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Abstract
Prediction markets are a popular mechanism for generating consensus probability estimates for
future events. Agents trade assets whose value is tied to a particular observation, for example, which
political candidate wins the next presidential election, and asset prices determine a probability
distribution over the set of possible outcomes. Typically, the outcome space is relatively small,
allowing agents to directly trade in each outcome, and allowing a market-maker to explicitly update
asset prices. Combinatorial markets, in contrast, work to more efficiently aggregate information
by estimating the entire joint distribution of dependent observations, in which case the outcome
space often grows exponentially. In this paper, we consider the problem of pricing combinatorial
markets for single-elimination tournaments. With n competing teams, the outcome space is of
size 2n−1. We show that the general pricing problem for tournaments is #P-hard, and we derive
a polynomial-time algorithm when asset types are appropriately restricted to a natural betting
language. This is the first example of a tractable market-maker driven combinatorial market.
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1. Introduction

Committing to a bet is a credible way to state an opinion. Declaring that Duke will win the
NCAA College Basketball Tournament is easy to say; staking money on their victory at partic-
ular odds offers a quantifiable signal. A prediction market is a betting intermediary designed to
aggregate opinions about events of particular interest or importance. For example, Intrade.com
moderates bets on whether avian flu will hit the United States in 2008, and the Iowa Electronic
Market (IEM) offers odds on presidential hopefuls. Market prices reflect a stable consensus of a
large number of opinions about the likelihood of given events. Prediction market forecasts, like
those on Intrade and IEM, have a track record of remarkable accuracy [1; 3; 11; 13; 14].

Betting intermediaries abound, from Las Vegas to Wall Street, yet nearly all operate in a similar
manner. In particular, each bet type is managed independently, even when the bets are logically
related: For example, stock options with different strike prices are traded in separate streams. In
contrast, combinatorial markets propagate information appropriately across logically-related bets
[6; 7]. Thus, these mechanisms have the potential to both collect more information and process
that information more fully than standard mechanisms. However, this often requires maintaining
a probability distribution over a set which is exponentially larger than the number of base bets.

In this paper, we consider the problem of pricing combinatorial markets for single-elimination
tournaments. With n competing teams, the outcome space is of size 2n−1. We show that the
general pricing problem for tournaments is #P-hard, and we derive a polynomial-time algorithm
when bet types are appropriately restricted. This is the first example of a tractable market-maker
driven combinatorial market. In our betting language, agents may buy and sell assets of the form
“team i wins game k”, and may also trade in conditional assets of the form “team i wins game k
given that they make it to that game” and “team i beats team j given that they face off.” Although
these are arguably natural bets to place, the expressiveness of the language has the surprising side
effect of introducing dependencies between games which we would naively think to be independent.
For example, it is possible in this language to have a market distribution in which the winners of
first round games are not independent of one another. This phenomenon relates to results on the
impossibility of preserving independence in an aggregate distribution [5; 12]. We show that the
usual independence relationships are restored if we only permit bets of the form “team i beats team
j given that they face off.”

To prove our results, we represent market distributions as Bayesian networks, a well-studied
structure for modeling knowledge under uncertainty. In typical applications, queries are made to
the network to compute conditional probabilities under a fixed distribution. It is interesting to
note that our algorithm uses the results of these queries to iteratively update the Bayesian network
itself so as to mirror the evolving market distribution. A surprising feature of our representation
is that network edges are necessarily oriented in the opposite direction suggested by the usual
understanding of causality in tournaments. For example, instead of conditioning the distribution
of second round games on the results of first round games, we condition on the results of third
round games.

Related Work. Prior work on combinatorial markets has primarily focused on call market
exchanges, in which agents place orders for assets, and the clearing problem is to risklessly match
these orders between agents. Fortnow et al. [4] analyze, the computational complexity of Boolean-
style betting, where the underlying outcome space is binary n-tuples and agents are allowed to bet
on sets described by Boolean formulas. They show that for divisible orders the matching problem
is co-NP-complete, and is

∑p
2-complete for indivisible orders. Indivisible order matching is hard

even when bets are restricted to conjunctions of only two literals. Chen et al. [2] analyze two
languages for betting on permutations—pair betting and subset betting. A pair bet is a bet on
one candidate to finish ahead of another, e.g., “candidate A beats candidate B”. Subset bets come
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in two forms: position-subset bets and candidate-subset bets. A position-subset bet is a bet on a
single candidate to finish in a subset of positions, e.g.,“candidate A finishes in position 1, 2, or 5”; a
candidate-subset bet is a bet on a subset of candidates to finish in a single position, e.g., candidate
A, B, or D finishes in position 2”. They show that subset betting is tractable while pair betting is
not.

