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Abstract

Proper scoring rules are designed to elicit truthful probability beliefs from expected-value

maximizing agents. However, there is evidence that in certain contexts agents are not

expected-value maximizers. Thus, we apply rank-dependent expected utility theory, a more

general model of decision-making that incorporates probability weighting and non-linear

utility functions, to the analysis of the quadratic scoring rule. Current literature provides a

way to find an agent’s true beliefs in the case of two outcomes. We have two main theoretical

contributions. First, we prove the existence of a unique optimal report and characterize

its structure. Second, we use this characterization to find an agent’s true beliefs for any

number of outcomes.

We demonstrate the feasibility of our methodology by conducting an experiment on

Amazon Mechanical Turk, an online crowdsourcing marketplace. The empirical analysis

leads to surprising results. There was no statistically significant difference in performance

between the control and treatment groups. In aggregate, subjects were extremely close to

bayesian beliefs and there was no evidence of bias. Additionally, there was a statistically

significant decrease in performance of adjusted reports over unadjusted reports. We offer

three potential explantions: subjects are expected-value maximizers for small gains, subjects

did not understand the payment scheme, or the incentives were too small for them to be

considered. Applying our methodology and findings to contexts with larger stakes and

in-person experimentation are interesting avenues for further research.
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Chapter 1

Introduction

There are many instances where it is useful to elicit the private information of a self-

interested expert. One particular context is asking an expert for his beliefs about the

probabilities of future outcomes. For example, a policy-maker may need to ask a meteorol-

ogist how likely an incoming hurricane will be a category 1, 2, 3, 4, or 5 hurricane. In order

to elicit the expert’s true beliefs, one could construct a payment mechanism that rewards

accuracy. For expected-value maximizing experts, a proper scoring rule incentivizes the

expert to report truthfully [14]. However, if the expert does not maximize expected value,

then the given report may not be the expert’s true beliefs. The central contribution of this

thesis is a method to determine the true beliefs of an agent under rank-dependent expected

utility theory.

1.1 Motivation

Proper scoring rules are an easy and incentive-compatible way to elicit quantitative and

precise probability beliefs in both subjective and objective settings [15]. They were first

proposed in [7] had have since been used in a wide variety of contexts including accounting

[25], business [11], education [8], medicine [19], and politics [20], among others. Given their
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CHAPTER 1. INTRODUCTION 4

application in a wide variety of contexts and potential for even broader application, it is

important to consider deviations from the expected-value maximization assumption.

The two deviations from this assumption that we consider are non-linear utilities and

non-linear probability weighting. Both deviations are well-documented in the literature and

there has been much work in establishing theories of decision-making to account for these

phenomenon [16, 13, 21, 22]. The St. Petersburg paradox is an example of a violation

of expected-value maximization where individuals choose a safe option rather than a more

risky alternative with higher expected value [3]. Similarly, the Allais paradox is an impor-

tant example of a violation of expected utility theory that prompted work into non-linear

weighting of probabilities [13]. Individuals tend to overweight small probabilities and un-

derweight large probabilities [22], offering a potential source of bias in the reports given by

them.

The evidence against the expected-value model suggests that it is possible that agents

incentivized by proper scoring rules are not revealing their true beliefs. Thus, finding a

method that corrects for utility curvature and probability weighting, will enable one to

improve the accuracy of the predictions.

1.2 Relevant Literature

There have been a few papers addressing deviations from the expected value assumption

in proper scoring rules. However, those that have included probability weighting in their

analysis have restricted themselves to only cases that have two outcomes.

An analysis of the effects on proper scoring rules of non-linear utility with expected

utility maximization is undertaken in [24]. They consider a number of functional forms for

the utility function and use numerical methods to determine the effects on the reports given.

They find that risk-takers, agents with convex utilities, tend to overestimate the probability

of the most likely event. Similarly, those with concave utilities, implying risk-averseness,
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overestimate the probability of less likely events in order to “hedge” the payments. However,

the paper does not consider the potential role of probability weighting.

The working paper [2] considers adjusting for risk-preferences and probability weighting

through econometric methods. They illustrate how to estimate both risk attitudes and

subjective probabilities using maximum likelihood methods under both expected utility

and rank-dependent utility theory. They estimate risk attitudes from a task with objective

probabilities as well as a task with subjective probabilities. Their work focuses on the

quadratic and linear scoring rules.

The paper most closely related to our work is [15] which considers both non-linear utilities

and probability weighting in the context of the quadratic scoring rule. They are able to

characterize a solution for adjusting the report given by the agent for the case of two

outcomes. We build off their findings and confirm their work in our general solution.

Additionally, [15] measures a “risk-correction curve” to correct subjective probability re-

ports without assuming a complex model of decision-making. Instead, they observe reports

for outcomes with objectively known probabilities and use these to calibrate the correction

mechanism. Implicitly, they assume that there is some function R(·) that maps a proba-

bility belief p to the reported probability belief R(p). They solicit measurements for R(p)

for many values of p in the following manner: take two ten-sided dice and let the first die

represent the ten’s digit and the second die represent the one’s digit, and ask subjects to

give reports on outcomes such as “The outcome of the roll with two 10-sided dice is in the

range 01-25”. Thus, if they are given a report r in a setting with an unknown probability,

they can infer the true belief of the agent by taking R−1(r). The advantage of this method

is that it does not assume a specific decision-making model. However, its main limitation

is that it is cannot be easily generalized to more than two outcomes.
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1.3 Outline

This thesis has the following format: chapter 2 covers the background theory needed to

understand our main results. In particular, it will explain rank-dependent expected utility

theory and proper scoring rules. Chapter 3 presents our main theoretical contributions and

demonstrates how we derived a general solution for finding an agent’s beliefs.

Next we explain our experiment and empirical results. Chapter 4 covers the experimental

design. Chapter 5 presents the results of our experiment and the data analysis. Finally, 6

is the discussion of the implications of our work and suggestions for future research.



Chapter 2

Background Theory

This chapter formally explains the necessary theoretical background to understand the main

results of this thesis. There are two sections, the first covering proper scoring rules and the

second covering rank-dependent expected utility theory.

2.1 Proper Scoring Rules

For our purposes we only need to define proper scoring rules in the discrete probability

space; a more thorough characterization of proper scoring rules can be found in [9, 14].

Suppose we have future event E that has n mutually exclusive and exhaustive outcomes

denoted 1, 2, . . . , n. An agent is asked to give a report ~r = (r1, r2, . . . , rn) on the probabilities

of each outcome occurring. We have that ri corresponds to the probability that outcome i

occurs and
∑n

i=1 ri = 1. A scoring rule s(·) is a reward function that given a report ~r will

pay s(~r, i) if i occurs. We restrict s(~r, i) to [−∞,∞) as defined in [18].

Suppose that the agent has beliefs ~p = (p1, p2, . . . , pn) such that he believes outcome i

occurs with probability pi. Then s(·) is a proper scoring rule if the expected value of the

payment is maximized, from the agent’s perspective, when ~r = ~p. A strictly proper scoring

7
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rule is a scoring rule whose expected value is uniquely maximized with ~r = ~p. [17, 4] describe

a number of strictly proper scoring rules such as the quadratic, spherical, and logarithmic

scoring rules.

