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Abstract. We present a useful new mechanism that facilitates the atomic ex-
change of many large baskets of securities in a combinatorial exchange. Cryp-
tography prevents information about the securities in the baskets from being ex-
ploited, enhancing trust. Our exchange offers institutions who wish to trade large
positions a new alternative to existing methods of block trading: they can reduce
transaction costs by taking advantage of other institutions’ available liquidity,
while third party liquidity providers guarantee execution—preserving their de-
sired portfolio composition at all times. In our exchange, institutions submit en-
crypted orders which are crossed, leaving a “remainder”. The exchange proves
facts about the portfolio risk of this remainder to third party liquidity providers
without revealing the securities in the remainder, the knowledge of which could
also be exploited. The third parties learn either (depending on the setting) the
portfolio risk parameters of the remainder itself, or how their own portfolio risk
would change if they were to incorporate the remainder into a portfolio they sub-
mit. In one setting, these third parties submit bids on the commission, and the
winner supplies necessary liquidity for the entire exchange to clear. This guaran-
teed clearing, coupled with external price discovery from the primary markets for
the securities, sidesteps difficult combinatorial optimization problems. This latter
method of proving how taking on the remainder would change risk parameters
of one’s own portfolio, without revealing the remainder’s contents or its own risk
parameters, is a useful protocol of independent interest.

1 Introduction

In [21] we introduced the idea of a cryptographic securities exchange for individual
equities, motivated by the unfavorable price impact and possible exploitation of infor-
mation associated with block trades.1 In that paper, we consider an exchange of single
securities, and, typically, securities are traded as single asset types in most alternative
trading systems.

We now introduce the cryptographic combinatorial securities exchange, where en-
tire baskets of securities may be bought or sold, rather than single positions. This
has important applications for portfolios of securities where entering various positions
piecemeal would subject the investor to portfolio risk. Specifically, if a large portfolio
is optimized to have certain correlations among its assets, and it takes hours or days to
find a counterparty to fill each of various positions in a basket trade that liquidates a
percentage of or rebalances that portfolio, the correlations no longer hold whenever one

1 Exchanges of very large positions of securities.



order is filled before another order. Our exchange, which provides for atomic trades that
are guaranteed to clear, eliminates this execution risk on portfolio balance.

Another benefit of the cryptographic combinatorial exchange is that cryptography
hides valuable information about intended trades that can be exploited. As described
in detail in our previous work [21], knowledge of investors’ upcoming trades is often
exploited – and has a measurable price impact. It would likely be impossible to oper-
ate a combinatorial securities exchange without cryptography, because few institutions
would trust any third party with the details of their intended trades “in the clear”. Our
solution employs cryptography as well as hardware and network security to build an
exchange that protects the secrecy of institutions’ trades before and after the exchange
takes place.

We complete our introduction with a discussion of existing commercial protocols
and related work from the finance and cryptography literature. In Section 2 we define
the cryptographic combinatorial securities exchange. Section 3 describes our proofs of
portfolio risk on an encrypted basket of securities that represents the net holdings after
multiple baskets are combined in a transaction. In Sections 4, 5 and 6 we discuss real-
world requirements our exchange might have in determining reasonable exchange fees,
protecting the exchange from exploitative trading practices, and securing data after a
round of the exchange is over. An appendix includes efficiency calculations showing
that a Paillier-based cryptosystem permits a practical implementation of our protocol,
and further discussion on calculating optimal fees and commissions for participants in
the exchange.

1.1 Existing Commercial Protocols

While many existing alternative trading systems (ATS’s) exist for block trades, no ex-
isting ATS protects traders’ information and guarantees atomic execution of baskets of
securities. Institutions still fear that knowledge of their liquidity can be exploited in
various ways, and rely on information broker ATS’s like Liquidnet who strictly limit
membership to the trading network to parties who are only trading for liquidity reasons.
A second problem with many ATS’s is that there is typically no guarantee of execution.

We work to ameliorate all of these concerns: our proposal enhances trust by not only
keeping trades secret until the market is to clear but also proving the results correct;
it also improves liquidity by giving the exchange an efficient mechanism to guarantee
execution for all of the trades submitted to it— while still keeping the particular equities
in the incoming institutions’ baskets secret; and it provides an atomic basket trading
paradigm.

Currently for large basket trades (involving more than one security), the transac-
tions are too complex for the pairwise trade matching that existing ATS’s like Liquidnet
and Pipeline offer. Institutions who need to trade a basket of securities atomically to
maintain the integrity of a diversified portfolio may not wish to undertake the risk of
executing the trades one security at a time. Thus, institutional investors who wish to
trade several large positions at once in a basket order often hire an investment bank.
They describe the basket to a small number of trusted investment banks who agree to
provide liquidity, without disclosing the exact securities that comprise the basket in
advance—information that could be exploited. When deciding how much to charge for



liquidating a basket, the banks learn only certain risk parameters, such as index mem-
bership, daily trading volume, and market correlation; these enable them to estimate
their risk and costs in the absence of complete data. This process takes some time: typ-
ically institutions will send information about a basket to a liquidity provider in the
morning, who then analyzes the information and replies within hours.

Our new cryptographic combinatorial exchange provides the improved efficiency
of institution-to-institution trading with the reduced portfolio risk from guaranteed ex-
ecution of atomic basket trades. Cryptography makes such an exchange feasible by
providing necessary trust: exploitable data remain secret, and every action and result
can be proven correct.

In our combinatorial exchange, institutions submit baskets of buy and sell orders
which are filled by other institutions’ sell and buy orders (respectively). The unfilled
orders comprise a remainder basket, which clears the exchange when filled by a coop-
erating third party (assumed to be an investment bank). Prices for each security can be
determined by the primary markets, so that the exchange need only discover trading
interest.

