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Abstract

The broad adoption of social media has gen-
erated interest in leveraging peer influence
for inducing desired user behavior. Quantify-
ing the causal effect of peer influence presents
technical challenges, however, including how
to deal with social interference, complex re-
sponse functions and network uncertainty.
In this paper, we extend potential outcomes
to allow for interference, we introduce well-
defined causal estimands of peer-influence,
and we develop two estimation procedures: a
frequentist procedure relying on a sequential
randomization design that requires knowl-
edge of the network but operates under com-
plicated response functions, and a Bayesian
procedure which accounts for network uncer-
tainty but relies on a linear response assump-
tion to increase estimation precision. Our re-
sults show the advantages and disadvantages
of the proposed methods in a number of sit-
uations.

1. Introduction

In causal inference, there is interference among units
of analysis when a treatment or intervention on a unit
has an effect on the response of another. These effects
are known as spillover effects in economic theory, but
when the units are humans and the effects originate
from a unit’s peers, e.g., friends or classmates, they
are known as peer influence effects. The recent rise in
adoption of social media has focused attention on how
to quantify peer influence, and thereby raised techni-
cal challenges for causal inference when interference is
present.

Recent works in statistics, for instance, account for
peer influence (i.e., interference) as nuisance when esti-
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mating classical average treatment effects. In contrast,
our work focuses on estimating the peer influence effect
itself. Rosenbaum (Rosenbaum, 2007) takes a non-
parametric approach, assuming only the existence of a
baseline uniformity trial in which there may be interac-
tions but there is no real treatment (placebo). To un-
cover the treatment effects under the “nuisance” of in-
terference, one can compare the relative responses be-
tween treated and control units across groups or clus-
ters of units. In (Hudgens & Halloran, 2008), Hudgens
and Halloran consider the problem of estimating causal
effects from vaccination under interference and identify
these effects by comparing two reference groups: one
group with low vaccination percentage and one group
with a high percentage, under the key assumption of no
interference among groups. A survey of the relatively
thin literature on causal inference under interference
is given by Tchetgen & VanderWeele (2012).

A related line of research in the social sciences aims
at estimating peer influence effects in the absence of
a true causal framework. Here, identifying whether a
unit’s outcome is a result of the social ties to peers
(social contagion) or a result of similarity (homophily)
to peers remains challenging (Manski, 1993). Applica-
tions of peer effects research have spanned many ar-
eas such as behavioral science/public health (Mednick
et al., 2010), advertisement (Parker, 2011), network
security (Shah & Zaman, 2011), and economics (Ace-
moglu et al., 2010). The effect of interference in these
works is captured by a parameter in the model (e.g. in
structural equation models), which nearly always lacks
well-defined causal interpretation.

Applications for this problem abound. In (Bakshy
et al., 2012), Facebook users were shown ads with and
without their friends’ product affiliation. The goal was
to understand peer influence and, specifically, estimate
the probability of sharing an “endorsement” condition-
ing on the strength of the friend ties. In (Bond et al.,
2012) a massive randomized experiment on Facebook
investigated peer influence effects on voting turnout.
In a different setting, where peer effects can be “trans-
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mitted” through an integrated market, (Ostrovsky &
Schwarz, 2010) perform a large on-line randomized ex-
periment to assess the impact of reserve prices in to-
tal revenue of Yahoo! ad auctions. Lacking a gen-
eral methodological framework, most studies including
the aforementioned ones, assume away interference for
the sake of simplicity. The risk of this assumption
is demonstrated in (Sobel, 2006). Examining hous-
ing mobility studies in which households in poor ar-
eas are financed to relocate to better neighborhoods,
Sobel shows that ignoring interference can lead to en-
tirely wrong conclusions about the effectiveness of the
program.