For the rest of this thesis we will focus on the quadratic scoring rule because it is

a commonly used proper scoring rule [15]. Additionally, unlike the logarithmic scoring

rule, there are finite upper and lower bounds for the payments, which is desirable in an

experimental setting. The quadratic scoring rule is defined as follows:

s(~r, i) = 2ri −
n∑
k=1

r2k

The payments fall in the interval [−1, 1]. However, in an experimental setting we want to

avoid negative payments because it is difficult to take away money from subjects relative to

giving them money. Additionally, we would have to account for loss aversion effects in our

analysis [13, 22]. Thus, we make use of the fact that strictly proper scoring rules remain

strictly proper under linear transformation [4] and get the following, more general form:

s(~r, i) = b

(
a+ 2ri −

n∑
k=1

r2k

)

This scoring rule has a maximum payoff of b(a + 1) when ri = 1 and outcome i occurs. It

has a minimum payoff of b(a− 1) when ri = 0, rj = 1 for some i 6= j, and outcome i occurs.

For illustrative purposes, we show how under expected-value maximization, the quadratic

scoring rule results in ~r = ~p as desired. The maximization problem is defined below:

max
~r

n∑
j=1

pjs(~r, j) s.t.

n∑
j=1

rj = 1

Note that a maximum exists because the feasible set is convex and the objective function is

bounded. We can solve using first-order conditions because we have a strictly concave ob-

jective function (shown in section 3.2). We proceed by using the lagrangian and substituting
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in the quadratic scoring rule:

max
~r

ba
n∑
j=1

pj +
n∑
j=1

2bpjrj − b

 n∑
j=1

r2j

 n∑
j=1

pj + λ(1−
n∑
j=1

rj)

Note that
∑n

j=1 pj = 1. If we take the first-order condition with respect to rj we get the

following:

2bpj − 2br∗j − λ = 0

We get λ = 0 by summing the FOC over all j and noting that
∑n

j=1 pj =
∑n

j=1 r
∗
j = 1.

Thus, the optimal report of the agent is r∗j = pj for j = 1, 2, . . . n as desired.

2.2 Rank-Dependent Expected Utility Theory

Expected utility theory is the standard model in economics for understanding decision-

making agents in uncertain situations [21]. It is popular for its convenient mathematical

properties. However, there are many empirical violations of its basic axioms. The indepen-

dence axiom states that given lotteries L1, L2, L3 with L1 � L2, then for all p ∈ [0, 1] we

have [p, L1; 1 − p;L3] � [p, L2; 1 − p, L3]. It is particularly controversial because it implies

linear weighting of probabilities over different outcomes.

We present an example of the Allais paradox found in [13] as a violation of the indepen-

dence axiom and a motivation for considering non-linear probability weighting. Consider

the following two sets of binary choices:

• Choice A: $3000 with 100% probability

• Choice B: $4000 with 80% probability

The majority of people preferred A to B. Now consider the second choice:

• Choice C: $3000 with 25% probability
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• Choice D: $4000 with 20% probability

In this case, the majority of people preferred D to C. To see how these preferences violate

the independence axiom let L1 = [1, $3000], L2 = [0.8, $4000; 0.2, $0], and L3 = [1, $0].

We have that L1 � L2 from A being preferred over B, but then have [0.25, L2; 0.75, L3] �

[0.25, L1; 0.75, L3].

To resolve this paradox we adopt non-linear probability weighting and a relaxed version

of the independence axiom described in [16, 21]. The probability weighting function w

satisfies the following properties [5]:

1. w : [0, 1]→ [0, 1]

2. w is strictly increasing. Thus, it has a well-defined inverse.

3. w(0) = 0 and w(1) = 1

Empirically, it as been seen that for small p, w(p) > p and for large p, w(p) < p [22]. The

following graph illustrates the curvature of the probability weighting function:
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Figure 2.1: A common functional form (w(p) = pγ

[pγ+(1−p)γ ]
1
γ

with γ = 0.61) used in [22]

There are many decision-theories that incorporate probability weighting and are dis-

cussed in [21]. According to [21], rank-dependent expected utility (RDEU) theory, as pro-

posed by [16], is one of the better candidates for replacing expected utility theory. Two

papers,[2, 15], that also explore deviations from expected value maximization in the context

of proper scoring rules, use rank-dependent expected utility theory as the decision-making

model. We limit our description to the discrete version of the theory needed for our pur-

poses.

This formulation is based in large part of the explanation given in [5]. A defining

characteristic of RDEU is that the order of preferences over outcomes impacts the decision-

weights assigned to outcomes. Additionally, decision weights for an outcome do not depend

solely on the probability of that outcome occuring but the entire probability distribution.

Suppose we have a set of outcomes ~x = (x1, x2, . . . , xn) and an associated probability
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distribution ~p = (p1, p2, . . . , pn) where outcome xi occurs with probability pi,
∑m

i=1 pm = 1,

and x1 � x2 � · · · � xm. Then the agent maximizes his RDEU:

RDEU [p1, x1; . . . ; pm, xm] =
m∑
i=1

πiu(xi) (2.1)

where the decision-weights are defined as follows:

πi = w

 i∑
j=1

pj

− w
 i−1∑
j=1

pj


Note that π1 = w(p1) − w(0) = w(p1). Additionally, we can see that

∑n
i=1 πi = (w(1) −

w(
∑n−1

j=1 pj)) + w(
∑n−1

j=1 pj)− w(
∑n−2

j=1 pj) + · · ·+ (w(p1)− w(0)) = w(1)− w(0) = 1.

We now show how rank-dependent expected utility theory can resolve the Allais Paradox.

Assume without loss of generality that U(0) = 0, then we have:

A � B ⇒ U(3000) > w(0.8)U(4000)

C ≺ D ⇒ w(0.25)U(3000) < w(0.2)U(4000)

Supose we use the functional form described above, w(p) = pγ

[pγ+(1−p)γ ]
1
γ

with γ = 0.61, then

we get the following values (rounded to two decimals):

w(0.8) = 0.61

w(0.25) = 0.29

w(0.2) = 0.26

Thus, we find that:

0.61 = w(0.8) <
U(3000)

U(4000)
<

w(0.2)

w(0.25)
= 0.90
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which is consistent with rank-dependent expected utility theory.



Chapter 3

Solving for True Beliefs

In this chapter we present our main contributions: Assuming a quadratic scoring rule and

rank-dependent expected utility theory, we characterize the ordering of the optimal report

given by the agent and a general solution for finding an agent’s true beliefs. Extending the

solution to any number of outcomes enables correcting an agent’s report in a wider array

of settings than the solutions presented by [15, 2], which consider situations with only two

possible outcomes.

3.1 Preliminaries

We strive to find as general a solution as possible and thus, make few assumptions about

the functional form of the utility and probability weighting functions. We have a set-up as

described in the previous chapter. There is a future event with n mutually exclusive and

exhaustive outcomes. The agent believes in the probability distribution ~p = (p1, p2, . . . , pn)

over the outcomes with all pi > 0. As described before, she is incentivized with the general

quadratic scoring rule defined in section 2.1 with b > 0 and reports ~r = (r1, r2, . . . , rn) such

that ~r maximizes her rank-dependent expected utility. Note that
∑n

i=1 pi =
∑n

i=1 ri = 1.

We assume that her utility function U(x) is concave, strictly increasing, and bounded over

14
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[b(a−1), b(a+1)], the interval in which all possible payments fall into. Additionally, U(x)’s

first derivative is defined and bounded over the same interval. For notational convenience,

we let x denote the payment of the scoring rule and omit the endowed wealth of the agent.

We also assume that the probability weighting function w(·) is strictly increasing. Thus,

we have that there exists a well-defined inverse of w(·) over [0, 1].

We define an ordering function σ as follows: σ(i) = j if pj is the ith largest element in ~p.