Asset prices in the markets we analyze are determined by the logarithmic market-maker mech-
anism [7] that was recently introduced, and which seems to have considerable advantages over
call market designs. Agents trade directly with the market-maker, who sets asset prices and who
accepts all buy and sell orders at these prices. In particular, market-makers alleviate both the
thin market and irrational participation problems that affect both online and real-world markets.
The thin market problem arises when agents have to coordinate which assets they will trade with
each other, as is the case in call markets. The liquidity added by a market-maker is especially
important in supporting the large number of bet types typical in the combinatorial setting. In
zero-sum games, ‘no-trade’ theorems [9] state that rational agents, after hedging their risks, will
no longer trade with each other, even when they hold private information. Market-makers avoid
this irrational participation issue by, in essence, subsidizing the market.

Our paper is organized as follows: In Section 2 we review the general framework of prediction
markets and discuss Bayesian networks. In Section 3 we derive our main result, a polynomial-time
algorithm to price combinatorial markets for single-elimination tournaments. Appendix A presents
an approximation scheme for the general, #P-hard, problem of pricing combinatorial markets. The
proofs of some of our results have been placed in Appendix B.

2. Preliminaries

2.1. Prediction Markets. Prediction markets are speculative markets created for the purpose of
making predictions.

2.1.1. Market Scoring Rules. A market scoring rule maintains a probability distribution over an
outcome space Ω which reflects a consensus estimate of the likelihood of any event. Market scoring
rules may be implemented as market-maker driven exchanges in which traders buy and sell securities
of the form “Pays $1 if ω occurs”. All transaction costs are paid to a market-maker who agrees
to honor the contracts. Let q : Ω 7→ R indicate the number of outstanding shares on each state.
If a trader wishes to change the number of outstanding shares from q to q̃, i.e, wants to buy or
sell shares, the cost of the transaction under the logarithmic market scoring rule [7] is C(q̃)−C(q)
where

C(q) = b log
∑
τ∈Ω

eq(τ)/b.

The parmeter b is the liquidity, or depth, of the market. When b is large, it becomes more expensive
for any particular agent to move the market distribution. If there are q outstanding shares, the
spot price for shares on a given outcome ω is

Pq(ω) =
d

dq(ω)
C(q) =

eq(ω)/b∑
τ∈Ω eq(τ)/b

which is interpreted as the aggregate, market-generated probability estimate for ω.

2.1.2. Securities for Conditional Events. For an event A ⊂ Ω, to construct the security “Pays $1 if
A occurs,” a trader purchases one share on each outcome ω ∈ A. Traders may also desire conditional
securities of the form “Pays $1 if A occurs, conditional on B occurring.” If the condition B does
not occur, then the transaction should be effectively voided. To construct this asset, traders buy
shares of AB and short sell shares of ĀB for zero net payment (but assume liability in ĀB). In
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this way, if B does not occur, the trader is not paid for AB, and does not have to cover shares in
ĀB. Otherwise, assuming B occurs, she is paid depending on whether A happens. Specifically, to
simulate buying ∆ shares of the security A|B, the agent buys

(2.1) b log

(
e∆/b

e∆/bPq(A|B) + Pq(Ā|B)

)
shares of AB, and short sells

(2.2) b log
(
e∆/bPq(A|B) + Pq(Ā|B)

)
shares of ĀB. Lemma B.1 shows that this transaction requires zero net payment. If ĀB occurs,
the agent has to cover the shares she sold short, for a loss of dollars equal to (2.2), since each share
pays $1. In order to avoid extending credit to agents, the market-maker asks the agent to pay this
potential loss up front, which is returned if ĀB does not occur. Then, if AB occurs, the agent
receives:

b log

(
e∆/b

e∆/bPq(A|B) + Pq(Ā|B)

)
+ b log

(
e∆/bPq(A|B) + Pq(Ā|B)

)
= ∆.

If ĀB occurs, the agent receives nothing; and if B does not occur, the agent is returned her deposit
of b log

(
e∆/bPq(A|B) + Pq(Ā|B)

)
.

2.2. Bayesian Networks. A Bayesian network (or a belief network) is a probabilistic graphical
model that represents a set of variables and their probabilistic dependencies. Formally, a Bayesian
network is a directed graph with labeled nodes corresponding to random variables X1, . . . , Xn, and
edges drawn from lower to higher numbered nodes (see, e.g., Figures 1 and 2). The parents of a
node Xi are those nodes that point to Xi. Given a joint distribution P (X1 = x1, . . . , Xn = xn) on
the nodes, a Bayesian network is a representation of P if

P (Xi = xi|X1, . . . , Xi−1) = P (Xi = xi|parents(Xi)).

These conditional probabilities, together with the structure of the Bayesian network, completely
determine P . Namely,

P (X1 = x1, . . . , Xn = xn) =
n∏

i=1

P (Xi = xi|X1 = x1, . . . , Xi−1 = xi−1) =
n∏

i=1

P (Xi = xi|parents(Xi)).

Although the Bayesian network completely specifies a distribution, in general it is NP-hard to
compute, e.g., marginal probabilities P (Xi = xi). For certain network topologies, however, there
exist efficient algorithms to compute both marginal and conditional distributions [10; 15]. In
particular, for pricing tournaments, we rely on the fact that one can perform these computations
on trees in time linear in the number of nodes.

