bidder 2, and C should be transferred
to Bidder 1. While we do not know the exact efficiency yielded from
swapping B, the bounds tell us it will not be as great as that from
swapping A. While transferring C from Bidder 2 to Bidder 1 may
not yield any added value in and of itself, we know it cannot hurt,
and since that trade is a prerequisite for Bidder 1 to sell one of his
goods, it should be executed.

(ME1E2, 13) ∨ (ME1E3, 14) ∨ (ME1E4, 15)∨

(ME1E5, 16) ∨ (ME2E1, 13) ∨ (ME2E3, 15)∨

(ME2E4, 16) ∨ (ME2E5, 17) ∨ (ME3E1, 14)∨

(ME3E2, 15) ∨ (ME3E4, 17) ∨ (ME3E5, 18)∨

(ME4E1, 15) ∨ (ME4E2, 16) ∨ (ME4E3, 17)∨

(ME4E5, 19) ∨ (ME5E1, 16) ∨ (ME5E2, 17)∨

(ME5E3, 18) ∨ (ME5E4, 19) ∨ (ME1E2E3, 16)∨

(ME1E2E4, 17) ∨ (ME1E2E5, 18) ∨ (ME1E3E4, 18)∨

(ME1E3E5, 19) ∨ (ME1E4E5, 20) ∨ (ME2E3E4, 19)∨

(ME2E3E5, 20) ∨ (ME3E4E5, 22)

XOR

AND13

M E1 E2

AND14

M E1 E3

AND16

M E1 E2 E3

...

AND10

M IC3

2

E1

1

E2

2

E3

3

E4

4

E5

5

Figure 2: Equivalent representations of the same valuation func-
tion in OR*, LGB , and TBBL respectively. We have used standard
operator names for clarity. Note that XOR = IC

1
1, and AND=IC

x
x

where x is the number of children of a node. Both OR* and LGB ,
but not TBBL, have to enumerate all combinations of size 2 and 3 of
the evening time-slots. Nodes are annotated with exact value infor-
mation; where values are omitted, they are assumed to be 0.

anisms, such as Parkes et al.’s Iterative CE (ICE) [2005]. The
idea is that bidders can begin with very loose bounds on their
valuations, and gradually tighten them in response to pric-
ing information provided by the mechanism. As more in-
formation about other agents’ values becomes available, bid-
ders are able (and required) to refine their own value range
for every node in the tree. Explicit information on par-
tial value information—note that the bidders must bound the
uncertainty—is useful in providing feedback and in defining
termination conditions in the ICE design.

4 Relationship to Previous Languages
With relatively minor extensions to the semantics described
above, TBBL subsumes the earlier bidding languages. In this
section we describe the relationship of TBBL with these ex-
tensions to OR* and LGB .

4.1 TBBL and OR*

First note that TBBL already subsumes the XOR/OR lan-
guage. While there exist valuations that can be stated more

OR

AND

XOR

Le4 Le5 Le6

XOR

AND

Tm1 Lm1

AND

Tm2 Lm2

AND

Tm3 Lm3

Le4 Le5 Le6

Figure 3: Example demonstrating trading constraints. Note that
OR = IC

3
1 in this example. Values are omitted here for simplicity,

but all “owned” good nodes (those in gray) would have non-positive
value, and all others would have non-negative value. If the bidder
values each of its owned morning takeoff-landing pairs equally at v,
he could express this by setting those node values to 0, and the XOR
that joins them to v.

IC2
2

(0,0)

IC2
1

(0,0)

A
(-4,-3)

B
(-10,-5)

C
(3,4)

(a) Bidder 1

IC3
1

(0,0)

A

(9,12)

B

(3,7)

C

(-3,-2)

(b) Bidder 2

Figure 4: Two bidders, each with partial value information.

concisely in OR* than in TBBL, an extension that allows
TBBL nodes to have multiple parents– thus yielding a rooted-
DAG (directed acyclic graph) rather than a tree – is more con-
cise than OR*. To see this, note that we can convert any OR*
bid to this extended-TBBL as follows: construct an OR node,
connected to a set of XOR nodes, one for each phantom item
in the OR* bid, where each XOR node has children corre-
sponding to bundles in which the respective phantom item
appears. For example, see Figure 5 for an OR* bid and its
extended-TBBL equivalent (g1 and g2 are the phantom items).

The number of nodes in the extended-TBBL bid (not count-
ing ANDs to unite bundles) will be equal to the number of
variables that appear in the OR* bid, including phantoms,
plus one (the OR). Since if a phantom item is to be of any
use it must appear more than once in an OR* bid, the number
of nodes in the extended-TBBL bid will be less than or equal
to the number of variable specifications in the OR* bid.2

2Note that TBBL without this extension subsumes OR* trivially
if we allow phantom items to appear in a TBBL bid. We prefer this
extension, as it makes the role of phantom items explicit and relates
to the multiple-classification problem described in Section 5.1.