Ties are broken so that the element with the smaller subscript is ranked higher. Intuitively,

σ(1) is the index of the largest element, σ(2) is the index of the 2nd largest element, and

so on so that σ(n) is the index of the smallest element.

Assuming that the optimal report has the same ordering as ~p, a claim we will prove in

the next section, the maximization problem the agent faces is:

max
~r

RDEU(~r) =
n∑
i=1

πiU(s(~r, σ(i))) s.t.
n∑
i=1

ri = 1

3.2 Ordering Property of the Optimal Report

The ordering of preferences over outcomes is needed for calculating an agent’s RDEU. Thus,

we note that if ri is the kth largest element of ~r, then outcome i is the kth most preferred

outcome because the payment in outcome i increases with ri. Thus, if ri is the largest

element of ~r, then outcome i is the most preferable outcome. In this section we prove

the order of the optimal report which enables us to apply rank-dependent expected utility

theory to the quadratic scoring rule in the general case.

We need an intermediary result about the concavity of the objective function:

Lemma 1. RDEU(~r) is strictly concave over the convex feasible set
∑n

i=1 ri = 1.

Proof. It is sufficient to show that RDEU(~r) is the strictly positive weighted sum of strictly

concave functions [6]. We have that each πi is strictly positive, because all pi > 0 and w(·)
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is strictly increasing. Thus, all that remains to be shown is that for each i and all ~r in the

feasible set, U(s(~r, i)) is strictly concave.

Let A be a convex set. Let f : R → R be a concave and strictly increasing function.

Let g : A → R be a strictly concave function. By definition of strict concavity , g(λx +

(1 − λ)y) > λg(x) + (1 − λ)g(y), for all λ ∈ (0, 1) and x, y ∈ A, x 6= y. Because f is

strictly increasing, f(g(λx+ (1− λ)y)) > f(λg(x) + (1− λ)g(y)). By f ’s concavity we have

f(λg(x) + (1− λ)g(y)) ≥ λf(g(x)) + (1− λ)f(g(y)). Combining these, we have

f(g(λx+ (1− λ)y)) > λf(g(x)) + (1− λ)f(g(y))

showing that the composition f ◦ g is strictly concave. We have equality between the two

sides only if λ ∈ {0, 1}.

U(·) is concave and strictly increasing. Thus, all that remains to be shown is that s(~r, i)

is strictly concave for each i. Let ~x, ~y be distinct reports in the feasible set and λ ∈ (0, 1).

~x 6= ~y ⇔
n∑
k=1

(xk − yk)2 > 0

⇔
n∑
k=1

x2k − 2xkyk + y2k > 0

⇔
n∑
k=1

λ(1− λ)x2k − 2λ(1− λ)xkyk + λ(1− λ)y2k > 0

⇔
n∑
k=1

(λ− λ2)x2k − 2λ(1− λ)xkyk + (1− λ)(1− (1− λ))y2k > 0

⇔
n∑
k=1

λx2k + (1− λ)y2k >
n∑
k=1

λ2x2k + 2λ(1− λ)xkyk + (1− λ)2y2k

⇔ −
n∑
k=1

λx2k + (1− λ)y2k < −
n∑
k=1

(λxk + (1− λ)yk)
2
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Recall that we require b > 0:

⇔ b

(
a+ 2(λxi + (1− λ)yi)−

n∑
k=1

λx2k + (1− λ)y2k

)

< b

(
a+ 2(λxi + (1− λ)yi)−

n∑
k=1

(λxk + (1− λ)yk)
2

)

⇔ λs(~x, i) + (1− λ)s(~y, i) < s(λ~x+ (1− λ)~y, i)

⇔ s(~r, i) is strictly concave

Thus, RDEU(~r) is strictly concave over the convex feasible set
∑n

i=1 ri = 1 as desired.

Now we can prove an ordering property about the report that the agent will select. Recall

the definition of the ordering function σ as follows: σ(i) = j if pj is the ith largest element

in ~p. Ties are broken so that the element with the smaller subscript is ranked higher. Thus,

σ(1) is the index of the largest element, σ(2) is the index of the second largest element, and

so on. For example, say ~p = (0.4, 0.2, 0.4) then σ(1) = 1, σ(2) = 3, and σ(3) = 2. Since σ

is a bijection from {1, 2, . . . , n} to {1, 2, . . . , n}, we have well-defined inverse. If σ−1(i) = j,

then pi is the jth largest element in ~p. Essentially, σ−1(i) gives the ranking of pi.

Theorem 2. There exists a unique optimal ~r∗ = (r∗1, r
∗
2, . . . , r

∗
n), such that

r∗σ(1) ≥ r
∗
σ(2) ≥ · · · ≥ r

∗
σ(n)

Proof. The feasible set for ~r is convex and the objective function, rank-dependent expected

utility, is bounded over the feasible set. Thus, we know that an optimal ~r∗ that maximizes

RDEU exists. Because the objective function is strictly concave, any extrema is a unique

global maximum [10]. Let ~r∗ be this optimal solution.

For convenience we define another ordering function δ that is defined in a similar way as

σ except that δ(i) = j if r∗j is the ith largest element in ~r∗. Ties are broken in a modified

way. If r∗i = r∗j , but σ−1(i) < σ−1(j) then i is ranked higher. Equivalently, δ−1(i) < δ−1(j).
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Intuitively, δ breaks ties by whichever index is ranked first in the sequence defined by σ. It

is sufficient to show that σ(i) = δ(i), for i = 1, 2, . . . , n.

For the sake of contradiction, assume that σ(i) 6= δ(i) for some i. Let x be the smallest

integer such that σ(x) 6= δ(x). Note then σ(x) = δ(y) for some y > x. Similarly, δ(y− 1) =

σ(z) for some z > x. The following illustrative diagram helps understand the relationship:

Figure 3.1: The solid lines represent equality.

By definition of σ we have pσ(x) ≥ pσ(z), implying that pδ(y) ≥ pδ(y−1). Similarly, by

definition of δ we have that r∗δ(y−1) ≥ r∗δ(y). However, consider if r∗δ(y−1) = r∗δ(y), by the

tie-breaking rule, σ−1(δ(y − 1)) < σ−1(δ(y))⇒ σ−1(σ(z)) < σ−1(σ(x))⇒ z < x. This is a

contradiction, thus, r∗δ(y) 6= r∗δ(y−1).

We will construct a new report ~t such that RDEU(~t) ≥ RDEU(~r∗), leading to a con-

tradiction. Define ~t as follows:

tδ(i) =


r∗δ(y) if i = y − 1

r∗δ(y−1) if i = y

r∗δ(i) otherwise

The RDEU of ~r∗ is as follows:

RDEU(~r∗) =

y−2∑
i=1

πiU(s(~r∗, δ(i)))

+ πy−1U(s(~r∗, δ(y − 1)))
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+ πyU(s(~r∗, δ(y)))

+
n∑

i=y+1

πiU(s(~r∗, δ(i)))

with πi = w
(∑i

j=1 pδ(j)

)
− w

(∑i−1
j=1 pδ(j)

)
. Now we consider ~t:

RDEU(~t) =

y−2∑
i=1

θiU(s(~t, δ(i)))

+ θy−1U(s(~t, δ(y)))

+ θyU(s(~t, δ(y − 1)))

+

n∑
i=y+1

θiU(s(~t, δ(i)))

where we use the definition of decision weights from RDEU to define ~θ. Because none of

the first y − 2 terms have changed, we have that for i ≤ y − 2, θi = πi. Note then that:

θy−1 = w

pδ(y) +

y−2∑
j=1

pδ(j)