Recently, the potential outcome framework is gain-
ing traction in this problem space. Unpublished work
by Ugander et al. (2012), for example, targets esti-
mands related to ours with a different estimation pro-
cedure. Aronow & Samii (2013) perform inference us-
ing the Horwitz-Thompson estimator, assuming a net-
work sampling design is in place and that the sampling
inclusion probabilities can be computed. Our work dif-
fers in that (i) we propose a causal estimand that is
well-defined and tightly-connected to the underlying
network, (ii) we insist on sequential randomization de-
signs which we believe are more appropriate for this
problem and (iii) we consider a linear Bayesian model
that can accommodate network uncertainty and in-
crease precision under suitable conditions.

1.1. Causal frameworks & potential outcomes

The Rubin causal model (Rubin, 1974; 1990), based
on potential outcomes, is the most widely-used causal
framework in statistics and the social sciences. This
approach is rooted in a fundamental question: How
would we define a causal effect if we had all the data?

For the simplest scenario, assume two units, indexed
by i, who are about to receive a treatment, say, an
aspirin. Denote with Z; € {0,1} whether unit ¢ re-
ceived the treatment (Z; = 1) or not (Z; = 0) and
Z = (Zy,Z3) the entire assignment vector. Also de-
note the response to the treatment, say, severity of
headache, with Y;(Z;) (see Table 1). The fundamental

Unit “Ideal“ world Real world
Z;i=0 Z;=1|2;,=0 Z;=1

1 Y1(0)  Yi(1) | Yi(0) ?
2 | B(0)  Y(1) ? Ya(1)

Table 1. Causal inference as a missing data problem under
the Rubin model

'In general, the estimator & = Z;-Y1 (1) +Z2-Y2(1)—(
1

assumption that enables us to write Y;(Z;) is that of
no interference, also known as SUTVA (Stable Unit
Treatment Value Assumption); that is, the outcome
of individual 7 is only a function of its treatment Z;.

In an “ideal” world, we would observe all the possible
outcomes (left part of table). In this ideal scenario, we
define the causal estimand by pretending that we have
access to outcomes for all possible treatment assign-
ments. For example, a natural definition of the causal
effect of taking aspirin would be:

p=(1/2) - [Y1(1) + Ya(1) — Y1(0) — Y2(0)]

In the real world, however, only one outcome can
be observed for each unit, because one cannot both
take and not-take the aspirin, whereas the other will
be missing (denoted with “?” in the table). A de-
sirable feature of the potential outcomes framework
is the ability to define causal estimands in terms of
individual-level potential outcomes—even though only
typical (e.g. average) causal estimands are estimable
in practice.

Estimation proceeds in two ways. In randomization-
based inference, treatment is randomized and esti-
mates are obtained as functions of the observed out-
comes. Here, if aspirin assignment was randomized,
and unit 2 received aspirin, then a natural estimate
would be Y5(1)—Y7(0), and such an estimate would be
unbiased!. In a model-based approach, the outcomes
can be modeled conditioned on the assignment and
the observed values e.g., assume Y;(Z;) is normal with
mean p+77;. An alternative causal framework is that
of causal graphical models (Pearl, 2000; Spirtes et al.,
2001), which uses directed acyclic graphs (DAGs) to
represent causal dependencies. This framework is pop-
ular in computer science, however, it is not well suited
to our problem since we do not aim at estimating a
causal structure but rather the “marginal” peer influ-
ence causal effects through a randomized experiment.
Interestingly, identifiability of causal effects from ob-
servational data (even under fixed causal graphs) has
recently been challenged (Shalizi & Thomas, 2011).

