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Abstract

The ideal estimation method needs to fulfill three requirements: (i) efficient computation,

(ii) statistical efficiency, and (iii) numerical stability. The classical stochastic approximation

of Robbins and Monro (1951) is an iterative estimation method, where the current iterate

(parameter estimate) is updated according to some discrepancy between what is observed

and what is expected assuming the current iterate has the true parameter value. Classical

stochastic approximation undoubtedly meets the computation requirement, which explains

its widespread popularity, for example, in modern applications of machine learning with

large data sets, but cannot effectively combine it with efficiency and stability. Surprisingly,

the stability issue can be improved substantially, if the aforementioned discrepancy is

computed not using the current iterate, but using the conditional expectation of the next

iterate given the current one. The computational overhead of the resulting implicit update is

minimal for many statistical models, whereas statistical efficiency can be achieved through

simple averaging of the iterates, as in classical stochastic approximation (Ruppert, 1988).

Thus, implicit stochastic approximation is fast and principled, fulfills requirements (i-iii) for

a number of popular statistical models including generalized linear models, M-estimation,

and proportional hazards, and it is poised to become the workhorse of estimation with large

data sets in statistical practice.
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Introduction

Modern statistical applications typically involve high-dimensional models on large data sets.

This has increased the need for estimation procedures that combine both computational and

statistical efficiency. Standard popular procedures, such as the EM algorithm or iteratively-

reweighted least squares, are computationally expensive and are thus inappropriate in this

modern domain.

There is, however, one procedure that crosses the fine boundary between efficient

computation and efficient statistical estimation, known as stochastic gradient descent, or SGD

for short. SGD is an instance of the classical stochastic approximation of Robbins and Monro

(1951). In this procedure the current iterate (parameter estimate) is updated according to

some discrepancy between what is observed and what is expected assuming the current

iterate has the true parameter value. This discrepancy is calculated on a single data point

and not on the entire data set, which allows scaling up to very large data sets. However,

there are two important issues with the classical SGD procedures:

1. Their statistical properties are largely unknown (e.g., asymptotic efficiency relative to

maximum-likelihood)

2. They are numerically unstable and therefore unreliable for statistical analysis.

This can be illustrated through a (simplified) real-world problem that I encountered during

my internship at Google, which also provided the original motivation for this research.

Example. Suppose Y ∼ Poisson(eθ?) represents # of bookings in a travel website. Suppose

we have a stream of i.i.d. data points Y1, Y2, . . ., and we wish to estimate the parameter θ?.
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Estimation through stochastic gradient descent has the following intuitive form:

θn = θn−1 + γn(Yn − eθn−1),

where γn = γ1/n, γ1 > 0, and θ0 is some initial estimate. Standard theory of stochastic

approximations suggests that this procedure converges to a point θ∞ such that

E(Yn) = eθ∞ ⇔ θ∞ = θ?.

However, in practice, the situation is quite different. Consider a data set where Y1 =

Y2 = 1001, and suppose that θ0 = 0 and γ1 = 1. Then, the first iteration yields

θ1 = 0 + 1 · (1001− 1) = 1000,

and so the second iteration yields

θ2 = θ1 +
1
2
(1001− e1000) = −∞.

It follows that standard SGD procedures are numerically unstable. This instability, stemming

from their sensitivity to parameters such as the learning rate γ1, is arguably the critical reason

why they are not popular in standard statistical practice. But even if stability was not an

issue, SGD procedures are not well-studied in terms of their statistical efficiency. In this

example, we would like to know, say, the asymptotic variance of θn, i.e., the limit nVar(θn).

A major result of this thesis is to derive this limit in closed form, more generally, in many

popular families of statistical models.

Surprisingly, the stability issue can be improved substantially if the discrepancy, e.g.,

Yn − eθn−1 , is computed not using the current iterate, but using the conditional expectation

of the next iterate given the current one, or an approximation of it. For instance, consider

the procedure

θn = θn−1 + γn(Yn − eθn)

This procedure is using an implicit update because the next iterate, θn, appears on both

sides of the equation. Using the same data as before the new procedure behaves as follows.

2



The first iteration yields

θ1 = 0 + 1 · (1001− eθ1);

thus, θ1 ≈ log(994) ≈ 6.902. The second iteration yields

θ2 = 6.902 +
1
2
(1001− eθ2);

thus, θ2 ≈ log(1001) ≈ 6.909. We see that the stability issue has been completely resolved,

whereas there is no apparent cost in statistical efficiency—in fact, the estimate θ2 in the

implicit procedure is very close to the maximum-likelihood estimate (log 1001). There is

only a computational cost in computing the fixed-point equation of the implicit procedure,

however, we will show later that this cost is negligible in a large family of statistical models.

The main result of this work is that the ensuing implicit stochastic gradient descent pro-

cedure (implicit SGD) maintains the desirable asymptotic properties of classical SGD

(including convergence and statistical efficiency) but has a remarkable numerical stability.

It is exactly this combination that makes implicit procedures appropriate for principled

statistical analysis with large data sets.

The exposition is organized in two chapters. Chapter 1 provides the foundation of

implicit SGD procedures by defining an implicit variant of the classical stochastic approxi-

mation procedure of Robbins and Monro (1951). There, we give a full theoretical analysis

of the new approximation procedure and show its advantages over the classical one. In

Chapter 2 we zoom into the implicit SGD procedure and analyze it vis-á-vis the standard

SGD procedure that is currently widely used in practice.
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Chapter 1

Implicit Stochastic Approximation

1.1 Overview

The need to carry out parameter estimation from massive data has reinvigorated interest in

iterative estimation methods, in statistics and machine learning. Classical work includes

deterministic gradient-based methods, such as quasi-Newton, and stochastic gradient

descent and its variants, including adaptive learning rates, acceleration and averaging.

Current work increasingly relies on methods that employ proximal operators, leading to

updates defined through implicit equations, which need to be solved at each iteration.

Such methods are especially attractive in modern problems with massive data because

they are numerically stable and converge with minimal assumptions, among other reasons.

However, while the majority of existing methods can be subsumed into the gradient-free

stochastic approximation framework developed by Robbins and Monro (1951), there is no

such framework for methods with implicit updates. Here, we conceptualize a gradient-free

implicit stochastic approximation procedure, and develop asymptotic and non-asymptotic

theory for it. This new framework provides a theoretical foundation for gradient-based

procedures that rely on implicit updates, and opens the door to iterative estimation methods

that do not require a gradient, nor a fully known likelihood.
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1.2 Introduction

Robbins and Monro (1951) considered the problem of estimating the zero θ? of a function

h : Rp → R. Specifically, for every fixed θ ∈ Rp, they assumed that the exact value

h(θ) is unknown but can be unbiasedly estimated by a random variable Wθ , such that

E (Wθ) = h(θ). Starting from an estimate θrm
0 , Robbins and Monro (1951) recursively

approximated θ? as follows,

θrm
n = θrm

n−1 − γnWθrm
n−1

, (1.1)

where {γn} is a decreasing sequence of positive numbers, known as the learning rate

sequence; typically, γn ∝ 1/n such that ∑ γ2
i < ∞ to guarantee convergence, and ∑ γi = ∞

to guarantee that convergence can be towards any point in Rp. Robbins and Monro

(1951) proved convergence in quadratic mean of procedure (1.1) —also known as the

“Robbins-Monro procedure"—, i.e., E
(
||θrm

n − θ?||2
)
→ 0. Since then, several other authors

have explored its theoretical properties, for example, Ljung et al. (1992); Kushner and Yin

(2003); Borkar (2008). Due to its remarkable simplicity and computational efficiency, the

Robbins-Monro procedure has found widespread applications across scientific disciplines,

including statistics (Nevelson and Khasminski, 1973), engineering (Benveniste et al., 1990),

and optimization (Nesterov, 2004).

Recently, the Robbins-Monro procedure has received renewed interest for its applicability

in parameter estimation with large data sets, and its connections to stochastic optimization

methods. In such settings, even though there is a finite data set D, the Robbins-Monro

procedure can be applied with Wθ being, for example, the log-likelihood of θ at a single

data point that is sampled with replacement from D. In this case, the theory of Robbins

and Monro (1951) implies that ED(||θrm
n − θ̂n||2) → 0, where the expectation is now with

respect to the empirical distribution of data points in D, and θ̂n is an estimator of θ?, such

as the maximum-likelihood estimator, or maximum a-posteriori if regularization is used. In

this work, we will study the theoretical properties of a modified stochastic approximation

method in the more general setting with a stream of data points, but will also discuss
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applications to iterative estimation with a finite data set.

Despite its remarkable properties, a well-known issue with the Robbins-Monro procedure

is that the sequence {γn} crucially affects both its numerical stability and convergence.

Regarding stability, consider a simple example where θrm
n in Eq. (1.1) is approximating a

scale parameter, and thus needs to be positive. Clearly, even if the previous iterate θrm
n−1

is positive, there is no guarantee that the update in Eq. (1.1) will provide a positive next

iterate θrm
n . Regarding convergence, the Robbins-Monro procedure can be arbitrarily slow

if γn is even slightly misspecified. For example, let γn = γ1/n, and assume there exists

the scalar potential H : Rp → R, such that ∇H(θ) = h(θ), for all θ. If H is strongly convex

with parameter c, then E
(
||θrm

n − θ?||2
)
= O(n−ε) if ε = 2cγ1 < 1 (Nemirovski et al., 2009,

Section 1); (Moulines and Bach, 2011, Section 3.1). In summary, large learning rates can make

the iterates θrm
n diverge numerically, whereas small rates can make the iterates converge very

slowly to θ?. Importantly, these conflicting requirements for stability and fast convergence

are very hard to reconcile in practice, especially in high-dimensional problems (Toulis and

Airoldi, 2015b, Section 3.5), which renders the Robbins-Monro procedure, and all its derived

methods, inapplicable without heuristic modifications.

1.3 Implicit stochastic approximation

Our idea to improve the Robbins-Monro procedure (1.1) is to transform its iteration into a

stochastic fixed-point equation as follows,

θim
n = θim

n−1 − γnW
θ
(∗)
n

, s.t. (1.2)

θ
(∗)
n = θim

n−1 − γnh(θ(∗)n )
def
= E

(
θim

n |Fn−1
)

, (1.3)

where Fn−1 is the σ-algebra adapted to {θim
0 , θim

1 , . . . , θim
n−1}. The implicit stochastic approxima-

tion method of Eq. (1.2) and Eq. (1.3) can be motivated as the limit of a sequence of improved

Robbins-Monro procedures, as follows. First, for convenience, drop the superscript rm from

procedure (1.1), and fix the sample history Fn−1. Then, E (θn|Fn−1) = θn−1 − γnh(θn−1) ,

θ
(1)
n . Assuming that θ

(1)
n can be computed even though h is unknown , then it is reason-
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able to expect that it is better to use θ
(1)
n instead of θn−1 when drawing Wθ in procedure

(1.1). This leads to update θn = θn−1 − γnW
θ
(1)
n

. In turn, this update has expected value

θn−1 − γnh(θ(1)n ) , θ
(2)
n , and thus θ

(2)
n can be used instead of θ

(1)
n , and so on. This argument

can be repeated ad infinitum producing the following sequence of improved Robbins-Monro

procedures,

θn = θn−1 − γnWθn−1 ,

θn = θn−1 − γnW
θ
(1)
n

,

θn = θn−1 − γnW
θ
(2)
n

,

. . .

θn = θn−1 − γnW
θ
(∗)
n

,

where θ
(i)
n is defined recursively as θ

(i)
n = θn−1 − γnh(θ(i−1)

n ). The initial iterate, θ
(0)
n = θn−1,

corresponds to the classical Robbins-Monro procedure (1.1). The limit iterate, θ
(∞)
n = θ

(∗)
n , is

the fixed point of Eq. (1.3), and corresponds to implicit stochastic approximation (1.2).

The improvement achieved by the fixed-point equation (1.3) can be explained through

the following simple argument. First, take norms in Eq. (1.3) to obtain

||θim
n−1 − θ?||2 ≥ ||θ(∗)n − θ?||2 + 2γnh(θ(∗)n )ᵀ(θ

(∗)
n − θ?).

As before, suppose that the scalar potential H exists and is convex. Then, it follows

h(θ)ᵀ(θ − θ?) ≥ 0, which implies that ||θ(∗)n − θ?||2 ≤ ||θim
n−1 − θ?||2. Let ξn = W

θ
(∗)
n
− h(θ(∗)n ),

such that E (ξn|Fn−1) = 0, then Eq. (1.2) can be written as θim
n = θ

(∗)
n − γnξn. Thus, the

fixed-point equation contracts θ
(∗)
n towards θ?, and potentially contracts θim

n as well. This

idea is also closely related to proximal operators in optimization because Eq. (1.3) can be

written as

θ
(∗)
n = arg min

θ
{1

2
||θ − θim

n−1||2 + γnH(θ)}. (1.4)

The right-hand side of Eq. (1.4) is a stochastic form of a proximal operator (Bauschke and

Combettes, 2011), mapping θim
n−1 to the intermediate point θ

(∗)
n , and has θ? as a fixed point.
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Interest on proximal operators has surged in recent years because they are non-expansive

and converge with minimal assumptions. Furthermore, they can be applied on non-smooth

objectives, and can easily be combined in modular algorithms for optimization in large-scale

and distributed settings (Parikh and Boyd, 2013).

On the practical side, the key advantage of the contractive property of implicit stochastic

approximation (1.2) compared to classical stochastic approximation (1.1) is that it is no

longer required to have small learning rates γn for stability. This resolves the conflict-

ing requirements for stability and convergence in classical stochastic approximation, and

provides valuable flexibility in choosing the learning rate γn. The theoretical results of

the following section do confirm that implicit stochastic approximation converges under

minimal conditions, maintains the asymptotic properties of classic stochastic approximation,

but also has remarkable stability in short-term iterations.

On the downside, the implementation of implicit stochastic approximation is generally

a challenging task because h is unknown. In specific, the point θ
(∗)
n cannot be computed

from Eq. (1.3) because function h is unknown, otherwise we could simply set θim
n = θ

(∗)
n

in Eq. (1.2). However, as mentioned before, Eq. (1.2) can be written as θim
n = θ

(∗)
n − γnξn,

where E (ξn|Fn−1) = 0, and therefore we only need a noisy estimate of the intermediate

point θ
(∗)
n in order to implement implicit stochastic approximation. We leverage this result

to provide several concrete implementations in Section 1.5.

1.4 Theory of implicit stochastic approximation

The symbol || · || denotes the L1 vector/matrix norm. We also define the error random

variables ξn , W
θ
(∗)
n−1
− h(θ(∗)n−1), such that E (ξn|Fn−1) = 0. The parameter space for θ will

be Rp without loss of generality. For a positive scalar sequence an, the sequence bn = O(an)

is such that bn ≤ can, for some fixed c > 0, and every n; the sequence bn = o(an) is such

that bn/an → 0 in the limit where n → ∞. bn ↓ 0 denotes a positive sequence decreasing

towards zero. We further assume that implicit stochastic approximation (1.2) operates under

a combination of the following assumptions.
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Assumption 1. It holds, γn = γ1n−γ, γ1 > 0 and γ ∈ (1/2, 1].

Assumption 2. The regression function h is Lipschitz with parameter L, i.e., for all θ1, θ2,

||h(θ1)− h(θ2)|| ≤ L||θ1 − θ2||.

Assumption 3. For all n, function h satisfies either

(a) (θ − θ?)ᵀh(θ) > 0, for all θ, or

(b) (θ
(∗)
n − θ?)ᵀh(θ(∗)n ) ≥ δn||θ(∗)n − θ?||2, where δn = δ1n−δ, δ1 > 0 and 0 < γ + δ ≤ 1.

Assumption 4. There exists a scalar potential H : Rp → R such that ∇H(θ) = h(θ), for all θ.

Assumption 5. There exists fixed σ2 > 0 such that, for every n,

E
(
||ξn||2|Fn−1

)
≤ σ2.

Assumption 6. Let Ξn
def
= E (ξnξᵀn|Fn−1), then ||Ξn − Ξ|| = O(1), and ||Ξn − Ξ|| → 0 for

fixed positive-definite matrix Ξ. Furthermore, if σ2
n,s = E

(
I||ξn||2≥s/γn

||ξn||2
)

, then for all s > 0,

∑n
i=1 σ2

i,s = o(n) if γn ∝ n−1, or σ2
n,s = o(1) otherwise.

Assumption 3(a) is a typical convexity assumption. Assumption 3(b) is stronger than

the convexity assumption, but weaker than the assumption of strong convexity that is

typical in the literature. Assumption 5 was first introduced by Robbins and Monro (1951),

and has since been standard in stochastic approximation analysis. Assumption 6 is a

typical Lindeberg condition that is used to prove asymptotic normality of θim
n . Overall, our

assumptions are weaker than the assumptions used in classical stochastic approximation;

compare, for example, Assumptions 1-6 with assumptions (A1)-(A4) of Borkar (2008, Section

2.1), or assumptions of Benveniste et al. (1990, Theorem 15).

1.4.1 Convergence of implicit stochastic approximation

In Theorem 1 we derive a proof of almost-sure convergence of implicit stochastic approxi-

mation, which relies on the supermartingale lemma of Robbins and Siegmund (1985). The
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proof of all theorems in this document are given in the Appendix.

Theorem 1. Suppose that Assumptions 1, 2, 3(a), and 5 hold. Then the iterates θim
n of the implicit

stochastic approximation procedure (1.2) converge almost-surely to θ?; i.e., θim
n → θ?, such that

h(θ?) = 0, almost-surely.

The conditions for almost-sure convergence of implicit stochastic approximation are

weaker than the conditions for classical stochastic approximation. For example, to show

almost-sure convergence for standard stochastic approximation methods, it is typically

assumed that the iterates θrm
n are almost-surely bounded (Borkar, 2008, Assumption (A4)).

1.4.2 Non-asymptotic analysis

In this section, we prove results on upper bounds for the deviance E
(

H(θim
n )− H(θ?)

)
and

the errors E
(
||θim

n − θ?||2
)
. This provides information on the rate of convergence, as well

as the stability of implicit stochastic approximation methods. Theorem 2 on deviance uses

Assumption 3(a), which only assumes non-strong convexity of H, whereas Theorem 3 on

squared errors uses Assumption 3(b), which is weaker than strong convexity.

Theorem 2. Suppose that Assumptions 1, 2, 3(a), 4, and 5 hold. Define Γ2 , E
(
||θim

0 − θ?||2
)
+

σ2 ∑∞
i=1 γ2

i + γ2
1σ2. Then, if γ ∈ (2/3, 1], there exists n0,1 < ∞ such that, for all n > n0,1,

E
(

H(θim
n )− H(θ?)

)
≤
[

2Γ2

γγ1
+ o(1)

]
n−1+γ.

If γ ∈ (1/2, 2/3), there exists n0,2 < ∞ such that, for all n > n0,2,

E
(

H(θim
n )− H(θ?)

)
≤
[
Γσ
√

Lγ1 + o(1)
]

n−γ/2.

Otherwise, γ = 2/3 and there exists n0,3 < ∞ such that, for all n > n0,3,

E
(

H(θim
n )− H(θ?)

)
≤

3 +
√

9 + 4γ3
1Lσ2/Γ2

2γ1/Γ2 + o(1)

 n−1/3.

There are two main results in Theorem 2. First, the rates of convergence for the deviance

are either O(n−1+γ) or O(n−γ/2), depending on the learning rate parameter γ. These
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rates match standard stochastic approximation results under non-strong convexity; see, for

example, Theorem 4 of Moulines and Bach (2011). Second, there is a uniform decay of

the expected deviance towards zero, since the constants n0,1, n0,2, n0,3 can be made small,

depending on the desired accuracy in the constants of the upper-bounds in Theorem 2. In

contrast, in standard stochastic approximation methods under non-strong convexity, there

is a term exp(4L2γ2
1n1−2γ) (Moulines and Bach, 2011, Theorem 4), which can amplify the

initial conditions arbitrarily. Thus, implicit stochastic approximation has similar asymptotic

properties to classical stochastic approximation, but is significantly more stable.

Theorem 3. Suppose that Assumptions 1, 3(b), and 5 hold, and define ζn , E
(
||θim

n − θ?||2
)

and

κ , 1 + 2γ1δ1. Then, if γ + δ < 1, for every n > 0 it holds,

ζn ≤ e− log κ·n1−γ−δ
ζ0 + σ2 γ1κ

δ1
n−γ+δ + O(n−γ+δ−1).

Otherwise, if γ = 1, δ = 0, it holds,

ζn ≤ e− log κ·log nζ0 + σ2 γ1κ

δ1
n−1 + O(n−2).

There are two main results in Theorem 3. First, if H is strongly convex (δ = 0), then the

rate of convergence of E
(
θim

n − θ?||2
)

is O(n−γ), which matches the rate of convergence for

classical stochastic approximation under strong convexity (Benveniste et al., 1990, Theorem

22, p.244). Second, there is an exponential discounting of initial conditions ζ0 regardless of

the specification of the learning rate parameter γ1 and the Lipschitz parameter L. In stark

contrast, in classical stochastic approximation there exists a term exp(L2γ2
1n1−2γ) in front

of the initial conditions ζ0, which can make the approximation diverge numerically if γ1 is

misspecified with respect to the Lipschitz parameter L (Moulines and Bach, 2011, Theorem

1). Thus, as in the non-strongly convex case of Theorem 2, implicit stochastic approximation

has similar asymptotic rates to classical stochastic approximation, but is also significantly

more stable.
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1.4.3 Asymptotic distribution

Asymptotic distributions are well-studied in classical stochastic approximation. In this

section, we leverage this theory to show that iterates from implicit stochastic approximation

are asymptotically normal. The following theorem establishes this result using Theorem 1

of Fabian (1968a); see also (Ljung et al., 1992, Chapter II.8).

Theorem 4. Suppose that Assumptions 1, 2, 3(a), 5, and 6 hold. Suppose also that (2γ1 Jh(θ?)− I)

is positive-definite, where Jh(θ) is the Jacobian of h at θ, and I is the p× p identity matrix. Then,

the iterate θim
n of implicit stochastic approximation (1.2) is asymptotically normal, such that

nγ/2(θim
n − θ?)→ Np(0, Σ).

The covariance matrix Σ is the unique solution of

(γ1Jh(θ?)− I/2)Σ + Σ(γ1Jh(θ?)
ᵀ − I/2) = Ξ.

The asymptotic distribution of the implicit iterate θim
n is identical to the asymptotic

distribution of θrm
n , as derived by Fabian (1968a). Intuitively, in the limit, θ

(∗)
n ≈ θim

n−1 +O(γn)

with high probability, and thus implicit stochastic approximation behaves like the classical

one. We also note that if Ξ commutes with Jh(θ?) then Σ can be derived in closed-form as

Σ = (2γ1 Jh(θ?)− I)−1Ξ.

1.5 Algorithms for implicit stochastic approximation

In the previous section, we showed that implicit stochastic approximation has similar

asymptotic properties to classical stochastic approximation, but it is also more stable.

Therefore, implicit stochastic approximation is arguably a superior form of stochastic

approximation.

However, the main drawback of implicit stochastic approximation is that the inter-

mediate value θ
(∗)
n , which is necessary to compute the update in Eq. (1.3), is not readily

available because it depends on the regression function h(·) that is unknown. Thus, every
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implementation of implicit stochastic approximation needs to approximate or estimate θ
(∗)
n

at every iteration.

One strategy for such implementation is to approximate θ
(∗)
n through a separate standard

stochastic approximation procedure; i.e., at every nth iteration of procedure (1.2) run a

Robbins-Monro procedure xk for k = 1, 2 . . ., starting from x0 = θim
n−1 and updating as

follows,

xk = xk−1 − ak(γnWxk−1 + xk−1 − θim
n−1), (1.5)

where ak ∝ 1/k satisfies the Robbins-Monro conditions, and Wxk−1 are independent draws

with fixed θ = xk−1. By the properties of the Robbins-Monro procedure, xk converges to

x∞ that satisfies γnh(x∞) + x∞ − θim
n−1 = 0, and thus xk → θ

(∗)
n , by Eq. (1.3). For practical

reasons, it would be sufficient to apply algorithm (1.5) for a finite number of steps, say K,

even before xk has converged to θ
(∗)
n , and then use xK in place of θ

(∗)
n in procedure (1.2). We

note that Eq. (1.5) is in fact a stochastic fixed-point iteration, where one critical necessary

condition is that the mapping on the right-hand side of Eq. (1.5) is non-expansive (Borkar,

2008, Theorem 4, Section 10.3); this condition might be hard to validate in practice.

Another implementation is possible if the analytic form of Wθ is known, even though the

regression function h(θ) is not. The idea is, rather counter-intuitively, to use the next iterate

θim
n as an estimator of θ

(∗)
n . This is reasonable because, by definition, E

(
θim

n |Fn−1
)
= θ

(∗)
n ,

i.e., θim
n is an unbiased estimator of θ

(∗)
n . Thus, procedure (1.2) could be approximately

implemented as follows,

θim
n = θim

n−1 − γnWθim
n

. (1.6)

The next iterate θim
n appears on both sides of Eq. (1.6) and thus Eq. (1.6) is a multi-

dimensional fixed-point equation, also known as implicit update. Algorithm (1.6) appears to

be the most practical implementation of implicit stochastic approximation, which justifies

why the implicit update of algorithm (1.6) lends its name to implicit stochastic approxima-

tion. Stochastic approximation with implicit updates will be the focus of the next chapter of
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this document.