We believe this to be the first characterization of a cryptographic combinatorial ex-
change: a number of participants submit bundles to buy and sell goods (in our example,
securities), and the market finds an optimal allocation of trades to maximize the bene-
fit of all participants. While such combinatorial exchanges typically require significant
computation to find optimal allocations,2 our exchange makes two important simplifica-
tions that eliminate the hard combinatorial problem. First, prices are defined externally
by the primary markets, and second, our clearing of the remainder via a third party
means that all bundles are filled and the market clears at equilibrium.

1.2 Related Work

Bossaerts et al. [1] describe a “combined-value trading mechanism” similar to our ap-
proach and survey related work from the finance literature. We argue that one important
reason that such mechanisms have still not been adopted is because institutions are un-
willing to divulge the composition of their baskets. Cryptography solves this problem,
and may well hold the answer to implementing more expressive trading mechanisms in
practice.

Szydlo [20] first proposed the application of zero-knowledge proofs to disclosing
facts about equities portfolios. In his highly relevant and pioneering work, a hedge fund
proves that its portfolio complies with its published risk guidelines without revealing
the contents of its portfolio. Szydlo’s proofs are not situated in a transactional context,
but rather in the context of a hedge fund reporting portfolio risk characteristics that are
based on the claimed securities in its portfolio. In our case, we are interested in proving
portfolio risk on a portfolio derived from combining baskets of securities, for example,
in order to liquidate a newly derived remainder basket computed from a combination of
many incoming baskets.

Another difference in our work is the use of encryption over commitments. Encryp-
tions allow the exchange to issue proofs about combinations of the institutions’ baskets

2 Indeed, even defining “optimal” in such an exchange is challenging!



without requiring their continued involvement. Were we to employ commitments, we
would require institutions to decommit their baskets before computing the remainder;
this provides an opportunity for repudiation. While the homomorphic Pedersen com-
mitments Szydlo employs are more efficient than homomorphic encryptions, we desire
nonrepudiation: once a basket is committed to in a transaction, the institution may not
later refuse to reveal that basket. Since any non-repudiatable commitment is equivalent
to an encryption,3 we elect to employ encryptions directly. This may also mitigate so-
called protocol completion incentive problems (see [3] for a related discussion in the
context of auctions), because institutions who lose their incentive to participate cannot
benefit from refusing to complete the protocol.

While surprisingly little academic research has been published on applications of
cryptography in securities trading (see [21] for a discussion), more work has been done
on combinatorial exchanges (CE’s). In a CE, buyers and sellers come together in a com-
mon exchange to trade bundles of various goods (where bundles may have instructions
to buy or sell, or both.) In the general case, solving the price and winner determina-
tion problems in a combinatorial exchange is extremely difficult; in our cryptographic
combinatorial securities exchange, we get around these by taking all prices from the
fair prices already established by the primary markets (price determination), and em-
ploying “liquidity providers” who guarantee enough liquidity for the entire exchange to
clear (winner determination). See Parkes et al. [13], and Smith et al. [19] for a formal
treatment of combinatorial exchanges and related work.

2 Cryptographic Combinatorial Securities Exchanges

Our cryptographic combinatorial securities exchange offers basket traders guaranteed
execution and efficient liquidity discovery. It keeps information completely secret un-
til it is necessary, eliminating opportunities for fraud, and proves every result correct
without revealing unnecessary information.

Our protocol is simple: institutions submit encrypted baskets; the exchange closes;
the exchange creates an encrypted remainder and proves risk characteristics to third
party liquidity providers; these liquidity providers bid on their commission; and the
winning provider clears the market by liquidating the remainder. Prices clear at prices
determined by the primary markets.

Any basic cryptographic protocols supporting provably correct, secrecy-preserving
computation over private inputs, such as those described in [15, 16, 21], are sufficient to
construct our exchange. As our protocol does not depend on specific features, such as a
particular homomorphism, we do not burden our exposition with specific implementa-
tion details. Rather, we assume implementors of our protocol will select an underlying
cryptosystem appropriate to their specific needs at the time.

Moreover, these protocols are practically efficient and support the calculations of
risk and interval proofs essential to our protocol. To verify this claim, we implemented
the cryptographic operations necessary to conduct our protocol and report results in

3 To enjoy nonrepudiation, a commitment must be deterministically invertible. A function that
is binding, hiding, and invertible (presumably via some secret) is clearly equivalent to an en-
cryption.



Appendix A. We discuss the implications of the partial trust in our third party required
by these protocols and mechanisms for mitigating such trust in Section 6.

2.1 Preliminaries

We employ the following primitive operations necessary to reveal the portfolio risk
profile:

– Prove that a ciphertext is the encrypted result of a polynomial function over mul-
tiple encrypted values and/or constants x,y. We write E(x)⊕E(y) to signify the
computation yielding E(x+y); E(x)⊗E(y) yields E(x×y). E(X)�E(Y ) signifies
the “dot product” of vectors X and Y of encrypted values. In addition,

⊕
i E(xi)

yields E(∑i xi).
– Prove whether one encrypted value is greater than another. We write E(x)� E(y)

to signify the computation proving that x ≤ y given the two encryptions; we use
analagous notation for the other inequality operators.

– Prove whether one encrypted value is (not) equal to another.

If a homomorphic cryptosystem is used for the computations, such as the system
described by Paillier [11] and elaborated in [5] and [15], then additional preparation
is required to prove results of computations employing both additions and multiplica-
tions. Since no known cryptosystem is doubly homomorphic,4 we require instead that
whatever underlying cryptosystem is employed support proofs of correct computation
of both addition and multiplication. In a homomorphic cryptosystem, a verifier would
check one operation by direct computation over ciphertexts, and the other by receiving
information from the prover. For example, using Paillier encryption, a verifier could
check addition by simply multiplying ciphertexts; she would only be able to check
multiplication with the help of a prover using (non-interactive) protocols such as those
described in [5, 15].