3. Pricing Combinatorial Markets for Tournaments

In Section 3.1 we present an elementary argument that the general pricing problem for tour-
naments is #P-hard. Given this difficulty, in Section 3.2 we derive a polynomial-time pricing
algorithm by appropriately restricting to a natural betting language. The expressiveness of this
language has the side effect of introducing dependencies between games which we would naively
think to be independent, a phenomenon related to results on the impossibility of preserving inde-
pendence in an aggregate distribution [5; 12]. In Section 3.3 we show that the usual independence
relationships are restored if we further restrict the language.
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3.1. Computational Complexity. The outcome space Ω for tournaments with n teams can be
represented as the set of binary vectors of length n − 1, where each coordinate denotes whether
the winner of a game came from the left branch or the right branch of the tournament tree. Then
|Ω| = 2n−1 and, in the most general version of the pricing problem, agents are allowed to bet on
any of the 22n−1

subsets of Ω. The pricing problem is #P-hard, even under certain restrictions on
the betting language.

Lemma 3.1. Suppose that there are no outstanding shares when the tournament market opens,
and let φ be a Boolean formula. For Sφ = {ω : ω satisfies φ}, |Sφ| = 2n−1(ec/b−1)/(e1/b−1) where
c is the cost of purchasing 1 share of Sφ and b is the liquidity parameter.

Proof. The cost of the transaction is

c = b log
(
|Sφ|e1/b + 2n−1 − |Sφ|

)
− b log 2n−1 = b log

(
|Sφ|
2n−1

(
e1/b − 1

)
+ 1
)

and the result follows from solving for |Sφ|. �

Corollary 3.1. Suppose agents are allowed to place bets on sets Sφ where φ is a monotone 2-CNF,
i.e., φ = c1 ∧ · · · ∧ cr and ci is the disjunction of 2 non-negated literals. Then the pricing problem
restricted to this betting language is #P-hard.

Proof. The result follows from the fact that monotone #2-SAT is #P-complete [16]. �

3.2. A Tractable Betting Language. Given that the general pricing problem is #P-hard, we
restrict the types of bets agents are allowed to place. Here we show how to support bets of the
form “team i wins game k”, “team i wins game k given that they make it to that game” and “team
i beats team j given they face off.” The key observation for pricing these assets is that bets in this
language preserve the Bayesian network structure depicted in Figure 1, in which edges are directed
away from the final game of the tournament. Surprisingly, these bets do not preserve the Bayesian
structure corresponding to the usual understanding of causality in tournaments, in which arrows
are reversed (see Figure 2).

X1

X3X2

X4 X5 X6 X7

X8 X9 X10 X11
X12 X13 X14 X15

Figure 1. A Bayesian network for a tournament. Nodes represent game winners,
and edges are oriented in reverse of that suggested by the usual notion of causality.

We start with some preliminary results. Lemma 3.2 and Corollary 3.2 show how, in an arbitrary
market, probabilities are updated as the result of buying shares on an event. Lemma 3.3 shows
how to simplify certain conditional probabilities for a Bayesian network structured as in Figure 1.
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Lemma 3.2. Suppose ∆b shares are purchased for the event A, where b is the liquidity parameter.
Let P denote the distribution on Ω before the shares are purchased, and let P̃ denote the distribution
after the purchase. Then for any event B ⊂ Ω we have

P̃ (B) = P (B)
[
e∆P (A|B) + P (Ā|B)

e∆P (A) + P (Ā)

]
.

Proof. We use the notation qω to indicate the number of shares on outcome ω before the purchase,
and q̃ω for the number of shares after the purchase. Observe that

P̃ (B)
P̃ (B̄)

=
∑

ω∈AB eq̃ω/b +
∑

ω∈ĀB eq̃ω/b∑
ω∈AB̄ eq̃ω/b +

∑
ω∈ĀB̄ eq̃ω/b

=
e∆
∑

ω∈AB eqω/b +
∑

ω∈ĀB eqω/b

e∆
∑

ω∈AB̄ eqω/b +
∑

ω∈ĀB̄ eqω/b

=
e∆P (AB) + P (ĀB)
e∆P (AB̄) + P (ĀB̄)

.

Now, since P̃ (B) = [P̃ (B)/P̃ (B̄)]/[1 + P̃ (B)/P̃ (B̄)], we have

P̃ (B) =
[
e∆P (AB) + P (ĀB)
e∆P (AB̄) + P (ĀB̄)

]/[
1 +

e∆P (AB) + P (ĀB)
e∆P (AB̄) + P (ĀB̄)

]
=

e∆P (AB) + P (ĀB)
e∆P (AB) + P (ĀB) + e∆P (AB̄) + P (ĀB̄)

=
e∆P (AB) + P (ĀB)

e∆P (A) + P (Ā)

= P (B)
[
e∆P (A|B) + P (Ā|B)

e∆P (A) + P (Ā)

]
.