1.2. Contributions

This paper introduces a new and well-defined causal
estimand for peer influence effects in Section 2.1, by
extending potential outcomes to allow for interference
in a social network. We then develop two ways to
estimate this causal estimand, first through sequen-
tial randomization and second via a model-based ap-

1—
Z1)-Y1(0) — (1 — Z2) - Y2(0) is unbiased since E[Z;] = 1/2.
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proach, and then demonstrate their trade-offs. Section
2.2 describes the randomization approach and charac-
terizes the subtlety of this problem by introducing the
idea of manipulability of a network. Sections 3.1 and
4.1 characterize the trade-off between manipulability
and possible bias of a randomized design. Theorem
1 shows that this bias is intertwined with network-
specific properties (e.g. the sharing indez). Section
2.3 describes the model-based approach under a spe-
cific additivity assumption. Section 3.2 shows how
to optimize asymptotic expected performance through
assigning the treatment vector to maximize Fisher in-
formation, thus providing insights for experimental de-
sign.

2. Methods

We denote a network as G = (V, E), where V is the
vertex set, |V| = N, and E is the edge set. For a
node i € V, we define as N; to be its neighborhood,
excluding i. Node i has n; = |V;| neighboring nodes.
The N x 1 treatment assignment vector is denoted by
Z, where Z; = 0 or 1 if node i is assigned to control
or treatment, and for a subset S C V, let Zg be the
assignment vector for the nodes in S. Thus, Z; is the
assignment vector of the neighbors of i. Also, let Vj,
be the set of nodes that have at least k neighbors and
M. be the set of neighbors of node i € Vi who are
also neighbors to at least one other node in V. Define
M, = J; M as the set of shared neighbors. Denote
also m;, = | M| i.e., the # of neighbors of ¢ who are
shared with other nodes in V}, as well.

We say that a node, or equivalently an experimental
unit 7 is treated if Z; = 1 and it is in control if Z; = 0.
When Z; = 1, unit ¢ is said to have primary effects.
Furthermore, we say that a unit 7 is exposed to peer
influence effects if at least one neighbor is treated. A
unit ¢ € Vj is k-exposed if exactly k neighbors are being
treated and the corresponding treatment assignment is
called a k-level assignment. We say that a unit is non-
exposed when Z; = 0 and Zy;, = 0 i.e., the unit ¢ and
all its neighbors are in control. Also, denote with D;
the set of all assignments Z,;, that make node i to be
k-exposed.

The response of unit ¢ (potential outcome) under treat-
ment Z is denoted by Y;(Z) = Y;(Z;,Z_;), where Z_;
is the vector of assignment Z excluding i’s assignment.
Define Z(N;; k) to be the set of all assignments on N;
in which exactly k neighbors of i get treated (total
(") such assignments). Define Z1(N;; k) as the set of
all assignments in Z(N;; k) for which 3j,Z; = 1 and
j € My, ie., at least one of the shared neighbors
of i gets treated. Denote as Zo(N;; k) the set of as-

signments Z(N;; k) \ Z1(N;; k), i.e. node ¢ is k-level
exposed and all shared neighbors are put in control.
Notice that it holds, Zo(N;; k) U Z1 (N3 k) = Z(N;; k)
and Zo(N;; k) Z1(Ni; k) = 0, i.e. the two sets are
disjoint and form collectively the entire set of k-level
assignments.

1 n;—m; -1
» POy (i and

Intuitively p; is the probabil-

Last, define p; = (7))
pri = (5 = p%J)71~

ity of one random k-level assignment for unit ¢ and
po,i is the probability of a random assignment given
that ¢’s shared neighbors are put in control. Note that
|1Z0(Ml,k)| :11/p0’1- and |Z1 (N3 k)| = 1/p1., so that

pi  poi + P’

2.1. Causal estimands for treatment effects

In the classical potential outcomes framework, SUTVA
is assumed: Y;(Z) = Y;(Z;), meaning that the out-
come of unit ¢ depends only on the treatment it re-
ceives and not on the treatment other units receive.
This is clearly violated in the presence of interference.
We replace SUTVA with the following, more relaxed,
assumption:

Assumption 1. We assume Vi, Y;(Z) = Y;(Z;, Zn,),
i.e., a unit’s response can be affected by the treatment
it receives and by the treatments received by its neigh-
bors. [

Formally, the response function of a node i can be de-
noted by Y (Z;, Zxs,) and is a map {0,1} x {0, 1}Vil —
D,, where D, is the domain of potential outcomes.
For brevity, we denote the response Y;(0,Zy;, = 0) by
Yi(0).