We assume that interactive interval proofs (see, for example, [2, 9, 15]) can also be
performed efficiently in a non-interactive setting using the Fiat-Shamir heuristic [7]; a
strong cryptographic hash of input data simulates the verifier’s actions during an in-
teractive proof. Since the encrypted inputs are probabilistic encryptions generated by
independent parties, the output of a suitable cryptographic hash on those values should
yield data with sufficient (apparent) randomness.

2.2 Problem Definition

We construct a protocol to operate a cryptographic combinatorial securities exchange in
which multiple parties may exchange baskets of securities while limiting exploitation
of any information submitted to the exchange. The participants in the protocol include
the “exchange” itself, “institutions” who submit basket orders to the exchange, and “liq-
uidity providers” who clear unfilled orders. The institutions, liquidity providers, and ex-
ternal auditors also, as “verifiers”, verify the accuracy of any information promulgated

4 That is, there exist two distinct operations over the space of ciphertexts that correspond directly
to addition and multiplication over the space of plaintexts.



by the exchange. When describing a protocol to communicate the risk of accepting a
basket of securities, we refer to the “institutions” who send the basket to a “recipient”
counterparty. We employ these functional terms throughout our work.

Before a specified “closing time”, each participating institution publishes an en-
crypted basket of securities it wishes to liquidate. Before the closing time, the exchange
may not decrypt the baskets; after that time, baskets may not be withdrawn or modified,
and execution is guaranteed by the exchange.

The exchange then computes the remainder necessary for the exchange to reach
equilibrium, i.e. the basket filling all trading interest not met by other parties. It reveals
information about this remainder to various third-party “liquidity providers” who have
agreed to liquidate large remainder baskets for the exchange; they in turn quote a price
or liquidating the remainder.

The information provided might be direct risk analysis measurements on the re-
mainder, or it might reveal the differences in risk incorporating the remainder would
have on a sample portfolio provided by each third party. The liquidity providers then
submit encrypted bids for liquidating the portfolio, and the exchange accepts the best
price and issues a zero-knowledge style proof to all participating institutions and liq-
uidity providers that it is optimal.

In practice today, liquidating these large basket trades takes hours or even days.
Millisecond execution time is critical for high-frequency trading of single securities,
but not for these relatively infrequent but high-value transactions that occur only several
times a week and are based on liquidity, not price fluctuations. Thus, the cryptographic
operations required to implement such an exchange are within reach of contemporary
commodity computing hardware. See Appendix A for example calculations.

The exchange preserves the secrecy of the institutions’ identities by acting as the
middleman between all transactions. In our current setting, institutions may be known
to participate in the exchange by virtue of their publishing encrypted baskets, but they
can hide whether they are trading or not each day by submitting empty baskets on days
they do not wish to trade. Where even further anonymity is desired (that is, the exchange
never learns the institutions’ identities), real-world entities, such as law or accounting
firms, can be employed to represent the institutions; constructing a cryptographic pro-
tocol to preserve institutions’ identities is beyond the scope of the present work. See [6]
for one approach to the problem of privacy in securities exchanges.

This implies the following desiderata:

– The information in the baskets must remain secret, even from the exchange, until
all baskets have been submitted.

– Once baskets have been submitted, they may not be modified or retracted.
– No party other than the exchange may learn anything about the direct composi-

tion of the baskets other than what is implied by any disclosures, including risk
information sent to liquidity providers.

– The exchange must clear completely, that is, all orders are guaranteed to be filled.
– The exchange must clear efficiently: any computations must be completed within a

few hours at reasonable cost.
– The cryptosystem employed can convince an independent verifier that the result of

performing a computation on hidden inputs is either a particular value or lies in a
range of values.



2.3 The Protocol

We consider n institutions Pi, where i ∈ [1,n], each of which submits an integer
vector (representing a basket) Bi, comprised of m integers (representing securities)
S j, where j ∈ [1,m]. Thus in a universe of 6 securities, B3, P3’s basket, might be
〈0,−20000,32000,0,45000,0〉. We assume the exchange operates on a fixed universe
of these m commonly traded and reasonably liquid securities, such as listed equi-
ties, standardized options, and government securities. The double subscript notation
Bi j denotes the (unencrypted) quantity of security j in Pi’s basket; in our example,
B35 = 45000. E(Bi j) is the encrypted form of one such value. Zeroes are included to
hide the number of distinct equities in the basket.

We assume a public price vector V of length m contains the values for the m securi-
ties at the time the exchange clears; Vj is the price for security j. This might be obtained
from current market prices or the previous day’s closing prices.

Since most underlying cryptosystems employ modular arithmetic, short positions
can be easily represented as “negative numbers” (that is, very large numbers that are
the additive inverses of the corresponding positive number). Alternatively, long and
short positions may be represented by two encrypted vectors: one of the absolute values
of the quantites and the other of 1 (long), −1 (short), or 0 (no position).

An encryption of a basket of equities is simply an integer vector one for each
equity in the universe, including zeros. For visual comfort, we may write E(Bi)
as the encryption of an entire basket, which is in fact m separate encryptions:
〈E(Bi1),E(Bi2), . . . ,E(Bim)〉.

Step 1. The exchange announces clearing times, the universe of equities to be traded
on the exchange, and any rules governing the composition of baskets participating in
the exchange. If time-lapse cryptography (TLC) [17] or another technique used to en-
force nonrepudiation requires posting of public information (for example, a public TLC
encryption key), the exchange posts it.

Step 2. Before each clearing time, each institution Pi chooses which equities she
wishes to trade and creates basket Bi and its encrypted form E(Bi). She then creates
a commitment to her basket, Comi(E(Bi)), and publishes that commitment where the
exchange and other parties to the transaction can see them. The reason we add this pre-
clearing commitment step is to prevent the exchange from observing the contents of
any baskets and revealing that information before the “clearing time”. This extra step
ensures that the exchange cannot influence the outcome of the exchange even if it can
somehow successfully leak data, because no baskes may be submitted or retracted after
the auctioneer receives any material information.