Now, the main problem in applying algorithm (1.6) is to solve efficiently the fixed-point

equation at every iteration and calculate θim
n . To solve this problem we distinguish two cases.

First, let Wθ ≡ s(θ)U, where s(θ) is a scalar random variable that may depend on parameter

θ, and U is unit-norm vector random variable that does not depend on θ. Then, it is easy to

see that algorithm (1.6) is equivalent to

θim
n = θim

n−1 − γnλns(θim
n−1)U, (1.7)

where the scalar λn satisfies

λns(θim
n−1) = s(θim

n−1 − γnλns(θim
n−1)U). (1.8)

Therefore, at the nth iteration we can first draw U, then solve the one-dimensional fixed-point

equation (1.8), given that the analytic form of s(θ) is known, and finally calculate θim
n through

Eq. (1.7). The solution of the one-dimensional fixed-point equation is computationally

efficient in a large family of statistical models when Wθ is the negated gradient of the

log-likelihood; this family includes, for example, generalized linear models and convex M-

estimation (Toulis and Airoldi, 2015b, Theorem 4.1). Second, consider the more general case

Wθ = s(θ)Uθ , where Uθ is a random vector that can depend on parameter θ. The problem

is now is that we cannot sample Uθim
n

because it depends on the next iterate. However, we

can simply draw Uθim
n−1

instead, which reduces to the previous case where Wθ = s(θ)U, and

therefore algorithm (1.7) is again applicable.

1.6 Application in parameter estimation

A key application of stochastic approximation is in iterative estimation of the parameters of

a statistical model (Nevelson and Khasminski, 1973, Chapter 8); (Ljung et al., 1992, Chapter

10); (Borkar, 2008, Section 10.2). In particular, consider a stream of i.i.d. data points (Xn, Yn),

n = 1, 2, . . ., where the outcome Yn ∈ Rd is distributed conditional on covariates Xn ∈ Rp

according to known density f (Yn; Xn, θ?), but unknown model parameters θ? ∈ Rp. We will
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consider two cases, one where the likelihood is fully known and can be calculated easily at

each data point (Xn, Yn), and one where the likelihood is not fully known (e.g., it is known

up to normalizing constant) and there is a finite data set instead of a stream. We will also

discuss a third case of likelihood-free estimation.

1.6.1 Likelihood-based estimation

Consider the random variable Wθ
def
= −∇ log f (Yn; Xn, θ), where the regression function

h(θ) def
= E (Wθ) is still unknown. In many statistical models the log-likelihood log f is

concave (Bickel and Doksum, 2015), and thus θ? is the unique point for which h(θ?)
def
=

−E (∇ log f (Yn; Xn, θ?)) = 0. Therefore the standard stochastic approximation procedure

(1.1) can be written as

θrm
n = θrm

n−1 + γn∇ log f (Yn; Xn, θrm
n−1). (1.9)

Stochastic approximation theory implies θrm
n → θ? and therefore θrm

n is a consistent estimator

of θ?. Procedure (1.9) is known as stochastic gradient descent (SGD) in optimization and signal

processing (Coraluppi and Young, 1969), and has been fundamental in modern machine

learning with large data sets (Zhang, 2004; Bottou, 2010; Toulis and Airoldi, 2015a).

An implicit stochastic approximation version of procedure (1.9) can be implemented

through algorithm (1.6), resulting in the iteration

θim
n = θim

n−1 + γn∇ log f (Yn; Xn, θim
n ). (1.10)

Procedure (1.10) is known as the incremental proximal method in optimization (Bertsekas,

2011), or as implicit stochastic gradient descent in statistical estimation (Toulis et al., 2014), and

has shown superior performance to standard stochastic gradient descent, both in theory and

applications (Toulis et al., 2014; Toulis and Airoldi, 2015b). In particular, in accordance to

the theoretical properties of their stochastic approximation counterparts, implicit SGD has

identical asymptotic efficiency and convergence rate as standard SGD, but it is significantly

more stable. The stochastic proximal gradient algorithm (Singer and Duchi, 2009; Rosasco
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et al., 2014) is related to implicit SGD. However, in contrast to implicit SGD, the proximal

gradient algorithm first makes a standard update (forward step), and then an implicit

update (backward step), which may increase convergence speed, but may also introduce

instability due to the forward step.

Example. Let θ? ∈ R be the true parameter of a normal model with i.i.d. observations Yn|Xn ∼

N (Xnθ?, 1), Xn, Yn ∈ R. Thus, log f (Yn; Xn, θ) = − 1
2 (Yn − Xnθ)2, and ∇ log f (Yn; Xn, θ) =

(Yn − Xnθ)Xn. Assume γn = γ1/n as the learning rate. Then, the SGD procedure (1.9) is

given by

θrm
n = (1− γnX2

n)θ
rm
n−1 + γnYnXn. (1.11)

Procedure (1.11) is known as the least mean squares filter (LMS) in signal processing, or as

the Widrow-Hoff algorithm (Widrow and Hoff, 1960). The implicit SGD procedure for this

problem, using update (1.10), is given by

θim
n =

1
1 + γnX2

n
θim

n−1 +
γn

1 + γnX2
n

YnXn. (1.12)

Procedure (1.12) is also known as the normalized least mean squares filter (NLMS) in signal

processing (Nagumo and Noda, 1967). From Eq. (1.11) we see that it is crucial for standard

SGD to have a well-specified learning rate parameter γ1. For instance, assume fixed X2
n = x2

for simplicity, then if γ1x2 >> 1 the iterate θrm
n will diverge to a value O(2γ1x2

/
√

γ1x2). In

contrast, a very large γ1 will not cause divergence in implicit SGD, but it will simply put

more weight on the nth observation YnXn than the previous iterate θim
n−1. Moreover, from a

statistical perspective, implicit SGD specifies the correct averaging by weighing the estimate

and observation according to the inverse of information (1 + γnX2
n).

1.6.2 Estimation with likelihood known up to normalizing constant

We now consider the case where the likelihood is known up to a normalizing constant,

which arises frequently in practice (Gelman and Meng, 1998). In such situations, a large

family of estimation methods relies on being able to sample from the underlying model,
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e.g., through Metropolis-Hastings, which does not require knowledge of the normalization

constant. For example, the method of Markov chain Monte Carlo maximum-likelihood

estimation (Geyer, 1991) uses simulations to estimate ratios of normalization constants,

which appear in the maximization of the log-likelihood over a finite data set.

The same idea underlying simulation-based methods can be applied in iterative esti-

mation with stochastic approximation. Consider a finite data set with N data points, and

a complete sufficient statistic Sn that can be calculated on the nth data point. Let Ŝ(θ; k)

denote the averaged value of the statistic over k independent data points that are simulated

conditional on θ. Then, the iteration

n ∼ Uniform{1, 2, . . . , N}

θn = θn−1 + γn
(
Sn − Ŝ(θn−1; k)

)
, (1.13)

can converge to θ? under typical conditions of stochastic approximation. The learning rates

γn can be chosen as γn = γ1/n, as it is common, and adaptive schemes are possible (Lai

and Robbins, 1979). The constant k affects the variance of the stochastic part in update (1.13):

higher k lowers the variance, but also increases the computational burden because more

simulations are needed. Resolution of such statistical/computational trade-offs typically

require problem-specific considerations.

The implicit counterpart of procedure (1.13) uses an update as follows,

θn = θn−1 + γn
(
Sn − λnŜ(θn−1; k)

)
, (1.14)

where the scalar λn satisfies

λnŜ(θn−1; k) = Ŝ(θn; k) def
= Ŝ

(
θn−1 + γn(Sn − λnŜ(θn−1; k)); k

)
. (1.15)

Solution of Eq. (1.15) is particularly challenging because one needs to find the scalar λn such

that the update (1.14) leads to a new iterate θn with simulated statistics satisfying (1.15).

One idea is to consider only λn ∈ [0, 1], which is true under strong convexity; for example,

in the normal linear model of Eq. (1.11), λn = 1/(1 + γnX2
n). More generally, this idea is
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reasonable because λn usually acts as a shrinkage factor (Toulis and Airoldi, 2015b, Section

5). Then, we can repeat simulations on a grid of m + 1 values [0, 1]m , {0, 1/m, 2/m, . . . , 1},

and set λn as follows,

λn = arg min
λ∈[0,1]m

||λŜ(θn−1; k)− Ŝ(θn(λ); k)||2, (1.16)

where θn(λ) , θn−1 + γn(Sn − λŜ(θn−1; k)). Procedure (1.14) uses m · k simulations per

iteration from the underlying model, and is thus more computationally demanding than

procedure (1.13), which uses only k simulations per iteration. Improvements in computation

are possible if certain simulated moments are reused, similar to the idea of Bartz et al. (2009).

This is reasonable because the grid of values [0, 1]m will increasingly yield similar simulated

moments as the iteration counter n increases and γn → 0.

Example. Suppose we observe N graphs Gn, n = 1, 2, . . . , N, and we want to fit an exponential

random graph model (ERGM) (Frank and Strauss, 1986; Pattison and Wasserman, 1999;

Robins et al., 2007) with density of a graph G defined as

f (G; θ) = exp(θᵀXG)/c(θ), (1.17)

where XG ∈ Rp are properties of G, such as number of triangles, number of edges, etc., and

c(θ) is an appropriate normalizing constant. Typically, c(θ) is hard to compute, and thus

remains unknown.

In this case, it is still possible to use the stochastic approximation procedure (1.18), where

we define Sn , XGn , and Ŝ(θn−1; k) , (1/k)∑k
i=1 XG̃i

, where G̃i is an independent sample

from the ERGM model (1.17) with parameter value fixed at θn−1. Obtaining such samples is

computationally straightforward (Snijders, 2002; Bartz et al., 2009). The implicit procedure

(1.14) implemented through (1.16) has potential stability advantages, but a more efficient

implementation remains an interesting open problem ahead.
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1.6.3 Likelihood-free estimation

An important class of estimation methods in statistics does not rely on likelihood, such

as the method of moments, or non-parametric methods. Typically, in such cases, there is

a statistic Sn that can be calculated at every nth data point, and the regression function

T(θ) , E (Sn|θ? = θ) is known. Then, the procedure

θn = θn−1 + γn (Sn − T(θn−1)) , (1.18)

can converge to θ? under typical stochastic approximation conditions (e.g., convexity of

vector-valued function T). If the system of equations E (Sn) = T(θ?) is over-specified,

convexification or regularization could be applied, similar, for example, to the way the gen-

eralized method of moments (Hall, 2005) resolves over-specification in moment conditions.

Interestingly, the form of procedure (1.18), where the update depends on a discrepancy

Sn− T(θn−1) between an observed statistic and its expected value, also appears in likelihood-

based estimation with SGD, e.g., in exponential family models —cf. Eq. (1.11). The implicit

counterpart of procedure (1.18) has straightforward implementations through the algorithms

of Section 1.5, which we illustrate in the following example.

Example. In their seminal paper, Robbins and Monro (1951) described an application of

procedure (1.1) in iterative quantile estimation. In particular, consider a random variable Z

with a cumulative distribution function F. An experimenter wants to find the point θ? such

that F(θ?) = α, for a fixed α ∈ (0, 1). The experimenter cannot draw samples of Z, but has

access to the random variable Wθ = I{Z ≤ θ} − α, for any value of θ. Robbins and Monro

(1951) argued that the procedure

θn = θn−1 − γnWθn−1 , (1.19)

will converge to θ?. Indeed, E (Wθ?) = E (I{Z ≤ θ?})− α = F(θ?)− α
def
= 0. Convexity or

concavity of F is not required because F is nondecreasing and F′(θ?) > 0, which are the

original conditions for convergence established by Robbins and Monro (1951).

Quantile estimation through implicit stochastic approximation can be accomplished
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through algorithm (1.5), with the nth iteration defined as

xk = xk−1 − ak(γnWxk−1 + xk−1 − θim
n−1), k = 1, 2, . . . , K,

θim
n = xK, (1.20)

where x0 = θim
n−1, αk ∝ 1/k, and K is a small constant; we give concrete values to these

constants in a numerical simulation at the end of this example.

The benefits of the implicit procedure over the classical one can be emphatically illus-

trated through the following numerical exercise. Suppose Z is a standard normal random

variable, and α = 0.999. In this case, F(θ?) = 0.999, and thus θ? ≈ 3.09 is in a region of the

parameter space where F is very flat; in fact, the region [2.87,+∞] is within ±0.1 from the

value 0.999 of F(θ?). It is well-known that the convergence of the classical Robbins-Monro

procedure depends on F′(θ?): if the product γ1F′(θ?) is small then convergence will be slow

(Toulis and Airoldi, 2015a, Section 2.1). In this example, because F′(θ?) ≈ 0.0034 is very

small in the flat region, the learning rate parameter γ1 needs to compensate by being large,

otherwise convergence to θ? will be very slow. In fact, standard theory suggests that it is

optimal to select γ1 = 1/F′(θ?) ≈ 294. However, if γ1 is large the classical procedure (1.19)

will overshoot early on to a point θ+? >> θ? such that F(θ+? ) ≈ 1. Return from that point will

be very slow because the values of Wθn−1 will be close to zero, since Wθn−1 ≈ 1− α = 0.001.

For example, suppose γ1 = 294 and θ+? = 10, then to return back to θ? ≈ 3.09 we will need

m steps for which

n0+m

∑
n=n0+1

γnWθn−1 ≈ (10− 3.09)

γ1

n0+m

∑
n=n0+1

0.001/n ≈ 6.91

log m ≥ 6.91 · 103/γ1 ≈ 23. (1.21)

The classical procedure will therefore require at least e23 steps to return back after this

simple overshoot from θ? = 3.09 to θ+? = 10. Smaller values of the learning rate, e.g.,

γ1 = 20, will exacerbate this problem.
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In stark contrast, the implicit procedure (1.20) can neither overshoot nor undershoot.

The update (1.20) satisfies approximately θim
n + γn(F(θim

n )− α) ≈ θim
n−1, which can be written

as θim
n + γnF(θim

n ) ≈ θim
n−1 + γnF(θ?). Because F is nondecreasing it follows that if θim

n−1 < θ?,

then θim
n > θim

n−1. Similarly, if θim
n−1 > θ? then θim

n < θim
n−1. Furthermore, a large value of γn

will in fact push θim
n more towards θ?. The implicit equation therefore bestows a remarkable

stability property to the underlying stochastic approximation procedure.

To validate our theory, we ran 20 replications of both the Robbins-Monro procedure

(1.19) and the implicit procedure (1.20) for quantile estimation. Both procedures had a

learning rate γn = γ1/n, where we picked multiple values of γ1 to test the stability of the

procedures. For the implicit procedure we also set K = 50 and ak = 10/k. Each procedure

was initialized at θ0 = −10 and was run for 5,000 iterations, at each replication. The final

parameter estimate θn, n = 5, 000, was stored for each procedure and replication. The results

are shown in Figure 1.1.

We observe that, as the learning rate constant γ1 increases, the classical RM procedure

produces iterates that overshoot and get stuck. This is consistent with the theoretical

analysis of this section, where we showed that the classical procedure cannot converge

after overshooting because the true parameter value θ? is in a region where the objective

function F is flat. In stark contrast, the implicit procedure remains significantly robust, with

iterates around the true parameter value across different learning rates. Importantly, the

implicit procedure was only approximately implemented with algorithm (1.5), where the

inner stochastic approximation for xk was executed for only K = 40 iterations within each

nth iteration of the main implicit procedure (1.20).

1.7 Conclusion

The need to estimate parameters of a statistical model from massive amounts of data

has reinvigorated interest in approximate inference procedures. While most gradient-

based procedures of current interest can be seen as special case of a gradient-free stochastic

approximation method developed by Robbins and Monro (1951), there is no general gradient-
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Figure 1.1: Boxplots of 20 replications of the Robbins-Monro (RM) (1.19) and the implicit procedure (1.20).
Each replication yields one estimate θn, where n = 5, 000. The true parameter value θ? is depicted as a red
horizontal line at y = Φ(0.999) ≈ 3.09, and both procedures start from θ0 = −10. When the learning rate
constant is small (e.g., γ1 = 0.1) both procedures are very slow and their iterates are far from the true value.
As γ1 increases, the classical RM procedure produces iterates that overshoot and get stuck (flat boxplots). In
contrast, the implicit procedure remains robust, with final iterates around θ?.

free method that can accommodate procedures with updates defined through implicit

equations. Here, we conceptualize a gradient-free implicit stochastic approximation method,

and develop asymptotic and non-asymptotic theory for it. This new approximation method

provides the theoretical basis for gradient-based procedures that rely on proximal operators

(implicit updates), and opens the door to new iterative estimation procedures that do not

require access to a gradient or a fully-known likelihood function.
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Chapter 2

Implicit Stochastic Gradient Descent

2.1 Overview

Stochastic optimization procedures, such as stochastic gradient descent, have gained popular-

ity for parameter estimation from large data sets. However, standard stochastic optimization

procedures cannot effectively combine numerical stability with statistical and computational

efficiency. Here, we introduce an implicit stochastic gradient descent procedure, the iterates

of which are implicitly defined. Intuitively, implicit iterates shrink the standard iterates. The

amount of shrinkage depends on the observed Fisher information matrix, which does not

need to be explicitly computed in practice, thus increasing stability without increasing the

computational burden. When combined with averaging, the proposed procedure achieves

statistical efficiency as well. We derive non-asymptotic bounds and characterize the asymp-

totic distribution of implicit procedures. Our analysis also reveals the asymptotic variance

of a number of existing procedures. We demonstrate implicit stochastic gradient descent

by further developing theory for generalized linear models, Cox proportional hazards, and

M-estimation problems, and by carrying out extensive experiments. Our results suggest

that the implicit stochastic gradient descent procedure is poised to become the workhorse of

estimation with large data sets.
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2.2 Introduction

Parameter estimation by optimization of an objective function, such as maximum likeli-

hood and maximum a-posteriori, is a fundamental idea in statistics and machine learning

(Fisher, 1922; Lehmann and Casella, 1998; Hastie et al., 2011). However, widely used

optimization-based estimation procedures, such as Fisher scoring, the EM algorithm or itera-

tively reweighted least squares (Fisher, 1925; Dempster et al., 1977; Green, 1984), do not scale

to modern data sets with millions of data points and hundreds or thousands of parameters

(National Research Council, 2013). In this paper, we introduce and further develop iterative

estimation procedures based on stochastic gradient descent (SGD) optimization, rooted in the

early statistics literature on stochastic approximations (Robbins and Monro, 1951), which

are computationally efficient and lead to estimates with good statistical properties.

We consider the problem of estimating the true vector of parameters θ? ∈ Rp of a model

that is assumed to produce i.i.d. data points (Xi, Yi), for i = 1, 2, . . . , N. Conditional on co-

variates Xi ∈ Rp, the outcome Yi ∈ Rd is distributed according to known density f (Yi; Xi, θ?).

The expected Fisher information matrix is I(θ?)
def
= E (∇ log f (Y; X, θ?)∇ log f (Y; X, θ?)ᵀ),

where (X, Y) denotes a data point. Properties of the Fisher information matrix are very

important for the stability and efficiency of SGD procedures, as we show in Sections 2.4

and 2.4.5. Given a sample of N i.i.d. data points the estimation problem usually reduces

to optimization, for example, finding the maximum likelihood estimate (MLE), defined as

θmle
N = arg maxθ ∑N

i=1 log f (Yi; Xi, θ).1

Traditional estimation procedures have a running time complexity that ranges between

O(Np1+ε) and O(Np2+ε) in best cases and worst cases, respectively. Newton-Raphson, for

instance, converges linearly to MLE (Kelley, 1999), however, matrix inversions and likelihood

computations on the entire data set yield an algorithm with O(Np2+ε) complexity, per

iteration, which makes it unsuitable for large data sets. Fisher scoring, a variant of Newton-

1If a prior π(θ), also known as regularization, is assumed on the model parameters θ then the
estimation problem reduces to finding the maximum a-posteriori estimate (MAP), defined as θ

map
N =

arg maxθ ∑N
i=1 log f (Yi; Xi, θ) + log π(θ).
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Raphson, is generally more stable but has similar computational properties (Lange, 2010).

Quasi-Newton (QN) procedures are a powerful alternative and routinely used in practice2

because they have O(Np2) complexity per-iteration, or O(Np1+ε) in certain favorable

cases.(Hennig and Kiefel, 2013). Other general estimation algorithms, such as EM (Dempster

et al., 1977) or iteratively reweighted least squares (Green, 1984), involve computations (e.g.

matrix inversions or maximizations between iterations) that are significantly more expensive

than QN procedures.

In contrast, estimation with large data sets requires a running time complexity that is

roughly O(Np1−ε), i.e., linear in data size N but sublinear in parameter dimension p. The

first requirement on N is rather unavoidable because all data points carry information by the

i.i.d. assumption, and thus all need to be considered by any iterative estimation procedure.

Thus, sublinearity in p is crucial. Such computational requirements have recently sparked

interest in stochastic optimization procedures, especially those only working with first-order

information, i.e., gradients.

Stochastic optimization procedures of this kind are rooted in stochastic approximation

methods (Robbins and Monro, 1951), where, interestingly, the estimation problem is formu-

lated not as an optimization problem, but as a characteristic equation. In particular, if N is

finite the characteristic equation is

E
(
∇ log f (Y; X, θmle

N )
)
= 0, (2.1)

where the expectation is over the empirical distribution of (X, Y) on the finite data set. If N

is infinite – a situation known as “stream of data” – the characteristic equation is

E (∇ log f (Y; X, θ?)|X) = 0, (2.2)

where the expectation is over the true conditional distribution of outcome Y given covariate

X. Given a characteristic equation, stochastic approximations are procedures that iteratively

approximate its solution (Ljung et al., 1992; Benveniste et al., 1990), i.e., they approximate

2For example, most implemented algorithms in R’s optim() function are Quasi-Newton.
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θmle
N in Eq. (2.1) and θ? in Eq. (2.2).3

A popular stochastic approximation procedure for estimation with large data sets is

stochastic gradient descent (SGD), defined for n = 1, 2, . . ., as

θ
sgd
n = θ

sgd
n−1 + γnCn∇ log f (Yn; Xn, θ

sgd
n−1), (2.3)

where γn > 0 is the learning rate sequence, typically defined as γn = γ1n−γ, γ1 > 0 is the

learning rate parameter, γ ∈ (1/2, 1], and Cn are p× p positive-definite matrices, also known

as condition matrices.

When N is finite the data point (Xn, Yn) in SGD (2.3) is a random sample with replace-

ment from the finite data set. When N is infinite the data point (Xn, Yn) is simply the nth

data point in the data stream. For the rest of this paper we assume infinite N because it

is the natural setting for stochastic approximations. This assumption is without loss of

generality because all theoretical results for the infinite N case can be applied to finite N,

where instead of estimating θ? we estimate θmle
N (or MAP if there is regularization).

From a computational perspective, SGD (2.3) is appealing because it avoids expensive

matrix inversions, as in Newton-Raphson, and the log-likelihood is evaluated at a single

data point (Xn, Yn) and not on the entire data set. From a theoretical perspective, SGD (2.3)

is essentially a stochastic approximation procedure, and thus converges, under suitable

conditions, to θ
sgd
∞ where E

(
log f (Y; X, θ

sgd
∞ )

∣∣∣X) = 0. This condition satisfies both Eqs. (2.1)

and (2.2), implying that SGD can be used on both finite and infinite data sets.

The main contribution of this paper is to provide a formal analysis and the statistical

intuition behind implicit stochastic gradient descent, or implicit SGD for short, defined for

n = 1, 2, . . ., as follows:

θim
n = θim

n−1 + γnCn∇ log f (Yn; Xn, θim
n ), (2.4)

where γn, Cn are defined as in standard SGD (2.3). To distinguish the two procedures, we

3The characteristic equations can have a set of multiple solutions. In this case, stochastic approximations
converge to a point in that set, but the exact point to which they converge depends on initial conditions (Borkar,
2008).
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will refer to SGD (2.3) as SGD with explicit updates, or explicit SGD for short, because the

next iterate θ
sgd
n can be immediately computed given θ

sgd
n−1 and the data point (Xn, Yn). In

contrast, the update in Eq. (2.4) is implicit because the next iterate θim
n appears on both sides

of the equation.

2.3 Overview of main results

Our first set of results relies on a non-asymptotic analysis of iterates θim
n of implicit SGD

(2.4). In particular, we derive upper bounds for the mean-squared errors E
(
||θim

n − θ?||2
)
.

Compared to non-asymptotic analyses of explicit SGD (Benveniste et al., 1990; Ljung et al.,

1992; Moulines and Bach, 2011), implicit SGD is particularly robust to misspecification of

the learning rate with respect to the problem characteristics (e.g., convexity). In contrast,

in explicit SGD the initial conditions can be amplified arbitrarily if learning rates are

misspecified.

Our second set of results relies on an asymptotic analysis of θim
n . In particular, we show

that the asymptotic variance of θim
n is identical to the variance of θ

sgd
n . Both procedures

lose statistical information compared, for example, to MLE θmle
n computed over n data

points. However, this information loss can be quantified exactly (Theorem 6), which can be

leveraged to design optimal learning rates (Eq. 2.9). Suprisingly, this information loss can

be avoided by simply averaging the iterates θim
n (Theorem 7). This result matches similar

results on averaging of explicit SGD procedures, first given by Ruppert (1988); Bather (1989);

Polyak and Juditsky (1992a). Additionally, under typical Lindeberg conditions, we show

that θim
n is asymptotically normal with known asymptotic variance, which can be leveraged

for producing standard errors for implicit SGD estimates.