− w
y−2∑
j=1

pδ(j)


and

θy = w

pδ(y−1) + pδ(y) +

y−2∑
j=1

pδ(j)

− w
pδ(y) +

y−2∑
j=1

pδ(j)


Thus, we can see that:

θy−1 + θy =

w
pδ(y) +

y−2∑
j=1

pδ(j)

− w
y−2∑
j=1

pδ(j)


+

w
pδ(y−1) + pδ(y) +

y−2∑
j=1

pδ(j)

− w
pδ(y) +

y−2∑
j=1

pδ(j)


= w

pδ(y−1) + pδ(y) +

y−2∑
j=1

pδ(j)

− w
y−2∑
j=1

pδ(j)
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=

w
pδ(y−1) +

y−2∑
j=1

pδ(j)

− w
y−2∑
j=1

pδ(j)


+

w
pδ(y−1) + pδ(y) +

y−2∑
j=1

pδ(j)

− w
pδ(y−1) +

y−2∑
j=1

pδ(j)


= πy−1 + πy

Therefore, for i ≥ y + 1, θi = πi. The first and last terms of RDEU(~t) and RDEU(~r) are

the same since the decision-weights and utilities are equal. Additionally, U(s(~t, δ(y))) =

U(s(~r∗, δ(y − 1))) and U(s(~t, δ(y − 1))) = U(s(~r∗, δ(y))) given that ~t and ~r∗ simply swap

those terms and keep the other elements constant. Therefore,

RDEU(~t)−RDEU(~r∗) = θy−1U(s(~t, δ(y))) + θyU(s(~t, δ(y − 1)))

− πy−1U(s(~r∗, δ(y − 1)))− πyU(s(~r∗, δ(y)))

= (θy−1 − πy−1)U(s(~r∗, δ(y − 1))) + (θy − πy)U(s(~r∗, δ(y)))

Since πy + πy−1 = θy + θy−1, we have that (θy − πy) = −(θy−1 − πy−1). This gives us:

RDEU(~t)−RDEU(~r∗) = (θy−1 − πy−1)(U(s(~r∗, δ(y − 1)))− U(s(~r∗, δ(y))))

Since r∗δ(y−1) > r∗δ(y), we have that U(s(~r∗, δ(y − 1))) > U(s(~r∗, δ(y))) because the utility

function and quadratic scoring rule are strictly increasing. Using pδ(y) ≥ pδ(y−1), we see:

θy−1 − πy−1

=

w
pδ(y) +

y−2∑
j=1

pδ(j)

− w
y−2∑
j=1

pδ(j)


−

w
pδ(y−1) +

y−2∑
j=1

pδ(j)

− w
y−2∑
j=1

pδ(j)
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= w

pδ(y) +

y−2∑
j=1

pδ(j)

− w
pδ(y−1) +

y−2∑
j=1

pδ(j)


≥ 0

Thus, RDEU(~t) ≥ RDEU(~r∗). This contradicts the fact that ~r∗ is the unique optimal

solution. Thus, σ(i) = δ(i) for i = 1, 2, . . . , n.

For most agents it seems natural and intuitive that the ranks for the report and prob-

ability beliefs for outcome i be the same. Since the proper scoring rule s(~r, i) increases

payment with the probabilty assigned to each event, the event with the highest payoff is

σ(1), then σ(2) and so on. In fact, in our experiment 26 out of 31 subjects gave reports

with this ordering property in the situations with known objective probabilities. The 5

remaining subjects displayed convex utilities, so our earlier lemma about the concavity of

the objective function no longer held. With the ordering property we can more specifically

define the agent’s maximization problem:

max
~r

RDEU(~r) =

n∑
i=1

πiU(s(~r, σ(i))) s.t.

n∑
i=1

ri = 1

3.3 Rank-Dependent Expected Utility Maximization

Since we have that r∗σ(1) ≥ r∗σ(2) ≥ · · · ≥ r∗σ(n) and the quadratic scoring rule is strictly

increasing, outcome σ(1) is the most preferred out come. Then σ(2) is the second most

preferred outcome and so on. We can use first-order conditions to find the agent’s optimal

report because the objective function is strictly concave over a convex feasible set:

max
~r

RDEU(~r) =
n∑
i=1

πiU(s(~r, σ(i))) s.t.
n∑
i=1

ri = 1
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Using a Lagrangian we have:

max
~r

RDEU(~r) =

n∑
i=1

πiU(s(~r, σ(i))) + λ(

n∑
i=1

ri − 1)

We substitute the Quadratic Scoring Rule for s(~r, i):

s(~r, i) = b

(
a+ 2ri −

n∑
k=1

r2k

)

and take the first-order conditions:

[rσ(k)] :
∑
i 6=k

πiU
′(s(~r∗, σ(i)))(−2br∗σ(k)) + πkU

′(s(~r∗, σ(k)))(2b− 2br∗σ(k)) + λ = 0

[λ] :

n∑
i=1

r∗i = 1

The first FOC simplies into:

r∗σ(k)

(
n∑
i=1

−2bπiU
′(s(~r∗, σ(i)))

)
+ 2πkbU

′(s(~r∗, σ(k))) + λ = 0

Now we sum over all k ∈ {1, 2, . . . , n} and get:

0 =
n∑
k=1

(
rσ(k)

n∑
i=1

−2bπiU
′(s(~r∗, σ(i)))

)
+

n∑
k=1

2bπkU
′(s(~r∗, σ(k))) + nλ

=

(
n∑
i=1

−2bπiU
′(s(~r∗, σ(i)))

)(
n∑
k=1

rσ(k)

)
+

n∑
k=1

2bπkU
′(s(~r∗, σ(k))) + nλ

=

(
n∑
i=1

−2bπiU
′(s(~r∗, σ(i)))

)
(1) +

n∑
k=1

2bπkU
′(s(~r∗, σ(k))) + nλ

= 0 + nλ

= λ

Thus, we have that λ = 0.
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3.4 Finding the System of Linear Equations

From this we notice that the first-order conditions have become a set of linear equations

with the variables π1, π2, . . . , πn. They take the form of, for k ∈ {1, 2, . . . , n} :

0 = πk(2b(1− r∗σ(k))U
′(s(~r∗, σ(k)))) +

∑
i 6=k

πi(−2br∗σ(k)U
′(s(~r∗, σ(i))))

= πk((1− r∗σ(k))U
′(s(~r∗, σ(k)))) +

∑
i 6=k

πi(−r∗σ(k)U
′(s(~r∗, σ(i))))

Put into matrix form we get the system of linear equations is:



a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n





π1

π2
...

πn


=



0

0

...

0


where

ai,j =


(1− r∗σ(i))U

′(s(~r∗, σ(j))) if i = j

−r∗σ(i)U
′(s(~r∗, σ(j))) otherwise

However, we can see that this system is solved by the trivial solution π1 = π2 = · · · =

πn = 0. This is because the sum of the first n − 1 rows is identical to the nth row since

rσ(n) = 1 −
∑n−1

i=1 rσ(i). Thus, we remove the nth row and add in the following constraint:∑n
i=1 πi = 1. This is shown in the section 2.2. The final system is:



a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an−1,1 an−1,2 · · · an−1,n

1 1 · · · 1





π1

π2
...

πn−1

πn


=



0

0

...

0

1
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3.5 Solving the System of Linear Equations

In this section we present the general solution for ~π.