Step 3. When the clearing time is reached, the institutions decommit: each insti-
tution Pi publishes E(Bi), the encryption of its basket, and any additional information
necessary to verify Comi(E(Bi)) matches. If a institution fails to decommit, and a non-
repudiation technique is employed, the commitment is forced open and the encryption
of his basket is published.5

5 An alternative to the use of commitments is to employ distributed key generation for a public
encryption key, then only reconstruct the private key after the clearing time is reached; this
idea, formalized in TLC, still ensures that the exchange cannot decrypt the baskets prematurely.



Step 4. Either the exchange, or each institution Pi, proves, using the now public
E(Bi), that Bi conforms to any announced basket composition requirements by proving
a set of constraints on the encrypted number of shares of each security in the universe.
These constraints can take the form of any equation or inequality representing a polyno-
mial function of the encrypted baskets (security quantity vectors) Bi, public price vector
V , and necessary constants. These constants might include minimum or maximum bas-
ket size, or a constant bound for what percentage of the basket is in a particular class
(such as market sector or index member). Because Pi encrypted the basket itself, it is
capable of proving its basket meets any such constraints (see Section 5) without the
cooperation of the exchange, if necessary.

Step 5. Anyone can verify the “remainder” basket B0 as above by computing its
encrypted form from E(Bi) (for all i). Table 2.3 illustrates an example of this on unen-
crypted values. Using our notation from Section 2.1, we write:

B0 = 〈
n⊕

i=1

E(Bi1), . . . ,
n⊕

i=1

E(Bim)〉= 〈E(
n

∑
i=1

Bi1), . . . ,E(
n

∑
i=1

Bim)〉

Security B1 B2 B3 B4 B0

ABC +500 -200 0 0 +300
DEF +300 -800 +300 +200 0
GHI 0 + +100 + -300 + 0 = -200
JKL +200 0 -400 +300 +100

MNO -800 0 +500 0 -300

Table 1. Example set of cross-clearing portfolios B1, . . . ,B4 with a “remainder” B0

Step 6. The exchange privately decrypts the baskets, and obtains the unencrypted
remainder basket.

Step 7. The exchange proves the constraints about the composition of the remainder
basket B0 to the third party liquidity providers, who individually or jointly determine
transaction costs for the remainder basket and agree to provide liquidity to the pool.

Step 8. After the market-clearing liquidity has been secured, the exchange an-
nounces the protocol is complete and the market clears at prices fixed in accordance
with a published standard procedure.

For example, the market might clear at the midpoint between the bid and ask quoted
on the current primary market, or an agreement to trade at the volume-weighted average
price for a particular period of time. The mechanics of clearing securities trades are be-
yond the scope of this work; we assume that all parties trade with a trusted intermediary
who accepts all securities sold and distributes those bought, clearing the market.

The exchange issues proofs that the procedures are followed, again by proving that
a set of constraints are met over the institutions’ encrypted baskets, the public price



vector, necessary constants, and any (possibly encrypted) data provided by liquidity
providers.

3 Secrecy-Preserving Proofs of Impact on Portfolio Risk

In the introduction, we describe how large basket orders are traded by revealing portfo-
lio risk measurements of the baskets themselves, rather than the actual risk undertaken
by the liquidity providers the baskets.

We propose a secure system that makes price discovery for basket trades more ac-
curate by offering liquidity providers limited but more specific characteristics of their
actual risks — how the risk of their inventory changes — not the characteristics of the
incoming basket. In this section, we refer to an “institution” who is offering a basket
and a “recipient” of that basket – a liquidity provider in our primary protocol. How-
ever, our protocol has more general applicability and may be used in any transaction
in which a recipient wishes to estimate its risk in accepting a basket of equities. That
basket may be the combination of many baskets (e.g. in a combinatorial exchange) or a
single counterparty’s basket.

Our protocol employs a server as a partially trusted third party, accepting encrypted
forms of the institution’s portfolio and the provider’s book, and providing a set of risk
characteristics of the recipient’s resulting book after the integration of the equities in the
portfolio. The protocol proves these characteristics correct in a zero-knowledge fashion
based on the encrypted inputs, to assure the recipient that it received an accurate picture
even if it does not win the bid. (Presently, only winners can verify the correctness of the
submitted values because they are the only party who ever discovers the actual contents
of the basket.)

Finally, we remark that wherever we refer to a recipient’s “inventory”, the recipient
may use any representative portfolio in the protocol and compute the risk of accepting
the basket on the basis of risk changes in this particular portfolio. This may be due
to reluctance to reveal the exact portfolio to even a partially trusted third party, or to
optimize price discovery by a specially tailored portfolio.

3.1 Mechanics of the Protocol

The protocol is comprised of a series of simple steps: the parameters of the transaction
are agreed on; the transacting parties publish their encrypted information to all; the “in-
stitution” and “recipients” Pi for i ∈ [1,n] send information to the partially trusted third
party, the “exchange”; the exchange issues proofs to the recipient about its portfolio
risk; and the recipients verify the proofs using the published information. When used in
conjunction with the above protocol, the “institution’s” basket is the remainder basket
representing all unfilled orders.
Step 1. The institution and recipients agree on a set of risk characteristics to evaluate
the portfolio resulting from each recipient’s accepting the institution’s portfolio. This
protects the secrecy of the institution’s information while providing enough information
to the recipient to quote an accurate price. Each risk characteristic will be computed
by performing a computation over the institution’s encrypted portfolio and recipient’s



encrypted inventory. The institution may also require that certain outputs be reported
as “bounds”, where the results are only quoted accurately enough for the recipient to
price the portfolio by proving they lie within a certain small range. This is of extreme
importance to prevent any recipient from “backing out” private information from the
encrypted data by carefully constructed queries. See also the more detailed discussion
in the following section, 3.2.
Step 2. The institution prepares an encrypted basket B0 as above in the combinatorial
case. The encryptions are carried out in accordance with the underlying cryptographic
protocol.6 The institution submits the encrypted basket to the exchange.
Step 3. Each recipient prepares a similar basket Bi with its inventory, into which the
basket would be integrated, and shares this encrypted portfolio with the exchange. It
does not need to share it with the institution.
Step 4. The exchange and each recipient computes the encrypted result of incorporating
the new basket B0, B̂i = Bi⊕B0. The exchange then computes the risk characteristics
of B̂i and reveals them to recipient Pi with a correctness proof. Note that Pi never learns
the exact composition of B̂i: only its risk profile.
Step 5. When the protocol is used to compute the cost of liquidating a basket of securi-
ties (for example, a remainder basket), the recipient examines the new risk characteris-
tics of the resulting portfolio, estimates carrying and execution costs and submits a bid
to the institution. (In practice, the computed characteristics might be sent to a portfo-
lio management software system that compares the “before” and “after” portfolios to
automatically estimate risk and hedging costs.)