�

Corollary 3.2. Suppose ∆b shares are purchased for the event A, where b is the liquidity param-
eter. Let P denote the distribution on Ω before the shares were purchased, and let P̃ denote the
distribution after the purchase. Then for any events B,C ⊂ Ω we have

P̃ (B|C) = P (B|C)
[
e∆P (A|BC) + P (Ā|BC)

e∆P (A|C) + P (Ā|C)

]
.

Proof. The result follows from a Lemma 3.2 by writing P̃ (B|C) = P̃ (BC)/P̃ (C). �

Lemma 3.3. Consider a probability distribution P represented as a Bayesian network on a binary
tree with arrows pointing away from the root and nodes labeled as in Figure 1. Select a node Xi

with i > 1, and for m < i, let Xi,m be the highest numbered node in {X1, . . . , Xm} that lies along
the unique path from the root to Xi. Then,

P (Xi = xi|X1, . . . , Xm) = P (Xi = xi|Xi,m).

Proof. Let Xi0 , Xi1 , . . . , Xik denote the path from Xi up to Xi,m, i.e. Xi0 = Xi, Xik = Xi,m and
Xij is the parent of Xij−1 . By induction on k, the length of the path, we show

P (Xi = xi|X1, . . . , Xm)

=
∑

xi1
,...,xik−1

P (Xi = xi|Xi1 = xi1)P (Xi1 = xi1 |Xi2 = xi2) · · ·P (Xik−1
= xik−1

|Xik).
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For k = 1, P (Xi = xi|X1, . . . Xm) = P (Xi = xi|Xi1), since i1 ≤ m and, by the Bayesian network
assumption, Xi is conditionally independent of its predecessors given its parent. For the inductive
step, observe that

P (Xi = xi|X1, . . . , Xm) =
∑
xi1

P (Xi = xi|Xi1 = xi1 , X1, . . . , Xm)P (Xi1 = xi1 |X1, . . . , Xm)

=
∑
xi1

P (Xi = xi|Xi1 = xi1)P (Xi1 = xi1 |X1, . . . , Xm).

The result follows by applying the induction hypothesis to P (Xi1 = xi1 |X1, . . . , Xm). �

Theorem 3.1 and Corollary 3.3 show that bets on game winners preserve the Bayesian network
structure, and, importantly, how to update the distribution.

Theorem 3.1. Suppose P is represented as a Bayesian network on a binary tree with nodes
numbered as in Figure 1 and arrows pointing away from the root. Consider a market order
O = (gj , tj ,∆b), interpreted as buying ∆b shares on outcomes in which team tj wins game gj.
Then the distribution P̃ that results from executing the order is also represented by a Bayesian
network with the same structure, and only the distributions of gj and its ancestors are affected.
Furthermore, the uniform distribution P0, corresponding to 0 shares on each outcome, is repre-
sented by the Bayesian network.

Proof. Each node Xi, excepting the root, has a unique parent which we call X̂i. We start by
considering the uniform distribution P0. Let D(Xi) be the domain of Xi, i.e. D(Xi) = {t : {Xi =
t} 6= ∅}. Observe that for each non-root node

P0(Xi = xi|X1, . . . , Xi−1) =

 1 X̂i = xi and xi ∈ D(Xi)
1/|D(Xi)| X̂i 6∈ D(Xi) and xi ∈ D(Xi)
0 otherwise

.

In particular, P0(Xi = xi|X1, . . . , Xi−1) = P0(Xi = xi|X̂i), showing that P0 is represented by the
Bayesian network.

Now we consider the case of updating. Set A = {Xgj = tj}, B = {Xi = xi} where Xi is
a non-root node, C = {X1 = x1, . . . , Xi−1 = xi−1} for some configuration (x1, . . . , xi−1), and
Ĉ = {X̂i = x̂i} where x̂i is the value of X̂i in C. Corollary 3.2 shows that

P̃ (B|C) = P (B|C)
[
e∆P (A|BC) + P (Ā|BC)

e∆P (A|C) + P (Ā|C)

]
= P (B|Ĉ)

[
e∆P (A|BC) + P (Ā|BC)

e∆P (A|C) + P (Ā|C)

]
where the last equality follows from the Bayesian network assumption. Consider the following
cases:

(1) gj < i: Then, P (A|BC) = P (A|C), and consequently, P̃ (B|C) = P (B|Ĉ).
(2) gj = i: Then, P (A|BC) = P (A|B), and so

P̃ (B|C) = P (B|Ĉ)

[
e∆P (A|B) + P (Ā|B)
e∆P (A|Ĉ) + P (Ā|Ĉ)

]
.