Definition 1. [Estimand for primary effects] Define
as £ the causal estimand of primary effects as follows.

¢ = Jb;n(l,zNi —0) - Yi(0) (1)

Definition 2. [Main estimand for peer influence ef-
fects] Define as dj, the causal estimand of k-level effects
as follows:

()2

z€Z(N;k)

Yi(0,2) - Yi(0)| (2)

Definition 3. [Additional peer influence effects esti-
mands]

(”insulated neighbors”)

Ok,0 = %ZPOJ . Z
1

z€Zo(Ni;k)

Yi(0,2) - Yi(0)  (3)
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("non-insulated neighbors”):

Si= Yoo Y Y02 -Yi0) (@)

z€Z1 (Ny;k)

In the following sections, we describe methods to esti-
mate our causal estimands. One key concept is that of
the valid causal estimate, which is a measure of treat-
ment balance:

Definition 4. [Valid causal estimates] A causal es-
timate from a randomization is wvalid if at least one
node was assigned to the prescribed treatment and at
least one node was assigned to control. Otherwise, the
estimate is not valid.

Estimation of £ is straightforward through a typical
randomized experiment. However, estimation of § is
more involved? because of interference. In the follow-
ing sections, we will focus on estimation of d;. Note
that, by the definition of §;, any randomization needs
to set Z; = 0 for nodes i € V;, and randomize treat-
ment only within their neighborhoods.

2.2. Causal inference through randomization

We start with a simple sequential design:®

Algorithm 1 Estimation of dk:
Randomization SSR(G, Z)

Input: G network, Z current treatment vector
Output: Z treatment vector (in-place)

1: while i« sample{i:i €V, & s(Zy;) <k} do
3: W<« sample{W:WeD;, & Wp, =Zr,}

4:  Zy;, < sample{W,0}
5.
6
T

Simple Sequential

end while

The SSR algorithm assigns nodes in Vi to a non-
exposure or k-level exposure status. Specifically, in
Line 3, a k-level assignment is sampled among those
that maintain the treatment status of units who have
already been assigned treatment. In Line 4, either a

2When defining our estimands, we could compare medi-
ans and not averages, ratios and not differences, or having
a proportion of neighbors treated and not an exact num-
ber k. However, we believe our current approach to be
conceptually clear and a good entry point to the problem.

5We assume function s(Z) which counts how many
units are treated in Z i.e., s(Z) = |{i : Z; = 1}|. Function
sample() samples at random from a set and if an argu-
ment n is supplied then exactly n elements are sampled
without replacement. Last, we assume that the value of Z;
for a unit ¢ that has not been assigned treatment is equal
to “NA” (“not assigned”).

k-level assignment or non-exposure is finally chosen at
random. Intuitively, SSR extends sequential random-
ization by taking into account the constraints of .
However, the algorithm may come up with estimates
that are not valid (see Definition 4). To illustrate, we
refer to the ”candy” network in Figure 1 (right). There
are two nodes in Vj (orange nodes). Clearly, we can
only get causal estimates when one node is k-exposed,
the other is non-exposed, and we compare between the
two observed outcomes. However, this can only hap-
pen when all middle nodes (shared neighbors) are put
in control. The probability of this happening through
SSR is very small?.

A simple design that can alleviate this problem is pre-
sented in Algorithm 2. The randomization is essen-
tially the same as SSR, but as a first step it puts 2%
of shared neighbors into control:

Algorithm 2 Estimation of d;: Insulated Neighbors
Randomization INR?(G)

Input: G network

Output: Z treatment vector

1. Z, « NA, Vi

2: S« sample{n=zx - |My|, My}
3: Zs <+ 0

4: SSR(G,Z)

The idea behind INR is to increase the “causal infor-
mation” acquired by a randomization at the expense of
increased bias. We believe that this trade-off is key to
estimating peer effects and we discuss more in Sections
3 and 4.