3.2 What Information Should Be Revealed?

Presently, institutions submit the characteristics of their baskets to investment banks in
spreadsheets with specific numbers in each category. This process “leaks” information,
especially where the number of equities in a particular category is small. Occasionally,
the information can create obvious implications: for example, if there is only one equity
listed in the telecommunications sector, comprising 89,000 shares whose total value is
$3,546,650, the bank probably has an excellent idea of the company’s name. Institutions
sometimes “white out” some information in their basket descriptions to prevent such
information leakage, usually to eliminate obvious information leaks.

Yet even when such information is redacted, rigorous statistical analyses of the in-
formation submitted can still yield information about the composition of the baskets,
and this is also possible in more complex situations where a large number of equities
contribute to one line-item. Since values are often supplied to the penny, if the num-
ber of equities, total dollar amount as of a particular market close, and total number
of shares is known, it is possible that a computer could efficiently search the possible
baskets created by equities in that sector and propose a small number of alternatives to
the bank. While we have no reason to believe that the reports are being so exploited by

6 Providing the value quotation is a matter of convenience, as the encrypted value can be com-
puted as the encrypted product of public previous close price and the encrypted number of
shares.



the banks, eliminating any potential information leakage while still providing accurate
risk assessments is an important benefit of our proposed protocol.

Because the cryptographic framework we describe supports interval proofs on en-
crypted values (or functions on encrypted values) the exchange can reveal approximate
risk characteristics that are sufficient for price discovery but are more resistant to sta-
tistical analysis to back out the composition of the baskets. For instance, instead of
reporting the sector breakdown exactly, the exchange can report values rounded to the
nearest percentage point or thousands of dollars or shares. Although there is no reason
that institutions can’t submit baskets with such obfuscated data, they would not be able
to prove it correct without cryptography. The ability to reveal “just enough” information
(while still proving it correct) is an important feature of our proposal.7

3.3 How the Information Is Revealed

Rather than proving portfolio risk of a single portfolio, we are interested in revealing
facts about a hypothetical portfolio that results from the combination of other portfolios.

Once our protocol is followed, the exchange privately knows the combined port-
folio.To reveal a fact, the exchange obtains the result of the desired computation and
sends the result to the verifiers, along with special verification data that allow them to
verify the result.

3.4 Revealing Portfolio Value and Dividends

In most cases, the incoming basket order will involve long and short trades, and an
important element of the risk is the “skew” — the difference between the total value
of the short and long trades. Sometimes, when an institution is trading a basket with
a significant skew (or even entirely one-sided) it may not wish the size of the skew
to be known. In this case, the recipient might respond not with a specific cash price,
but rather a discount quotation, an agreement to accept the equities in the basket at a
particular volume-weighted average price, or other quotation based on the market prices
of the equities after they are revealed. Because the recipient can accurately assess its risk
profile in accepting these, it can offer more competitive discounts or execution quotes
for less risky baskets, or, similarly, charge more for a riskier basket.

The institution and the recipient(s) may agree to reveal:

– The full value of the long and short sides of the portfolio:
The exchange provides a proof that allows the recipient to decrypt the sum of all
long positions and the sum of all short positions.8

– The value or range of the “skew” only:
In this case, the exchange provides the recipient a proof of the sum of the portfolio’s
value: all long positions’ values minus all short positions’ values. Assuming that B̂i

7 See Section 6 for a discussion of why this feature is best supported by protocols based on a
partially trusted third party.

8 While possible, the details of doing this without revealing which securities are long and short
require great care and describing such a proof is beyond the scope of this paper.



holds signed quantities, the verifier simply computes the encrypted dot product of
the portfolio and the price vector V : E(W ) ≡ B̂i �V . The exchange might reveal
the precise value W , or only that W lies within a particular interval.

– No information about the value of the incoming basket:
In this case, the position values, quotes, and number of shares must all be kept se-
cret; the risk profile of the resulting portfolio can still be evaluated by other means.

A similar approach can be applied to dividends, where the recipient receives aggre-
gate calculations of historical and expected dividend payments, so that it can estimate
any dividend payments it will make (for short sales) and receive (for long positions).

3.5 Portfolio Composition Statistics

For risk management and hedging calculations, the recipient may wish to know the
composition of the combined portfolio based on various factors, including:

– Market sector (technology, health care, consumer goods, etc.)
– Market capitalization
– Index membership
– Dividend amount (as a percentage of share price)
– Average daily trading volume (possible in terms of both shares and notional value)
– Historical price volatility

Using our protocol, the institution need not reveal any information about the in-
coming basket’s sector breakdown — for example, if there are balanced long and short
trades in technology, and zero trades in utilities, this is indistinguishable to the recipient
from a portfolio with zero technology and balanced utilities trades, provided that the
balanced trades do not change the risk profile of the recipient’s inventory. This provides
additional secrecy to the institution while still meeting the needs of the recipient.

The exchange calculates the portfolio composition and proves it to the accepting
recipient, who verifies the result using its own encrypted portfolio and the encrypted
basket provided by the institution. Because the exchange can offer proofs that each sec-
tor’s breakdown lies within a particular interval (say to the percentage point or 1/10 of
1%), the institution can reveal enough information for the recipient to offer an accurate
price while making reconstruction of the portfolio infeasible.