(3) gj > i: In this case, Lemma 3.3 shows that P (A|X1, . . . , Xi) = P (A|Xgj ,i). If Xgj is a
descendent of Xi, then Xgj ,i = Xi, and P (A|BC) = P (A|B), showing that

P̃ (B|C) = P (B|Ĉ)

[
e∆P (A|B) + P (Ā|B)
e∆P (A|Ĉ) + P (Ā|Ĉ)

]
.

Otherwise, if Xgj is not a descendent of Xi, then Xgj ,i ∈ {X1, . . . , Xi−1}, and hence
P (A|BC) = P (A|C). In this case, P̃ (B|C) = P (B|Ĉ).
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In all three cases, we have that P̃ (B|C) depends only on the value of X̂i and, in fact, only the
distributions of gj and its ancestors change, proving the result. �

Corollary 3.3. Consider the setting of Theorem 3.1. The Bayesian network representing P̃ is
constructed from the Bayesian network representing P as follows: For Xgj and each of its ancestors,
update the conditional probabilities according to

P̃ (Xi = xi|X̂i = x̂i) = P (Xi = xi|X̂i = x̂i)

[
(e∆ − 1)P (Xgj = tj |Xi = xi) + 1

(e∆ − 1)P (Xgj = tj |X̂i = x̂i) + 1

]
assuming Xi is not the root. Update the (unconditional) distribution of the root by

P̃ (Xi = xi) = P (Xi = xi)

[
(e∆ − 1)P (Xgj = tj |Xi = xi) + 1

(e∆ − 1)P (Xgj = tj) + 1

]
.

The conditional distribution for all other nodes remain the same.

Proof. The result follows from Theorem 3.1, Lemma 3.2 and Corollary 3.2 �

Above we showed how to update the market-based distribution on Ω as a result of market
transactions. Lemma 3.4 shows how to compute the price of such a transaction.

Lemma 3.4. Suppose ∆b shares are purchased for the event A, and let P denote the distribution
on Ω before the shares are purchased. Then the cost of the purchase is b log

(
e∆P (A) + P (Ā)

)
.

To support conditional bets, we first show how to support bets in which agents pick the winners
of two games, one of which is the parent game of the other. By combining these securities, one can
construct the conditional assets as well.

Theorem 3.2. Suppose P is represented as a Bayesian network on a binary tree with nodes
numbered as in Figure 1 and arrows pointing away from the root. Consider a market order
O = (gj1 , tj1 , gj2 , tj2 ,∆b), interpreted as buying ∆b shares on outcomes in which team tji wins
game gji, where gj1 is the parent of gj2. Then the distribution P̃ that results from executing the
order is also represented by a Bayesian network with the same structure, and only the distributions
of gj2 and its ancestors are affected.

Proof. Each node Xi, excepting the root, has a unique parent which we call X̂i. Set A = {Xgj1
=

tj1 , Xgj2
= tj2}, B = {Xi = xi} where Xi is a non-root node, C = {X1 = x1, . . . , Xi−1 = xi−1} for

some configuration (x1, . . . , xi−1), and Ĉ = {X̂i = x̂i} where x̂i is the value of X̂i in C. Corollary 3.2
shows that

P̃ (B|C) = P (B|C)
[
e∆P (A|BC) + P (Ā|BC)

e∆P (A|C) + P (Ā|C)

]
= P (B|Ĉ)

[
e∆P (A|BC) + P (Ā|BC)

e∆P (A|C) + P (Ā|C)

]
where the last equality follows from the Bayesian network assumption on P . Consider the following
cases:

(1) gj2 < i: Then, P (A|BC) = P (A|C), and consequently, P̃ (B|C) = P (B|Ĉ).
(2) gj2 = i: Then, P (A|BC) = P (A|BĈ), and so

P̃ (B|C) = P (B|Ĉ)

[
e∆P (A|BĈ) + P (Ā|BĈ)

e∆P (A|Ĉ) + P (Ā|Ĉ)

]
.

(3) gj1 < i < gj2 : Set A1 = {Xgj1
= tj1} and A2 = {Xgj2

= tj2}. If A1 ∩ C = ∅, then
P (A|BC) = 0 = P (A|C). Otherwise, by Lemma 3.3,

P (A|BC) = P (A2|BC) = P (A2|A1) = P (A2|C) = P (A|C).

Consequently, P̃ (B|C) = P (B|Ĉ).
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(4) gj1 = i: In this case, again using Lemma 3.3, P (A|BC) = P (A|B). So,

P̃ (B|C) = P (B|Ĉ)

[
e∆P (A|B) + P (Ā|B)
e∆P (A|Ĉ) + P (Ā|Ĉ)

]
.

(5) gj1 > i: Using the notation of Lemma 3.3, P (A|BC) = P (A|Xgj1
,i). If Xgj1

is a descendent
of Xi, then Xgj1

,i = Xi, and P (A|BC) = P (A|B), showing that

P̃ (B|C) = P (B|Ĉ)

[
e∆P (A|B) + P (Ā|B)
e∆P (A|Ĉ) + P (Ā|Ĉ)

]
.