Claim 3. For i = 1, 2, . . . , n, we have:

πi =
r∗σ(i)

∏
j 6=i U

′(s(~r∗, σ(j)))∑n
k=1 r

∗
σ(k)

∏
j 6=k U

′(s(~r∗, σ(j)))

Proof. We simply substitute this solution in and show that it solves the system of linear

equations. We have that for i = 1, 2, . . . , n− 1:

0 = πi(1− r∗σ(i))(U
′(s(~r∗, σ(i)))) +

∑
j 6=i
−πjr∗σ(i)U

′(s(~r∗, σ(j)))

= πiU
′(s(~r∗, σ(i))) +

n∑
j=1

−πjr∗σ(i)U
′(s(~r∗, σ(j)))

=
r∗σ(i)

∏n
k=1 U

′(s(~r∗, σ(k)))∑n
k=1 r

∗
σ(k)

∏
j 6=k U

′(s(~r∗, σ(j)))
−

n∑
j=1

r∗σ(i)r
∗
σ(j)

∏n
k=1 U

′(s(~r∗, σ(k)))∑n
k=1 r

∗
σ(k)

∏
j 6=k U

′(s(~r∗, σ(j)))

=

(
r∗σ(i)

∏n
k=1 U

′(s(~r∗, σ(k)))∑n
k=1 r

∗
σ(k)

∏
j 6=k U

′(s(~r∗, σ(j)))

)
(1−

n∑
j=1

r∗σ(j))

=

(
r∗σ(i)

∏n
k=1 U

′(s(~r∗, σ(k)))∑n
k=1 r

∗
σ(k)

∏
j 6=k U

′(s(~r∗, σ(j)))

)
(0)

= 0

We can also see that
∑n

i=1 πi = 1 since the denominator of each πi is the sum of all the

numerators, satisfying the last constraint. Thus, this solution solves the system of linear

equations derived earlier.
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A more convenient formulation is:

πi =

( ∏n
j=1 U

′(s(~r∗, σ(j)))∑n
k=1 r

∗
σ(k)

∏
j 6=k U

′(s(~r∗, σ(j)))

)
r∗σ(i)

U ′(s(~r∗, σ(i)))

3.6 Finding True Beliefs from Decision Weights

Given ~π in terms of known values we can now solve for ~p. We can do so inductively using

the inverse of the probability weighting function.

Claim 4. For k ∈ {1, 2, . . . , n}, pσ(k) = w−1
(∑k

i=1 πi

)
− w−1

(∑k−1
i=1 πi

)
Proof. We proceed with a proof by induction. Let f(k) =

∑k
i=1 pσ(i). Then we have that

pσ(k) = f(k) − f(k − 1). Thus, it is sufficient to show that f(k) = w−1(
∑k

i=1 πi). We

consider the base case f(1) = pσ(1). By definition π1 = w(pσ(1)), so taking the inverse

f(1) = pσ(1) = w−1(π1) as desired.

By the inductive hypothesis, assume f(k − 1) = w−1(
∑k−1

i=1 πi). Now we show that

f(k) = w−1(
∑k

j=1 πj) to complete the proof:

πk = w

(
k∑
i=1

pσ(i)

)
− w

(
k−1∑
i=1

pσ(i)

)
⇒ πk = w(f(k))− w(f(k − 1))

⇒ w−1(πk + w(f(k − 1))) = f(k)

⇒ w−1

(
πk + w

(
w−1

(
k−1∑
i=1

πi

)))
= f(k)

⇒ w−1

(
πk +

k−1∑
i=1

πi

)
= f(k)

⇒ w−1

(
k∑
i=1

πi

)
= f(k)
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3.7 The General Solution

We simply combine are results from the previous two sections to get a general solution. Let

c =

∏n
j=1 U

′(s(~r∗, σ(j)))∑n
k=1 r

∗
σ(k)

∏
j 6=k U

′(s(~r∗, σ(j)))

For i = 1, 2, . . . , n:

pσ(i) = w−1

(
c

i∑
k=1

r∗σ(k)

U ′(s(~r∗, σ(k)))

)
− w−1

(
c
i−1∑
k=1

r∗σ(k)

U ′(s(~r∗, σ(k)))

)

The final step to find ~p = (p1, p2, . . . , pn) is to use σ−1 to assign the probabilities to their

respective outcomes. Thus, we have found a solution for finding the agent’s true beliefs for

any number of outcomes.



Chapter 4

Experimental Design

This chapter describes the experiment we conducted on Amazon Mechanical Turk to test

our theoretical results. We describe the various sections of the study and the reasons for

design choices. Section 4.1 gives a description of both the theory and implementation in

eliciting the utility and probability weighting functions. Section 4.2 outlines the types of

questions we used to elicit probability reports. And section 4.3 is a discussion of the pros

and cons of implementing the experiment on Amazon Mechanical Turk and how we adjusted

the design accordingly. The instructions for the study can be found in the appendix A.

There were 5 sections to our study. Section 1 was used to elicit each subject’s utility and

probability weighting functions. Sections 2-5 were prediction tasks with two predictions in

each section. Thus, we solicited eight predictions from each subject.

All subjects were paid a base rate of $0.50 for completing the study. Subjects in the

treatment group were incentivized in the prediction tasks with a quadratic scoring rule.

They were told one of the eight predictions they made would be chosen at random to

determine their bonus. Thus, they were told to try their best on all of the questions. The

bonus paid was between $0.00 and $1.00. Those in the control group performed the same

tasks as those in the treatment group, but the prediction tasks were framed such that the

27
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bonuses were hypothetical.

4.1 Finding the Utility and Probability Weighting Functions

This section will describe the theory and implementation of section 1 in the study, where

we elicited the probability weighting and utility functions.

4.1.1 Theoretical Method

We used the Trade-Off method described in [5, 23] to solicit the utility and probability

weighting functions of an agent. This method was selected because it is robust against

probability weighting, making it compatible with rank-dependent expected utility. Addi-

tionally, it does not assume any functional form of either function. Instead, we are able to

calculate each function’s value at specific points. This provides flexibility because we can

simply linearly interpolate between points, fit a parametric-model by setting parameters,

or both.

The first step is to solicit the utility function. We select the following four parameters

R, r, x0, and p such that R � r � x0 and p ∈ [0, 1]. We ask the agent for a value of xj that

makes him indifferent between the following lotteries: [p,R; 1− p, xj−1] and [p, r; 1− p, xj ]

for j equal to 1, 2, and so on. By rank-dependent expected utility theory, we have the

following:

[p,R; 1− p, xj−1] ∼ [p, r; 1− p, xj ]

⇔ π1U(R) + π2U(xj−1) = π1U(r) + π2U(xj)

⇔ w(p)U(R) + (1− w(p))U(xj−1) = w(p)U(r) + (1− w(p))U(xj)

⇔ w(p)(U(R)− U(r)) = (1− w(p))(U(xj)− U(xj−1))

⇔ w(p)

1− w(p)
(U(R)− U(r)) = U(xj)− U(xj−1)



CHAPTER 4. EXPERIMENTAL DESIGN 29

⇒ ∀0 < i, j ≤ t, U(xj)− U(xj−1) = U(xi)− U(xi−1)

Note that in the binary case π1 = w(p1) − w(0) = w(p) and π2 = w(p1 + p2) − w(p1) =

w(1) − w(p) = 1 − w(p). We repeat this process until we get to a value t such that

xt+1 � r � xt. At this point, the rankings over outcomes in the second lottery have changed

so that the analysis no longer holds. Given this result, we can simply define U(x0) = 0 and

U(x1) = 1 and thus, for all 0 ≤ j ≤ t, U(xj) = j. As a result, we have a utility function

defined over the interval [x0, xt]. Of course, the utility function can be scaled as long as

U(x1)− U(x0) = U(xj+1)− U(xj), a fact we make use of in section 5.1.