Using the general cryptographic operations described above, the exchange can
prove breakdowns for the various aspects of the portfolio as follows. We write that the
portfolio B0 is the sum of all n institutions’ baskets Bi for all i ∈ [1,n], each of which
contains m securities. Bi j is the jth security in basket i.
Step 1. Because the exchange knows the breakdown for each equity (e.g. market capi-
talization, market sector, etc.), it can compute encrypted sums of the number of shares
and total value for each item in the breakdown by summing up the encrypted number of
shares and total value from the combined portfolio and prove them correct. The recip-
ient also recalls the encrypted total number of shares and encrypted total value of the
basket. We recall that this is the combined portfolio, where any long and short trades in
the incoming basket have already been incorporated into the recipient’s inventory.



Step 2. The exchange first proves the sums are correct, namely, E(B0 j) ≡
⊕n

i=1(Bi j),
for j ∈ [1,m]; and computes the encrypted total portfolio value E(W ) ≡

⊕m
j=1 B0 j ·Vj

from the encrypted combined portfolio and constant price vector.
Step 3. The exchange then prepares an encrypted “unit size” Z by computing Z and
designating a public constant K such that ZK ≤W and (Z + 1)K > W . The exchange
proves this by providing the recipient E(Z) and a trivial encryption E(K) and proving
that E(Z)⊗E(K)�E(W ) and (E(Z)⊕E(1))⊗E(K)�E(W ). Thus there are K “units”
of size Z in the breakdown.9

Step 4. For each element of the breakdown, the exchange prepares an interval proof
of how many “units” that element comprises. It begins by calculating and revealing
two integer constants ai,bi and their “trivial” encryptions E(ai),E(bi); the recipient can
verify these are correct encryptions. For example, ai might be 10 and bi 12, to show the
result is between 10 and 12 units.
Step 5. The exchange completes the interval proof, showing that E(ai)⊗E(Z)�E(vi)�
E(bi)⊗E(Z). This proves that aiZ ≤ vi ≤ biZ. This bounds the value of the portfolio in
bucket i without revealing any further information.
Step 6. Steps 4 and 5 are repeated for each “bucket” in the breakdown until the entire
portfolio has been classified. The recipient might check that ∑i ai ≤K ≤∑i bi to be sure
that the breakdown provided is appropriate.

3.6 Other Measurements of Risk

Because of the flexibility of the mathematical operations that can be performed on the
recipient’s basket and the incoming basket, other, more complicated risk measurements
are possible. While the above examples are of linear functions, which permit the recipi-
ent to compute the incoming baskets’ risk characteristics from the output risk character-
istics and his own inputs, our protocol provides for computation of polynomial functions
of modest degree by using repeated multiplications (including repeated squaring) of en-
crypted values to calculate exponents. This permits the computation of more complex
risk analysis measurements whose definition under our framework we leave for future
work.

4 Pricing and Payment

Two types of prices must be computed: the price at which each security is valued when
the exchange clears, and the price that the third parties charge for providing the market-
clearing liquidity. We treat these in turn, referring to the winning third party (which
might be a consortium) as the liquidity provider or recipient. We note that if our second
protocol is used independently between a single institution and one or more liquidity

9 Care must be taken so that W mod K is not too large, because this could skew the results.
The exchange can even show the recipient that value by revealing the verifiable result E(W )	
(E(K)⊗E(Z)), or proving that it is less than a small constant. Since K is public, the recipient
can refuse a K that is too small.



providers for proving characteristics about a single basket trade, the institution’s basket
functions as the remainder.10

Because each of the securities in the exchange is presumed to be traded on a primary
market, we adopt the common practice in block trading to allow the primary market to
dictate a fair market price for the securities at the time of trading. The financial industry
uses many reasonable methods for price determination in block trading, and we do not
advocate a particular pricing model over another—provided that the trading prices are
determined in a manner exogenous to the exchange. Examples of these methods include
the closing or settlement price for the day of the transaction, average prices over time
such as the volume-weighted average price (VWAP), or simply the midpoint of the best
bid and offer at the time the market clears.

After the proofs are obtained, the third parties have learned enough information to
calculate a price for the incoming basket. They can accurately assess the changes in
risk on their own inventories if they accept the basket, and by measuring those changes,
estimate hedging costs for equities it will carry and execution costs for unwinding the
trades it does not wish to keep.

In Appendix B, we consider approaches to allocating the liquidation costs among
the market participants; this can also be done in a provably correct fashion.

5 Keeping the Pool Safe

Although our methods are designed to provide transparency without revealing ex-
ploitable information, there remain ways in which unscrupulous traders might try to
exploit the exchange we propose.

One misuse of our exchange might be for institutions to use its guaranteed liquidity
to unload especially high-risk or illiquid securities. If the exchange becomes filled with
undesirable assets, then liquidity providers will be less likely to want to participate.
This is an important reason we advocate a pricing mechanism that charges institutions
according to the amount of the remainder basket their trades represent—if the pricing
mechanism is correctly defined, then institutions who submit less desirable portfolios
will pay more for their liquidation costs.

Yet it might be desirable to make sure that the baskets the institutions submit to the
exchange meet basic criteria for acceptability and portfolio risk. Using the same port-
folio risk analysis techniques described above, institutions can issue zero-knowledge
proofs about the baskets they submit so that all can be confident that their trades are
acceptable. This should also reduce the third-party liquidation costs, because the third
parties will be more confident that they won’t receive a basket that has nice overall
characteristics but might be comprised of less desirable individual securities.

As we mentioned in the introduction, other common exploits associated with dark
pools are less of a concern because our protocol features guaranteed execution. Exploits
such as probing for existing liquidity and baiting (where someone places an order and
then retracts it) are less of a problem, since once an order is placed, it cannot be re-
tracted, and learning that your order was filled reveals nothing about existing opposite

10 In fact, this is equivalent to operating our exchange with a single institutional participant.



interest—every order is filled. Johnson [8] describes “toxic dark pools” that are known
for being exploited.