Otherwise, if Xgj1
is not a descendent of Xi, then Xgj1

,i ∈ {X1, . . . , Xi−1}, and hence
P (A|BC) = P (A|C). In this case, P̃ (B|C) = P (B|Ĉ).

In all five cases, we have that P̃ (B|C) depends only on the value of X̂i and, in fact, only the
distributions of gj2 and its ancestors change, proving the result. �

Corollary 3.4. Consider the setting of Theorem 3.2. The Bayesian network representing P̃ is con-
structed from the Bayesian network representing P as follows: For Xgj2

and each of its ancestors,
update the conditional probabilities according to

P̃ (Xi = xi|X̂i = x̂i) = P (Xi = xi|X̂i = x̂i)

[
(e∆ − 1)P (Xgj1

= tj1 , Xgj2
= tj2 |Xi = xi, X̂i = x̂i) + 1

(e∆ − 1)P (Xgj1
= tj1 , Xgj2

= tj2 |X̂i = x̂i) + 1

]
assuming Xi is not the root. Update the (unconditional) distribution of the root by

P̃ (Xi = xi) = P (Xi = xi)

[
(e∆ − 1)P (Xgj1

= tj1 , Xgj2
= tj2 |Xi = xi) + 1

(e∆ − 1)P (Xgj1
= tj1 , Xgj2

= tj2) + 1

]
.

The conditional distribution for all other nodes remain the same.

Proof. The result follows from Theorem 3.2, Lemma 3.2 and Corollary 3.2 �

To construct the conditional asset A|B, agents buy AB and short sell ĀB according to (2.1)
and (2.2). In particular, to simulate “team i wins game k given that they make it to that game”,
set A = {Xk = i} and B = {Xj = i} where Xj is the child of Xk for which B 6= ∅. Theorem 3.2
directly shows how to update the Bayesian network after trading in AB. To execute ĀB, one
can trade, in sequence, the assets A1B,A2B, . . . , Ai−1B,Ai+1B, . . . , AnB, where Al = {Xk = l}.
Now, Theorem 3.2 shows that each trade in AlB preserves the Bayesian network, and furthermore,
only the distributions of Xj and its ancestors are affected. Finally, knowing that ĀB preserves
the network and that only Xj and its ancestors are affected, one need not actually trade each
AlB, but rather, may directly update the relevant distributions by appealing to Lemma 3.2 and
Corollary 3.2.

Corollary 3.5. Suppose P is represented as a Bayesian network on a binary tree with nodes
numbered as in Figure 1 and arrows pointing away from the root. Set A = {Xk = i} and B =
{Xj = i} where Xj is the child of Xk for which B 6= ∅. Then the distribution P̃ that results
from buying ∆b shares on ĀB is still represented by a Bayesian network with the same structure.
Moreover, only the distributions of Xj and its ancestors are affected, and are updated as follows:

P̃ (Xl = xl|X̂l = x̂l) = P (Xl = xl|X̂l = x̂l)

[
(e∆ − 1)P (Xk 6= i|Xj = i, X̂l = x̂l) + 1

(e∆ − 1)P (Xk 6= i|X̂l = x̂l) + 1

]
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assuming Xl is not the root. Update the (unconditional) distribution of the root by

P̃ (Xl = xl) = P (Xl = xl)
[
(e∆ − 1)P (Xk 6= i|Xj = i) + 1

(e∆ − 1)P (Xk 6= i) + 1

]
.

The conditional distribution for all other nodes remain the same.

To construct the conditional asset “team i beats team j given that they face off” observe that
there is a unique game k in which i and j could potentially play each other. Set A = {Xk = i}
and B = {Xj1 = i,Xj2 = j} where Xj1 and Xj2 are the children of Xk ordered such that B 6= ∅.
Now AB = {Xk = i,Xj2 = j} and ĀB = {Xk = j, Xj1 = i}. Theorem 3.2 allows agents to trade
in both of these joint events, and they can consequently construct the conditional asset.

The price the market maker charges agents for buying these conditional assets is discussed in
Section 2.1.2. Namely, the cost for purchasing ∆b shares of A|B is b log

(
e∆P (A|B) + P (Ā|B)

)
.

Then, if AB occurs, the agent receive ∆b dollars; if ĀB occurs, the agent receives nothing; and if
B does not occur, the agent is returned the cost of the purchase.

Theorem 3.3. For n teams, O(n3) operations are needed to update the Bayesian network as a
result of trading assets of the form “team i wins game k”, “team i wins game k given that they
make it to that game” and “team i beats team j given they face off.”