The combined results from the non-asymptotic and asymptotic analyses show that

explicit SGD procedures cannot easily combine numerical stability with statistical efficiency

(Section 2.4.5). In rough terms, for stability we need λmaxγ1 < 1, where γ1 is the learning

rate parameter, and λmax is the maximum eigenvalue of the Fisher information I(θ?). For

statistical efficiency we need λminγ1 > 1/2, where λmin is the minimum eigenvalue of
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I(θ?). Thus, we need λmax < 2λmin to achieve both stability and efficiency. This condition

depends on the condition number of I(θ?) and is hard to satisfy in large data sets with high-

dimensional parameters. In stark contrast, the stability condition is eliminated in implicit

SGD because, effectively, any learning rate parameter γ1 can yield a stable procedure

(Theorem 5). With stability issues fixed, one has more freedom to select larger learning

rates, with or without averaging, in order to speed up convergence and increase statistical

efficiency, which sums up the benefits of implicit over explicit SGD.

Our third set of results relies on practical applications of implicit SGD on a wide family

of statistical models. In particular, we devise a new algorithm for fast calculation of iterates

θim
n (Algorithm 1) by solving efficiently the p-dimensional fixed-point equation (2.4) in the

definition of implicit SGD. Algorithms 2, 4, and 5 are variants that specialize Algorithm

1 to generalized linear models, Cox proportional hazards, and M-estimation problems,

respectively. Outside of such models, we show how implicit updates can be approximately

implemented (Sections 2.6.2 & 2.7), and show empirical evidence that this approximation

works well on Cox proportional hazards models (Section 2.6.2), and a big SVM model

(Section B.7.4).

2.3.1 Illustrative example

We motivate our main results through the simple estimation problem first presented in

Chapter 1. Let θ? ∈ R be the true parameter of a normal model with i.i.d. observations

Yi|Xi ∼ N (Xiθ?, σ2), where the variance σ2 is assumed known for simplicity. The log-

likelihood is log f (Yi; Xi, θ) = − 1
2σ2 (Yi − Xiθ)

2, and the score function (i.e., gradient of log-

likelihood) is given by ∇ log f (Yi; Xi, θ) = 1
σ2 (Yi − Xiθ)Xi. Let Xi be distributed according

to some unknown distribution with bounded second. Assume γn = γ1/n, for some γ1 > 0

as the learning rate, and an initial condition θ0. Then, the explicit SGD procedure (2.3) is

θ
sgd
n = θ

sgd
n−1 + γn(Yn − θ

sgd
n−1Xn)Xn ⇒

θ
sgd
n = (1− γnX2

n)θ
sgd
n−1 + γnYnXn. (2.5)
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Procedure (2.5) is the least mean squares filter (LMS) in signal processing, also known as

the Widrow-Hoff algorithm (Widrow and Hoff, 1960). The implicit SGD procedure can be

derived in closed form in this problem using update (2.4) as

θim
n = θim

n−1 + γn(Yn − Xnθim
n )Xn ⇒

θim
n =

1
1 + γnX2

n
θim

n−1 +
γn

1 + γnX2
n

YnXn. (2.6)

Procedure (2.6) is known as the normalized least mean squares filter (NLMS) in signal

processing (Nagumo and Noda, 1967).

From Eq. (2.5) we see that it is crucial for explicit SGD to have a well-specified learning

rate parameter γ1. For instance, if γ1X2
n >> 1 then θ

sgd
n will diverge to a value at the

order of 2γ1 /
√

γ1, before converging to the true value (see Section 2.4.5, Lemma 1). In

contrast, implicit SGD is more stable to misspecification of the learning rate parameter γ1.

For example, a very large γ1 will not cause divergence as in explicit SGD, but it will simply

put more weight on the nth observation YnXn than the previous iterate θim
n−1. Assuming

for simplicity θ
sgd
n−1 = θim

n−1 = 0, it also holds θim
n = 1

1+γnX2
n
θ

sgd
n , showing that implicit SGD

iterates are shrinked versions of explicit ones (see also Section 2.7).

Let v2 def
= E

(
X2), then according to Theorem 6 the asymptotic variance of the explicit

iterate θ
sgd
n (and the implicit θim

n ) satisfies nVar(θsgd
n )→ γ2

1σ2v2/(2γ1v2− 1) if 2γ1v2− 1 > 0.

Since γ2
1/(2γ1v2 − 1) ≥ 1/v2, it is best to set γ1 = 1/v2. In this case nVar(θsgd

n ) → σ2/v2.

Explicit SGD can thus be optimal by setting γn = (∑n
i=1 X2

i )
−1, which implies that θ

sgd
n =

∑n
i=1 YiXi/ ∑n

i=1 X2
i , i.e., it is the classical OLS estimator. The implicit SGD estimator θim

n (2.6)

inherits the efficiency properties of θ
sgd
n , with the added benefit of being stable over a wide

range of learning rates γ1. Overall, implicit SGD is a superior form of SGD.

2.3.2 Experimental evaluation

Our experiments are split into two sets. First, in Section 2.6.1 we perform experiments to

validate our theoretical findings. In particular we test our results on asymptotic variance of

first-order or second-order SGD procedures (Section 2.4.2, Theorem 6), and our results on
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asymptotic normality (Theorem 8).

Second, in Section 2.6.2, we carry out an extensive set of experiments on real and

simulated data to compare the performance of implicit SGD against optimal deterministic

optimization procedures. In particular, we compare implicit SGD against deterministic

procedures on statistical models presented in Sections 2.5.2-2.5.4. Subsequently, we focus on

generalized linear models and compare implicit SGD against Fisher scoring (using the R

glm() function) on various generalized linear models, and against a popular alternative to

scale Fisher scoring to large data sets (using the R biglm package). We also compare implicit

SGD against the elastic net by Friedman et al. (2010) for sparse regularized estimation (using

the R glmnet package). Finally, we work on a variant of generalized linear models, where

we re-analyze a large data set from the National Morbidity-Mortality Air Pollution study

(Samet et al., 2000; Dominici et al., 2002), and compare against recently published methods

that were specifically designed for that task.

Additional experiments are presented in the Appendix. In particular, we perform

additional experiments to compare implicit SGD with known adaptive or proximal stochastic

optimization methods, including AdaGrad (Duchi et al., 2011a), Prox-SVRG (Xiao and

Zhang, 2014), and Prox-SAG (Schmidt et al., 2013), on popular machine learning tasks.

Overall, our results provide strong evidence that the family of implicit SGD procedures

provides a superior form of stochastic gradient descent, with comparable statistical efficiency

to explicit SGD, but with much improved stability. Combined with results on asymptotic

variance and normality, implicit SGD emerges as a principled estimation method that can

become the workhorse of statistical estimation with large data sets in statistical practice.

2.3.3 Related work

Historically, the duo of explicit-implicit updates originate from the numerical methods

introduced by Euler (ca. 1770) for approximating solutions of ordinary differential equations

(Hoffman and Frankel, 2001). The explicit SGD procedure was first proposed by Sakrison

(1965) as a recursive statistical estimation method and it is theoretically based on the
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stochastic approximation method of Robbins and Monro (1951). Statistical estimation with

explicit SGD is a straightforward generalization of Sakrison’s method and has recently

attracted attention in the machine learning community as a fast learning method for large-

scale problems (Zhang, 2004; Bottou, 2010; Toulis and Airoldi, 2015a). Applications of

explicit SGD procedures in massive data problems can be found in many diverse areas such

as large-scale machine learning (Zhang, 2004; Bottou, 2010), online EM algorithm (Cappé

and Moulines, 2009; Balakrishnan et al., 2014), image analysis (Lin et al., 2011), deep learning

(Dean et al., 2012; Erhan et al., 2010) and MCMC sampling (Welling and Teh, 2011).

The implicit SGD procedure is less known and not well-understood. In optimization,

implicit methods have recently attracted attention under the guise of proximal methods, or

mirror-descent methods (Nemirovski, 1983; Beck and Teboulle, 2003). In fact, the implicit

SGD update (2.4) can be expressed as a proximal update as the solution of

θim
n = arg max

θ

{
−1

2
||θ − θim

n−1||2 + γn log f (Yn; Xn, θ)

}
. (2.7)

From a Bayesian perspective, θim
n of the implicit procedure is the posterior mode of a model

with the standard multivariate normal N (θim
n−1, γn I) as the prior, and log f (Yn; Xn, θ) as the

log-likelihood of θ for observation (Xn, Yn). Arguably, the normalized least mean squares

(NLMS) filter (Nagumo and Noda, 1967), introduced in Eq. (2.6), was the first statistical

model that used an implicit update as in Equation (2.4) and was shown to be consistent

and robust to input noise (Slock, 1993). From an optimization perspective, update (2.7)

corresponds to a stochastic version of the proximal point algorithm by Rockafellar (1976)

which has been generalized through the idea of splitting algorithms (Lions and Mercier,

1979; Beck and Teboulle, 2009; Singer and Duchi, 2009; Duchi et al., 2011b); see, also, the

comprehensive review of proximal methods in optimization by Parikh and Boyd (2013).

Additional intuition of implicit methods have been given by Krakowski et al. (2007) and

Nemirovski et al. (2009) who have argued that proximal methods can fit better in the

geometry of the parameter space. Bertsekas (2011) derived an asymptotic rate for an implicit

procedure (2.4) on a fixed data set and compared convergence rates between randomly
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sampling data (Xn, Yn) and simply cycling through them. Toulis et al. (2014) derived the

asymptotic variance of θim
n as estimator of θ? in the family of generalized linear models, and

provided an algorithm to efficiently compute the update (2.4). Rosasco et al. (2014) derived

non-asymptotic bounds and convergence for a stochastic proximal gradient algorithm,

which is a forward-backward procedure that first makes as stochastic explicit update (2.3),

and then a deterministic implicit update.

In the online learning literature, “regret analyses” of implicit methods have been given by

Kivinen et al. (2006) and Kulis and Bartlett (2010); Schuurmans and Caelli (2007) have further

applied implicit methods on learning with kernels. Furthermore, the proximal update (2.7)

is related to the importance weight updates proposed by Karampatziakis and Langford

(2010), but the two updates have important differences (Karampatziakis and Langford, 2010,

Section 5).

Two recent stochastic proximal methods are Prox-SVRG (Xiao and Zhang, 2014) and

Prox-SAG (Schmidt et al., 2013, Section 6). Working in a finite data set, the main idea in

both methods is to periodically compute an estimate of the full gradient averaged over

all data points to reduce the variance of stochastic gradients. This periodic update is also

controlled by additional hyperparameters, whereas Prox-SAG typically requires storage

of the full gradient at every iteration. We compare those methods with implicit SGD in

Appendix B.7.

2.4 Theory

The norm ||.|| denotes the L2 norm. If a positive scalar sequence an is nonincreasing and

an → 0, we write an ↓ 0. For two positive scalar sequences an, bn, equation bn = O(an)

denotes that bn is bounded above by an, i.e., there exists a fixed c > 0 such that bn ≤ can, for

all n. Furthermore, bn = o(an) denotes that bn/an → 0. Similarly, for a sequence of vectors

(or matrices) Xn, we write Xn = O(an) if there is a fixed c′ > 0 such that ||Xn|| ≤ c′an,

and Xn = o(an) if ||Xn||/an → 0. For two matrices A, B A ≺ B denotes that B − A is

positive-definite. The set of eigenvalues of a matrix A is denoted by eig(A); for example,
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A � 0 if and only if λ > 0 for every λ ∈ eig(A).

Every theoretical result of this section is stated under a combination of the following

assumptions.

Assumption 7. The explicit SGD procedure (2.3) and the implicit SGD procedure (2.4) operate under a

combination of the following assumptions.

(a) The sequence {γn} is defined as γn = γ1n−γ, where γ1 > 0 is the learning parameter, and γ ∈ (0.5, 1].

(b) For the log-likelihood log f (Y; X, θ) there exists function ` such that log f (Y; X, θ) ≡ `(Xᵀθ; Y), which

depends on θ only through the natural parameter Xᵀθ.

(c) Function ` is concave, twice differentiable almost-surely with respect to natural parameter Xᵀθ and

Lipschitz continuous with constant L0.

(d) The observed Fisher information matrix În(θ)
def
= −∇2`(Xᵀ

nθ; Yn) has non-vanishing trace, i.e., there

exists constant b > 0 such that trace(În(θ)) ≥ b almost-surely, for all θ in the parameter space. The

Fisher information matrix I(θ?)
def
= E

(
În(θ?)

)
has minimum eigenvalue λ f ≥ b/2 and maximum

eigenvalue λ f < ∞. Typical regularity conditions hold (Lehmann and Casella, 1998, Theorem 5.1, p.463).

(e) Every condition matrix Cn is a fixed positive-definite matrix, such that Cn = C + O(γn), where

C � 0 and symmetric, and C commutes with I(θ?). For every Cn, min eig(Cn) ≥ λc > 0, and

max eig(Cn) ≤ λc < ∞.

(f) Let Ξn
def
= E (∇ log f (Yn; Xn, θ?)∇ log f (Yn; Xn, θ?)ᵀ| Fn−1), then ||Ξn − Ξ|| = O(1) for all n, and

||Ξn − Ξ|| → 0, for a symmetric positive-definite Ξ. Let σ2
n,s

def
= E

(
I||ξn(θ?)||2≥s/γn

||ξn(θ?)||2
)

, then for

all s > 0, ∑n
i=1 σ2

i,s = o(n) if γ = 1, and σ2
n,s = o(1) otherwise.

Remarks. Assumption 7(a) is typical in stochastic approximation as it implies ∑i γi = ∞

and ∑i γ2
i < ∞, which were the original conditions given by Robbins and Monro (1951).

Assumption 7(b) narrows our focus to models for which, conditional on covariate X, the

likelihood depends on parameters θ through the linear combination Xᵀθ. This family of

models is large and includes generalized linear models, Cox proportional hazards models,

and M-estimation. Furthermore, in Section 2.7 we discuss an idea that allows application of

implicit SGD on a wider family of models, and thus can significantly relax Assumption 7(b).

Assumption 7(d) is equivalent to assuming strong convexity for the negative log-likelihood.
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Such assumptions are typical for proving convergence in probability. The assumption on

the observed Fisher information is less standard. Intuitively, this assumption posits that

a minimum of statistical information is received from any data point, at least for certain

model parameters. Making this assumption allows us to forgo boundedness assumptions

on the errors of stochastic gradients that were originally used by Robbins and Monro (1951)

and have since been standard in analysis of explicit SGD. Finally, Assumption 7(f) posits

the typical Lindeberg conditions that are necessary to invoke the central limit theorem and

prove asymptotic optimality; this assumption follows the conditions defined by Fabian

(1968b) for the normality of explicit SGD procedures.

2.4.1 Non-asymptotic bounds

In this section we derive non-asymptotic upper-bounds for the errors ||θim
n − θ?||2 in expec-

tation.

Theorem 5. Let δn , E
(
||θim

n − θ?||2
)

and κ , 1 + γ1λcλ f µ0, where µ0 ∈ [1/(1 + γ1λ f λc(p−

1)), 1]. Suppose that Assumptions 7(a),(b),(c), (d) and (e) hold. Then, there exists constant n0 such

that,

δn ≤
8L2

0λc
2
γ1κ

λcλ f µ0
n−γ + exp (− log κ · φγ(n)) [δ0 + κn0 Γ2],

where Γ2 = 4L2
0λc

2
∑i γ2

i < ∞, and φγ(n) = n1−γ if γ < 1, and φγ(n) = log n if γ = 1, and n0

is defined in Corollary 1.

Not surprisingly, implicit SGD (2.4) matches the asymptotic rate of explicit SGD (2.3).

In particular, the iterates θim
n have squared error O(n−γ), as seen in Theorem 5, which is

identical to the squared error of the explicit iterates θ
sgd
n (Benveniste et al., 1990, Theorem 22,

p.244). Furthermore, we will show in the following section that both iterates have the same

asymptotic efficiency when viewed as estimators of θ?.

However, the critical advantage of implicit SGD – more generally of implicit procedures –

is their robustness to initial conditions and excess noise. This can be seen in Theorem 5 where
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the implicit procedure discounts the initial conditions E
(
||θim

0 − θ?||2
)

at an exponential rate

through the term exp(− log(1 + 2γ1λcλ f )n1−γ), where γ1 is the learning rate parameter,

and λc, λ f are minimum eigenvalues of the condition and the Fisher information matrices,

respectively. Importantly, the discounting of initial conditions happens regardless of the

specification of the learning rate. In fact, large values of γ1 can lead to faster discounting,

and thus possibly to faster convergence, however at the expense of increased variance. The

implicit iterates are therefore unconditionally stable, i.e., virtually any specification of the

learning rate will lead to a stable discounting of the initial conditions.

In stark contrast, explicit SGD is known to be very sensitive to the learning rate, and

can numerically diverge if the rate is misspecified. For example, Moulines and Bach (2011,

Theorem 1) showed that there exists a term exp(L2γ2
1n1−2γ), where L is a Lipschitz constant

for the gradient of the log-likelihood, amplifying the initial conditions E
(
||θsgd

0 − θ?||2
)

of

explicit SGD, which can be catastrophic if the learning rate parameter γ1 is misspecified.4

Thus, although implicit and explicit SGD have identical asymptotic performance, they are

crucially different in their stability properties. This is confirmed in the experiments of

Section 2.6.

2.4.2 Asymptotic variance and optimal learning rates

In the previous section we showed that θim
n → θ? in quadratic mean, i.e., the implicit SGD

iterates converge to the true model parameters θ?, similar to classical results for the explicit

SGD iterates θ
sgd
n . Thus, θim

n and θ
sgd
n are consistent estimators of θ?. In the following

theorem we show that both SGD estimators have the same asymptotic variance.

Theorem 6. Consider SGD procedures (2.3) and (2.4), and suppose that Assumptions 7(a),(c),(d),(e)

hold, where γ = 1. The asymptotic variance of the explicit SGD estimator (2.3) satisfies

nVar
(

θ
sgd
n

)
→ γ2

1 (2γ1CI(θ?)− I)−1 CI(θ?)C.

4The Lipschitz conditions are different in the two works, however this does not affect our conclusion.
Our result remains effectively unchanged if we assume Lipschitz continuity of the gradient ∇` instead of the
log-likelihood `, similar to Moulines and Bach (2011); see comment after proof of Theorem 5.
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The asymptotic variance of the implicit SGD estimator (2.4) satisfies

nVar
(
θim

n
)
→ γ2

1 (2γ1CI(θ?)− I)−1 CI(θ?)C.

Remarks. Although the implicit SGD estimator θim
n is significantly more stable than the

explicit estimator θ
sgd
n (Theorem 5), both estimators have the same asymptotic efficiency in

the limit according to Theorem 6. This implies that implicit SGD is a superior form of SGD,

and should be preferred when the calculation of implicit updates (2.4) is computationally

feasible. In Section 2.5 we show that this is possible in a large family of statistical models,

and illustrate with several numerical experiments in Section 2.6.1.

Asymptotic variance results in stochastic approximation similar to Theorem 6 were first

obtained by Chung (1954), Sacks (1958), and followed by Fabian (1968a), Polyak and Tsypkin

(1979), and several other authors (see also Ljung et al., 1992, Parts I, II). Our work is different

in two important aspects. First, our asymptotic variance result includes implicit SGD, which

is a stochastic approximation procedure with implicitly defined updates, whereas other

works consider only explicit stochastic approximation procedures. Second, in our setting we

estimate recursively the true parameters θ? of a statistical model, and thus we can exploit

typical regularity conditions (Assumption 7(d)) to derive the asymptotic variance of θim
n

(and θ
sgd
n ) in a simplified closed-form; for example, under typical regularity conditions

(see also Assumption 7(d)), Var (∇ log f (Y; X, θ?)) = I(θ?), which is used in the proof of

Theorem 6. We illustrate the asymptotic variance results of Theorem 6 in experiments of

Section 2.6.1.

Optimal learning rates

Crucially, the asymptotic variance formula of Theorem 6 depends on the limit of the

sequence Cn used in the SGD procedures (2.3) and (2.4). We distinguish two classes of

procedures, one where Cn = I trivially, known as first-order procedures, and a second case

where Cn is not trivial, known as second-order procedures.

In first-order procedures, Cn = I, i.e., only gradients are used in the SGD procedures.
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Inevitably, no matter how we set the learning rate parameter γ1, first-order SGD procedures

will lose statistical efficiency. We can immediately verify this by comparing the asymptotic

variance in Theorem 6 with the asymptotic variance of the maximum likelihood estimator

(MLE), denoted by θmle
N , on a data set with N data points {(Xn, Yn)}, n = 1, 2, . . . , N.

Under regularity conditions, the MLE is the asymptotically optimal unbiased estimator

and NVar
(
θmle

N − θ?
)
→ I(θ?)−1. By Theorem 6 and convergence of implicit SGD, it holds

NVar
(
θim

n − θ?
)
→ γ2

1(2γ1I(θ?)− I)−1I(θ?), which also holds for θ
sgd
n . For any γ1 > 0 we

have,

γ2
1(2γ1I(θ?)− I)−1I(θ?) � I(θ?)−1. (2.8)

Therefore, both SGD estimators lose information and this loss can be quantified exactly

by Ineq. (2.8). This inequality can also be leveraged to find the optimal choice for γ1 given

an appropriate objective. As demonstrated in the experiments in Section 2.6, this often

suffices to achieve estimates that are comparable with MLE in statistical efficiency but with

substantial computational gains. Assuming distinct eigenvalues λi for the matrix I(θ?), the

eigenvalues of the variance matrix of both SGD estimators are equal to γ2
1λi/(2γ1λi − 1), by

Theorem 6. Therefore, one reasonable way to set the parameter γ1 is to set it equal to γ?
1 ,

defined as

γ?
1 = arg min

x>1/2λ f
∑

i
x2λi/(2xλi − 1). (2.9)

Eq. (2.9) is under the constraint x > 1/(2λ f ), where λ f = min{λi}, because Theorem 6

requires 2γ1I(θ?)− I to be positive-definite, and thus (2xλi − 1) needs to be positive for

every λi.

Of course, the eigenvalues λi’s are unknown in practice and need to be estimated from

the data. This problem has received significant attention recently and several methods

exist (see Karoui, 2008, and references within). We will use Eq. (2.9) extensively in our

experiments (Section 2.6) in order to tune the SGD procedures. However, we note that

in first-order SGD procedures, knowing the eigenvalues λi of I(θ?) does not necessarily
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achieve statistical efficiency because of the spectral gap of I(θ?), i.e., the ratio between

its maximum eigenvalue λ f and minimum eigenvalue λ f ; for instance, if λ f = λ f , then

the choice of learning rate parameter (2.9) leads to statistically efficient first-order SGD

procedures. However, this case is not typical in practice, especially in many dimensions.

In second-order procedures, we assume non-trivial condition matrices Cn. Such proce-

dures are called second-order because they usually leverage information from the Fisher

information matrix (or the Hessian of the log-likelihood), also known as curvature informa-

tion. They are also known as adaptive procedures because they adapt their hyperparameters,

i.e., learning rates γn or condition matrices Cn, according to observed data. For instance, let

Cn ≡ I(θ?)−1 and γ1 = 1. Plugging in Cn = I(θ?)−1 in Theorem 6, the asymptotic variance

of the SGD estimators is

(1/n)γ2
1(2γ1I(θ?)−1I(θ?)− I)−1I(θ?)−1I(θ?)I(θ?)−1 = (1/n)I(θ?)−1,

which is the theoretically optimal asymptotic variance of the MLE, i.e., the Cramér-Rao

lower bound.

Therefore, to achieve asymptotic efficiency, second-order procedures need to estimate

the Fisher information matrix. Because θ? is unknown one can simply use Cn = I(θim
n )−1

(or Cn = I(θsgd
n−1)

−1) as an iterative estimate of I(θ?), and the same optimality result holds.

This approach in second-order explicit SGD was first studied by Sakrison (1965), and later

by Nevelson and Khasminski (1973, Chapter 8, Theorem 5.4). It was later extended by

Fabian (1978) and several other authors. Notably, Amari (1998) refers to the direction

I(θsgd
n−1)

−1∇ log f (Yn; Xn, θ
sgd
n−1) as the “natural gradient" and uses information geometry

arguments to prove statistical optimality.

An alternative way to implement second-order procedures is to use stochastic approxi-

mation to estimate I(θ?), in addition to the approximation procedure estimating θ?. For
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example, Amari et al. (2000) proposed the following second-order procedure,

C−1
n = (1− an)C−1

n−1 + an∇ log f (Yn; Xn, θamn−1)∇ log f (Yn; Xn, θamn−1)
ᵀ

θamn = θamn−1 + γnCn∇ log f (Yn; Xn, θamn−1), (2.10)

where an = a1/n is a learning rate sequence, separate from γn. By standard stochastic

approximation, C−1
n converges to I(θ?), and thus procedure (2.10) is asymptotically optimal.

However, there are two important problems with procedure (2.10). First, it is computa-

tionally costly because of matrix inversions. A faster way is to apply quasi-Newton ideas.