Ag1 ∨ Bg1g2 ∨ CDEg2

OR

XOR

A B

XOR

AND

C D E

Figure 5: Equivalent OR* and extended-TBBL bids.

4.2 TBBL and LGB

In Section 3.2 we provided an example demonstrating that
TBBL can be more concise than LGB . However, the richer se-
mantics that accrue from R2 can also provide less conciseness
in some settings. For instance, consider the example in Fig-
ure 6, which portrays the most concise representation in each
language for a simple two good case, in which v(A) = 5,
v(B) = 6, and v(AB) = 18.

AND 7

A

5

B

6
(a) LGB

IC1
1

IC1
1

A

5

B

6

IC2
2 7

A

5

B

6
(b) TBBL representation

Figure 6: An LGB bid and its less concise TBBL equivalent.

Sometimes the absence of the “downward propagation”
of R2 provides opportunities for increased conciseness, but
often the rule is essential to avoiding exponential enumera-
tion (e.g., in Figure 2). Thus, we consider a modification of
TBBL that allows the bidder to specify, for each node, which
semantics should be used.

Even more generally, we suggest extending the IC opera-
tor to take four parameters, namely two sets of bounds: one
that defines the range of children that must be satisfied for
value to propagate, and one that defines the range for an allo-
cation to be considered acceptable. An b

aIC
y
x operator at node

β could then be used to express the following: “An allocation
is acceptable to me only if between x and y of β’s children
are satisfied, and I have added value for the allocation at β if
between a and b of it’s children are satisfied.” LGB is the spe-
cial case where x = 0 and y = ∞, and TBBL is the special
case where a = x and b = y.

A further difference between LGB and TBBL is that in
LGB a single item allocation can satisfy multiple leaf nodes.
We decided against this approach, but note that this design-
issue disappears with the rooted-DAG extension to TBBL, in
which all leaf nodes that are allowed to be satisfied by a single

good are simply represented by a single node that has multi-
ple parents.

5 Missing Semantics & Proposed Constructs
In this section, we consider some extensions to TBBL that
would facilitate the concise representation of additional struc-
ture that we have recognized in thinking about the FAA, FCC
and PlanetLab domains. The extensions presented here have
not been implemented and future work will need to explore
the effect of these features on solver performance.

We draw, in particular, on examples from our experience
with PlanetLab, a growing distributed testbed currently com-
posed of about 200 participants worldwide, who each own
between two and ten server-class machines that can be si-
multaneously shared by other users. The resource allocation
problem in PlanetLab is to allocate shares of the nearly 550
machines, in various configurations and at various times, to
users. We are working on an ICE-based deployment, with
TBBL as the underlying preference elicitation language.

5.1 Multiple Classification Problem

TBBL is good for preference expression when there is only
one indexing characteristic (or attribute) in the preference
statement. An indexing attribute is a property of goods or
bundles that is used to mark equivalence and difference, and
when combined with value, to indicate preference. In the
PlanetLab exchange domain, the primitive good is a machine-
timeslot pair. TBBL can be used to, e.g., ask for “any two ma-
chines for the same timeslot,” and the structure of this bid (in
the simple case of 3 possible timeslots) is illustrated (ignoring
values) in Figure 7.

XOR

IC2

2

A
1pm

B
1pm

...
Z
1pm

IC2

2

A
2pm

B
2pm

...
Z
2pm

IC2

2

A
3pm

B
3pm

...
Z
3pm

Figure 7: TBBL structure for a bid for any two machines during the
same timeslot, given three possible timeslots.

In this example, the sole indexing attribute is time; how-
ever, it is possible that a bid can use more than one attribute
for indexing. For instance, consider a user that requires any
two machines, each from a different country, running the
same operating system, at the same time. Now we have
three attributes on which to index. In the current TBBL one
would express this with leaves for each different attribute-
machine combination and then provide internal nodes be-
neath the XOR to capture the sets of self-consistent attribute
groupings. This representation scales exponentially in the
number of indexing characteristics. For instance, if there are
50 possible countries and 100 possible timeslots, and each
machine can run one of three operating systems, we would
expect a TBBL bid on the order of 15,000 internal nodes.

Here, we observe that the same rooted-DAG idea from Sec-
tion 4.2 will reduce the number of internal nodes to (approx-
imately) the sum of indexing characteristic dimensions (153
nodes), rather than the product. A DAG allows one to overlay
an independent “structural constraint” tree for each indexing
attribute. See Figure 8 for an example. By itself this does not
avoid an exponential number of leaves. For this, we are ex-
ploring the idea of using “wild characters”, e.g., with A** to
indicate a good with attribute A and any other two attributes.

IC3

3

IC1

1

same country

IC2

2

A1X

IC2

2

A1Y

IC1

1

same time

IC2

2

A2X A2Y

IC2

2

B1X B1Y

IC2

2

different OS

IC1

1

B2X

IC1

1

B2Y

Figure 8: In general, overlaying the indexing characteristic trees
yields a graph with far fewer nodes than TBBL would require. This
picture gives the structure of a bid when there are 2 countries (A and
B), two time-slots (1 and 2), and two operating systems (X and Y).