Figure 1. (Orange nodes are in Vi, “*” means unassigned)

Left: INR® puts in control proportion of the common neigh-
bors. Right: Candy network. To observe a causal estimate,
the middle nodes need to be put in control. Only 2 out of
all possible estimates are well-defined causal estimates.

4Furthermore, since only 2 out of all causal estimates

can be observed (at least (2:) in total), any estimate will

be severely biased, and the resulting estimator might have
infinite risk.
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2.3. Causal inference through linear model

The randomization based procedure above has the ad-
vantage of making no assumption about the node re-
sponse functions Y;(.). However, it assumes complete
knowledge of the network. Furthermore, depending
on the network topology, it may have trouble find-
ing enough valid causal estimates. Moreover, treat-
ment assignments may be difficult to administer in real
world scenarios.

The complementary model-based procedure addresses
these issues by adopting a linear network treatment
model that assumes additivity of the primary effects
and peer influence effects in their contribution to the
treatment response mean. The additivity assump-
tion of various effects is also made by previous works,
such as Manski’s “linear in means” model (Manski,
1993). Our model is inspired by and similar to Parker’s
(Parker, 2011). As edges in real world networks of-
ten represent an uncertain quantity of interactions be-
tween two individuals, we extend it by considering
weighted random networks.

The linear model assumes, in general, a weighted,
undirected network G among units, with adjacency
matrix A. We model the individual potential outcomes
as:

Yi(Z)=7Z;+~ a,Z+p+e; (5)

in which a; is the i-th column vector of the adjacency
matrix A (in-links to unit ¢). This can be written in
compact form as:

y=XpB+e (6)

where y = (Y;), the N x 1 vector of responses, X is
the N x 3 design matrix such that X = [Z, A'Z, 1],
B = (7,7,p) is the 3 x 1 parameter vector and the
N x 1 vector € ~ N(0,02I) is iid noise. Note that the
network affects the likelihood only through the quan-
tity A’Z i.e., the quantity S = A’'Z is the network
sufficient statistic with respect to 8. Thus, S repre-
sents the amount of exposure to peer influence for each
node.

2.3.1. CAUSAL ESTIMANDS UNDER LINEAR MODEL

Under the linear model, the causal estimands are sim-
plified and this helps bridge our two estimation proce-
dures:

The k-level peer influence effects estimand Jy reduces
to a scaled v:

e (>

z€Z(N;k)

wzl() 2, 5]

z€Z(N;;k

(¥i(0,2) - m(o»}

kv

where W; is the average weight on the incoming edges
to unit 4. Thus, estimating the causal estimands under
the linear model amounts to inferring 7 and 7.

2.3.2. MODELING NETWORK UNCERTAINTY

Real world networks are often uncertain, as true inter-
actions between individuals may be either unobserv-
able, or measured and estimated with error (Butts,
2003). Inspired by Perry’s model for interaction net-
works (Perry & Wolfe, 2010), we model each edge
weight (7, ) as a Poisson distributed random variable
with rate )\ij5.

A key idea here is that, while the network G is random,
we need to impute only its sufficient statistic S, and
thus inference can be efficient. In particular, we model
S as follows:

A;; ~ Poisson(\;;) (9)

S; = a,Z ~ Poisson(k;) (10)

where kK = AZ, and A is the N x N “interaction rate”
matrix. Assuming we know the treatment assignment,
the interaction rates and the unit responses, we arrive
at the Bayesian model depicted in Figure 2.

Naturally we propose a joint inference procedure by
treating the sufficient statistic S as the “missing data”,
and performing inference iteratively through MCMC
with Gibbs sampling as shown in Figure 3. More de-
tails on this inferrential step are available in the sup-
plementary material.