Now that we have the utility function, we elicit the probability weighting function. For

a given value p that we want to find the value of w(p), we do the following: if p is small,

we ask for zr such that they are indifferent between [p, yi; 1 − p, yj ] and [p, yk; 1 − p, zr]

where yk ≥ yi ≥ yj . If p is large, we ask for zs such that they are indifferent between

[p, ym; 1− p, yn] and [p, zs; 1− p, yq] where ym ≥ yn ≥ yq. Then we have:

[p, yi; 1− p, yj ] ∼ [p, yk; 1− p, zr]

⇔ w(p)U(yi) + (1− w(p))U(yj) = w(p)U(yk) + (1− w(p))U(zr)

⇔ w(p) =
U(yj)− U(zr)

U(yj)− U(zr) + U(yk)− U(yi)

Similarly,

[p, ym; 1− p, yn] ∼ [p, zs; 1− p, yq]

⇔ w(p) =
U(yn)− U(yq)

U(yn)− U(yq) + U(zs)− U(ym)

We need that the y’s, zr, and zs are within [x0, xt] in order to ensure that the utility is

known. Thus, zr = x0 causes the first equation to reach the upper bound. Similarly, zs = xt

causes the the second equation to have a lower bound. Steps to avoid this potential problem
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described in section 4.1.2. The two different formulas for small and large p are to minimize

the chances of exceeding the bounds.

We have explained how to calculate the value of both the utility function and the prob-

ability weighting function of an agent under rank-dependent expected utility theory. In

the next section we will discuss practical considerations when implementing the method

described above.

4.1.2 Practical Implementation

In the experiment, all possible bonuses fell into the range $0.00 to $1.00. Thus, we sought

to ensure that each subject’s utility function is defined over that interval [0, 1]. Thus, we

set x0 = 0, guaranteeing the lower bound. In order to reduce the risk that xt < 1, we

chose r to be substantially greater than 1. We did not have any subjects that had xt < 1.

We measured the probability weighting function for p ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. Values of

p < 0.5 were considered small and values of p ≥ 0.5 were considered large.

The following is a summary of the parameters chosen for the experiment:

R = 1.8

r = 1.55

x0 = 0

p = 0.6

As mentioned in section 4.1.1, there is a risk of subjects choosing values for zr or zs that hit

the boundary conditions. Thus, to minimize this risk we constructed lotteries that provided

a large interval of valid choices. As a result, only 2 subjects specified values at or beyond

the valid bounds.

There is no need, in practice, for the utility function elicitation to precede the probability
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weighting function elicitation. In order to reduce the repitiveness of the task, we alternated

questions asking for the utility function and the probability weighting function.

Below is a screenshot of a question from the utility and probability weighting functions

elicitation process:

Figure 4.1: A screenshot of a question in the first section of the study. Subjects could move

the slider to change the value in green.

They are specifying their utility in the context of getting a bonus for a HIT on top of

a base pay of $0.50. This was to ensure that the utility function derived would match up

with their utility function in the prediction task.
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4.2 Eliciting Probability Reports

In the final four sections of the study we solicited probability predictions from subjects. We

followed a 2× 2 design by having sections defined by subjective vs. objective probabilities

and two vs. three outcomes. Sections 2 and 3 were subjective probability contexts, while

sections 4 and 5 were objective probability contexts. Similarly, sections 2 and 4 had two

outcomes, while sections 3 and 5 had three outcomes.

In the subjective probability sections, we wanted to simulate a situation where people

have ambiguous signals about a future outcome, but cannot calculate a precise probability.

This could be similar, for example, determing the probabilities that a particular candidate

will win an election. We leveraged the fact that people have difficulty performing bayesian

updating without an external aid. The basic setup was that we had k coins and told the

subject the probability that each coin lands on heads. We select one of the coins at random,

with each coin equally likely to be selected. We then flip it 5 times and tell the subject the

number of heads and tails that landed. Then, we ask the subject to give his probability

estimates as to which coin was selected. Below is a subjective prediction task with three

outcomes. The two outcome situation was the same except it used a slider as in section 1

and two coins.
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Figure 4.2: A screenshot of a question in the third section of the study. Subjects could

move the two-dimensional slider to specify their report.
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In order to give subjects some intuition on how to update their beliefs based on the coin

flips, we explained some basic probability theory. You can find our explanation in appendix

A. This was to increase the likelihood that they understood the basic ideas of updating

beliefs without going into the mathematics.

In the objective probability sections, we wanted to see, without the potential noise

of improper updating, the predictions that the agent would give. Thus, we essentially

gave subjects the probability of an outcome occuring and had them specify the payments

they would like to receive in each outcome. We ommitted the probabilities that they

were implicitly specifying from the screen, because we thought this would lead to subjects

choosing the ‘objectively’ correct answer rather than optimizing their utility.

The basic setup is that we have a jar with 100 marbles. There are k different colors

and we tell the subject how many of each color are in the jar. We will draw one of the

marbles at random, with each marble equally likely to be drawn. The subject must choose

the amount of payment he wants in the event each color is drawn. He is implicitly giving a

probability report by specifying his optimal payments. As the subject moved the slider, we

determined the subject’s implicit report and then converted it to the payments according

to the quadratic scoring rule. Below is a screenshot from section 4. Section 5 had three

colors and used the two-dimensional slider like in section 3.
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Figure 4.3: A screenshot of a question in the fourth section of the study. Subjects could

move the to specify the payments they wanted to receive.

4.3 Amazon Mechanical Turk

Amazon Mechanical Turk (AMT) [1] is an online marketplace that allows requesters to post

Human Intelligence Tasks (HITs). Requesters specify a base fee for completing the task.

Workers can view and search a list of HITs and find one to accept. Once they complete a

HIT, workers submit their work. Once the requester has approved the work, the workers

are paid. At this time, a requester can choose to pay a bonus to the worker. We used

this bonus option to pay the payment from the quadratic scoring rule. A more thorough
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description of AMT can be found in [12].

We chose AMT to conduct our study because of the low monetary costs and the speed

of data collection. One-hundred subjects (65 in the treatment group and 35 in the control

group) completed the study in three days at a cost of $105.46 (including fees to Amazon).

These characteristics enabled us to put our study through many pilot studies to improve

subject understanding of the instructions and quality of the data.

In addition to these benefits, however, there are drawbacks to conducting behavioral

economics studies on AMT. Since workers are on AMT to earn money, they try to complete

as many HITs as possible in a given amount of time to maximize their earning rate. Thus,

there is a potential problem that many workers will rush through the study to complete it

as quickly as possible. Second, because the study needed to be hosted on a website and the

subjects were in different locations, it was not feasible to answer any questions the subject

may have while taking the study.

We adjusted to these concerns in a number of ways. To discourage workers that would

rush through the task, we explicitly stated in the task preview that the study would would

take 10 to 15 minutes. In addition, we stated that they would have to spend at least 30

seconds reading each instructions page and 10 seconds on each question. We enforced this

on the website and would not allow subjects to click to the next section or question until

the minimum amount of time had been passed.

We sought to make the instructions as short as possible, so that subjects would spend

time to understand the task and not skip the instructions. In pilot studies, we found

that giving the mathematical description of the quadratic scoring rule was not helpful.

Testers told us that it was intimidating and unhelpful in understanding how the payment

worked. As result, we allowed subjects to voluntarily read the mathematical description

of the quadratic scoring rule, but hid it by default. We also, automatically calculated and

displayed the payments the subjects would receive for each outcome as they moved the

slider around.
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Subjects were tested for understanding of the task with some testing questions. These

questions had objectively correct answers and can be seen in the appendix A. Workers

were permitted to finish the study even if they failed the test questions, but their data was

omitted in the analysis. Only subjects that passed all the test questions were used for data

analysis.