5.2 New Expressiveness: Continuity and
Discontinuity

In working in practical domains, we have identified that there
is sometimes a need for a more powerful connective than the
set-theoretic IC operator. Namely, there are times when a
user would like to express relationships between goods that
could be more naturally described if the bidder was able to
state dependencies between leaf nodes in a bid. As a sim-
ple example, a bidder in PlanetLab may wish to bid for “five
machines for three time slots, as long as the time slots are
consecutive.” In the airline domain, an airline might want
to express a discontinuity, for instance “three landing slots
spaced by at least one hour.”

We have been able to show that our MIP formulation for
TBBL can be readily extended to take into account such con-
tinuity operators. In particular, for each node with a conti-
nuity operator over its n children, the MIP formulation need
only be extended with at most n new linear constraints. In
addition, we have strong indications that any reduction of
continuity operators to IC operators results in an exponential
blowup in the bid size, although we have yet to establish this
result formally. Therefore, continuity operators could poten-
tially provide exponentially more concise bids than TBBL in
certain situations.

Tying continuity operators back to our other proposed ex-
tension of TBBL to accommodate rooted-DAG bids, we have
been able to show that given a rooted-DAG bid, all conti-
nuity operators can be reduced to IC operators, with only a
polynomial increase in the size of the bid. This provides an
indication that the right extension of TBBL is towards accom-
modating rooted-DAG bids, and that continuity operators can

simply be provided as syntactic sugar in a user interface on
top of the formal language. We are currently investigating
these and other related extensions of TBBL that would make
bids in real-world domains more concise and easier to ex-
press.

6 Conclusion
We presented TBBL, a new logical bidding language for rep-
resenting preferences in large, multi-good allocation prob-
lems. The most exciting contributions of the language are its
added conciseness in general, and its new expressiveness for
combinatorial exchanges. We presented several important di-
rections for extension of TBBL, motivated by experience with
real-world domains. Notably, we have identified significant
benefits of moving to a rooted DAG-based representation,
and of developing even more expressive logical connectives.
We showed that TBBL with relatively simple extensions sub-
sumes both OR* and LGB , and is more expressive (in CEs)
and more concise than both.

Finally, we note that (like previous languages) TBBL was
developed to try to compactly represent valuation functions
that exist in a space that is exponential in the number of
goods; it was not designed to handle an enormous good
space. In cases where the number of goods is exponential in
a number of features or “descriptors,” we can potentially find
compact representations by moving to attribute-based con-
straint operators. Examples in the PlanetLab domain point
to the gains in both efficiency and “ease of use” that may be
achieved by such representations.

References
[Boutilier and Hoos, 2001] Craig Boutilier and Holger H. Hoos. Bidding languages for

combinatorial auctions. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI), pages 1211–1217, 2001.

[Boutilier, 2002] C. Boutilier. Solving concisely expressed combinatorial auction
problems. In AAAI, pages 359–366, 2002.

[de Vries and Vohra, 2003] Sven de Vries and Rakesh V Vohra. Combinatorial auc-
tions: A survey. Informs Journal on Computing, 15(3):284–309, 2003.

[Fujishima et al., 1999] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the
computational complexity of combinatorial auctions: Optimal and approximate ap-
proaches. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI), pages 548–553, 1999.

[Hoos and Boutilier, 2000] Holger H. Hoos and Craig Boutilier. Solving combinatorial
auctions using stochastic local search. In AAAI/IAAI, pages 22–29, 2000.

[Kwerel and Williams, 2002] E. Kwerel and J. Williams. A proposal for a rapid tran-
sition to market allocation of spectrum. Technical report, FCC Office of Plans and
Policy, 2002.

[Nisan, 2000] Noam Nisan. Bidding and allocation in combinatorial auctions. In Pro-
ceedings of ACM Conference on Electronic Commerce, pages 1–12, 2000.

[Parkes et al., 2005] David C. Parkes, Ruggiero Cavallo, Nick Elprin, Adam Juda,
Sébastien Lahaie, Benjamin Lubin, Loizos Michael, Jeffrey Shneidman, and Has-
san Sultan. ICE: An iterative combinatorial exchange. In Proceedings of ACM
Conference on Electronic Commerce, 2005.

[Peterson et al., 2002] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A blueprint
for introducing disruptive technology into the internet. In Proceedings of the 1st
Workshop on Hot Topics in Networks (HotNets-I), 2002.

[Rassenti et al., 1982] Steve J. Rassenti, Vernon L. Smith, and R. L. Bulfin. A com-
binatorial mechanism for airport time slot allocation. Bell Journal of Economics,
13:402–417, 1982.

[Rothkopf et al., 1998] Michael H. Rothkopf, Aleksandar Pekeč, and Ronald M.
Harstad. Computationally manageable combinatorial auctions. Management Sci-
ence, 44(8):1131–1147, 1998.

[Sandholm, 2002] Tuomas Sandholm. Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, 135(1-2):1–54, 2002.