3. Theoretical results
3.1. Randomization performance analysis

It was argued in Section 2.2 that the network topology
is important in getting causal estimates for d;. As an-
other extreme example, consider the case of a complete

SFor simplicity, here we assume knowledge of the rates.
Future work may implement a more general hierarchical
model on the rates as a function of some network parame-
ters (e.g. node degrees in Chung-Lu model (William et al.,
2001)).
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Primary Effect

Peer Influence '
Effect @
Baseline

Figure 2. Plate diagram of the Poisson random network
linear treatment model. y, A, and Z are known or ob-
served.

Bayesian Regression Metropolis-Hastings

)

Figure 3. Joint inference of 3, 0%, and S through MCMC.

graph (all units connected). Clearly, no causal esti-
mate can be drawn from such a graph since as soon as a
unit gets k-exposed no other unit can be non-exposed.
Equivalently, for networks with isolated nodes, it is
always possible to draw causal estimates through a
completely randomized experiment. In other words,
we can think of networks as having varying degrees of
manipulability. We formalize this notion by the fol-
lowing definition:

Definition 5. [Manipulability] The manipulability of
a network G under randomization R is the average
proportion % of valid causal estimates that R will get
when ran on G. [J

Referring back to the previous examples, the complete
graph has 0% manipulability and the isolated graph
has 100% manipulability. Note that under our As-
sumption 1, interference happens through the shared
neighborhood My. Intuitively, the bigger My, is with
respect to the entire graph G the stronger the interfer-
ence effects should be®. We formalize this notion by
defining the sharing index of a network.

Definition 6. [Sharing index] For a given network and

5For example, if M}, = @ then there is no interference
and a classical randomized experiment can be performed.

given k, the sharing index « € [0, 1] is defined by:

1 Mk
a=— 11
1€EVy

Intuitively, a high sharing index means that whenever
a node is k-exposed or non-exposed, it will affect more
of the remaining nodes, making the graph less manipu-
lable”. Interestingly, the bias of the estimate provided
by INR!? is exactly proportional to the sharing index:

Theorem 1. If Vi,p; = p and pg; = po, such that
p/po =1—a <1, then it holds:

Ebrinr] = Ok + - (0r0 — Ok.1) (12)

The bias of INR!? estimates come from two sources:
The first is from the sharing index of the network. The
second comes from the difference of the influence that
nodes in My, (shared neighbors) exert compared with
nodes in V' \ My. If for some reason (e.g. because
of their better positioning on the network) the shared
neighbors are more (or less) influential, our estimates
will become biased. The following corollary summa-
rizes these observations:

Corollary 1.  For an ego-centric network with no
commonly shared nodes (a = 0), the estimate from
INR is unbiased. Furthermore, if peer influence ef-
fects are invariant to permutations of node ids (and so
Ok,0 = 0k1) the estimate from INR is unbiased.

3.2. Linear model performance analysis

Other than bias, the performance of the inference pro-
cedure is typically characterized by the variance of
the estimate. Here we show how the structure of the
network and treatment assignment play a role in the
variance through the Fisher information matrix and
the Cramér-Rao bound. From our Bayesian regression
model, the likelihood is:

LY(/873702|R72) = HN(}/;vTZz +IYS7, + /1'702)

x Poisson(S;; ;) (13)

To ease our calculations, we approximate the Poisson
through a normal i.e., Poisson(x;) ~ N (k;, k;) and in-
tegrating out the nuisance parameter S by the normal
representation, we take the log likelihood and compute
the Fisher information matrix:

" As a toy example consider a G, , Erdés-Rényi graph.
Then one can show that manipulability decreases with an
exponential rate as the sharing index increases. However,
this relationship is not yet fully characterized and can have
a more complicated pattern in other types of networks.
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1(8,0%) = —-E ( *ly(B,0% K, Z) )

olr, v, u, a0t 7, p, 0]