Chapter 5

Empirical Results

In this section we discuss the empirical findings from the experiment. Thirty-one subjects

in the treatment group and 17 subjects in the control group passed all of the test questions.

The analyses done refer to the 31 subjects in the treatment group. We make use of the

control group when assessing the impact of incentives on performance in section 5.3.

5.1 Utility Function

We solicited the utility function as described in section 4.1.1. Given a sequence x0, x1, . . . , xt

where U(xi) = i, we linearly interpolated between the points. We found that every subject

had a strictly increasing utility function and xt > 1. However, we focus on the utility

function over the interval [0, 1]. In order to make a comparison between individuals easier,

we normalized the utilities such that U(0) = 0 and U(1) = 1. Over the interval of $0.00 to

$1.00, we find that the mean utility of all subjects is remarkably close to U(x) = x.

38



CHAPTER 5. EMPIRICAL RESULTS 39

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Utility Function with Linear Interpolation

Dollars

U
til

ity

 

 

45−degree line
25th Percentile
Mean
75th Percentile

Figure 5.1: The 25th, 50th, and 75th percentiles of the utility functions for subjects in the

treatment group.

For the linearly interpolated utility function, the derivative at point x was calculated by

using the following approximation:

U ′(x) =
U(x+ $0.01)− U(x− $0.01)

$0.02

In the special case for x = 0, we took the one-sided approximation. We were still able to

use the above equation for x = 1 because we had the utility functions defined over [0, xt]

where xt > 1.

We also fitted each subject’s utility function to the model U(x) = xθ. We took the

linearly interpolated utility function and found the values of U(x) for x = x0, x1, . . . , xt.

Then we fit the value of θ that minimized the least squared error for these pairs of (xi, U(xi)).
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The sample mean was 0.928 with standard error of 0.058. The distribution is not symmetric

and instead, we find that the distribution is skewed towards smaller θ. The following figure

gives a histogram of our results:
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Figure 5.2: A histogram of the distribution of θ for subjects in the treatment group.

5.2 Probability Weighting Function

Using the methodology discussed in section 4.1.1 we were able to find the value of w(p) for

p = 0.1, 0.25, 0.5, 0.75, 0.9. We attempted to linearly interpolate between these points as

done in [15], but found that there were violations in strict monotonicity. In order to find

w−1, strict monotonicity is required. Thus, we assume the popular functional form used in

[22]:

w(p) =
pγ

(pγ + (1− p)γ)
1
γ
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With this functional form, we performed a least squares fitting for each subject using each

of the utility functions described in the last section. There was little difference between the

sample mean for γ, although were were differences at the individual-level.

Utility Function sample mean for γ standard error

U(x) = x 0.618 0.046

Linear Interpolation 0.591 0.043

U(x) = xθ 0.605 0.032

Our findings agree strongly with [22], which estimated γ = 0.61 as a population mean

in the context of gains.

5.3 Assessing Performance

We adopt the Kullback-Leibler divergence between a report and the corresponding bayesian

beliefs as a measure of the quality of the report. The K-L divergence between two probability

mass functions p(x) and q(x) is defined as:

D(p||q) =
∑
x

p(x) log
p(x)

q(x)

with the convention that 0 log 0
0 = 0, 0 log 0

q(x) = 0, and p(x) log p(x)
0 = ∞. We let the

report being evaluated be p and the bayesian belief be q. This assignment was done to

avoid the infinite case since we could guarentee that all the bayesian beliefs were non-zero,

but some subjects reported zero for some outcomes. Note that the K-L divergence is always

non-negative and zero only if p = q. When comparing two reports, the one with a lower

K-L divergence is considered the more accurate of the two.

In the prediction task with coins, the bayesian beliefs were just the posterior probabilties

using the given information and updating with Bayes’ Rule. In the marble case, the bayesian
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beliefs are simply the proportion of marbles of each color.

Using this measure of performance, we evaluated all the reports given by the treatment

and control groups. We tested for a difference in the median performance with the Wilcoxon

Rank-sum test for two unpaired samples. There was no statistically significant difference

in any individual prediction task nor in the aggregate.

Prediction Task treatment median control median p-value Significant at 5%

2 coins 0.072 0.030 0.222 No

3 coins 0.145 0.123 0.722 No

2 colors 0.017 0.042 0.083 No

3 colors 0.056 0.079 0.878 No

Total 0.053 0.053 0.786 No

Next we adjusted the reports given by each subject in the treatment group using the

theoretical results in chapter 3. We did 6 different adjustment processes, one for each

combination of the 3 utility functions and 2 probability weighting functions. The three

utility functions were U(x) = x, linearly interpolated, and U(x) = xθ. The probability

weighting functions were w(p) = p and w(p) = pγ

(pγ+(1−p)γ)
1
γ

. However, the adjusted reports

were significantly worse than the unadjusted ones in the non-linear probability weighting

case. There was no significant change if the linear probability weighting was used. Below

we summarize our findings, using the Wilcoxon signed-rank test. All of the prediction tasks

were aggregated.



CHAPTER 5. EMPIRICAL RESULTS 43

U(x) w(p) Adjusted median Original median p-value Sig. at 5%

U(x) = x linear 0.053 0.053 1 No

pγ

(pγ+(1−p)γ)
1
γ

0.289 0.053 < 0.0001 Yes

Linear linear 0.077 0.053 0.076 No

Interpolation pγ

(pγ+(1−p)γ)
1
γ

0.303 0.053 < 0.0001 Yes

U(x) = xθ linear 0.063 0.053 0.748 No

pγ

(pγ+(1−p)γ)
1
γ

0.287 0.053 < 0.0001 Yes

5.4 Inferring the Probability Weighting Function from Pre-

dictions

We did not offer any incentives for subjects to answer truthfully in section 1 of the ex-

periment, which was used to infer the utility and probability weighting functions. Given

that the probability weighting function that we inferred had violations of monotonicity, it

is possible that subjects did not answer truthfully. Thus, in this section, we use the reports

from the two objective probability tasks to infer the probability weighting function.

In order to infer the probability weighting function from predictions, we need to assume

that U ′(x) = 1 for all x ∈ [0, 1], implying U(x) = x as the utility function for all subjects.

With this assumption the result from section 3.5 simplifies significantly:

πi =

( ∏n
j=1 U

′(s(~r∗, σ(j)))∑n
k=1 r

∗
σ(k)

∏
j 6=k U

′(s(~r∗, σ(j)))

)
r∗σ(i)

U ′(s(~r∗, σ(i)))

=

(
1∑n

k=1 r
∗
σ(k)

)
r∗σ(i)

1

= r∗σ(i)
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Since the we know the objective probabilities, we can use ~p to find w(p) at multiple points

by using the following result.

Claim 5. For k = 1, 2, . . . , n:

k∑
i=1

πi = w

(
k∑
i=1

pσ(i)

)

Proof. We can show this by induction. The base case of k = 1, holds because by definition

π1 = w(pσ(1)) − w(0) = w(pσ(1)). Assume that that the property holds for k − 1. We will

now consider property for k:

k∑
i=1

πi = πk +
k−1∑
i=1

πi

= πk + w

(
k−1∑
i=1

pσ(i)

)

=

(
w

(
k∑
i=1

pσ(i)

)
− w

(
k−1∑
i=1

pσ(i)

))
+ w

(
k−1∑
i=1

pσ(i)

)

= w

(
k∑
i=1

pσ(i)

)

as desired.