SGD-QN developed by Bordes et al. (2009) is such a procedure where the first expensive

matrix computations are substituted by typical secant conditions. Second, the stochastic

approximation of I(θ?) is usually very noisy in high-dimensional problems and this affects

the main approximation for θ?. Recently, more robust variants of SGD-QN have been

proposed (Byrd et al., 2014).

Another notable adaptive procedure is AdaGrad (Duchi et al., 2011a), which is defined

as

C−1
n = C−1

n−1 + diag
(
∇ log f (Yn; Xn, θadan−1)∇ log f (Yn; Xn, θadan−1)

ᵀ) ,

θadan = θadan−1 + γ1C1/2
n ∇ log f (Yn; Xn, θadan−1), (2.11)

where diag(·) takes the diagonal matrix of its matrix argument, and the learning rate is set

constant to γn ≡ γ1. AdaGrad can be considered a second-order procedure because it tries

to approximate the Fisher information matrix, however it only uses gradient information

so technically it is first-order. Under appropriate conditions, C−1
n → diag(I(θ?)) and a

simple modification in the proof of Theorem 6 can show that the asymptotic variance of the

AdaGrad estimate is given by

√
nVar

(
θadan

)
→ γ1

2
diag(I(θ?))−1/2. (2.12)

This result reveals an interesting trade-off achieved by AdaGrad and a subtle contrast to first-

order SGD procedures. The asymptotic variance of AdaGrad is O(1/
√

n), which indicates
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significant loss of information. However, this rate is attained regardless of the specification

of the learning rate parameter γ1.5 In contrast, as shown in Theorem 6, first-order SGD

procedures require 2γ1I(θ?)− I � 0 in order to achieve the O(1/n) rate, and the rate is

significantly worse if this condition is not met. For instance, Nemirovski et al. (2009) given an

example of misspecification of γ1 where the rate of first-order explicit SGD is O(n−ε), and ε

can be arbitrarily small. The variance result (2.12) is illustrated in numerical experiments of

Section 2.6.1.

2.4.3 Optimality with averaging

As shown in Section 2.4.2, Theorem 6 implies that first-order SGD procedures can be

statistically inefficient, especially in many dimensions. One surprisingly simple idea to

achieve statistical efficiency is to combine larger learning rates with averaging of the iterates.

In particular, we consider the procedure

θim
n = θim

n−1 + γn∇ log f (Yn; Xn, θim
n ),

θim
n =

1
n

n

∑
i=1

θim
i , (2.13)

where θim
n are the typical implicit SGD iterates (2.4), and γn = γ1n−γ, γ ∈ [0.5, 1). Under

suitable conditions, the iterates θim
n are asymptotically efficient. This is formalized in the

following theorem.

Theorem 7. Consider SGD procedure (2.13) and suppose Assumptions 7(a),(c),(d), and (e) hold,

where γ ∈ [0.5, 1). Then, the iterate θn converges to θ? in probability and is asymptotically efficient,

i.e.,

nVar
(
θn
)
→ I(θ?)−1.

5 This follows from a technicality in Lemma 2. On a high-level, the term γn−1/γn is important for the
variance rates of AdaGrad and SGD. When γn ∝ 1/n, as in Theorem 6, it holds γn−1/γn = 1 + γn/γ1 + O(γ2

n),
which explains the quantity 2I(θ?)− I/γ1 in first-order SGD. The rate O(1/n) is attained only if 2I(θ?)−
I/γ1 � 0. When γn ∝ 1/

√
n, as in AdaGrad, it holds γn−1/γn = 1 + o(γn) and the rate O(1/

√
n) is attained

without any additional requirement.
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Remarks. In the context of explicit stochastic approximations, averaging was first pro-

posed and analyzed by Ruppert (1988) and Bather (1989). Ruppert (1988) argued that larger

learning rates in stochastic approximation uncorrelates the iterates allowing averaging to

improve efficiency. Polyak and Juditsky (1992b) expanded the scope of averaging by proving

asymptotic optimality in more general explicit stochastic approximations that operate under

suitable conditions similar to Theorem 7. Polyak and Juditsky (1992b) thus proved that

slowly-converging stochastic approximations can be improved by using larger learning rates

and averaging of the iterates. Recent work has analyzed explicit updates with averaging

(Zhang, 2004; Xu, 2011; Bach and Moulines, 2013; Shamir and Zhang, 2012), and has shown

their superiority in numerous learning tasks.

2.4.4 Asymptotic normality

Asymptotic distributions, or more generally invariance principles, are well-studied in

classical stochastic approximation (Ljung et al., 1992, Chapter II.8). In this section we

leverage Fabian’s theorem (Fabian, 1968a) to show that iterates from implicit SGD are

asymptotically normal.

Theorem 8. Suppose that Assumptions 7(a),(c),(d),(e),(f) hold. Then, the iterate θim
n of implicit

SGD (2.4) is asymptotically normal, such that

nγ/2(θim
n − θ?)→ Np(0, Σ),

where Σ = γ2
1 (2γ1CI(θ?)− I)−1 CI(θ?)C.

Remarks. The combined results of Theorems 5, 6, and 8 indicate that implicit SGD is

numerically stable and has known asymptotic variance and distribution. Therefore, contrary

to explicit SGD that has severe stability issues, implicit SGD emerges as a stable estimation

procedure with known standard errors, which enables typical statistical tasks, such as

confidence intervals, hypothesis testing, and model checking. We show empirical evidence

supporting this claim in Section 2.6.1.
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2.4.5 Stability

To illustrate the stability, or lack thereof, of both SGD estimators in small-to-moderate

samples, we simplify the SGD procedures and inspect the size of the biases E
(

θ
sgd
n − θ?

)
and E

(
θim

n − θ?
)
. In particular, based on Theorem 5, we simply assume the Taylor expansion

∇ log f (Yn; Xn, θn) = −I(θ?)(θn − θ?) + O(γn); to simplify further we ignore the remainder

term O(γn).

Under this simplification, the SGD procedures (2.3) and (2.4) can be written as follows:

E
(

θ
sgd
n − θ?

)
= (I − γnI(θ?))E

(
θ

sgd
n−1 − θ?

)
= Pn

1 b0, (2.14)

E
(
θim

n − θ?
)
= (I + γnI(θ?))−1E

(
θim

n−1 − θ?
)
= Qn

1 b0, (2.15)

where Pn
1 = ∏n

i=1(I − γiI(θ?)), Qn
1 = ∏n

i=1(I + γiI(θ?))−1, and b0 denotes the initial bias of

the two procedures from a common starting point θ0. Thus, the matrices Pn
1 and Qn

1 describe

how fast the initial bias decays for the explicit and implicit SGD respectively. In the limit,

Pn
1 → 0 and Qn

1 → 0 (see proof of Lemma 2), and thus both methods are asymptotically stable.

However, the explicit procedure has significant stability issues in small-to-moderate

samples. By inspection of Eq. (2.14), the magnitude of Pn
1 is dominated by λ f , the maximum

eigenvalue of I(θ?). Furthermore, the rate of convergence is dominated by λ f , the minimum

eigenvalue of I(θ?).6 For stability, it is desirable |1− γ1λi| < 1, and for fast convergence

|1− γ1λi| ≈ 0, for all eigenvalues λi ∈ eig(I(θ?)). This roughly implies the requirements

γ1 < 2/λ f for stability, and γ1 > 1/λ f for convergence. This is problematic in high-

dimensional settings because λ f is typically orders of magnitude larger than λ f . Thus, the

requirements for stability and speed of convergence are in conflict: to ensure stability we

need a small learning rate parameter γ1, thus paying a high price in convergence which will

be at the order of O(n−γ1λ f ), and vice versa.

In contrast, the implicit procedure is unconditionally stable. The eigenvalues of Qn
1 are

λ′i = ∏n
j=1 1/(1 + γ1λi/j) = O(n−γ1λi). Critically, it is no longer required to have a small γ1

6To see this, note that the eigenvalues of Pn
1 are λ′i = ∏j(1− γ1λi/j) = O(n−γ1λi ) if 0 < γ1λi < 1. See also

proof of Lemma 1.
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for stability because the eigenvalues of Qn
1 are always less than one. We summarize these

findings in the following lemma.

Lemma 1. Let λ f = max eig(I(θ?)), and suppose γn = γ1/n and γ1λ f > 1. Then, then the

maximum eigenvalue of Pn
1 satisfies

max
n>0

max{eig(Pn
1 )} = Θ(2γ1λ f /

√
γ1λ f ).

For the implicit method,

max
n>0

max{eig(Qn
1)} = O(1).

Remark. Lemma 1 shows that in the explicit SGD procedure the effect from the initial

bias can be amplified in an arbitrarily large way before fading out if the learning rate

is misspecified (i.e., if γ1 >> 1/λ f ). This sensitivity of explicit SGD is well-known and

requires problem-specific considerations to be avoided in practice e.g., pre-processing, small-

sample tests, projections, truncation (Chen et al., 1987). In fact, there exists voluminous

work, continuing up-to-date, in designing learning rates to stabilize explicit SGD; see, for

example, a review by George and Powell (2006). Implicit procedures render such ad-hoc

designs obsolete because they remain stable regardless of learning rate design, and still

maintain the asymptotic convergence and efficiency properties of explicit SGD.

2.5 Applications

In this section we show how to apply implicit SGD (2.4) for estimation in generalized linear

models, Cox proportional hazards, and more general M-estimation problems. We start

by developing an algorithm that efficiently computes the implicit updates (2.4), which is

generally applicable to all aforementioned applications.
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2.5.1 Efficient computation of implicit updates

The main difficulty in applying implicit SGD is the solution of the multidimensional fixed

point equation (2.4). In a large family of models where the likelihood depends on the

parameter θ? only through the natural parameter Xᵀ
nθ?, the solution of the fixed-point

equation is feasible and computationally efficient. We prove the general result in Theorem 9,

which depends on Assumption 7(b).

For the rest of this section we will treat `(Xᵀθ; Y) as a function of the natural parameter

Xᵀθ (or Xᵀ
nθ referring to the nth data point) for a fixed outcome Y. Thus, `′(Xᵀθ; Y) will

refer to the first derivative of ` with respect to Xᵀθ with fixed Y.

Theorem 9. Suppose Assumption 7(b) holds. Then, the gradient for the implicit update (2.4) is a

scaled version of the gradient at the previous iterate, i.e.,

∇ log f (Yn; Xn, θim
n ) = λn∇ log f (Yn; Xn, θim

n−1), (2.16)

where the scalar λn satisfies,

λn`
′(Xᵀ

nθim
n−1; Yn) = `′

(
Xᵀ

nθim
n−1 + γnλn`

′(Xᵀ
nθim

n−1; Yn)Xᵀ
nCnXn; Yn

)
. (2.17)

Remarks. Theorem 9 shows that the gradient ∇ log f (Yn; Xn, θim
n ) in the implicit update

(2.4) is a scaled gradient ∇ log f (Yn; Xn, θim
n−1) calculated at the previous iterate θim

n−1. There-

fore, computing the implicit update reduces to finding the scale factor λn in Theorem 9.

Under Assumption 7(b) narrow search bounds for λn are available. This leads to Algorithm

1 that is a a generic implementation of implicit SGD for models satisfying Assumption 7(b).

This implementation is fast because the interval Bn of search bounds in Algorithm 1 has

size O(γn).

2.5.2 Generalized linear models

In this section, we apply implicit SGD to estimate generalized linear models (GLMs). In such

models, Yn follows an exponential distribution conditional on Xn, and E (Yn|Xn) = h(Xᵀ
nθ?),

where h is the transfer function of the GLM model (Nelder and Wedderburn, 1972; Dobson
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Algorithm 1: Efficient implementation of implicit SGD (2.4)
1: for all n ∈ {1, 2, · · · } do
2: # compute search bounds Bn
3: rn ← γn`′

(
Xᵀ

nθim
n−1; Yn

)
4: Bn ← [0, rn]
5: if rn ≤ 0 then
6: Bn ← [rn, 0]
7: end if
8: # solve fixed-point equation by a root-finding method
9: ξ = γn`′(Xᵀ

nθim
n−1 + ξXᵀ

nCnXn; Yn), ξ ∈ Bn
10: λn ← ξ/rn
11: # following update is equivalent to update (2.4)
12: θim

n ← θim
n−1 + γnλn∇ log f (Yn; Xn, θim

n−1)
13: end for

and Barnett, 2008). Furthermore, the gradient of the GLM log-likelihood for parameter

value θ at data point (Xn, Yn) is given by

∇ log f (Yn; Xn, θ) = [Yn − h(Xᵀ
nθ)]Xn. (2.18)

The conditional variance of Yn is Var (Yn|Xn) = h′(Xᵀ
nθ?)XnXᵀ

n , and thus the Fisher infor-

mation matrix is I(θ) = E (h′(Xᵀ
nθ)XnXᵀ

n).

Thus, SGD procedures (2.3) and (2.4) can be written as

θ
sgd
n = θ

sgd
n−1 + γnCn[Yn − h(Xᵀ

nθ
sgd
n−1)]Xn, (2.19)

θim
n = θim

n−1 + γnCn[Yn − h(Xᵀ
nθim

n )]Xn. (2.20)

Implementation of explicit SGD is straightforward. Implicit SGD can be implemented

through Algorithm 1 because the conditions of Assumption 7(b) are fulfilled. In partic-

ular, log f (Y; X, θ) ≡ `(Xᵀθ; Y) where `(η; Y) = Y − h(η). In typical models h is twice-

differentiable and also h′(η) ≥ 0 because it is proportional to the conditional variance of Y

given X, thus fulfilling Assumption 7(b). In the simplified case where Cn = I, the identity

matrix, for all n, Algorithm 1 simplifies to Algorithm 2, which was first derived by Toulis

et al. (2014). We make extensive experiments using Algorithm 2 in Section 2.6.2.
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Algorithm 2: Estimation of GLMs with implicit SGD
1: for all n ∈ {1, 2, · · · } do
2: rn ← γn

[
Yn − h(Xᵀ

nθim
n−1)

]
3: Bn ← [0, rn]
4: if rn ≤ 0 then
5: Bn ← [rn, 0]
6: end if
7: ξ = γn

[
Yn − h

(
Xᵀ

nθim
n−1 + ξ||Xn||2

)]
, ξ ∈ Bn

8: θim
n ← θim

n−1 + ξXn
9: end for

2.5.3 Cox proportional hazards

In this section, we apply SGD to estimate a Cox proportional hazards model, which is

a popular model in survival analysis of censored failure times (Cox, 1972; Klein and

Moeschberger, 2003). Multiple variations of the model exist, but we will analyze one simple

variation that is popular in practice (Davison, 2003). Consider N individuals, indexed by i,

with observed survival times Yi, failure indicators di, and covariates Xi. The survival times

can be assumed ordered, Y1 < Y2 . . . < YN , whereas di = 1 denotes failure (e.g., death) and

di = 0 indicates censoring (e.g., patient dropped out of study). Given a failure for unit i

(di = 1) at time Yi, the risk set Ri is defined as the set of individuals that could possibly

fail at Yi, i.e., all individuals except those who failed or were censored before Yi. In our

simplified model, Ri = {i, i + 1, . . . , N}. Define ηi(θ)
def
= exp(Xᵀ

i θ), then the log-likelihood `

for θ is given by (Davison, 2003, Chapter 10)

`(θ; X, Y) =
N

∑
i=1

[di − Hi(θ)ηi(θ)]Xi, (2.21)

where Hi(θ) = ∑j:i∈Rj
dj(∑k∈Rj

ηk(θ))
−1. In an online setting, where N is infinite and

data points (Xi, Yi) are observed one at a time, future observations affect the likelihood of

previous ones, as can be seen by inspection of Eq. (2.21). Therefore, we apply SGD assuming

fixed N to estimate the MLE θmle
N . As mentioned in Section 2.2, our theory in Section 2.4 can

be applied unchanged if we only substitute θ?, the true parameter, with the MLE θmle
N .

A straightforward implementation of explicit SGD (2.3) for the Cox model is shown in
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Algorithm 3. For implicit SGD (2.4) we have the update

θim
n = θim

n−1 + γn[di − Hi(θ
im
n )ηi(θ

im
n )]Xi, (2.22)

which is similar to the implicit procedure for GLMs (2.20). However, the log-likelihood

term di − Hi(θ
im
n )ηi(θ

im
n ) does not satisfy the conditions of Assumption 7(b). Although the

term ηi(θ) is increasing with respect to Xᵀ
i θ, Hi(θ) may be increasing or may be decreasing

because it depends on terms Xᵀ
j θ, j 6= i, as well. Thus, Theorem 9 cannot be applied. One

way to circumvent this problem and apply Theorem 9 is to simply compute Hi(·) on the

previous update θim
n−1 instead of the current θim

n . Then, update (2.22) becomes,

θim
n = θim

n−1 + γn[di − Hi(θ
im
n−1)ηi(θ

im
n )]Xi, (2.23)

which now satisfies Assumption 7(b) as Hi(θ
im
n−1) is constant with respect to θim

n .7 The

implicit SGD procedure for fitting Cox models is shown in Algorithm 4. We run experiments

with implicit SGD on Cox models with simulated data in Section 2.6.2.

Algorithm 3: Explicit SGD for Cox model

1 for n = 1, 2, . . . do

2 i← sample(1, N)

3 Ĥi ← ∑j:i∈Rj

dj

∑k∈Rj
ηk(θ

sgd
n−1)

4 wn−1 ←
[
di − Ĥiηi(θ

sgd
n−1)

]
5 θ

sgd
n = θ

sgd
n−1 + γnwn−1CnXi

Algorithm 4: Implicit SGD for Cox model

1 for n = 1, 2, . . . do

2 i← sample(1, N)

3 Ĥi ← ∑j:i∈Rj

dj

∑k∈Rj
ηk(θ

im
n−1)

4 w(θ)
def
= di − Ĥiηi(θ)

5 Wn ← w(θim
n−1)CnXi

6 λnw(θim
n−1) = w

(
θim

n−1 + γnλnWn
)

7 θim
n = θim

n−1 + γnλnWn

7This idea can be more generally used in order to apply implicit SGD on models that do not satisfy
Assumption 7(b); see Section 2.7 for a discussion.
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2.5.4 M-Estimation

Given N observed data points (Xi, Yi) and a convex function ρ : R → R+, the M-estimator is

defined as

θ̂m = arg min
θ

N

∑
i=1

ρ(Yi − Xᵀ
i θ), (2.24)

where it is assumed Yi = Xᵀ
i θ? + εi, and εi are i.i.d. zero mean-valued noise. M-estimators

are especially useful in robust statistics (Huber et al., 1964; Huber, 2011) because appropriate

choice of ρ can reduce the influence of outliers in data. Typically, ρ is twice-differentiable

around zero. In this case,

E
(
ρ′(Yi − Xᵀ

i θ̂m)Xi
)
= 0, (2.25)

where the expectation is over the empirical data distribution. Thus, according to Section

2.2, SGD procedures can be applied to approximate the M-estimator θ̂m.8 There has

been increased interest in the literature for fast approximation of M-estimators due to the

robustness properties of such estimators (Donoho and Montanari, 2013; Jain et al., 2014).

The implicit SGD procedure for approximating M-estimators is defined in Algorithm 5,

and is a simple adaptation of Algorithm 1.

Algorithm 5: Implicit SGD for M-estimation

1 for n = 1, 2, . . . do
2 i← sample(1, N)

3 w(θ)
def
= ρ′(Yi − Xᵀ

i θ)
4 λnw(θim

n−1)← w
(
θim

n−1 + γnλnw(θim
n−1)CnXi

)
# implicit update

5 θim
n ← θim

n−1 + γnλnw(θim
n−1)CnXi

Importantly, ρ is convex and thus ρ′′ ≥ 0 and therefore the conditions of Assumption

7(b) are met. Thus, Step 4 of Algorithn 5 is a straightforward application of Algorithm 1 by

simply setting `′(X′nθim
n−1; Yn) ≡ ρ′(Yn − Xᵀ

nθim
n ). The asymptotic variance of θim

n is also easy

8 It is also typical to assume that the density of εi is symmetric around zero. Therefore, it also holds
E
(
ρ′(Yi − Xᵀ

i θ?)Xi
)
= 0, where the expectation is over the true data distribution. According to Section 2.2 SGD

procedures can also be used to estimate θ? in the case of infinite stream of observations (N = ∞). In this section
we only consider the case of finite N, but it is trivial to adapt our procedures to infinite N.
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to derive. If S def
= E (XnXᵀ

n), Cn → C > such that S and C commute, ψ2 def
= E

(
ρ′(εi)

2), and

v(z) def
= E (ρ′(εi + z)), Theorem 6 can be leveraged to show that

nVar
(
θim

n
)
→ ψ2(2v′(0)CS− I)−1CSC. (2.26)

Historically, one of the first applications of explicit stochastic approximation procedures

in robust estimation was due to Martin and Masreliez (1975). The asymptotic variance

(2.26) was first derived, only for the explicit SGD case, by Poljak and Tsypkin (1980) using

stochastic approximation theory from Nevelson and Khasminski (1973).

2.6 Simulation and data analysis

In this section, we demonstrate the computational and statistical advantages of SGD estima-

tion procedures (2.3) and (2.4). For our experiments we developed a new R package, namely

sgd, which has been published on CRAN.9

The experiments are split into three sets. In the first set, presented in Section 2.6.1, we

aim to validate the theoretical results of Section 2.4. In the second set, presented in Section

2.6.2, we aim to validate the performance of SGD procedures. We focus particularly on

implicit SGD because it is a more stable estimation procedure, whereas for explicit SGD we

could not devise a learning rate design that worked uniformly well in all experiments. The

third set of experiments, presented in the Appendix, focuses on comparisons of implicit

SGD, including implicit SGD with averaging, against popular machine learning methods,

such as averaged explicit SGD on a large support vector machine (SVM) model, prox-SAG

(Schmidt et al., 2013), prox-SVRG (Xiao and Zhang, 2014), and averaged explicit SGD (Xu,

2011; Bach and Moulines, 2013), on typical machine learning tasks.

9Our R package resides on CRAN at http://cran.r-project.org/web/packages/sgd/index.
html, and has been co-authored with Dustin Tran and and Kuang Ye. All experiments were conducted
on a single laptop running Linux Ubuntu 13.x with 8 cores@2.4GHz, 16Gb of RAM memory and 256Gb of
physical storage with SSD technology.
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2.6.1 Validation of theory

In this section we aim to validate the theoretical results of Section 2.4, namely the result on

asymptotic variance (Theorem 6 and asymptotic normality (Theorem 8) of SGD procedures.

Asymptotic variance

In this experiment we use a normal linear model following the experimental setup of Xu

(2011) to check the asymptotic variance results of Theorem 6. The procedures we test are

explicit SGD (2.3), implicit SGD (2.4), and AdaGrad (2.11). For simplicity we use first-order

SGD where Cn ≡ I.

In the experiment we calculate the empirical variance of said procedures for 25 values of

their common learning rate parameter γ1 in the interval [1.2, 10]. For every value of γ1 we

calculate the empirical variances through the following process, repeated for 150 times. First,

we set θ? = (1, 1, · · · , 1)ᵀ ∈ R20 as the true parameter value. For iterations n = 1, 2, . . . , 1500,

we sample covariates as Xn ∼ Np(0, S), where S is diagonal with elements uniformly in

[0.5, 5]. The outcome Yn is then sampled as Yn|Xn ∼ N (Xᵀ
nθ?, 1). In every repetition we

store the iterate θ1500 for every tested procedure and then calculate the empirical variance of

stored iterates over all 150 repetitions.

For any fixed learning rate parameter γ1, we set the learning rates as follows. For

implicit SGD we set γn = γ1/n, and for AdaGrad we set γn = γ1, as it is typical. However,

for explicit SGD we set γn = min(0.3, γ1/(n + ||Xn||2) in order to stabilize its updates. This

trick is necessary by the analysis of Section 2.4.5. In particular, the Fisher information matrix

is I(θ?) = E (XnXᵀ
n) = S, and thus the minimum eigenvalue is λ f = 0.5 and the maximum

is λ f = 5. Therefore, for stability we require γ1 < 1/λ f = 0.2 and for fast convergence we

require γ1 < 1/(2λ f ) = 1. The two requirements are incompatible, which indicates that

explicit SGD can have serious stability issues.

For given γ1 > 1, the asymptotic variance of SGD procedures after n iterations is

(1/n)γ2
1(2γ1S− I)−1S, by Theorem 6. The asymptotic variance of AdaGrad after n iterations

is equal to (γ1/2
√

n)S−1/2, by the analysis of Section 2.4.2. The log traces of the empirical
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Figure 2.1: Simulation with normal model. The x-axis corresponds to learning rate parameter γ1; the y-axis
curves corresponds to log trace of the empirical variance of tested procedures (explicit/implicit SGD, AdaGrad).
Theoretical asymptotic variances of SGD and AdaGrad are plotted as well. Implicit SGD is stable and its
empirical variance is very close to its asymptotic value. Explicit SGD becomes unstable at large γ1. AdaGrad
is statistically inefficient but remains stable to large learning rates.

variance of the SGD procedures and AdaGrad in this experiment are shown in Figure

B.4. The x-axis corresponds to different values of the learning rate parameter γ1, and the

y-axis corresponds to the log trace of the empirical variance of the iterates for all three

different procedures. We also include curves for the aforementioned theoretical values of

the empirical variances.