Proof. Each node in the kth generation may take n/2k values with positive probability, where we
set k = 0 for the root. The root maintains n marginal probabilities P (X1 = xi). Each node in
generation k > 0 maintains a conditional distribution P ( · |X̂i = x̂i) for each of the n/2k−1 values
x̂i its parent could take. If x̂i is in the domain of Xi, then P (Xi = x̂i|X̂i = x̂i) = 1. Otherwise,
specifying the conditional distribution of Xi|X̂i = x̂i requires knowing P (Xi = xi|X̂i = x̂i) for each
xi in the domain of Xi. Consequently, Xi maintains n/2k · n/2k = n2/4k parameters. Trading
in either conditional or unconditional assets affects the distribution of at most one node in each
generation, and consequently changes O(n2) parameters. Since queries required to update the
Bayesian network can be executed in time linear in the number of nodes [15], the total execution
time for a trade is O(n3). �

3.3. Betting on matchup winners. The betting language discussed in Section 3.2 can lead to
unexpected dependencies in the market-derived distribution. We illustrate this phenomenon with
a simple example. Suppose there are four teams {T1, . . . , T4}, so that the tournament consists of
three games {X1, X2, X3}, where X2 and X3 are the first round games, and X1 is the final game.
The state space Ω has eight outcomes

ω1 = (1, 3, 1) ω2 = (1, 3, 3) ω3 = (1, 4, 1) ω4 = (1, 4, 4)
ω5 = (2, 3, 2) ω6 = (2, 3, 3) ω7 = (2, 4, 2) ω8 = (2, 4, 4)

where each coordinate indicates which team won the corresponding game.
Suppose we start with no outstanding shares, and are to execute two bets: “∆b shares on team

1 to win game 3” and “∆b shares on team 3 to win game 3”. After executing these bets, outcomes
ω1, ω2, ω3 and ω6 each have ∆b shares, and the other outcomes have 0 shares. Now,

P (X1 = 1) = P (X2 = 3) =
3e∆ + 1
4e∆ + 4

and P (X1 = 1, X2 = 3) = 2e∆/(4e∆ + 4). In particular, since P (X1 = 1)P (X2 = 3) 6= P (X1 =
1, X2 = 3), X1 and X2 are not independent.

Here we further restrict the betting language of Section 3.2 so as to preserve the usual indepen-
dence relations. The language allows only bets of the form “team i beats team j given that they
face off.” These bets preserve the Bayesian network structure shown in Figure 2. Notably, the edges
in the network are directed toward the final game of the tournament, in constrast to the Bayesian
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network representing our more expressive language. In particular, the conditional distribution of a
game Xj given all previous games depends only on the two games X̂L

j and X̂R
j directly leading up

to Xj , as one might ordinarily expect to be the case.

X15

X14X13

X9 X10 X11 X12

X1 X2 X3 X4 X5 X6 X7 X8

Figure 2. A Bayesian network for a tournament. Nodes represent game winners,
and edges are oriented in accordance with the usual interpretation of causality.

Theorem 3.4. Suppose P is represented as a Bayesian network on a binary tree with nodes
numbered as in Figure 2 and arrows pointing toward the root. Consider a market order O =
(gj , tj , t

′
j ,∆b), interpreted as buying ∆b shares on outcomes in which team tj wins game gj, condi-

tional on tj and t′j playing in game gj. Then the distribution P̃ that results from executing the order
is also represented by a Bayesian network with the same structure, and only the distribution of gj

is affected. Furthermore, the uniform distribution P0, corresponding to 0 shares on each outcome,
is represented by the Bayesian network.

Corollary 3.6. Consider the setting of Theorem 3.4. The Bayesian network representing P̃ is
constructed from the Bayesian network representing P as follows: For A = {Xgj = tj} and B =
{{X̂L

gj
, X̂R

gj
} = {tj , t′j}}, update the conditional probability P̃ (A|B) according to

P̃ (A|B) =
e∆P (A|B)

e∆P (A|B) + P (Ā|B)

(and set P̃ (Ā|B) = 1− P̃ (A|B)). All other conditional probabilities remain unchanged.

Every pair of teams play each other in at most one game, namely in the game that is their nearest
common descendent in the tournament tree. Corollary 3.6 shows that one can think of this betting
language as maintaining

(
n
2

)
independent markets, one for each pair of teams, where each market

gives an estimate of a particular team winning given they face off. Although bets in one market
do not affect prices in any other market, they do effect the global distribution on Ω. In particular,
the distribution on Ω is constructed from the independent markets via the Bayesian network.

Since each trade in this language requires updating only a single parameter of the Bayesian
network, and since that update can be performed in O(n) steps [15], the execution time for trades
is linear in the number of teams.
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Appendix A. Approximate Pricing of General Combinatorial Markets

The general problem of pricing combinatorial markets is #P-hard. In Section 3 we showed how
to exactly compute asset prices for an expressive betting language for tournaments. Here we return
to the general case, and present an approximation technique that is applicable in several settings.