2 92,02 v
> [%_ 1,;’] Ez% 0
i 0

1
L : C o L

7 -

(14)

where ¢; = 02 + 7?k;. The diagonal entries of the
matrix reveal the information source for each param-
eter. Being mostly interested in the causal estimands
7 and ~, we focus on I(1,1) and I(2,2). Since the rate
of peer influence exposures k are relatively large, the
first term in I(2,2) dominates the second term. So we
focus on 37, 7 for I(1,1) and 3, % for
1(2,2). Not surprisingly, the information content for
7 comes from the treated nodes but is discounted by
the rate of peer influence it receives. On the other
hand, the information content for v comes from hav-
ing large amount of peer influences. This presents a
tug of war between minimizing the variance on 7 and
4. Interestingly, trying to meet both objectives leads
to a treatment assignment where the hubs are treated
to maximize overall peer influence while controlling
their neighbors to minimize the peer influence to the
treated nodes. These ”isolated” treated hubs results
in a treatment assignment strategy that is very similar
to the INR randomization!

While the Cramér-Rao bound (I~1!) is complicated
and does not readily render intuition, one can com-
pute it numerically and find the expected estimation
variance. This can be used to numerically determine
the minimal variance treatment assignment. Later
we demonstrate empirically a reduction in estimation
variance by using "optimal” treatment assignments
(LMO) instead of random assignments (LMR).

4. Empirical results
4.1. Manipulability

The main idea behind INR is to increase manipulabil-
ity of a network at the cost of introducing more bias.
Consider, for example, the candy network on Figure 1.
Under SSR, there is at most 2/ (2,:.“) o 47% probability
of getting a valid causal estimate. In contrast, INR!?
will get causal estimates in 50% of the randomizations
since all middle nodes (shared neighbors) will be put

under control right away. As a further illustration, we
test on Zachary’s karate club network (Zachary, 1977).
The summaries of SSR and INR!? (in 10,000 samples,
k = 5,0, = 2.542) are shown below:

Design | Point Estimate | Manipulability se
SSR 2.516 66.5% 1.022
INRMO 2.495 71.5% 1.062

Table 2. SSR vs. INR'? randomizations and bias-causal
information trade-off: INR introduces more bias but
achieves more valid causal estimates.

INR!?, by fixing nodes under control, introduces more
bias (first column) and more varied estimates. On the
other hand, it obtains 5% more valid causal estimates
on average than SSR thus increasing the manipulabil-
ity of a rather dense social network.

4.2. Randomization vs model-based method

To introduce variety, we tested with 8 100-node net-
works, each with different type of topologies commonly
seen in real-world networks. Two underlying response
functions to the treatment are tested. The first one
(Table 3) is based on the proposed linear response
model Y; = p+ 77Z; + 75; + €; and the second one
(Table 4) adds a quadratic term nS? to the response,
signifying the phenomenon that somehow the peer in-
fluences reinforce each other. We pick the level-4 peer
influence effects causal estimand, d4, as the objective.
The true values for each response parameter were set
tor=10,7=0.5, u =3, ~N(0, 1), n = 0.05. The
results for two levels of INR®, the linear model with 15
random treatments (LMR) and 15 optimal treatments
(LMO), are summarized in Tables 3 and 4.

Table 3 shows that when the model assumption is
correct, the model-based approach out-performs the
randomization-based approach, both in estimate bias
and variance. LMO consistently achieves smaller vari-
ance than LMR, which is consistent with the theoret-
ical result of Section 3.2. Table 4 shows that, when
the model assumption is incorrect, the attempt to
capture nonlinear effects in linear terms result in bi-
ased estimates for the model-based approach. Here,
the randomization-based approach is the better choice
resulting in estimates much closer to the true value.
Last, notice that INR6 is more biased compared to