We see that our theory predicts well the empirical variance of all methods. Explicit

SGD performs on par with implicit SGD for moderate values of γ1, however, it required

a modification in its learning rate to make it work. Furthermore, explicit SGD quickly

becomes unstable at larger values of γ1 (see, for example, its empirical variance for γ1 = 10),

and in several instances, not considered in Figure B.4, it numerically diverged. On the other

hand, AdaGrad is stable to the specification of γ1 and tracks its theoretical variance well.

However, it gives inefficient estimators because their variance has order O(1/
√

n). Implicit

SGD effectively combines stability and good statistical efficiency. First, it remains very
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stable to the entire range of the learning rate parameter γ1. Second, its empirical variance is

O(1/n) and is tracks closely the theoretical value predicted by Theorem 6 for all γ1.

Asymptotic normality

In this experiment we use the normal linear model in the setup of Section 2.6.1 to check

the asymptotic normality result of Theorem 8. We only test first-order implicit SGD (2.4)

and first-order explicit SGD for simplicity. Asymptotic normality for explicit stochastic

approximations has been shown Fabian (1968b) and several other authors (see also Ljung

et al., 1992, Parts I, II).

In the experiment we define a set learning rates (0.5, 1, 3, 5, 6, 7). For every learning

rate and for every method, implicit or explicit SGD, we take 400 samples of N(θim
N −

θ?)ᵀΣ−1(θim
N − θ?), where N = 1200; i.e., we run each SGD procedure for 1200 iterations. The

matrix Σ is the asymptotic variance matrix in Theorem 8, and θ?
def
= 10 exp (−2 · (1, 2, . . . , p)),

is the true parameter value. We use the ground-truth values both for Σ and θ?, as we are only

interested to test normality of the iterates in this experiment. We also tried p = 5, 10, 100 as

the parameter dimension. Because the explicit SGD was very unstable across experiments

we only report results for p = 5. Results on the implicit procedure for larger p are given in

Appendix B.7.1, where we also include results for a logistic regression model.

By Theorem 8 the quantity N(θim
N − θ?)ᵀΣ−1(θim

N − θ?) is a chi-squared random variable

with p degrees of freedom. Thus, for every procedure we plot this quantity against

independent samples from a χ2
p distribution and visually check for deviations. As before, we

tried to stabilize explicit SGD as much as possible by setting γn = min(0.3, γ1/(n + ||Xn||2)

as the learning rate. This worked in many iterations, but not for all. Iterations for which

explicit SGD diverged were not considered. For implicit SGD we simply set γn = γ1/n

without additional tuning.

The results of this experiment are shown in Figure 2.2. The vertical axis on the grid

corresponds to different values of the learning rate parameter γ1, and the horizontal axis

has histograms of N(θN − θ?)ᵀΣ−1(θN − θ?) for both implicit and explicit procedures, and
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Figure 2.2: Simulation with normal model. The x-axis corresponds to the SGD procedure (explicit or
implicit) for various values of the learning rate parameter, γ1 ∈ {0.5, 1, 3, 5, 7}. The histograms (x-axis)
for the SGD procedures are 500 replications of SGD where at each replication we only store the quantity
N(θN − θ?)ᵀΣ−1(θN − θ?), for every method (N = 1200); the theoretical covariance matrix Σ is different for
every learning rate and is given in Theorem 6. The data generation model is the same as in Section 2.6.1. We
observe that implicit SGD is stable and follows the nominal chi-squared distribution. Explicit SGD becomes
unstable at larger γ1 and its distribution does not follow the nominal one well. In particular, the distribution
of N(θ

sgd
N − θ?)ᵀΣ−1(θ

sgd
N − θ?) becomes increasingly heavy-tailed as the learning rate parameter gets larger,

and eventually diverges for γ1 ≥ 7.

also includes samples from a χ2
5 distribution for visual comparison.

We see that the distribution N(θim
N − θ?)ᵀΣ−1(θim

N − θ?) of the implicit iterates follows

the nominal chi-squared distribution. This also seems to be unaffected by the size learning

rate parameter. However, the distribution N(θ
sgd
N − θ?)ᵀΣ−1(θ

sgd
N − θ?) of the explicit iterates

does not follow a chi-squared distribution, expect for small learning rate parameter values.

For example, as the learning rate parameter increases, the distribution becomes more heavy-

tailed (e.g., for γ1 = 6), indicating that explicit SGD becomes unstable. Particularly for

γ1 = 7 explicit SGD diverged in almost all replications, and thus a histogram could not be

constructed.
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2.6.2 Validation of performance

In this section we aim to validate the performance of implicit SGD estimation against

deterministic estimation procedures that are optimal. In Section 2.6.2, we compare implicit

SGD with R’s glm() function, which calculates the theoretically optimal MLE. In this

experiment, we wish to test the computational efficiency of implicit SGD in terms of the

problem size, i.e., parameter dimension p, and number of data points N, and its statistical

efficiency in terms of MSE. We perform similar tests in Section 2.6.2 but on larger problem

sizes, where we compare with R’s biglm package, which is popular in estimating GLM

models in large data sets (large N, small p). In Section 2.6.2 we compare implicit SGD with

glmnet of Friedman et al. (2010), which is an efficient implementation of the elastic net

for several GLMs for problems with N > p. In Sections 2.6.2, we re-analyze data from the

NMMAPS study (Samet et al., 2000) and show how implicit SGD can be naturally extended

to fit a large generalized additive model (GAM) (Hastie and Tibshirani, 1990) to estimate the

effects of air pollution on public health. We also compare with recently published statistical

methods that are specifically designed to fit large-scale GAMs, and demonstrate SGD’s

superior performance.

In summary, our experimental results demonstrate that implicit SGD performs on par

with optimal deterministic methods, even in problems with moderate-to-large data sets

where stochastic methods are usually avoided. Combined its strong theoretical guarantees

that were validated in Section 2.6.1, implicit SGD emerges as a principled estimation method

that can be the workhorse of efficient estimation with large data sets in statistical practice.

Experiments with glm() function

The built-in function glm() in R10 performs deterministic maximum-likelihood estimation

through iterative reweighted least squares. In this experiment, we wish to compare comput-

ing time and MSE between first-order implicit SGD and glm(). Our simulated data set is a

10Documentation is available at http://stat.ethz.ch/R-manual/R-patched/library/stats/
html/glm.html.
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simple normal linear model constructed as follows. First, we sample a binary p× p design

matrix X = (xij) such that xi1 = 1 (intercept) and P(xij = 1) = s i.i.d, where s ∈ (0, 1)

determines the sparsity of X. We set s = 0.08 indicating that roughly 8% of the X matrix

will be nonzero. We generate θ? by sampling p elements from (−1,−0.35, 0, 0.35, 1) with

replacement. The outcomes are Yi = Xᵀ
i θ? + εi, where εi ∼ N (0, 1) i.i.d., and Xi = (xij) is

the p× 1 vector of i’s covariates. By GLM properties,

I(θ?) = E
(
h′(Xᵀ

i θ?)XiX
ᵀ
i

)
=



1 s s · · · s

s s s2 · · · s2

s s2 s s2 · · ·

· · · s2 · · · s · · ·

s s2 · · · · · · s


.

Slightly tedious algebra can show that the eigenvalues of I(θ?) are s(1− s) with multi-

plicity (p− 2) and the two solutions of x2− A(s)x+ B(s) = 0, where A(s) = 1+ s+ s2(p− 2)

and B(s) = s(1− s). It is thus possible to use the analysis of Section 2.4.2 and Eq. (2.9) to

derive a theoretically optimal learning rate. We sample 200 pairs (p, N) for the problem

size, uniformly in the ranges p ∼ [10, 500] and N ∼ [500, 50000], and obtain running times

and MSE of the estimates from implicit SGD and glm(). Finally, we then run a regression

of computing time and MSE against the problem size (N, p).

The results are shown in Table 2.1. We observe that implicit SGD scales better in both

sample size N, and especially in the model size p. We also observe, that this significant

computational gain does not come with much efficiency loss. In fact, averaged over all

samples, the MSE of the implicit SGD is on average 10% higher than the MSE of glm()

function with a standard error of ±0.005. Furthermore, the memory requirements (not

reported in Table 2.1) are roughly O(Np2) for glm() and only O(p) for implicit SGD.

55



Table 2.1: Parameters from regressing computation time and MSE against (N, p) in log-scale for glm() and
implicit GLM. Computation time for glm() is roughly O(p1.47N) and for implicit SGD, it is O(p0.2N0.9).
Implicit SGD scales better in parameter dimension p, whereas MSE for both methods are comparable, at the
order of O(

√
p/N).

method Time(sec) MSE

log p (se) log N (se) log p (se) log N (se)

GLM() function 1.46 (0.019) 1.03 (0.02) 0.52 (0.007) -0.52 (0.006)

implicit SGD 0.19 (0.012) 0.9 (0.01) 0.58 (0.007) -0.53 (0.006)

Experiments with biglm

The package biglm is a popular choice to fitting GLMs in large data sets (large N, small p),

and is part of the High-Performance Computing (HPC) task view of the CRAN project.11 It

works in an iterative way by splitting the data set in many parts, and by updating the model

parameters using incremental QR decomposition (Miller, 1992), which results in only O(p2)

memory requirement. In this experiment, we compare implicit SGD with biglm on larger

data sets of Section 2.6.2. In particular, we focus on a few cases with small p and with large

N such that N · p remains roughly constant.

The results are shown in Table 2.2. We observe that implicit SGD is significantly faster

at a very small efficiency loss. The difference is more dramatic at large p; for example,

when p = 103 or p = 104, biglm quickly runs out of memory, whereas implicit SGD works

without problems.

Experiments with glmnet

The glmnet package in R (Friedman et al., 2010) is a deterministic optimization algorithm

for generalized linear models that uses the elastic net. It performs a component-wise update

of the parameter vector, utilizing thresholding from the regularization penalties for more

computationally efficient updates. One update over all parameters costs roughly O(Np)

11See http://cran.r-project.org/web/packages/biglm/index.html for the biglm pack-
age. The HPC view of the CRAN project is here http://cran.r-project.org/web/views/
HighPerformanceComputing.html.
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Table 2.2: Comparison of implicit SGD with biglm. MSE is defined as ||θN − θ?||/θ0 − θ?||. Values “*"
indicate out-of-memory errors. biglm was run in combination with the ffdf package to map big data files
to memory. Implicit SGD used a similar but slower ad-hoc method. The table reports computation times
excluding file access.

Procedure

BIGLM Implicit SGD
p N size (GB) time(secs) MSE time(secs) MSE

1e2 1e5 0.021 2.32 0.028 2.4 0.028
1e2 5e5 0.103 8.32 0.012 7.1 0.012
1e2 1e6 0.206 16 0.008 14.7 0.009
1e2 1e7 2.1 232 0.002 127.9 0.002
1e2 1e8 20.6 * * 1397 0.00
1e3 1e6 2.0 * * 31.38 0.153
1e4 1e5 2.0 * * 25.05 0.160

operations. Additional computational gains are achieved when the design matrix is sparse

because fewer components are updated per each iteration.

In this experiment, we compare implicit SGD with glmnet on a subset of experiments

in the original package release (Friedman et al., 2010). In particular, we implement the

experiment of subsection 5.1 in that paper as follows. First, we sample the design matrix

X ∼ Np(0, Σ), where Σ = b2U + I and U is the p × p matrix of ones. The parameter

b =
√

ρ/(1− ρ), where ρ is the target correlation of columns of X, is controlled in the

experiments. The outcomes are Y = Xθ? + σ2ε, where θ∗j = (−1)j exp(−2(j− 1)/20), and ε

is a standard p-variate normal. The parameter σ is tuned to achieve a pre-defined signal-

noise ratio. We report average computation times in Table B.2 over 10 replications, which

expands Table 1 of Friedman et al. (2010).

First, we observe that implicit SGD is consistently faster than the glmnet method. In

particular, the SGD method scales better at larger p following a sublinear growth as noted in

Section 2.6.2. Interestingly, it is also not affected by covariate correlation, whereas glmnet

gets slower as more components need to be updated at every iteration. For example, with

correlation ρ = 0.9 and N = 1e5, p = 200, the SGD method is almost 10x faster.
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Table 2.3: Comparing implicit SGD with glmnet. Table reports running times (in secs.) and MSE for both
procedures. The MSE of glmnet is calculated as the median MSE over the 100 grid values of regularization
parameter computed by default (Friedman et al., 2010).

method metric correlation (ρ)
0 0.2 0.6 0.9

N = 1000, p = 10

GLMNET
time(sec) 0.005 0.005 0.008 0.022

mse 0.083 0.085 0.099 0.163

SGD
time(sec) 0.011 0.011 0.011 0.011

mse 0.042 0.042 0.049 0.053

N = 5000, p = 50

GLMNET
0.058 0.067 0.119 0.273
0.044 0.046 0.057 0.09

SGD
0.059 0.056 0.057 0.057
0.019 0.02 0.023 0.031

N = 100000, p = 200

GLMNET
2.775 3.017 4.009 10.827
0.017 0.017 0.021 0.033

SGD
1.475 1.464 1.474 1.446
0.004 0.004 0.004 0.006

Second, to compare glmnet with implicit SGD in terms of MSE, we picked the median

MSE produced by the grid of regularization parameters computed by glmnet. Because of

regularization, it is reasonable to expect overall a slightly better performance for glmnet

in situations where N is small compared to p. However, implicit SGD seems to perform

better against the median performance of glmnet. This is reasonable because implicit

SGD performs indirect regularization, as discussed in Section 2.7. Furthermore, Table B.2

indicates a clear trend where, for bigger dimensions p and higher correlation ρ, implicit

SGD is performing better than glmnet in terms of efficiency as well. We obtain similar

results in a comparison on a logistic regression model, presented in Appendix B.7.3.
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Cox proportional hazards

In this experiment we test the performance of implicit SGD on estimating the parameters of

a Cox proportional hazards model in a setup that is similar to the numerical example of

Simon et al. (2011, Section 3).

We consider N = 1000 units with covariates X ∼ NN(0, Σ), where Σ = 0.2U + I, and U

is the matrix of ones. We sample times as Yi ∼ Expo (ηi(θ?)), where ηi(θ) = exp(Xᵀ
i θ), and

θ? = (θ?,k) is a vector with p = 20 elements defined as θ?,k = 2(−1)−k exp(−0.1k). Time Yi

is censored, and thus di = 0, according to probability (1 + exp(−a(Yi − b))−1, where b is

a quantile of choice (set here as b = 0.8), and a is set such that min{Yi} is censored with

a prespecified probability (set here as 0.1%). We replicate 50 times the following process.

First, we run implicit SGD for 2N iterations, and then measure MSE ||θim
n − θ?||2, for all

n = 1, 2, . . . 2N. To set the learning rates we use Eq. (2.9), where the Fisher matrix is

diagonally approximated, through the AdaGrad procedure (2.11). We then take the 5%, 50%

and 95% quantiles of MSE across all repetitions and plot them against iteration number n.

The results are shown in Figure 2.3. In the figure we also plot (horizontal dashed lines)

the 5% and 95% quantiles of the MSE of the MLE, assumed to be the best MSE achievable

for SGD. We observe that Implicit SGD performs well compared to MLE, even in this

small-sized problem. In particular, implicit SGD, under the aforementioned generic tuning

of learning rates, converges to the region of optimal MLE in a few thousands of iterations.

In experiments with explicit SGD we were not able to replicate this performance because

of numerical instability. To our best knowledge, there are no standard implementations of

explicit SGD for estimating Cox proportional hazards models.

M-estimation

In this experiment we test the performance of implicit SGD, in particular Algorithm 5, on a

M-estimation problem in a setup that is similar to the simulation example of Donoho and

Montanari (2013, Example 2.4).
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Figure 2.3: Implicit SGD on Cox proportional hazards model. The different curves correspond to the 5%,
50%, and 95% quantiles of the MSE for 50 replications of implicit SGD iterates θim

2000. The top and bottom
dashed horizontal lines correspond, respectively, to the 95% quantile and the 5% quantile over the same 50
replications of the best possible MSE.

We set N = 1000 data points and p = 200 as the parameter dimension. We sample θ? as a

random vector with norm ||θ?|| = 6
√

p, and sample the design matrix as X ∼ Np(0, (1/N)I).

The outcomes are sampled i.i.d. from a “contaminated” normal distribution, i.e., with

probability 95%, Yn ∼ N (Xᵀ
nθ?, 1), and Yn = 10 with probability 5%.

The results over 2000 iterations of implicit SGD are shown in Figure 2.4. In the figure

we plot the 5% and 95% quantiles of MSE of implicit SGD over 100 replications of the

experiment. We also plot (horizontal dashed line) the median of the MSE of the MLE

estimator, computed using the coxph built-in command of R.12 We observe that SGD

converges steadily to the best possible MSE. Similar behavior was observed under various

12Documentation is available at https://stat.ethz.ch/R-manual/R-devel/library/survival/
html/coxph.html.
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Figure 2.4: Implicit SGD on M-estimation task. Top curve corresponds to 95% percentile of MSE, middle
curve is median, and bottom curve is 5% of MSE over 100 replications of implicit SGD iterates θim

2000. The
dashed horizontal line corresponds to the median MSE of maximum-likelihood over the same 100 replications.

modifications of the simulation parameters.

National Morbidity-Mortality Air Pollution study

The National Morbidity and Mortality Air Pollution (NMMAPS) study (Samet et al., 2000;

Dominici et al., 2002) analyzed the risks of air pollution to public health. Several cities

(108 in the US) are included in the study with daily measurements covering more than 13

years (roughly 5,000 days) including air pollution data (e.g. concentration of CO in the

atmosphere) together with health outcome variables such as number of respiratory-related

deaths.

61



The original study fitted a Poisson generalized additive model (GAM), separately for

each city due to data set size. Recent recent research (Wood et al., 2014) has developed

procedures similar to biglm’s iterative QR decomposition to fit all cities simultaneously on

the full data set with approximately N = 1.2 million observations and p = 802 covariates (7

Gb in size). In this experiment, we construct a GAM model using data from all cities in the

NMMAPS study in a process that is very similar (but not identical) to the data set of Wood

et al. (2014).

Our final data set has N = 1, 426, 806 observations and p = 794 covariates including all

cities in the NMMAPS study (8.6GB in size), and is fit using the simplest first-order implicit

SGD procedure, i.e., Cn = I and γ1 = 1. The time to fit the entire model with implicit SGD

was roughly 123.4 seconds, which is almost 6x faster than the time reported by Wood et al.

(2014) of about 12 minutes on a similar home computer. We cannot directly compare the

estimates from the two procedures because different versions of the data sets were used.

However, we can compare the estimates of our model with the estimates of glm() on a

random small subset of the data. In particular, we subsampled N = 50, 000 observations

and p = 50 covariates (19.5MB in size) and fit the smaller data set using implicit SGD and

glm(). A Q-Q plot of the estimates is shown in Figure 2.5. We observe that the estimates

of the SGD procedure are very close to MLE. Further replications of the aforementioned

testing process revealed the same pattern, indicating that implicit SGD converged on all

replications.

2.7 Discussion

Our theory in Section 2.4 suggests that implicit SGD is numerically stable and has known

asymptotic variance and asymptotic distribution. Our experiments in Section 2.6 showed

that the empirical properties of SGD are well predicted by theory. In contrast, explicit SGD

is unstable and cannot work well without problem-specific tuning. Thus, implicit SGD is a

principled estimation procedure that is superior to classical explicit SGD.

Intuitively, implicit SGD leverages second-order information at every iteration, although
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Figure 2.5: Estimates of implicit SGD (y-axis) and glm() (x-axis) on a subset of the NMMAPS data set
with N = 50, 000 observations and p = 50 covariates which is, roughly, 5% of the entire data set.

this quantity is not explicitly computed in Eq. (2.4). To see this, assume both explicit and

implicit SGD are at the same estimate θ0. Then, using definitions (2.3) and (2.4), a Taylor

approximation of the gradient ∇ log f (Yn; Xn, θim
n ) yields

∆θim
n ≈ [I + γnÎ(θ0; Xn, Yn)]

−1∆θ
sgd
n , (2.27)

where ∆θim
n = θim

n − θ0 and ∆θ
sgd
n = θ

sgd
n − θ0, and the matrix Î(θ0; Xn, Yn) = −∇2 log f (Yn; Xn, θ)|θ=θ0

is the observed Fisher information at θ0. In other words, the implicit procedure is a shrinked

version of the explicit one, where the shrinkage factor depends on the observed information.
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Naturally, the implicit SGD iterate θim
n has also a Bayesian interpretation. In particular,

θim
n is the posterior mode of a Bayesian model defined as

θ|θim
n−1 ∼ N (θim

n−1, γnCn)

Yn|Xn, θ ∼ f (.; Xn, θ). (2.28)

The explicit SGD update θ
sgd
n can be written as in Eq. (2.28), however f needs to be substi-

tuted with its linear approximation around θ
sgd
n−1. Thus, Eq. (2.28) provides an alternative

explanation why implicit SGD is more principled than explicit SGD. Furthermore, it indi-

cates possible improvements for implicit SGD. For example, the prior in Eq. (2.28) should

be chosen to fit better the parameter space (e.g., θ? being on the simplex). Krakowski et al.

(2007) and Nemirovski et al. (2009) have argued that appropriate implicit updates can fit

better in the geometry of the parameter space, and thus converge faster. Setting up the

parameters of the prior is also crucial. Whereas in explicit SGD there is no statistical intuition

behind learning rates γn, Eq. (2.28) reveals that in implicit SGD the terms (γnCn)−1 encode

the statistical information up to iteration n. It follows immediately that it is optimal, in

general, to set γnCn = I(θ?)−1/n, which is a special case of Theorem 6. Adaptive stochastic

approximation methods in recursive estimation, typically being second-order as in Section

2.4.2, try to iteratively estimate the Fisher matrix I(θ?) along with estimation of θ?.

The Bayesian formulation of Eq. (2.28) also explains the stability of implicit SGD. In Theo-

rem 5 we showed that the initial conditions are discounted at an exponential rate, regardless

of misspecification of the learning rates. This stability of implicit SGD allows several ideas

for improvements. For example, constant learning rates could be used in implicit SGD

to speed up convergence towards a region around θ?. A sequential hypothesis test could

decide on whether θim
n has reached that region or not, and switch to the theoretically optimal

1/n rate accordingly. Alternatively, we could run implicit SGD with AdaGrad learning rates

(see Eq. (2.11)) and switch to 1/n rates when the theoretical O(1/
√

n) variance of AdaGrad

becomes larger than the O(1/n) variance of implicit SGD. Such schemes using constant

rates with explicit SGD are very hard to do in practice because of instability.
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Regarding statistical efficiency, a key technical result in this paper is that the asymptotic

variance of implicit SGD can be quantified exactly using Theorem 6. Optimal learning

rates were suggested in Eq. (2.9) that depend on the eigenvalues of the unknown Fisher

matrix I(θ?). In this paper, we used second-order procedures of Section 2.4.2 to iteratively

estimate the eigenvalues, however better methods are certainly possible and could improve

the performance of implicit SGD. For example, it is known that typical iterative methods (as

in Section 2.4.2) usually overestimate the largest eigenvalue and underestimate the smallest

eigenvalue, in small-to-moderate samples. This crucially affects the behavior of stochastic

approximations with learning rates that depend on sample eigenvalues. Empirical Bayes

methods have been shown to be superior in iterative estimation of eigenvalues of large

matrices and it would be interesting to apply such methods to design the learning rates of

implicit SGD procedures (Haff, 1980; Dey, 1988; Ahmed, 1998; Mestre, 2008).

Regarding computational efficiency, we developed Algorithm 1 which implements im-

plicit SGD on a large family of statistical models. However, the trick used in fitting the Cox

proportional hazards model in Section 2.5.3 can be more generally applied to models outside

this family. For example, assume a log-likelihood gradient of the form s(Xᵀθ; Y)G(θ; X, Y),

where both its scale s(·) and direction G(·) depend on model parameters θ; This violates con-

ditions of Assumption 7(b). The implicit update (2.4) – where we set Cn = I, for simplicity –

would be θim
n = θim

n−1 + γns(Xᵀ
nθim

n ; Yn)G(θim
n ; Xn, Yn), which cannot be computed by Algo-

rithm 1. One way to circumvent this problem is to use an implicit update only on the scale

and use an explicit update on the direction, i.e., θim
n = θim

n−1 + γns(Xᵀ
nθim

n ; Yn)G(θim
n−1; Xn, Yn).

This form of updates expands the applicability of implicit SGD.

Finally, hypothesis testing and construction of confidence intervals using SGD estimates

is an important issue that has hitherto remained unexplored. In experiments of Section

2.6.1 we showed that implicit SGD is indeed asymptotically normal in several reasonable

simulation scenarios. However, as SGD procedures are iterative, there needs to be a rigorous

and general method to decide whether SGD iterates have converged to the asymptotic

regime. Several methods, such as bootstrapping the data set, could be used for that.
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Furthermore, conservative confidence intervals could be constructed through multivariate

Chebyshev inequalities or other strategies (Marshall and Olkin, 1960).

2.8 Conclusion

In this paper, we introduced a new stochastic gradient descent procedure that uses implicit

updates (i.e., solves fixed-point equations) at every iteration, which we termed implicit

SGD. Equation (2.27) shows, intuitively, that the iterates of implicit SGD are a shrinked

version of the standard iterates, where the shrinkage factor depends on the observed Fisher

information matrix. Thus, implicit SGD combines the computational efficiency of first-order

methods with the numerical stability of second-order methods.