6 Strengthening Secrecy

While our solutions offer an appropriate degree of secrecy and are practical to imple-
ment, the exchange does learn private data that it could reveal to others after the fact.
It learns the trades that took place, which may be undesirable to certain institutions
(notably hedge funds), and could learn something about the recipient’s inventory in
the context of proving changes to the recipient’s risk without revealing the incoming
portfolio characteristics directly. While the trades must eventually be reported to the
exchanges and become a matter of public record, and no such information could have
any bearing on a particular round of the exchange, this information still has value. We
thus consider how to mitigate the trust not to leak any information that we might place
in the exchange operator.

The most compelling complement to our cryptographic solutions includes secure
computing infrastructure such as Trusted Computing [18] hardware and network mon-
itoring. We advance this idea in our previous work on cryptographic securities trading
[21] and auctions protocols [14, 16]. In this scheme, specially designed hardware and
software are trusted not to leak information, and monitored for security. Moreover, the
secrecy-preserving correctness proofs we advance in this work complement such “black
boxes” extremely well, because we need not trust the black box to produce correct re-
sults: we only use it to mitigate ex post disclosure. Thus, the actions of the exchange
remain provably correct under all circumstances—even an undetected bug in the black
box cannot result in incorrect behavior.

Even in these high-security settings, a determined adversary might be able to en-
gineer steganographic leaks by “hiding” information in the protocol itself, often in
predetermined bits of “random” help values. Doing so would be a significant effort,
because most trusted computing infrastructures will not run software that has not been
verified and signed by a third party, but we mention that small risk nonetheless. Fair
Zero-Knowledge, introduced by Lepinski et al. [10], describes a mechanism to combat
such attacks and surveys related work.

Another approach is be to distribute trust among a group of entities who jointly
act as the exchange. While this theoretically possible solution does eliminate any one
single trusted third party, the architecture retains a functional entity of a trusted third
party which happens to be comprised of several entities. Employing such a solution
successfully in practice would require the cooperation of disparate, disinterested busi-
ness entities to prevent collusion; moreover, the efficiency of such secure multiparty
computation schemes may not be able to support the computations we require.

Finally, we observe that perfect security is never attainable in real life where hu-
mans are involved: any dishonest party “in the know” can always pick up the phone to
deliver an out-of-band information leak. And, even where there is no intentional disclo-
sure, Brandt and Sandholm proved impossibility results for achieving complete secrecy
in some auction settings [4]. These ideas lead to interesting security questions about
modern markets where more and more trades are performed without human input: au-



tomated trading agents running on secure hardware could offer an unprecedented level
of security against the human element.

7 Conclusions and Future Work

We have implemented a useful new mechanism for block trading of securities that meets
two market requirements: institutions can trade directly with each other when liquidity
is available, while still having guaranteed execution for their entire order to limit portfo-
lio and carrying risk. We employ a combinatorial exchange model, but make it tractable
through external price discovery and a third party who provides necessary liquidity to
achieve market equilibrium so that all orders are filled.

We protect the secrecy of sensitive data while giving the third party information
necessary to calculate a fair commission by combining two novel cryptographic proto-
cols. They are efficient, straightforward to understand, and can be implemented using
already accepted cryptographic primitives.

More general formulations of these protocols may be of independent interest. Con-
sider an arbitrary function over a finite field with encrypted inputs and a prover who
proves facts about the output of this function. Clearly, there are many functions for
which a precise output reduces the space of possible inputs dramatically — an unin-
tended consequence of revealing a single output. Our mechanisms can offer provably
correct yet approximate outputs using interval proofs, where exact results would reveal
too much information.

The protocol we describe to prove changes to a recipient’s risk also generalizes into
a new class of price discovery. We can construct a more general protocol that allows
a buyer to evaluate a purchase on the basis of a change in a buyer’s utility function,
rather than calculating the utility of the good directly. This means that in many business
settings, where direct revelation of the good in question might have negative conse-
quences, a buyer can engage in “zero-knowledge due diligence” where the buyer can
satisfy many concerns by learning about how her utility function changes based on in-
corporating the good into her possessions, without learning enough about the good to
allow the information to be exploited. These settings might include the sale of a signif-
icant commercial building, a business unit of a large corporation, or, other methods of
trading financial instruments.

We leave for future work a number of mechanism design questions. We believe it
is possible to approach a true combinatorial exchange in which both institutions and
liquidity providers post their desired baskets, where institutions post a maximum price
they are willing to pay for liquidating their baskets, and whether and how their baskets
are divisible; liquidity providers post “chunks” of liquidity associated with transaction
costs for each chunk. The exchange then finds the optimal feasible allocation satisfying
all possible atomic trades, and proves the outcome correct. Moreover, the use of such
“chunks” could significantly reduce the size of any remainder basket, thereby reducing
the size of any portfolio that needs to be traded blindly.

In addition to generalizing the protocols as described here, future work may also
include a reference implementation of a prototype exchange or a more detailed technical
specification based on a particular cryptosystem.
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A Efficiency of Our Protocols

While we have observed that any number of cryptographic systems might support our
protocols, we have conducted empirical tests using Paillier cryptography libraries writ-
ten in C++ with the GMP multi-precision library; we wrote these libraries to test the
practicality of cryptographic auctions in [15].

Notably, these tests included interval proofs, additions, and multiplications, all of
which are required to operate a cryptographic combinatorial securities exchange. Our
empirical tests demonstrate that our efficiency claims are realistic, namely, that each
step of the protocol can proceed in a reasonable amount of time on cost-effective com-
modity hardware. As noted above, we expect our combinatorial exchange to clear high
value baskets within hours; our tests meet this goal.