SSR and in general is worse as a point estimator. How-

8To avoid problems with network density we test on
INR®® = SSR, and INR®. For example, running INR',
typically, sets too many nodes in control for the networks
we tested, and thus, has an adverse effect on manipulabil-
ity. Optimal selection of the INR level is part of ongoing
research.
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Table 3. Results on the linear response function, listed as mean(o)

Graphs Estimation strategy
Type Parameters Truth: d4 SSR INRYS LMR LMO

p=0.05 11.18 |10.49(2.04) | 9.15(2.36) |10.85(1.09)| 9.7(0.63)

Small world p=0.5 11.45 |11.45(1.82)|10.60(2.60)|11.31(1.08) [11.66(0.76)
p=20.9 12.97 | 12.54(1.35) | 12.17(1.57) | 12.82(1.54) | 12.42(0.72)

diag(0.9)/0ff(0.1) 3.19 3.47(0.59) | 3.34(0.61) | 3.15(0.56) | 3.37(0.26)

4-community |diag(0.25)/0ff(0.75) 3.28 3.56(0.74) | 3.77(0.82) | 3.28(0.27) | 3.72(0.23)

block model Beta(0.1,0.1) 3.19 3.2(0.49) | 3.51(0.57) | 3.25(0.36) | 3.28(0.21)

Beta(1,1) 3.27 3.41(0.57) | 3.6(0.65) | 3.30(0.33) | 3.40(0.22)

Chung-Lu - 2.88 2.9(0.61) | 2.96(0.5) | 2.99(0.31) | 2.93(0.21)

Table 4. Results on the quadratic response function, listed as mean(o)
Graphs Estimation strategy

Type Parameters Truth: d,4 SSR INROS LMR LMO
p=10.05 42.46 36.38(10.7) |32.13(13.96) | 25.37(3.96) | 27.32(1.49)
Small world p=0.5 44.68 |45.73(10.01) |39.52(14.24) | 27.27(4.15) | 35.45(2.05)
p=20.9 50.52 47.54(7.00) | 46.87(9.12) |33.39(4.38) | 36.00(1.80)
diag(0.9)/off(0.1) 5.48 5.97(1.25) | 5.77(1.45) | 6.64(0.9) | 9.28(0.66)
4-community |diag(0.25)/0ff(0.75) 5.63 6.01(1.26) | 7.05(1.81) | 8.96(1.20) |11.25(0.61)
block model Beta(0.1,0.1) 5.42 5.63(0.94) | 6.0(1.37) | 8.40(1.19) | 9.24(0.52)
Beta(1,1) 5.59 6.07(1.08) | 6.52(1.43) | 6.53(0.75) | 9.01(0.46)

Chung-Lu - 4.65 4.83(0.75) 4.9(0.87) | 6.87(0.74) | 6.69(0.34)

ever, it generally achieves higher manipulability (see
Section 4.1).

5. Concluding remarks

Adopting the potential outcomes framework for causal
inference, we define a novel k-level estimand for peer
influence effects and propose a randomization-based
and a model-based approach to estimate it. Our ran-
domization, namely INR, is a simple generalization of
a sequential randomized design. INR aims to get more
causal information (increase manipulability; see Table
2) at the expense of increased bias (see Tables 3,4),
especially in dense networks.

The model-based approach performs efficient causal
estimation in the presence of network uncertainty,
when the additivity assumption holds. Furthermore,
the model informs optimal assignment through maxi-
mizing Fisher information.

This work is a preliminary version of our research in
the causal estimation of network effects, and it focuses
mainly on introducing the problem and highlighting its
conceptual challenges. A more refined version is forth-

coming (Airoldi et al., 2013). Our future extensions
include a formal statistical analysis of estimators aris-
ing from sequential randomizations (such as INR) and
a more nuanced Bayesian analysis for optimal exper-
imental design. Finally, we are actively applying our
theory in two concrete problems that involve (i) peer
influence in medical treatment compliance and (ii) in-
teractions between modules in distributed computing
systems.
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