Combining these two results enables us to use ~r∗ and ~p, which are known to us and the

subjects in the objective prediction tasks, to find values of w(·) at multiple points. We then

fit these points to the functional form described in section 5.2. The values of γ in this case

we close to 1, implying a minimal amount of probability weighting. The mean of theses γ’s

was 1.053 with a standard error of 0.03. We found again that adjusting for this weighting

function of the predictions in the subjective case did yield any significant results. This is

not surprising because for γ ≈ 1, the probability weighting function is almost linear. Thus,

there is little adjustment.
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U(x) Adjusted median Original median p-value Sig. at 5%

U(x) = x 0.059 0.053 0.921 No

Linear Interpolation 0.076 0.053 0.066 No

U(x) = xθ 0.060 0.053 0.579 No

5.5 Distribution of Prediction Errors

We found that reports given by subjects were surprisingly close to the Bayesian beliefs,

especially in aggregate. For every report ~r and the bayesian belief ~b, we found the mean of

r1 − b1 for all subjects in all prediction tasks. We did not compare the other elements of

the reports, in order to maintain independence between each observation. We found that

the mean difference was 0.004 with a standard error of 0.011. Below is a distribution of the

error of the reports to the bayesian beliefs.
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Figure 5.3: Histogram of r1 − b1 for all subjects and all predictions.

This plot suggests that reports are centered around the bayesian belief with a random

error term with mean zero. Assuming normality, the 95% confidence interval for the mean

of r1 − b1 is 0.004± 1.96(0.011) = [−0.214, 0.222].

This accuracy did not depend on the bayesian value. Additionally, there was no signif-

icant difference between each of the prediction tasks in terms of performance. When we

plotted r1 against b1 we found that line of best fit was r̂1 = 0.887b1 + 0.065 with standard

errors of 0.027 and 0.0464, respectively. Below is a scatter plot of this data:



CHAPTER 5. EMPIRICAL RESULTS 47

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bayesian Beliefs

S
ub

je
ct

s’
 R

ep
or

ts

Subjects’ Reports vs. Bayesian Beliefs

 

 
Predictions
45−degree line
Best fit line:

Figure 5.4: Scatter plot of r1 vs b1 for all subjects and all predictions.
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Discussion

The empirical results are surprising for a number of reasons. We expected that the treatment

group would perform better than the control group because of the presence of incentives.

However, we found no such effect; both groups performed equally well. This finding is

echoed in [22]; they find that monetary incentives in choices between prospects had little

effect on the results.

The second surprising finding is that the adjusted reports performed significantly worse

than the unadjusted reports when probability weighting was used. Even adjusting using

the inferred probability weighting function from the predictions in the objective probabil-

ity setting did not yield significant improvements. Predictions were centered around the

bayesian beliefs with no apparent bias of overestimation or underestimation. According to

our results, a valid method of finding good probability predictions is to simply ask many

agents and average their reports.

6.1 Potential Explanations

We believe that there are three potential explanations for the results. We will consider each

in this section and discuss their strengths and weaknesses.

48
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The first potential explanation is that stakes in our experiment were too small. This ex-

planation is appealing because it explains both surprising results well. Subjects did not pay

attention to the potential difference in payments, but rather reported their best prediction.

The control and treatment group exerted similar effort because they both perceived little

monetary incentive. The maximimum bonus was only $1.00 and we picked only one out of

the eight predictions for evaluation. Thus, the stakes on any one prediction task were ex-

tremely small. For the incentives to have a meaningful impact, the agent must be sensitive

to differences of a few cents. When designing this experiment, we had hypothesized that

workers on AMT would have a utility functions at this level of sensitivity given the low

wages found on the site. The one drawback to this explanation is that it cannot explain

why predictions in the objective task performed well given that the predictions were not

explicitly stated.

Another possible explanation is that subjects did not fully understand the quadratic

scoring rule. Thus, they ignored the payments and simply reported their true beliefs.

However, the fact that people performed well even in the objective prediction task, where

their implicit probabilities were not displayed undermines this hypothesis. Additionally, we

only used data from subjects that had passed all of the comprehension tests. However, given

the limited amount of training and expertise, it is possible that subjects naively believed

reporting the truth was their best straegy.

The final explanation, and the one we believe is most likely, is that people are expected-

value maximizers for gains under $1.00. This conclusion is supported by the fact that

in aggregate, subjects reported the true bayesian probabilities. Especially considering the

objective prediction task, where they simply chose the payments that maximized their utility

lends support for this hypothesis. However, this explanation cannot account for the lack of

difference between the control and treatment groups. If people were maximizing expected

value of payment, then there would be no reason for subjects in the control group to exert

effort on the prediction tasks. Instead, subjects in the control group should complete the
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study as fast as possible in order to get their fixed payment and do another task on AMT.

6.2 Future Work

Despite the ineffectiveness of our correction method in our experiment, we believe that

additional work is required before dismissing it given that rank-dependent expected utility

theory is a better model of decision-making than expected-value maximization in many

contexts. A number of variations on our study could test the hypotheses made in the

previous section.

Increasing the amount of payment could test the expected-value hypothesis by moving

decision-making to a domain where people are no longer maximizing expected value. If the

adjusted scores perform better in the situation with larger payments, then it would provide

support to the notion that different decision-theories apply at different stakes.

If increasing payments causes a performance gap between the treatment and control

groups, then it would provide support to the low stakes hypothesis. The reward for effort

is high enough that people in the treatment group would outperform the control.

Another variation would be to perform in-person experiments. This would test the lack

of understanding hypothesis by letting the experimenter clarify concepts if subjects are

confused. Additionally, the experimenter can more thoroughly explain concepts and test

for understanding. If subjects started giving reports more in line with RDEU, then it would

support the idea that the workers on AMT did not understand the quadratic scoring rule.

6.3 Conclusion

In conclusion, this thesis was motivated by the potential benefit of improving probability

elicitation by applying a more general theory of decision-making to proper scoring rules.
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Previous work had only found a solution for two outcomes. Our main theoretical contri-

butions are proving the existence of unique, ordered optimal report for the agent under

general conditions and solving for the agents’ true beliefs for any number of outcomes.

Our experiment, conducted on Amazon Mechanical Turk, led to some surprising results.

Most prominently, monetary incentives seemed to have little impact on performance. Ad-

ditionally, our adjustment method made reports significantly worse. We hypothesize that

the stakes were too small to sufficiently motivate subjects, subjects did not understand the

quadratic scoring rule, or subjects are expected-value maximizers for payments up to $1.00.

Future work could test these additional hypotheses with studies with larger incentives and

in-person experimentation.
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Instructions

This chapter presents screenshots of the study. The following are the instructions for the

study.

Figure A.1: This is the first page that subjects saw when they previewed the task on AMT.

53



APPENDIX A. INSTRUCTIONS 54

Figure A.2: These are the instructions for section 1.
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Figure A.3: The instructions on how subjects will be paid as well as some basic probability

theory to help with the coin prediction tasks.
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Figure A.4: These are the instructions for section 2.
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Figure A.5: These are the instructions for section 3.
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Figure A.6: These are the instructions for section 4.
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Figure A.7: These are the instructions for section 5.

The following are test questions to screen subjects for understanding and effort.
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Figure A.8: This is one of the test questions. The subject passed if they set the value to

less than $0.88.
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Figure A.9: This is one of the test questions. The subject passed if they said it was coin 1

with greater than 90% probability.
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Figure A.10: This is one of the test questions. The subject passed if they said it was coin

2 with greater than 90% probability.
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