In a theoretical analysis of implicit SGD, we derived non-asymptotic upper bounds for

the mean-squared errors of its iterates, and their asymptotic variance and normality. Our

analysis suggests principled strategies to calibrate a hyper-parameter that is common to

both explicit and implicit SGD procedures, known as the learning rate. We illustrated the

use of implicit SGD for statistical estimation in generalized linear models, Cox proportional

hazards model, and general M-estimation problems. Implicit SGD can also be applied on

several other models, such as support vector machines or generalized additive models, with

minimal modifications.

Viewed as statistical estimation procedures, our results suggest that implicit SGD has the

same asymptotic efficiency to explicit SGD. However, the implicit procedure is significantly

more stable than the explicit one with respect to misspecification of the learning rate. In

general, explicit SGD procedures are sensitive to outliers and to misspecification of the

learning rates, making it impossible to apply without problem-specific tuning. In theory

and in extensive experiments, implicit procedures emerge as principled iterative estimation

methods because they are numerically stable, they are robust to tuning of hyper-parameters,

and their standard errors are well-predicted by theory. Thus, implicit stochastic gradient

descent is poised to become a workhorse of estimation with large data sets in statistical

practice.
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Appendix A

Appendix to Chapter 1

A.1 Theory of implicit stochastic approximation

The symbol || · || denotes the L1 vector/matrix norm. We also define the error random

variables ξn , W
θ
(∗)
n−1
− h(θ(∗)n−1), such that E (ξn| Fn−1) = 0. The parameter space for θ will

be Rp without loss of generality. For a positive scalar sequence an, the sequence bn = O(an)

is such that bn ≤ can, for some fixed c > 0, and every n; the sequence bn = o(an) is such

that bn/an → 0 in the limit where n → ∞. bn ↓ 0 denotes a positive sequence decreasing

towards zero. We further assume that implicit stochastic approximation (1.2) operates under

a combination of the following assumptions.

Assumption 1. It holds, γn = γ1n−γ, γ1 > 0 and γ ∈ (1/2, 1].

Assumption 2. The regression function h is Lipschitz with parameter L, i.e., for all θ1, θ2,

||h(θ1)− h(θ2)|| ≤ L||θ1 − θ2||.

Assumption 3. For all n, function h satisfies either

(a) (θ − θ?)ᵀh(θ) > 0, for all θ, or

(b) (θ
(∗)
n − θ?)ᵀh(θ(∗)n ) ≥ δn||θ(∗)n − θ?||2, where δn = δ1n−δ, δ1 > 0 and 0 < γ + δ ≤ 1.

Assumption 4. There exists a scalar potential H : Rp → R such that ∇H(θ) = h(θ), for all θ.
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Assumption 5. There exists fixed σ2 > 0 such that, for every n,

E
(
||ξn||2|Fn−1

)
≤ σ2.

Assumption 6. Let Ξn
def
= E (ξnξᵀn| Fn−1), then ||Ξn − Ξ|| = O(1), and ||Ξn − Ξ|| → 0 for

fixed positive-definite matrix Ξ. Furthermore, if σ2
n,s = E

(
I||ξn||2≥s/γn

||ξn||2
)

, then for all s > 0,

∑n
i=1 σ2

i,s = o(n) if γn ∝ n−1, or σ2
n,s = o(1) otherwise.

A.1.1 Convergence

Theorem 1. Suppose that Assumptions 1, 2, 3(a), and 5 hold. Then the iterates θim
n of the implicit

stochastic approximation procedure (1.2) converge almost-surely to θ?; i.e., θim
n → θ?, such that

h(θ?) = 0, almost-surely.

Proof. By definition (1.2) it follows

||θim
n − θ?||2 = ||θim

n−1 − θ?||2 − 2γn(θ
im
n−1 − θ?)

ᵀW
θ
(∗)
n

+ γ2
n||Wθ

(∗)
n
||2, (A.2)

where (θim
n−1− θ

(∗)
n ) = γnh(θ(∗)n ) by Eq. (1.3). Setting (θim

n−1− θ?) = (θ
(∗)
n − θ?)+ (θim

n−1− θ
(∗)
n ),

yields

Rn , E
(
(θim

n−1 − θ?)
ᵀW

θ
(∗)
n

∣∣∣Fn−1) = (θ
(∗)
n − θ?)

ᵀh(θ(∗)n ) + (θim
n−1 − θ

(∗)
n )ᵀh(θ(∗)n )

= (θ
(∗)
n − θ?)

ᵀh(θ(∗)n ) + γn||h(θ(∗)n )||2 > 0. [by Assumption 3(a)]

(A.3)

Through Eq. (1.3) we obtain

||θim
n−1 − θ?||2 = ||θ(∗)n − θ?||2 + 2γnh(θ(∗)n )ᵀ(θ

(∗)
n − θ?) + γ2

n||h(θ
(∗)
n )||2,

> ||θ(∗)n − θ?||2. [by Assumption 3(a)] (A.4)

So, update (1.3) is non-expansive. Therefore,

||h(θ(∗)n )|| = ||h(θ(∗)n )− h(θ?)|| ≤ L||θ(∗)n − θ?|| [by Assumption 2]

≤ L||θim
n−1 − θ?|| [by non-expansiveness of update Eq. (1.3).] (A.5)
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Furthermore,

E
(
||W

θ
(∗)
n
||2
∣∣∣Fn−1)

def
= E

(
||h(θ(∗)n ) + ξn||2

∣∣∣Fn−1)

= ||h(θ(∗)n )||2 + E
(
||ξn||2

∣∣Fn−1)

≤ L2||θim
n−1 − θ?||2 + σ2. [by Eq. (A.5) and Assumption 5] (A.6)

Taking expectations in Eq. (A.2) conditional on Fn−1 and using Eq. (A.3) and Ineq. (A.6),

we obtain

E
(
||θim

n − θ?||2
∣∣Fn−1) ≤ (1 + γ2

nL2)||θim
n−1 − θ?||2 − 2γnRn + γ2

nσ2. (A.7)

We now use an argument —due to Gladyshev (1965)— that is also applicable to the classical

Robbins-Monro procedure; see, for example, Benveniste et al. (1990, Section 5.2.2), or Ljung

et al. (1992, Theorem 1.9). Random variable Rn is positive almost-surely by Ineq. (A.3), and

∑ γi = ∞ and ∑ γ2
i < ∞ by Assumption 1. Therefore, we can invoke the supermartingale

lemma of Robbins and Siegmund (1985) to infer that ||θim
n − θ?||2 → B > 0 and ∑ γnRn < ∞,

almost-surely. If B 6= 0 then lim inf ||θim
n − θ?|| > 0, and thus the series ∑n γnRn diverges by

InEq. (A.3) and ∑ γi = ∞ (Assumption 1). Thus, B = 0.

A.2 Non-asymptotic analysis

Theorem 2. Suppose that Assumptions 1, 2, 3(a), 4, and 5 hold. Define Γ2 , E
(
||θim

0 − θ?||2
)
+

σ2 ∑∞
i=1 γ2

i + γ2
1σ2. Then, if γ ∈ (2/3, 1], there exists n0,1 < ∞ such that, for all n > n0,1,

E
(

H(θim
n )− H(θ?)

)
≤
[

2Γ2

γγ1
+ o(1)

]
n−1+γ.

If γ ∈ (1/2, 2/3), there exists n0,2 < ∞ such that, for all n > n0,2,

E
(

H(θim
n )− H(θ?)

)
≤
[
Γσ
√

Lγ1 + o(1)
]

n−γ/2.
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Otherwise, γ = 2/3 and there exists n0,3 < ∞ such that, for all n > n0,3,

E
(

H(θim
n )− H(θ?)

)
≤

3 +
√

9 + 4γ3
1Lσ2/Γ2

2γ1/Γ2 + o(1)

 n−1/3.

Proof. By Eq. (1.3) and Assumption 3(a), θ
(∗)
n + γnh(θ(∗)n ) = θim

n−1 is equivalent to mini-

mization θ
(∗)
n = arg minθ{ 1

2γn
||θ − θim

n−1||2 + H(θ)}. Therefore, comparing the values of the

expression for θ = θ
(∗)
n and θ = θim

n−1, we obtain

H(θ
(∗)
n ) +

1
2γn
||θ(∗)n − θim

n−1||2 ≤ H(θim
n−1). (A.8)

Since θim
n−1 − θ

(∗)
n = γnh(θ(∗)n ), Eq. (A.8) can be written as

H(θim
n−1)− H(θ

(∗)
n )− 1

2
γn||h(θ(∗)n )||2 ≥ 0. (A.9)

We also have

H(θ
(∗)
n )− H(θ?) ≤ h(θ(∗)n )ᵀ(θ

(∗)
n − θ?) [by Assumption 3(a)]

H(θ
(∗)
n )− H(θ?) ≤ ||h(θ(∗)n )|| · ||θ(∗)n − θ?|| [by Cauchy-Schwartz]

[E
(

H(θ
(∗)
n )− H(θ?)

)
]2 ≤ E

(
||h(θ(∗)n )||2

)
E
(
||θ(∗)n − θ?||2

)
[by Jensen’s inequality]. (A.10)

Furthermore,

θim
n = θim

n−1 − γn(h(θ
(∗)
n ) + ξn)) = θ

(∗)
n − γnξn. [by Eq. (1.3)] (A.11)

Therefore,

E
(
||θim

n − θ?||2
)
= E

(
||θ(∗)n − θ?||2

)
− 2γnE

(
(θ

(∗)
n − θ?)

ᵀξn

)
+ γ2

nE
(
||ξn||2

)
= E

(
||θ(∗)n − θ?||2

)
+ γ2

nE
(
||ξn||2

)
≤ E

(
||θim

n−1 − θ?||2
)
+ γ2

nσ2. [by InEq. (A.4) and Assumption 5]

≤ E
(
||θim

0 − θ?||2
)
+ σ2

n

∑
i=1

γ2
i . [by induction.] (A.12)
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For notational convenience, define hn
def
= E

(
H(θim

n )− H(θ?)
)

and h(∗)n
def
= E

(
H(θ

(∗)
n )− H(θ?)

)
.

Our goal is to derive a bound for hn. Now, by Eq. (A.11) θ
(∗)
n = θim

n + γnξn. Since

E (ξn| Fn−1) = 0, it follows from Assumption 5, E
(
||θ(∗)n − θ?||2

)
≤ E

(
||θim

n − θ?||2
)
+γ2

nσ2.

Hence, using Ineq. (A.12),

E
(
||θ(∗)n − θ?||2

)
≤ E

(
||θim

0 − θ?||2
)
+ σ2

∞

∑
i=1

γ2
i + γ2

nσ2 ≤ Γ2, (A.13)

by definition of Γ2. Furthermore, by convexity of H and Lipschitz continuity of h (Assump-

tion 3(a)), and Assumption 5, we have

H(θim
n ) = H(θ

(∗)
n − γnξn)

H(θim
n ) ≤ H(θ

(∗)
n )− γnh(θ(∗)n )ᵀξn + γ2

n
L
2
||ξn||2 [by Lipschitz continuity]

H(θim
n )− H(θ?) ≤ H(θ

(∗)
n )− H(θ?)− γnh(θ(∗)n )ᵀξn + γ2

n
L
2
||ξn||2

hn ≤ h(∗)n + γ2
n

Lσ2

2
. [by taking expectations.] (A.14)

From Ineq. (A.10) and Ineq. (A.13),

E
(
||h(θ(∗)n )||2

)
≥ 1

Γ2 [E
(

H(θ
(∗)
n )− H(θ?)

)
]2

def
=

1
Γ2 h(∗)n

2
. (A.15)

Now, in Ineq. (A.9), we substract H(θ?) from the left-hand side, take expectations, and

combine with (A.15) to obtain

hn−1 ≥ h(∗)n +
1

2Γ2 γnh(∗)n
2
, Fγn(h

(∗)
n ). (A.16)

The function Fγn(x) is monotone increasing because hn ≥ 0 and h(∗)n ≥ 0, since H(θ?) is

minimum. Let F−1
γn

denote its inverse, which is also monotone increasing. Thus h(∗)n ≤

F−1
γn

(hn−1). Using Eq. (A.16) we can rewrite (A.14) as

hn ≤ F−1
γn

(hn−1) + γ2
n

Lσ2

2
. (A.17)

Ineq. (A.17) is our main recursion, since we want to upper-bound hn. We will now

try to find a base sequence {bn} such that bn ≥ F−1
γn

(bn−1) + γ2
n

Lσ2

2 . Since one can take
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bn to be increasing arbitrarily, we will try to find the smallest possible sequence {bn}. To

make our analysis more tractable we will search in the family of sequences bn = b1n−β, for

various values b1, β > 0. Then, bn will be an upper-bound for hn. To see this inductively,

assume that hn−1 ≤ bn−1 and that hn satisfies (A.17). Then, hn ≤ F−1
γn

(hn−1) + γ2
n

Lσ2

2 ≤

F−1
γn

(bn−1) + γ2
n

Lσ2

2 ≤ bn, where the first inequality follows from the monotonicity of Fγn ,

and the second inequality follows from definition of bn.

Now, the condition for bn can be rewritten as bn−1 ≤ Fγn(bn − γ2
n

Lσ2

2 ), and by definition

of Fγn we get

bn−1 ≤ bn − γ2
n

Lσ2

2
+ γn

1
2Γ2 (bn − γ2

n
Lσ2

2
)2 (A.18)

Using bn = b1n−β and γn = γ1n−γ (Assumption 1), we obtain

b1[(n− 1)−β − n−β] +
Lσ2γ2

1
2

n−2γ +
Lσ2γ3

1b1

2Γ2 n−β−3γ − γ1b2
1

2Γ2 n−2β−γ −
L2σ4γ5

1
8Γ2 n−5γ ≤ 0.

(A.19)

We have (n− 1)−β − n−β < 1
1−β n−1−β, for n > 1. Thus, it suffices to have

b1

1− β
n−1−β +

Lσ2γ2
1

2
n−2γ +

Lσ2γ3
1b1

2Γ2 n−β−3γ − γ1b2
1

2Γ2 n−2β−γ ≤ 0, (A.20)

where we dropped the n−5γ term without loss of generality. The positive terms in Ineq.

(A.20) are n−1−β, n−2γ, and n−β−3γ, and the only negative term is of order n−2β−γ. In order

to find the largest possible β to satisfy (A.20), one needs to equate the term n−2β−γ with the

slowest possible term with a positive coefficient, i.e., set 2β + γ = min{1 + β, β + 3γ, 2γ}.

However, β + 3γ > 1 + β and β + 3γ > 2γ, and thus 2β + γ = min{1 + β, 2γ}, which

implies only three cases:

(a) 1 + β < 2γ, and thus 2β + γ = 1 + β, which implies β = 1− γ. Also, 1 + β < 2γ ⇒

2− γ < 2γ, and thus γ ∈ (2/3, 1]. In this case, b1 will satisfy (A.20) for all n > n0,1, for

some n0,1, if

b1

1− β
<

γ1b2
1

2Γ2 ⇔ b1 >
2Γ2

γγ1
. (A.21)
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(b) 2γ < 1 + β, and thus 2β + γ = 2γ, which implies β = γ/2. Also, 1 + β > 2γ ⇒

1 + γ/2 > 2γ, and thus γ ∈ (1/2, 2/3). In this case, b1 will satisfy (A.20) for all n > n0,2,

for some n0,2, if

γ2
1Lσ2

2
<

γ1b2
1

2Γ2 ⇔ b1 > Γσ
√

Lγ1. (A.22)

(c) 2γ = 1 + β, and thus 2γ = 1 + β = 2β + γ, which implies γ = 2/3 and β = 1/3. In this

case,

b1

1− β
+

γ2
1Lσ2

2
<

γ1b2
1

2Γ2 . (A.23)

Because all constants are positive in Ineq. (A.23), including b1, it follows that

b1 >
3 +

√
9 + 4γ3

1Lσ2/Γ2

2γ1/Γ2 . (A.24)

Remark. The constants n0,1, n0,2, n0,3 depend on the problem parameters and the desired

accuracy in the bounds of Theorem 2. Thus, it is straightforward to derive exact values for

them. For example, consider case (a) and assume we picked b1 such that γ1b2
1

2Γ2 − b1
1−β = ε > 0.

Ignoring the term n−3γ−β (for simplicity), Ineq. (A.20) becomes

εn−2+γ ≥ Lσ2γ2
1

2
n−2γ ⇒ n ≥ (

Lσ2γ2
1

2ε
)c ≡ n0,1, (A.25)

where c = 1/(3γ− 2) > 0 since γ ∈ (2/3, 1]. If the desired accuracy is small, then ε is large

and so the value n0,1 will become smaller. Similarly, we can derive expressions for n0,2 and

n0,3.

Theorem 3. Suppose that Assumptions 1, 3(b), and 5 hold, and define ζn , E
(
||θim

n − θ?||2
)

and

κ , 1 + 2γ1δ1. Then, if γ + δ < 1, for every n > 0 it holds,

ζn ≤ e− log κ·n1−γ−δ
ζ0 + σ2 γ1κ

δ1
n−γ+δ + O(n−γ+δ−1).
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Otherwise, if γ = 1, δ = 0, it holds,

ζn ≤ e− log κ·log nζ0 + σ2 γ1κ

δ1
n−1 + O(n−2).

Proof. First we prove two lemmas that will be useful for Theorem 3.

Lemma 1. Consider a sequence bn such that bn ↓ 0 and ∑∞
i=1 bi = ∞. Then, there exists a positive

constant K > 0, such that

n

∏
i=1

1
1 + bi

≤ exp(−K
n

∑
i=1

bi). (A.26)

Proof. The function x log(1 + 1/x) is increasing-concave in (0, ∞). From bn ↓ 0 it follows

that log(1 + bn)/bn is non-increasing. Consider the value K def
= log(1 + b1)/b1. Then,

(1 + bn)−1 ≤ exp(−Kbn). Successive applications of this inequality yields Ineq. (A.26). The

upper bound is more accurate when bn takes lower values.

Lemma 2. Consider sequences an ↓ 0, bn ↓ 0, and cn ↓ 0 such that, an = o(bn), ∑∞
i=1 ai

def
= A < ∞,

and there is n′ such that cn/bn < 1 for all n > n′. Define,

δn
def
=

1
an

(an−1/bn−1 − an/bn) and ζn
def
=

cn

bn−1

an−1

an
, (A.27)

and suppose that δn ↓ 0 and ζn ↓ 0. Pick a positive n0 such that δn + ζn < 1 and (1 + cn)/(1 +

bn) < 1, for all n ≥ n0.

Consider a positive sequence yn > 0 that satisfies the recursive inequality,

yn ≤
1 + cn

1 + bn
yn−1 + an. (A.28)

Then, for every n > 0,

yn ≤ K0
an

bn
+ Qn

1 y0 + Qn
n0+1(1 + c1)

n0 A, (A.29)

where K0
def
= (1 + b1) (1− δn0 − ζn0)

−1, and Qn
i = ∏n

j=i(1 + ci)/(1 + bi), such that Qn
i = 1 if

n < i, by definition.
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Proof. We consider two separate cases, namely, n < n0 and n ≥ n0, and then we will combine

the respective bounds.

Analysis for n < n0. We first find a crude bound for Qn
i+1. It holds,

Qn
i+1 ≤ (1 + ci+1)(1 + ci+2) · · · (1 + cn) ≤ (1 + c1)

n0 , (A.30)

since c1 ≥ cn (cn ↓ 0 by definition) and there are no more than n0 terms in the product.

From Ineq. (A.28) we get

yn ≤ Qn
1 y0 +

n

∑
i=1

Qn
i+1ai [by expanding recursive Ineq. (A.28)]

≤ Qn
1 y0 + (1 + c1)

n0
n

∑
i=1

ai [using Ineq. (A.30)]

≤ Qn
1 y0 + (1 + c1)

n0 A. (A.31)

This inequality holds also for n = n0.

Analysis for n ≥ n0. In this case, we have for all n ≥ n0,

(1 + b1) (1− δn − ζn)
−1 ≤ K0 [by definition of n0, K0]

K0(δn + ζn) + 1 + b1 ≤ K0

K0(δn + ζn) + 1 + bn ≤ K0 [because bn ≤ b1, since bn ↓ 0]

1
an

K0(
an−1

bn−1
− an

bn
) +

1
an

K0
cnan−1

bn−1
+ 1 + bn ≤ K0 [by definition of δn, ζn]

an(1 + bn) ≤ K0an − K0

(
(1 + cn)an−1

bn−1
− an

bn

)
an ≤ K0(

an

bn
− 1 + cn

1 + bn

an−1

bn−1
). (A.32)

Now we combine Ineqs. (A.32) and (A.28) to obtain

(yn − K0
an

bn
) ≤ 1 + cn

1 + bn
(yn−1 − K0

an−1

bn−1
). (A.33)

For brevity, define sn
def
= yn − K0an/bn. Then, from Ineq. (A.33), sn ≤ 1+cn

1+bn
sn−1, where

1+cn
1+bn

< 1 since n ≥ n0. Assume n1 is the smallest integer such that n1 ≥ n0 and sn1 ≤ 0

(existence of n1 is not crucial.) For all n ≥ n1, it follows sn ≤ 0, and thus yn ≤ K0an/bn for
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all n ≥ n1. Alternatively, when n0 ≤ n < n1, all sn are positive. Using Ineq. (A.33) we have

sn ≤ (∏n
i=n0+1

1+ci
1+bi

)sn0

def
= Qn

n0+1sn0 , and thus

yn − K0
an

bn
≤ Qn

n0+1sn0 [by definition of sn]

yn ≤ K0
an

bn
+ Qn

n0+1yn0 [because sn ≤ yn]

yn ≤ K0
an

bn
+ Qn

1 y0 + Qn
n0+1(1 + c1)

n0 A. [by Ineq. (A.31) on yn0 ] (A.34)

Combining this result with Ineqs. (A.31) and (A.34), we obtain

yn ≤ K0
an

bn
+ Qn

1 y0 + Qn
n0+1(1 + c1)

n0 A, (A.35)

since Qn
i = 1 for n < i, by definition.

Corollary 1. In Lemma 2 assume an = a1n−α and bn = b1n−β, and cn = 0, where α > β, and

a1, b1, β > 0 and α > 1. Then,

yn ≤ 2
a1(1 + b1)

b1
n−α+β + exp(− log(1 + b1)φβ(n))[y0 + (1 + b1)

n0 A], (A.36)

where n0 > 0, A = ∑i ai < ∞, and φβ is defined as in Theorem 5; i.e., φβ(n) = n1−β if β < 1, and

φβ(n) = log n if β = 1.

Proof. In this proof, we will assume that the inequalities (n − 1)−γ − n−γ ≤ n−1−γ and

∑n
i=1 i−γ ≥ n1−γ hold for n ≥ n′, where 0 < γ < 1, and n′ is an appropriate threshold, that

is generally small (e.g., n′ = 14 if γ = 0.1, n′ = 5 if γ = 0.5, and n′ = 9 if γ = 0.9.)

By definition,

δn
def
=

1
an

(
an−1

bn−1
− an

bn
) =

1
a1n−α

a1

b1
((n− 1)−α+β − n−α+β) ≤ 1

b1
n−1+β. (A.37)

Also, ζn = 0 since cn = 0. We can take n0 = d(2/b1)
1/(1−β)e, for which δn0 ≤ 1/2. Therefore,

K0
def
= (1 + b1)(1− δn0)

−1 ≤ 2(1 + b1); we can simply take K0 = 2(1 + b1). Since cn = 0,
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Qn
i = ∏n

j=i(1 + bi)
−1. Thus,

Qn
1 ≥ (1 + b1)

−n, and

Qn
1 ≤ exp(− log(1 + b1)/b1

n

∑
i=1

bi), [by Lemma 1]

Qn
1 ≤ exp(− log(1 + b1)φβ(n)). [because

n

∑
i=1

i−β ≥ φβ(n)] (A.38)

Lemma 2 and Ineqs. (A.38) imply

yn ≤ K0
an

bn
+ Qn

1 y0 + Qn
n0+1(1 + c1)

n0 A [by Lemma 2]

≤ 2
a1(1 + b1)

b1
n−α+β + Qn

1 [y0 + (1 + b1)
n0 A] [by Ineqs. (A.38), c1 = 0]

≤ 2
a1(1 + b1)

b1
n−α+β + exp(− log(1 + b1)n1−β)[y0 + (1 + b1)

n0 A], (A.39)

where the last inequality also follows from Ineqs. (A.38).

Proof of Theorem 3. Now we are ready to prove the main theorem. By definition (1.2),

θim
n = θ

(∗)
n − γnξn, and thus, by Assumption 5,

E
(
||θim

n − θ?||2
)
≤ E

(
||θ(∗)n − θ?||2

)
+ γ2

nσ2 (A.40)

By definition (1.3), γnh(θ(∗)n ) + θ
(∗)
n = θim

n−1, and thus

||θim
n−1 − θ?||2 = ||θ(∗)n − θ?||2 + 2γn(θ

(∗)
n − θ?)

ᵀh(θ(∗)n ) + γ2
n||h(θ

(∗)
n )||2. (A.41)

Therefore,

||θ(∗)n − θ?||2 + 2γn(θ
(∗)
n − θ?)