We assumed a universe of 3,000 securities in each basket. We assumed that quanti-
ties of securities are 32-bit values (up to approximately 4 billion). We used a 1536-bit
Paillier key, a composite of two 768-bit primes that offers expected security for at least a
few years. We assume all four processors are running in a quad-core Intel Xeon 2.0GHz
processor. Obviously, cryptographic computations can be parallelized across many ma-
chines; this can offer even greater speed at additional hardware cost.

– Encrypting a basket: 48 seconds
– Decrypting a basket: 15 seconds
– Computing/Verifying the encrypted remainder: ¡ 1 second
– Interval proof on a 32-bit value: 1.25 seconds of required server precomputation;

0.25 seconds of real-time server computation; 1.25 seconds of client verification
– Performing additions: negligible
– Multiplication with a constant: 0.001 seconds
– Multiplication (proving an encrypted value represents the product of two other en-

crypted values): 4.3 server seconds; ¡ 1 second of client verification



– Proving a basket of 3,000 securities is ”well-formed”: 1 hour of required server
precomputation; 12 minutes of real-time server computation; 1 hour of client veri-
fication

Using these values, we anticipate a typical risk analysis measurement would assume
a basket already proven to be well-formed, and perhaps 10 interval proofs and 10 mul-
tiplications. This means that for a particular basket (say, the remainder), a risk analysis
measurement, such as a breakdown into 10 market sectors, could be performed in less
than 1 minute of server and client time. This puts our protocol well within the realm of
practicality.

The majority of time spent using a Paillier cryptosystem is in modular exponenti-
ation of random help values. Using a specialized cryptographic coprocessor could sig-
nificantly reduce computation time. Moreover, in many cases these computations can
be precomputed before the exchange clears, and fully verified in the hours after it clears
– clearly, if the exchange can be found out to have cheated within a day, that is a signif-
icant enough deterrent so that the verification operations need not be carried out in real
time.

B Allocating Liquidation Costs

The liquidity provider can be compensated in many ways; the simplest is for it to quote a
brokerage commission that it accepts for executing the trades. A provider who perceives
greater risk can charge a higher commission. Other pricing mechanisms are possible:
if the cash value of the portfolio is revealed, the provider can quote a price based on
that; if the skew is not revealed, then the provider can quote a price based on a discount
factor or volume-weighted price after the transaction is agreed on. The institution can
choose among the various providers’ offers, and notify the winner. Once the transaction
is complete, the liquidity provider accepting the basket will be able to verify that the
information provided was correct when it receives the remainder portfolio — but we
reiterate that an advantage of our protocol is that those that do not win still have con-
vincing proof that the information was correct: the institution can’t favor one bank over
another.

Another interesting possibility is for the liquidity providers to publish determinis-
tically verifiable valuation functions for their risk premium calculations. Using these,
they can submit a representative portfolio to the exchange, obtain the changes in risk
on their portfolio, then the exchange runs their calculations on the encrypted risk data
and publishes a verifiable, encrypted result. These results would then be used to prove
the payments correct, or could even be used in a verifiable sealed-bid auction to prove
which of the liquidity providers’ calculations yielded the most competitive bid for liq-
uidating the remainder.

While total cost sharing is simple and convenient, we also consider a slightly more
involved “pay for what you use” model: each institution pays its share of the commis-
sion based only on the benefit it derived from the securities provided by the liquidity
providers. In this method, institutions that use more of the remainder (instead of the
other institutions) to fill their trades pay a greater share of the commission. At the ex-
tremes, an institution that trades securities which do not appear in the remainder pays



nothing, while an institution who is the only one trading a particular security pays the
entire share of the commission for that security.

We illustrate this method with an example which refers back to Table 2.3. For sim-
plicity, we will assume that each security trades at a price of $1, and the liquidity
provider charged a commission of $9000. The notional values of the four institutions’
baskets are $1800, $1100, $1500, and $500, respectively; the remainder basket’s value
is $900. The exchange operator then publishes the encrypted amounts of commission
paid based on the pro rata notional value traded of each security: $3000 for ABC, $0
for DEF, $2000 for GHI, $1000 for JKL, and $3000 for MNO. The operator proves that
their sum is the (public) total commission.

Next, the exchange operator proves the total trading interest for each security by
publishing encrypted sums of the absolute notional value of the orders in each basket:
700 for ABC, 1600 for DEF, 400 for GHI, 900 for JKL, and 1300 for MNO. Then, using
the above methods, the exchange operator can publish an encrypted breakdown of the
commission to be paid per share.11 In this case, the commissions work out to $429 per
100 shares of ABC, $0 per 100 shares of DEF, $500 per 100 shares of GHI, $112 per
100 shares of JKL, and $231 per 100 shares of MNO; this yields a total overcharge of
$14 due to rounding error.12 The exchange proves that these encrypted prorated com-
missions are correct given the encrypted values already computed.

The exchange finally uses these encrypted prorated commissions to give each in-
stitution a verifiable share of its commission without revealing the magnitude of the
securities traded by other institutions or the composition of the remainder basket. For
example, Institution 1 would pay
(5×429)+(3×0)+(0×500)+(2×112)+(8×231) = 4217.
The others would pay $1358, $3103, and $336, respectively, for their share of the costs
in liquidating the remainder.

We sketch a final, possibly fairer method inspired by the Vickrey auction, but we
reserve a full treatment and analysis for later work. In this model, an institution’s share
of the commission would be based on its impact on the market versus the marginal
economy without its basket. Thus, institutions who improved the market by submit-
ting a basket with opposite interest from the remaining baskets would pay very little
(or perhaps even be paid!). Institutions who made the market more unbalanced by sub-
mitting a basket with interest in the same direction the remaining baskets would pay a
greater share of the commission, because its trades would only be filled by means of the
liquidity providers.

11 Since the numbers do not divide evenly, the exchange can simply round up to the nearest
integer and prove that the result is within a small error, that is, the difference between the total
commission and the reported commission is small.

12 If verifiable operations over encrypted rationals are employed, even this rounding error can be
(practically) eliminated at a constant factor of additional computation cost.