ᵀh(θ(∗)n ) ≤ ||θim
n−1 − θ?||2

||θ(∗)n − θ?||2 + 2γnδn||θ(∗)n − θ?||2 ≤ ||θim
n−1 − θ?||2 [by Assumption 3(b)]

||θ(∗)n − θ?||2 ≤
1

1 + 2γnδn
||θim

n−1 − θ?||2. (A.42)
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Combining Ineq. (A.40) and Ineq. (A.42) yields

E
(
||θim

n − θ?||2
)
= E

(
||θ(∗)n − θ?||2

)
+ γ2

nσ2

≤ 1
1 + 2γnδn

E
(
||θim

n−1 − θ?||2
)
+ γ2

nσ2. (A.43)

The final result of Theorem 3 is obtained through a direct application of Corollary 1 on

recursion (A.43), by setting yn ≡ E
(
||θim

n − θ?||2
)
, bn ≡ 2γnδn, and an ≡ γ2

nσ2.

A.3 Asymptotic distribution

Theorem 4. Suppose that Assumptions 1, 2, 3(a), 5, and 6 hold. Suppose also that (2γ1 Jh(θ?)− I)

is positive-definite, where Jh(θ) is the Jacobian of h at θ, and I is the p× p identity matrix. Then,

the iterate θim
n of implicit stochastic approximation (1.2) is asymptotically normal, such that

nγ/2(θim
n − θ?)→ Np(0, Σ).

The covariance matrix Σ is the unique solution of

(γ1 Jh(θ?)− I/2)Σ + Σ(γ1 Jh(θ?)
ᵀ − I/2) = Ξ.

Proof. Convergence of θim
n → θ? is established from Theorem 1. By definition of the implicit

stochastic approximation procedure (1.2),

θim
n = θim

n−1 − γn(h(θ
(∗)
n ) + ξn), and (A.44)

θ
(∗)
n + γnh(θ(∗)n ) = θim

n−1. (A.45)

We use Eq. (A.45) and expand h(·) to obtain

h(θ(∗)n ) = h(θim
n−1)− γn Jh(θ

im
n−1)h(θ

(∗)
n ) + εn

h(θ(∗)n ) =
(

I + γn Jh(θ
im
n−1)

)−1
h(θim

n−1) +
(

I + γn Jh(θ
im
n−1)

)−1
εn, (A.46)

where ||εn|| = O(γ2
n) by Theorem 3. By Lipschitz continuity of h(·) (Assumption 3(a))

and the almost-sure convergence of θim
n to θ?, it follows h(θim

n−1) = Jh(θ?)(θ
im
n−1 − θ?) + o(1),
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where o(1) is a vector with vanishing norm. Therefore we can rewrite (A.46) as follows,

h(θ(∗)n ) = An(θ
im
n−1 − θ?) + O(γ2

n), (A.47)

such that ||An − Jh(θ?)|| → 0, and O(γ2
n) denotes a vector with norm O(γ2

n). Thus, we can

rewrite (A.44) as

θim
n − θ? = (I − γn An)(θ

im
n−1 − θ?)− γnξn + O(γ2

n). (A.48)

The conditions for Fabian’s theorem (Fabian, 1968a, Theorem 1) are now satisfied, and

thus θim
n − θ? is asymptotically normal with mean zero, and variance that is given in the

statement of Theorem 1 by Fabian (1968a).
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Appendix B

Appendix to Chapter 2

B.1 R code

All experiments were run using our sgd R package that implements explicit SGD (2.3)

and implicit SGD (2.4). The package is published at CRAN, http://cran.r-project.

org/web/packages/sgd/index.html, and has been co-authored with Dustin Tran and

and Kuang Ye. The repository at https://github.com/ptoulis/implicit-glms

contains legacy R code for explicit and implicit SGD. The folder examples/aos2014 in

that repository contains standalone code for the experiments in this paper, but it has been

superceded by the sgd R package.

B.2 Useful lemmas

In this section, we will prove certain lemmas on recursions that will be useful for the

non-asymptotic analysis of the implicit procedures. All following results are stated under a

combination of Assumptions 7.
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Lemma 1. Suppose Assumptions 7(b) (c), and (d) hold. Then, almost surely,

λn ≤
1

1 + γnλcb
, (B.2)

||θim
n − θim

n−1||2 ≤ 4L2
0γ2

n, (B.3)

where λn is defined in Theorem 9, and θim
n is the nth iterate of implicit SGD (2.4).

Proof. For the first part, from Theorem 9, the random variable λn satisfies

`(Xᵀ
nθim

n ; Yn) = λn`(Xᵀ
nθim

n−1; Yn). (B.4)

Using definition (2.4),

θim
n = θim

n−1 + γnλn`(Xᵀ
nθim

n−1; Yn)CnXn. (B.5)

We use this definition of θim
n into Eq.(B.4) and perform a Taylor approximation on ` to obtain

`(Xᵀ
nθim

n ; Yn) = `(Xᵀ
nθim

n−1; Yn) + ˜̀ ′′γnλnXᵀ
nCnXn, (B.6)

where ˜̀ ′′ = `′′(δXᵀ
nθim

n−1 + (1− δ)Xᵀ
nθim

n ; Yn), and δ ∈ [0, 1]. Thus, by definition,

(1 + γn ˜̀ ′′Xᵀ
nCnXn)λn = 1

(1− γnλc ˜̀ ′′||Xn||2)λn ≤ 1 [by Assumption 7(e)]

(1 + γnλcb)λn ≤ 1 [by Assumption 7(d)]. (B.7)

For the second part, since the log-likelihood is differentiable (Assumption 7(b)) we can

re-write the definition of implicit SGD (2.4) as

θim
n = arg max{− 1

2γn
||θ − θim

n−1||2 + `(Xᵀ
nθ; Yn)}.
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Therefore, setting θ ≡ θim
n−1 in the above equation,

− 1
2γn
||θim

n − θim
n−1||2 + `(Xᵀ

nθim
n ; Yn) ≥ `(Xᵀ

nθim
n−1; Yn)

||θim
n − θim

n−1||2 ≤ 2γn
(
`(Xᵀ

nθim
n ; Yn)− `(Xᵀ

nθim
n−1; Yn)

)
||θim

n − θim
n−1||2 ≤ 2γnL0||θim

n − θim
n−1||. (B.8)

B.3 Non-asymptotic analysis

Theorem b. Let δn , E
(
||θim

n − θ?||2
)

and κ , 1+ γ1λcλ f µ0, where µ0 ∈ [1/(1+ γ1λ f λc(p−

1)), 1]. Suppose that Assumptions 7(a),(b),(c), (d) and (e) hold. Then, there exists constant n0 such

that,

δn ≤
8L2

0λc
2
γ1κ

λcλ f µ0
n−γ + exp (− log κ · φγ(n)) [δ0 + κn0 Γ2],

where Γ2 = 4L2
0λc

2
∑i γ2

i < ∞, and φγ(n) = n1−γ if γ < 1, and φγ(n) = log n if γ = 1, and n0

is defined in Corollary 1.

Proof. Starting from Procedure (2.4) we have

θim
n − θ? =θim

n−1 − θ? + γnCn∇ log f (Yn; Xn, θim
n )

θim
n − θ? =θim

n−1 − θ? + γnλnCn∇ log f (Yn; Xn, θim
n−1) [By Theorem 9]

||θim
n − θ?||2 =||θim

n−1 − θ?||2

+ 2γnλn(θ
im
n−1 − θ?)

ᵀCn∇ log f (Yn; Xn, θim
n−1)

+ γ2
n||Cn∇ log f (Yn; Xn, θim

n )||2. (B.9)

The last term can be simply bounded since ∇ log f (Yn; Xn, θim
n ) = θim

n − θim
n−1 by definition;

thus,

||Cn∇ log f (Yn; Xn, θim
n )||2 ≤ λc

2||θim
n − θim

n−1||2 ≤ 4L2
0λc

2
γ2

n, (B.10)
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which holds almost surely by Lemma 1-Eq.(B.3).

For the second-term we can bound its expectation as

E(2γnλn(θ
im
n−1 − θ?)

ᵀCn∇ log f (Yn; Xn, θim
n−1))

≤ 2γn

1 + γnλcb
E
(
(θim

n−1 − θ?)
ᵀCn∇ log f (Yn; Xn, θim

n−1)
)

[by Lemma 1]

≤ 2γn

1 + γnλcb
E
(
(θim

n−1 − θ?)
ᵀCn∇h(θim

n−1)
)

[where ∇h(θim
n−1)

def
= E(∇ log f (Yn; Xn, θim

n−1)|Fn−1)]

≤ 2γn

1 + γnλcb
E ((zn−1 − z?)ᵀ∇h(zn−1)) [change of variables, zn

def
= C1/2

n θim
n ]

≤ −
2γnλ f

1 + γnλcb
||zn−1 − z?||2 [by strong convexity, Assumption 7(d).]

≤ −
2γnλ f λc

1 + γnλcb
||θim

n−1 − θ?||2 [by change of variables, zn = C1/2
n θim

n and Assumption 7(e).]

(B.11)

Taking expectations in Eq. (B.9) and substituting Eqs. (B.10) and (B.11) into Eq.(B.9)

yields the recursion,

E
(
||θim

n − θ?||2
)
≤ (1−

2γnλ f λc

1 + γnλcb
)E
(
||θim

n−1 − θ?||2
)
+ 4L2

0λc
2
γ2

n. (B.12)

By Assumption 7(d) it follows b ≤ 2λ f and through simple algebra we obtain,

(1−
2γnλ f λc

1 + γnλcb
) ≤ 1

1 + 2γnλ f λc
, (B.13)

for all n > 0. Therefore we can write recursion (B.12) as

E
(
||θim

n − θ?||2
)
≤ 1

1 + 2γnλ f λc
E
(
||θim

n−1 − θ?||2
)
+ 4L2

0λc
2
γ2

n. (B.14)

We can now apply Corollary 1 with an ≡ 4L2
0λc

2
γ2

n and bn ≡ 2γnλ f λc.

Note. Assuming Lipschitz continuity of the gradient ∇` instead of function ` would

not critically alter the main result of Theorem 5. In fact, assuming Lipschitz continuity

with constant L of ∇` and boundedness of E
(
||∇ log f (Yn; Xn, θ?)||2

)
≤ σ2, as it is typical

in the literature, would simply add a term γ2
nL2E

(
||θim

n − θ?||2
)
+ γ2

nσ2 in the right-hand

side of Eq. (B.9). In this case the upper-bound is always satisfied for n such that γ2
nL2 > 1,
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which also highlights a difference of implicit SGD with explicit SGD, as in explicit SGD

the term γ2
nL2||θsgd

n−1 − θ?||2 increases the upper bound and can make ||θsgd
n − θ?||2 diverge.

For, γ2
nL2 < 1, the discount factor for implicit SGD would be (1− γ2

nL2)−1(1 + γnλ f λc)−1,

which could then be bounded by a quantity (1 + γnc)−1 for some constant c. This would

lead to a solution that is similar to Theorem 5.

B.4 Asymptotic analysis

Here we prove the main result on the asymptotic variance of implicit SGD. First, we

introduce linear maps LB {·} defined as LB {X} = 1
2 (BX + XB), where B is symmetric

positive-definite matrix and X is bounded. The identity map is denoted as I and it holds

I {X} = X for all X. Also, L0 is the null operator for which L0 {X} = 0 for all X. By

the Lyapunov theorem (Lyapunov, 1992) the map LB is one-to-one and thus the inverse

operator L−1
B {·} is well-defined. Furthermore, we define the norm of a linear map as

||LB|| = max||X||=1 ||LB {X} ||. For bounded inputs X, it holds ||LB|| = O(||B||).

Lemma 2. Suppose that the sequence {γn} satisfies Assumption 7(a). Consider the matrix recursions

Xn = LI−γnBn {Xn−1}+ γn(C + Dn), (B.15)

Yn = L−1
I+γnBn

{Xn−1 + γn(C + Dn)} , (B.16)

such that

(a) All matrices Xn, Yn, Bn, Dn and C are bounded,

(b) Bn → B is positive-definite and ||Bn − Bn−1|| = O(γ2
n),

(c) C is a fixed matrix and Dn → 0.

Then, both recursions approximate the matrix L−1
B {C} i.e.,

||XnB + BXn − 2C|| → 0 and |YnB + BYn − 2C|| → 0. (B.17)

If, in addition, B and C commute then Xn, Yn → B−1C.
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Proof. We make the following definitions.

Γn
def
= I − γnBn, (B.18)

Pn
i

def
= LΓn ◦LΓn−1 ◦ · · ·LΓi , (B.19)

where the symbol ◦ denotes successive application of the linear maps, and Pn
i = I if n < i,

by definition. It follows,

||Pn
i || = O(

n

∏
j=i
||I − γiBi||) ≤ K0e−K1 ∑n

j=i γj , (B.20)

for suitable constants K0, K1 (see Polyak and Juditsky, 1992b, Appendix, Part 3). Let

Γ(n) = K1 ∑n
i=1 γi. By Assumption 7(a), Γ(n) → ∞ and thus Pn

i → L0 as n → ∞ and i is

fixed. The matrix recursion in Lemma 2 can be rewritten as Xn = LΓn {Xn−1}+ γnC + γnDn.

Solving the recursion yields

Xn =LΓn ◦LΓn−1 ◦ · · ·LΓ1 {X0}+ γnC + γnDn

+ an−1LΓn {C}+ an−1LΓn {Dn−1}

+ · · ·+

+ a1LΓn ◦LΓn−1 ◦ · · ·LΓ2 {C}+ a1LΓn ◦LΓn−1 ◦ · · ·LΓ2 {D1}
def
= Pn

1 {X0}+ Sn{C}+ D̃n, (B.21)

where we have defined the linear map Sn = ∑n
i=1 γiPn

i+1 and the matrix D̃n = ∑n
i=1 γiPn

i+1{Di}.

Since Pn
1 → L0, our goal is to prove that Sn → L−1

B and D̃n → 0. By definition,

n

∑
i=1

γiPn
i+1 = L−1

Bn
+

n

∑
i=2

Pn
i (L

−1
Bi−1
−L−1

Bi
)− Pn

1 L−1
B1

. (B.22)

To see this, first note that γn I = (I − Γn)B−1
n for every n, and thus

γnI = LI−Γn ◦L−1
Bn

. (B.23)

Therefore, if we collect the coefficients of the terms L−1
Bn

in the right-hand side of (B.22), we

93



get

L−1
Bn
+

n

∑
i=2

Pn
i (L

−1
Bi−1
−L−1

Bi
)− Pn

1 L−1
B1

= (Pn
2 − Pn

1 )L
−1
B1

+ (Pn
3 − Pn

2 )L
−1
B2

+ · · ·+ (Pn
n+1 − Pn

n )L
−1
Bn

= Pn
2 ◦LI−Γ1 ◦L−1

B1
+ Pn

3 ◦LI−Γ2 ◦L−1
B2

+ · · ·+ Pn
n+1 ◦LI−Γn ◦L−1

Bn

= Pn
2 (γ1I) + Pn

3 (γ2I) + · · ·+ Pn
n+1(γnI) [by Eq. (B.23)]

=
n

∑
i=1

γiPn
i+1,

where we used the identity Pn
i+1 − Pn

i = Pn
i+1 ◦ (I−LΓi) = Pn

i+1 ◦LI−Γi . Furthermore, since

Bi are bounded,

||L−1
Bi−1
−L−1

Bi
|| = |||L−1

Bi
◦ (LBi −LBi−1) ◦L−1

Bi−1
|| = O(||LBi −LBi−1 ||)

= O(||Bi − Bi−1||) = O(γ2
i ). [By assumption of Lemma 2]

In addition, ||∑n
i=2 Pn

i ◦ (L
−1
Bi−1
−L−1

Bi
)|| ≤ K0e−Γ(n) ∑n

i=2 eΓ(i)O(γ2
i ). Since ∑i O(γ2

i ) < ∞ and

eΓ(i) is positive, increasing and diverging, we can invoke Kronecker’s lemma and obtain

∑n
i=2 eΓ(i)O(γ2

i ) = o(eΓ(n)). Therefore

n

∑
i=2

Pn
i ◦ (L−1

Bi−1
−L−1

Bi
)→ L0, (B.24)

and since Pn
1 → L0, we conclude from Equation (B.23) that

lim
n→∞

n

∑
i=1

γiPn
i+1 = lim

n→∞
L−1

Bn
= L−1

B . (B.25)

Thus, Sn → L−1
B , as desired. For D̃n we have

D̃n =
n

∑
i=1

γiPn
i+1{Di} =L−1

Bn
{Dn}+

n

∑
i=2

Pn
i ◦ (L−1

Bi−1
{Di−1} −L−1

Bi
{Di})

+ Pn
1 ◦L−1

B1
{D1} .

Since ||Dn|| → 0 it follows that ||L−1
Bn
{Dn} || → 0 and ||(L−1

Bi−1
{Di−1} − L−1

Bi
{Di})|| =

O(γ2
i ). Recall that Pn

1 → L0, and thus D̃n → 0. Finally, we substitute this result in Equation

(B.23) to get Xn → L−1
B {C}.
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For the second recursion of the lemma,

Yn = L−1
I+γnBn

{Yn−1 + γn(C + Dn)} , (B.26)

the proof is similar. First, we make the following definitions.

Γn
def
= I + γnBn,

Qn
i

def
= L−1

Γn
◦L−1

Γn−1
◦ · · ·L−1

Γi
.

As before, Qn
i → L0. Solving the recursion (B.26) yields

Yn = Qn
1{Y0}+ Sn{C}+ D̃n, (B.27)

where we defined Sn
def
= ∑n

i=1 γiQn
i and D̃n

def
= ∑n

i=1 γiQn
i {Di}. The following identities can

also be verified by the definition of the linear maps.

L−1
Bn
◦ (I−L−1

Γn
) = γnL−1

Γn
, (B.28)

L−1
Bn

L−1
Γn

= L−1
Γn

L−1
Bn

. (B.29)

It holds,

L−1
Bn

+
n

∑
i=1

Qn
i ◦ (L−1

Bi−1
−L−1

Bi
) =L−1

Bn
◦ (I−L−1

Γn
) + L−1

Γn
◦L−1

Bn−1
◦ (I−L−1

Γn
) + · · ·

=γnL−1
Γn

+ γn−1L−1
Γn

L−1
Γn−1

+ · · · = Sn,

where the first line is obtained by Eq. (B.28) and the second line by Eq. (B.29). Thus, similar

to the previously analyzed recursion, Sn → L−1
B and D̃n → 0. Therefore, Yn → L−1

B {C}.

For both cases, if B, C commute then L−1
B {C} = X such that BX + XB = 2C. Setting

X = B−1C is a solution since BB−1C + B−1CB = C + B−1BC = 2C. By the Lyapunov

theorem, this solution is unique.
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Corollary 2. Consider the matrix recursions

Xn = LI−γnBn {Xn−1}+ γ2
n(C + Dn), (B.30)

Yn = L−1
I+γnBn

{
Yn−1 + γ2

n(C + Dn)
}

, (B.31)

where Bn, B, C, Dn satisfy the assumptions of Lemma 2. Moreover, suppose γn = γ1n−1. If the

matrix B− I/γ1 is positive-definite, then

(1/γn)Xn, (1/γn)Yn → L−1
B−I/γ1

{C} i.e.,

both matrices (1/γn)Xn and (1/γn)Yn approximate the matrix L−1
B−I/γ1

{C}. If, in addition, B and

C commute then (1/γn)Xn, (1/γn)Yn → (B− I/γ1)
−1C.

Proof. Both Xn, Yn → 0 by direct application of Lemma (2). Let X̃n = (1/γn)Xn. First, divide

(B.30) by γn to obtain

X̃n = LI−γnBn

{
X̃n−1

} γn−1

γn
+ γn(C + Dn). (B.32)

By Assumption 7(a), γn−1/γn = 1 + γn/γ1 + O(γ2
n). Then,

LI−γnBn

{
X̃n−1

} γn−1

γn
= LI−γnBn

{
X̃n−1

}
+ γnX̃n−1 + O(γ2

n). (B.33)

Therefore, we can rewrite Eq. (B.32) as

X̃n = LI−γnΓn

{
X̃n−1

}
+ γn(C + Dn), (B.34)

where Γn
def
= Bn − I/γ1 + O(γn). In the limit Γn → B − I/γ1 > 0. Furthermore,

||Γi−1 − Γi|| = O(γ2
i ) by assumptions of Corollary 2. Thus, we can apply Lemma (2) to

conclude that X̃n
def
= (1/γn)Xn → L−1

B−I/γ1
{C}. The proof for Yn follows the same reasoning

since (I + γnBn)−1(γn−1/γn) = (I + γnΓn)−1, where Γn
def
= Bn − I/γ1 + O(γn).

Theorem b. Consider SGD procedures (2.3) and (2.4), and suppose that Assumptions 7(a),(c),(d),(e)

hold, where γ = 1. The asymptotic variance of the explicit SGD estimator (2.3) satisfies

nVar
(

θ
sgd
n

)
→ γ2

1 (2γ1CI(θ?)− I)−1 CI(θ?)C.
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The asymptotic variance of the implicit SGD estimator (2.4) satisfies

nVar
(
θim

n
)
→ γ2

1 (2γ1CI(θ?)− I)−1 CI(θ?)C.

Proof. We begin with the implicit SGD procedure. For notational convenience we make the

following definitions: Vn
def
= Var

(
θim

n
)
, Sn(θ)

def
= ∇ log f (Yn; Xn, θ), Note, E (Sn(θ))

def
= h(θ).

Let Jh denote the Jacobian of function h, then, under typical regularity conditions and by

Theorem 5:

E (Sn(θ?)|Xn) = 0

Var (Sn(θ?)) = E (Var (Sn(θ?)|Xn))
def
= I(θ?)

Jh(θ) = −I(θ), [under regularity conditions]

h(θim
n ) = −I(θ?)(θim

n − θ?) + O(γn) [by Theorem 5],

||Var (Sn(θ)− Sn(θ?)) || ≤ E
(
||Sn(θ)− Sn(θ?)||2

)
≤ L2

0E
(
||θ − θ?||2

)
. (B.35)

We can now rewrite Eq. (2.4) as follows,

θim
n = θim

n−1 + γnCnSn(θ
im
n ) = θim

n−1 + γnλnCnSn(θ
im
n−1), (B.36)

where λn is defined in Theorem 9 and λn = 1−O(γn) by Eq. (B.2). Then, taking variances

on both sides of Eq. (B.36) yields

Vn = Vn−1 + γ2
nCnVar

(
Sn(θ

im
n
)

Cᵀ
n + γnCov

(
θim

n−1, Sn(θ
im
n
)

Cᵀ
n + γnCnCov

(
Sn(θ

im
n ), θim

n−1
)

.

(B.37)

We can simplify all variance/covariance terms in Eq. (B.37) as follows.

CnVar
(
Sn(θ

im
n )
)

Cᵀ
n = CnVar

(
Sn(θ?) + [Sn(θ

im
n )− Sn(θ?)]

)
Cᵀ

n

= CI(θ?)Cᵀ + o(1), [by Eqs. (B.35), Theorem 5, and Assumption 7(e)]

Cov
(
θim

n−1, Sn(θ
im
n )
)
= Cov

(
θim

n−1, Sn(θ
im
n−1)

)
+ Cov

(
θim

n−1, (λn − 1)Sn(θ
im
n−1)

)
= Cov

(
θim

n−1, h(θim
n−1)

)
+ O(γn)

= Vn−1I(θ?) + O(γn). [by Eq. (B.35), Theorem 5, Eq. (B.2)].
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Similarly, Cov
(
h(θim

n ), θim
n−1

)
= Vn−1I(θ?) + O(γn). We can now rewrite Eq. (B.37) as

Vn = LI−γnBn {Vn−1}+ γ2
n[CI(θ?)Cᵀ + o(1)], (B.38)

where Bn
def
= 2CnI(θ?) and Bn → 2CI(θ?). Corollary (2) on recursion (B.38) yields

(1/n)Vn → γ2
1 (2γ1CI(θ?)− I)−1 CI(θ?)C.

We obtain the asymptotic variance in closed-form since B and C commute, and C is

symmetric. The regularity conditions (B.35) and the convergence rates of Theorem 5 that

are crucial for this proof, also hold for the explicit procedure. Thefore for the proof for the

asymptotic variance of explicit SGD (2.3) is identical.

Theorem c. Consider SGD procedure (2.13) and suppose Assumptions 7(a),(c),(d), and (e) hold,

where γ ∈ [0.5, 1). Then, the iterate θ
(∗)
n converges to θ? in probability and is asymptotically efficient,

i.e.,

nVar
(

θ
(∗)
n

)
→ I(θ?)−1.

Proof. By Theorem 5 and Assumptions 7 (d), (c), we have

∇ log f (Yn; Xn, θim
n ) = ∇ log f (Yn; Xn, θ?)− I(θ?)(θim

n − θ?) + O(γn). (B.39)

Define, for convenience εn
def
= ∇ log f (Yn; Xn, θ?), F def

= I(θ?). Then, the first-order implicit

SGD iteration becomes

θim
n − θ? = (I + γnF)−1(θim

n−1 − θ? + γnεn + O(γ2
n)). (B.40)

We make the following definitions.

ei
def
= γi(I + γiF)−1(ε i + O(γ2

i )),

Bj
i

def
=

i

∏
k=j

(I + γkF)−1,

Dn
j

def
=

i

∏
k=n−1

Bk
j+1 = I + Bj+1

j+1 + Bj+2
j+1 + . . . + Bn−1

j+1 . (B.41)
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Then, we can solve the recursion for θ
(∗)
n − θ? to obtain

θ
(∗)
n − θ? = (1/n)Dn

0 (θ
(∗)
0 − θ?) + (1/n)

n−1

∑
i

Dn
i ei. (B.42)

Our proof is now split into proving the following two lemmas.

Lemma 3. Under Assumption 7(a) Dn
0 = o(n).

Proof. Matrix F is positive-definite by Assumption 7(d). Thus, if λ is some eigenvalue of F

then the corresponding eigenvalue of Dn
0 is 1+ 1

1+γ1λ + 1
1+γ1λ

1
1+γ2λ + · · · ≤ ∑n

i=0 exp(−Kλ ∑i
k=1 γk),

where the last inequality is obtained by Lemma 1. Because ∑ γi → ∞, the summands are

o(1), and thus Dn
0 is o(n).

Lemma 4. Suppose Assumption 7(a) and Eq. (B.39) hold. Then,

γiDn
i (I + γiF)−1 = Ωn

i + F−1, (B.43)

such that ∑n−1
i=0 Ωn

i = o(n).

Proof. Our goal will be to compare the eigenvalues of γiDn
i and F. Any matrix Dn

i shares

the same eigenvectors with F because F is positive-definite, and thus a relationship on

eigenvalues will automatically establish a relationship on the matrices. For convenience,

define qj
i

def
= ∏

j
k=i(1 + γkλ)−1 for λ > 0; by convention, qi

i−1 = 1. Also let sj
i

def
= ∑

j
k=i γk be

the function of partial sums. By Lemma 1 qj
i = O(exp(−Kλsj

i)), for some K > 0. For an

eigenvalue λ > 0 of F the corresponding eigenvalue, say λ′, of matrix γiDn
i (I + γiF)−1 is

equal to

λ′ =
γi

1 + γiλ
(qi

i+1 + qi+1
i+1 + . . . + qn−1

i+1 ). (B.44)

Thus,

λ′(1 + γiλ) =
n−1

∑
k=i

γiqk
i+1. (B.45)
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Our goal will be to derive the relationship between λ and λ′. By definition

γi+1λqi+1
i+1 + qi+1

i+1 = 1

γi+2λqi+2
i+1 + qi+2

i+1 = qi+1
i+1

. . . . . .

γn−2λqn−2
i+1 + qn−2

i+1 = qn−3
i+1

γn−1λqn−1
i+1 + qn−1

i+1 = qn−2
i+1 . (B.46)

By summing over the terms we obtain:

λ
n−1

∑
k=i+1

γkqk
i+1 + qn−1

i+1 = 1. (B.47)

If we combine with (B.44) we obtain

λ
n−1

∑
k=i

γiqk
i+1 + λ

n−1

∑
k=i

(γk − γi)qk
i+1 + qn−1

i+1 = 1 + γiλ⇒ (B.48)

(1 + γiλ)λλ′ + λ
n−1

∑
k=i

(γk − γi)qk
i+1 + qn−1

i+1 = 1 + γiλ. (B.49)

We now focus on the second term. By telescoping the series we obtain

λ
n−1

∑
k=i

(γk − γi)qk
i+1 = λ

n−1

∑
k=i

[
k

∑
j=i

(γj+1 − γj)

]
qk

i+1 = λ
n−1

∑
k=i

[
k

∑
j=i

γjo(γj)

]
qk

i+1

≤ λo(γi)
n−1

∑
k=i

sk
i qk

i+1 , qn
i . (B.50)

In Eq. (B.50) we used (γj+1 − γj)/γj = O(n−1−γ)/n−γ = O(n−1) = o(γj), by Assumption

7(a). Our goal is now to show ∑n−1
i=0 qn

i = o(n). Since qk
i+1 = O(exp(−Kλsk

i+1)) by Polyak

(1992, p845, see A6 and A7) we obtain that qn
i → 0 for fixed i as n→ ∞. Therefore we can

rewrite (B.48) as

λ′λ + qn
i + O(qn

i+1) = 1, (B.51)

where ∑n
i=0 qn

i+1 = o(n) and ∑n−1
i=0 qn

i = o(n).
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Our proof is now complete. By Eq. (B.42) and Lemmas 3 and 4 we have

θ
(∗)
n − θ? = F−1

n

∑
i=1

ε i + (1/n)o(n).

Because Var (ε i) = I(θ?), we finally obtain

nVar
(

θ
(∗)
n − θ?

)
= I(θ?)−1.

Theorem d. Suppose that Assumptions 7(a),(c),(d),(e),(f) hold. Then, the iterate θim
n of implicit

SGD (2.4) is asymptotically normal, such that

nγ/2(θim
n − θ?)→ Np(0, Σ),

where Σ = γ2
1 (2γ1CI(θ?)− I)−1 CI(θ?)C.

Proof. Let Sn(θ)
def
= ∇ log f (Yn; Xn, θ) as in the proof of Theorem 6. The conditions for

Fabian’s theorem – see Fabian (1968a, Theorem 1) – hold also for the implicit procedure.

The goal is to show that

θim
n − θ? = (I − γn An)(θ

im
n−1 − θ?) + γnξn(θ?) + O(γ2

n), (B.52)

where An → A � 0, and ξn(θ) = Sn(θ)− h(θ), and h(θ) = E (Sn(θ)); note, ξn(θ?) = Sn(θ?).

Indeed, by a Taylor expansion on Sn(θim
n ) and considering that θim

n = θim
n−1 + γnSn(θim

n ), by

definition, we have

(I + γnÎn(θ?))(θ
im
n − θ?) = θim

n−1 − θ? + γnSn(θ?), (B.53)

where În(θ?) = −∇2Sn(θ?); note, E
(
În(θ?)

)
= I(θ?). Because (I + γnÎn(θ?))−1 = I −

γnÎn(θ?) + O(γ2
n), we can rewrite Eq. (B.53) as

θim
n − θ? = (I − γnÎn(θ?))(θ

im
n−1 − θ?) + γnSn(θ?) + O(γ2

n). (B.54)

We can now apply Fabian’s Theorem to derive asymptotic normality of θim
n . The vari-

ance matrix of the asymptotic normal distribution is derived in Theorem 4 under weaker
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conditions.

B.5 Stability

Theorem f. Let λ f = max eig(I(θ?)), and suppose γn = γ1/n and γ1λ f > 1. Then, then the

maximum eigenvalue of Pn
1 satisfies

max
n>0

max{eig(Pn
1 )} = Θ(2γ1λ f /

√
γ1λ f ).

For the implicit method,

max
n>0

max{eig(Qn
1)} = O(1).

Proof. We will use the following intermediate result:

max
n>0
|

n

∏
i=1

(1− b/i)| ≈


1− b if 0 < b < 1

2b
√

2πb
if b > 1

The first case is obvious. For the second case, b > 1, assume without loss of generality that

b is an even integer. Then the maximum is given by

(b− 1)(b/2− 1)(b/3− 1) · · · (2− 1) =
1
2

(
b

b/2

)
= Θ(2b/

√
2πb), (B.55)

where the last approximation follows from Stirling’s formula. The stability result on the

explicit SGD updates of Lemma 1 follows immediately by using the largest eigenvalue λ f of

I(θ?). For the implicit SGD updates, we note that the eigenvalues of (I + γnI(θ?))−1 are

less than one, for any γn > 0 and any Fisher matrix.
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B.6 Applications

Theorem g. Suppose Assumption 7(b) holds. Then, the gradient for the implicit update (2.4) is a

scaled version of the gradient at the previous iterate, i.e.,

∇ log f (Yn; Xn, θim
n ) = λn∇ log f (Yn; Xn, θim

n−1), (B.56)

where the scalar λn satisfies,

λn`
′(Xᵀ

nθim
n−1; Yn) = `′

(
Xᵀ

nθim
n−1 + γnλn`

′(Xᵀ
nθim

n−1; Yn)Xᵀ
nCnXn; Yn

)
. (B.57)

Proof. From the chain rule∇ log f (Yn; Xn, θ) = `′(Xᵀ
nθ; Yn)Xn, and thus∇ log f (Yn; Xn, θim

n ) =

`′(Xᵀ
nθim

n ; Yn)Xn and ∇ log f (Yn; Xn, θim
n−1) = `′(Xᵀ

nθim
n−1; Yn)Xn, and thus the two gradients

are colinear. Therefore there exists a scalar λn such that

∇ log f (Yn; Xn, θim
n ) = λn∇ log f (Yn; Xn, θim

n−1)⇒

`′(Xᵀ
nθim

n ; Yn)Xn = λn`
′(Xᵀ

nθim
n−1; Yn)Xn. (B.58)

We also have,

θim
n = θim

n−1 + γnCn log f (Yn; Xn, θim
n ) [by definition of implicit SGD (2.4)]

= θim
n−1 + γnλnCn log f (Yn; Xn, θim

n−1). [by Eq. (B.58)] (B.59)

Substituting the expression for θim
n in Eq.(B.59) into Eq. (B.58) we obtain the desired result

of the Theorem in Eq. (B.56).

We now prove the last claim of the theorem regarding the search bounds for λn. For

notational convenience, define a def
= Xᵀ

nθim
n−1, g(x) def

= `′(x; Yn), and c = Xᵀ
nCnXn, where c > 0

because Cn are positive-definite. Also let x?
def
= γnλng(a), then the fixed-point equation (B.57)

can be written as

x? = γng(a + x?c). (B.60)

where g is decreasing by Assumption (b). If g(a) = 0 then x? = 0. If g(a) > 0 then x? > 0
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and γng(a + xc) < γng(a) for all x > 0, since g(a + xc) is decreasing; taking x = x? yields

γng(a) > γng(a + x?c) = x?, by the fixed-point equation (B.60). Thus, 0 < x? < γng(a).

Similarly, if g(a) < 0 then x? < 0 and γng(a + xc) > γng(a) for all x < 0, since g(a + xc) is

decreasing; taking x = x? yields γng(a) < γng(a + x?c) = x?, by the fixed-point equation.

Thus, γng(a) < x? < 0. In both cases 0 < λn < 1. A visual proof is given Figure B.1.

Figure B.1: (Search bounds for solution of Eq. (B.60)) Case g(a) > 0: Corresponds to Curve (a) defined
as γng(a + xc), c > 0. The solution x? of fixed point equation (B.60) (corresponding to right triangle) is
between 0 and γng(a) since Curve (a) is decreasing. Case g(a) < 0: Corresponds to Curve (b) also defined
as γng(a + xc). The solution x? of fixed point equation (B.60) (left triangle) is between γng(a) and 0 since
Curve (b) is also decreasing.
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B.7 Additional experiments

B.7.1 Normality experiments with implicit SGD

In Figure B.2 we plot the experimental results of Section 2.6.1 for p = 50 (parameter

dimension). We see that explicit SGD becomes even more unstable in more dimensions

as expected. In contrast, implicit SGD remains stable and validates the theoretical normal

distribution for small learning rates. In larger learning rates we observe a divergence

from the asymptotic chi-squared distribution (e.g., γ1 = 6) because when the learning rate

parameter is large there is more noise in the stochastic approximations, and thus more

iterations are required for convergence. In this experiment we fixed the number of iterations

for each value of the learning rate, but subsequent experiments verified that implicit SGD

reaches the theoretical chi-squared distribution if the number of iterations is increased.

Finally, in Figure B.3 we make a similar plot for a logistic regression model. In this case

the learning rates need to be larger because with the same distribution of covariates for

Xn, the Fisher information is smaller than in the linear normal model. Thus, in almost all

experiments explicit SGD was unstable and could not converge whereas implicit SGD was

stable and followed the theoretical chi-squared distribution.

B.7.2 Poisson regression

In this experiment, we illustrate our method on a bivariate Poisson model which is simple

enough to derive the variance formula analytically. We assume binary features such that,

for any iteration n, Xn is either (0, 0)ᵀ, (1, 0)ᵀ or (0, 1)ᵀ with probabilities 0.6, 0.2 and 0.2

respectively. We set θ? = (θ1, θ2)ᵀ for some θ1, θ2, and assume Yn ∼ Poisson(exp(Xᵀ
nθ?)),

where the transfer function h is the exponential, i.e., h(x) = exp(x). It follows,

I(θ?) = E
(
h′(Xᵀ

nθ?)XnXᵀ
n
)
= 0.2

(
eθ1 0
0 eθ2

)
.
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explicit implicit
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Figure B.2: Simulation with normal model for p = 50 parameters. Implicit SGD is stable and follows
the nominal chi-squared distribution well, regardless of the particular learning rate. Explicit SGD becomes
unstable at larger γ1 and its distribution does not follow the theoretical distribution chi-squared distribution
well. In particular, the distribution of N(θ

sgd
N − θ?)ᵀΣ−1(θ

sgd
N − θ?) quickly becomes unstable for larger

values of the learning rate parameter, and eventually diverges when γ1 > 3.

We set γn = 10/3n and Cn = I. Setting θ1 = log 2 and θ2 = log 4, the asymptotic variance Σ

in Theorem 6 is equal to

Σ =
2
3

 eθ1

(4/3)eθ1−1
0

0 eθ2

(4/3)eθ2−1

 =

(
0.8 0
0 0.62

)
. (B.61)

Next, we obtain 100 independent samples of θ
sgd
n and θim

n for n = 20000 iterations of

procedures (2.3) and (2.4), and compute their empirical variances. We observe that the

implicit estimates are particularly stable and have an empirical variance satisfying

(1/γn)V̂ar(θim
n ) =

(
0.86 −0.06
−0.06 0.64

)
,

and that is close to the theoretical value (B.61). In contrast, the standard SGD estimates are

quite unstable and their L2 distance to the true values θ? are orders of magnitude larger

than the implicit ones (see Table B.1 for sample quantiles). By Lemma 1, such deviations are
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explicit implicit
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Figure B.3: Simulation with logistic regression model for p = 5. Learning rates are larger than in the linear
normal model to ensure the asymptotic covariance matrix of Theorem 6 is positive definite. Implicit SGD
is stable and follows the nominal chi-squared distribution regardless of the learning rate. Explicit SGD is
unstable at virtually all replications of this experiment.

expected for standard SGD because the largest eigenvalue of I(θ?) is λ(2) = 0.8 satisfying

γ1λ(2) = 8/3 > 1. Note that it is fairly straightforward to stabilize the standard SGD

procedure in this problem, for example by modifying the learning rate sequence to γn =

min{0.15, 10/3n}. In general, when the optimization problem is well-understood, it is

easy to determine the learning rate schedule that avoids out-of-bound explicit updates.

In practice, however, we are working with problems that are not so well-understood and

determining the correct learning rate parameters may take substantial effort, especially in

multi-dimensional settings. The implicit method eliminates this overhead; a wide range of

learning rates can lead to convergence on all problems.

B.7.3 Experiments with glmnet

In this section, we transform the outcomes in the original experiment Y through the logistic

transformation and then fit a logistic regression model. The results are shown in Table B.2
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Table B.1: Quantiles of ||θsgd
n − θ?|| and ||θim

n − θ?||. Values larger than 1e3 are marked “*".

quantiles

method 25% 50% 75% 85% 95% 100%
SGD 0.01 1.3 435.8 * * *
Implicit 0.00 0.01 0.02 0.02 0.03 0.04

which replicates and expands on Table 2 of (Friedman et al., 2010). The implicit SGD method

maintains a stable running time over different correlations and scales sub-linearly in the

model size p. In contrast, glmnet is affected by the model size p and covariate correlation

such that it remains 2x-10x slower across experiments. The SGD method is significantly

slower in the logistic regression example compared to the normal case (Table B.2). This is

because the implicit equation of Algorithm 1 needs to be solved numerically, whereas a

closed-form solution is available in the normal case.

B.7.4 Support vector machines

In this experiment, we are interested to test the performance of the implicit procedure

outside the family of GLMs. For that purpose, we implement an implicit online learning

procedure for a SVM model and compare it to a standard SGD method on the RCV1 dataset,

which is a typical large-scale machine learning benchmark.1 Some results using variations

on the loss functions and the regularization parameter are shown in Table B.3. A complete

understanding of these results is still missing, however we do observe that the implicit

method fares well compared to optimized explicit SGD and, at the same time, remains

remarkably robust to misspecification. For example, in all experiments the standard SGD

method degrades in performance for small or large regularization (in these experiments,

the regularization parameter λ also affects the learning rate such that larger λ means larger

learning rates). However, the implicit method maintains a more stable performance accross

1 We used Bottou’s SVM SGD implementation available at http://leon.bottou.org/projects/sgd.
Our implicit SVM is available at the first author’s website.
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Table B.2: Experiments comparing implicit SGD with glmnet. Covariates X are sampled as normal, with
cross-correlation ρ, and the outcomes are sampled as y ∼ Binom(p), logit(p) = N (Xθ?, σ2 I). Running
times (in secs) are reported for different values of ρ averaged over 10 repetitions.

method metric correlation (ρ)
0 0.2 0.6 0.9

N = 1000, p = 10

GLMNET
time(secs) 0.02 0.02 0.026 0.051

mse 0.256 0.257 0.292 0.358

SGD
time(secs) 0.058 0.058 0.059 0.062

mse 0.214 0.215 0.237 0.27

N = 5000, p = 50

GLMNET
0.182 0.193 0.279 0.579
0.131 0.139 0.152 0.196

SGD
0.289 0.289 0.296 0.31
0.109 0.108 0.116 0.14

N = 100000, p = 200

GLMNET
8.129 8.524 9.921 22.042
0.06 0.061 0.07 0.099

SGD
5.455 5.458 5.437 5.481
0.045 0.046 0.048 0.058

experiments and, interestingly, it achieves best performance under minimal regularization

using the hinge loss.

B.7.5 Experiments with machine learning algorithms

In this section we perform additional experiments with related methods from the machine

learning literature. We focus on averaged implicit SGD (2.13), which was shown to achieve

optimality under suitable conditions, because most machine learning methods are also

designed to achieve optimality (also known linear convergence rate), in the context of

maximum-likelihood (or maximum a-posteriori) computation with a finite data set. In

summary, our experiments include the following procedures:
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Table B.3: Test errors of standard and implicit SGD methods on the RCV1 dataset benchmark. Training times
are roughly comparable. Best scores, for a particular loss and regularization, are in bold.

regularization (λ)

loss 1e-5 1e-7 1e-12

Hinge SGD 4.65% 3.57% 4.85%

Implicit 4.68% 3.6% 3.46%

Log SGD 5.23% 3.87% 5.42%

Implicit 4.28% 3.69% 4.01%

• Explicit SGD procedure (2.3).

• Implicit SGD procedure (2.4).

• Averaged explicit SGD: Averaged stochastic gradient descent with explicit updates

of the iterates (Xu, 2011; Shamir and Zhang, 2012; Bach and Moulines, 2013). This is

equivalent to procedure (2.13) where the implicit update is replaced by an explicit one,

θ
sgd
n = θ

sgd
n−1 + γn∇ log f (Yn; Xn, θ

sgd
n−1).

• Prox-SVRG: A proximal version of the stochastic gradient descent with progressive

variance reduction (SVRG) method (Xiao and Zhang, 2014).

• Prox-SAG: A proximal version of the stochastic average gradient (SAG) method

(Schmidt et al., 2013). While its theory has not been formally established, Prox-SAG

has shown similar convergence properties to Prox-SVRG.2

• AdaGrad (Duchi et al., 2011b) as defined in Eq. (2.11). We note that AdaGrad and

similar adaptive methods effectively approximate the natural gradient by using a

larger-dimensional learning rate. It has the added advantage of being less sensitive

than first-order methods to tuning of hyperparameters.

2We note that the linear convergence rates for Prox-SVRG and Prox-SAG refer to convergence to the
empirical minimizer (i.e., MLE or MAP), and not to the ground truth θ?.
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Averaged explicit SGD

In this experiment we validate the theory of statistical efficiency and stability of averaged

implicit SGD. To do so, we follow a simple normal linear regression example from Bach

and Moulines (2013), which is similar to the experiment in Section 2.6.2. We set N = 1e6

as the number of observations, and p = 20 be the number of covariates. We also set

θ? = (0, 0, . . . , 0)ᵀ ∈ R20 as the true parameter value. The random variables Xn are

distributed i.i.d. as Xn ∼ Np(0, H), where H is a randomly generated symmetric matrix with

eigenvalues 1/k, for k = 1, . . . , p. The outcome Yn is sampled from a normal distribution as

Yn |Xn ∼ N (Xᵀ
nθ∗, 1), for n = 1, . . . , N. We choose a constant learning rate γn ≡ γ according

to the average radius of the data R2 = trace(H), and for both averaged explicit and implicit

SGD we collect iterates θn for n = 1, . . . , N, and keep the average θ̄n. In Figure B.4, we plot

(θn − θ?)ᵀH(θn − θ?) for each iteration for a maximum of N iterations, i.e., a full pass over

the data, in log-log space.

Figure B.4 shows that averaged implicit SGD performs on par with averaged explicit

SGD for the rates at which averaged explicit SGD is known to be optimal. Thus, averaged

implicit SGD is also optimal. However, the benefit of the implicit procedure in averaged

implicit SGD becomes clear as the learning rate deviates; notably, averaged implicit SGD

remains stable for learning rates that are above the theoretical threshold, i.e., γ > 1/R2,

whereas averaged explicit SGD diverges in the case of γ = 2/R2. This stable behavior is

also exhibited in implicit SGD, but it converges at a slower rate than averaged implicit SGD,

and thus cannot effectively combine stability with statistical efficiency. We note that stability

of averaged implicit SGD is also observed in the same experiments using decaying learning

rates.

Prox-SVRG and Prox-SAG

We now conduct a study of averaged implicit SGD’s empirical performance on the standard

benchmark of large scale linear classification on real data sets. For brevity, we display results

on four data sets, although we have seen similar results on eight additional ones.
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Table B.4: Summary of data sets and the L2 regularization parameter λ used

description type features training set test set λ

covtype forest cover type sparse 54 464,809 116,203 10−6

delta synthetic data dense 500 450,000 50,000 10−2

rcv1 text data sparse 47,152 781,265 23,149 10−5

mnist digit image features dense 784 60,000 10,000 10−3

Our datasets are summarized in Table B.4. The COVTYPE data set (Blackard, 1998)

consists of forest cover types in which the task is to classify class 2 among 7 forest cover

types. DELTA is synthetic data offered in the PASCAL Large Scale Challenge (Sonnenburg

et al., 2008) and we apply the default processing offered by the challenge organizers. The

task in RCV1 is to classify documents belonging to class CCAT in the text dataset (Lewis

et al., 2004), where we apply the standard preprocessing provided by Bottou (2012). In the

MNIST data set (Le Cun et al., 1998) of images of handwritten digits, the task is to classify

digit 9 against all others.

For averaged implicit SGD and averaged explicit SGD, we use the learning rate γn =

η0(1 + λη0n)−3/4 prescribed in Xu (2011), where the constant η0 is determined using a small

subset of the data. Hyperparameters for other methods are set based on a computationally

intensive grid search over the entire hyperparameter space: for Prox-SVRG, this includes

the step size η in the proximal update and the inner iteration count m, and for Prox-SAG,

the same step size η.

The results are shown in Figure B.5. We see that averaged implicit SGD achieves

comparable performance with the tuned proximal methods Prox-SVRG and Prox-SAG,

as well as AdaGrad. All methods have a comparable convergence rate and take roughly

a single pass in order to converge. AdaGrad exhibits a larger variance in its estimate

than the proximal methods, which can be explained from our theoretical results in Section

2.4.2. We also note that as averaged implicit SGD achieves comparable results to the
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other proximal methods, it also requires no tuning while Prox-SVRG and Prox-SAG do

require careful tuning of their hyparameters. This was confirmed from separate sensitivity

analyses (not reported in this paper), which indicated that aisgd is robust to fine-tuning

of hyperparameters in the learning rate, whereas small perturbations of hyperparameters

in averaged explicit SGD (the learning rate), Prox-SVRG (proximal step size η and inner

iteration m), and Prox-SAG (proximal step size η), can lead to arbitrarily bad error rates.
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Figure B.4: Loss of averaged implicit SGD, averaged explicit SGD, and plain implicit SGD (2.4) (Cn = I), on
simulated multivariate normal data with N = 1e6 observations p = 20 features. The plot shows that averaged
implicit SGD is stable regardless of the specification of the learning rate γ and without sacrificing performance.
In contrast, explicit averaged SGD is very sensitive to misspecification of the learning rate.

114



0.22

0.24

0.26

0.28

0.30

0.2 0.4 0.6 0.8 1.0
Number of passes

AdaGrad
ai−SGD
ASGD
Prox−SAG
Prox−SVRG
SGD

covtype test error

0.20

0.22

0.24

0.26

0.28

0.30

0.2 0.4 0.6 0.8 1.0
Number of passes

AdaGrad
ai−SGD
ASGD
Prox−SAG
Prox−SVRG
SGD

delta test error

0.050

0.055

0.060

0.065

0.070

0.2 0.4 0.6 0.8 1.0
Number of passes

AdaGrad
ai−SGD
ASGD
Prox−SAG
Prox−SVRG
SGD

rcv1 test error

0.10

0.11

0.12

0.13

0.14

0.15

0.2 0.4 0.6 0.8 1.0
Number of passes

AdaGrad
ai−SGD
ASGD
Prox−SAG
Prox−SVRG
SGD

mnist test error

Figure B.5: Large scale linear classification with log loss on four data sets. Each plot indicates the test error of
various stochastic gradient methods over a single pass of the data.
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