Our goal as market-maker is to compute Pq(A) where Pq is the probability distribution over Ω
corresponding to outstanding shares q and A is an arbitrary event. Equivalently, we would like to
compute EPqIA where IA(ω) = 1 if ω ∈ A and IA(ω) = 0 otherwise. One can approximate this
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expectation by the unbiased estimator

1
n

n∑
i=1

IA(Xi)

where Xi ∼ Pq, i.e., Xi are draws from Pq. Since we cannot in general expect to be able to generate
such draws, we rely on importance sampling [8]. The simple insight behind importance sampling
is that for any measure µ � Pq

EPqf =
∑
ω∈Ω

f(ω)Pq(ω) =
∑
ω∈Ω

f(ω)
Pq(ω)
µ(ω)

µ(ω) = Eµ

[
f

dPq

dµ

]
.

Consequently, one can approximate Pq(A) by the unbiased estimator

1
n

n∑
i=1

IA(Xi)
Pq(Xi)
µ(Xi)

where Xi ∼ µ, i.e. Xi are draws from µ. In practice, it is useful to apply the asymptotically
unbiased estimator

(A.1) P̂q(A) =
1∑n

i=1 Pq(Xi)/µ(Xi)

n∑
i=1

IA(Xi)
Pq(Xi)
µ(Xi)

.

The considerable advantage of (A.1) is that the importance weights Pq(Xi)/µ(Xi) only need to
be known up to a constant. For example, suppose we are able to draw uniformly from Ω, i.e.
µ(ω) = 1/N where |Ω| = N . Then the importance weights satisfy

Pq(Xi)
µ(Xi)

= N
exp(qXi/b)∑
ω∈Ω exp(qω/b)

= Z exp(qXi/b)

for a constant Z. In particular, (A.1) simplifies to

(A.2) P̂q(A) =
1∑n

i=1 exp(qXi/b)

∑
Xi∈A

exp(qXi/b).

In the above, we assumed µ to be uniform over Ω. In some cases, it may be possible to make
draws from Ω according to

µ(ω) =
qω

Z ′

where Z ′ is the total number of shares on Ω. Each market order Oi = (Ai, si) consists of an event
Ai and the number of shares si to buy on that event. Suppose that for each set corresponding to an
order, we can compute its size ni and are able to choose an outcome from Ai uniformly at random.
Choose an outcome from Ω as follows:

(1) Select an order Oi at random proportional to nisi.
(2) Select an outcome from Oi at random.

Lemma A.1. The sampling procedure above generates a draw from Ω according to the distribution
µ(ω) ∝ qω.

Proof. For any outcome ω, consider the orders Oi1 , . . . , Oim such that ω ∈ Aij , i.e. orders where
shares were purchased on ω. The number of shares on ω is then si1 + · · ·+ sim . Now,

µ(ω) =
ni1si1

Z ′ · 1
ni1

+ · · ·+ nimsim

Z ′ · 1
nim

=
si1 + · · ·+ sim

Z ′

where Z ′ is the total number of shares on Ω. �
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For µ(ω) ∝ qω and Xi ∼ µ, we have the estimator

(A.3) P̂q(A) =
1∑n

i=1 exp(qXi/b)/qXi

∑
Xi∈A

exp(qXi/b)
qXi

.

Appendix B. Proofs

Lemma B.1. For events A,B ⊂ Ω, there is zero net cost for buying

b log

(
e∆/b

e∆/bPq(A|B) + Pq(Ā|B)

)
shares of AB and short selling

b log
(
e∆/bPq(A|B) + Pq(Ā|B)

)
shares of ĀB.

Proof. Letting q̃ denote the new distribution of shares, the cost of the transaction is

C(q̃)− C(q) = b log
∑
τ∈Ω

eq̃(τ)/b − b log
∑
τ∈Ω

eq(τ)/b.

Now, ∑
B eq̃(τ)/b∑
B eq(τ)/b

=
∑

AB eq̃(τ)/b +
∑

ĀB eq̃(τ)/b∑
B eq(τ)/b

=
e∆/b

∑
AB eq(τ)/b +

∑
ĀB eq(τ)/b(

e∆/bPq(A|B) + Pq(Ā|B)
)∑

B eq(τ)/b

=
e∆/bPq(AB) + Pq(ĀB)(

e∆/bPq(A|B) + Pq(Ā|B)
)
Pq(B)

= 1.

Consequently,
∑

B eq̃(τ)/b =
∑

B eq(τ)/b, and hence,
∑

Ω eq̃(τ)/b =
∑

Ω eq(τ)/b. �

Proof of Lemma 3.4

Proof. The cost function for the logarithmic market scoring rule is C(q) = b log
(∑

w∈Ω eqω/b
)
.

Letting q̃ denote the number of shares on each state after the new shares are purchased, we have

C(q̃)− C(q) = b log

(∑
w∈Ω eq̃ω/b∑
w∈Ω eqω/b

)

= b log

(∑
w∈A eq̃ω/b +

∑
w 6∈A eq̃ω/b∑

w∈Ω eqω/b

)

= b log

(
e∆
∑

w∈A eqω/b +
∑

w 6∈A eqω/b∑
w∈Ω eqω/b

)
= b log

(
e∆P (A) + P (Ā)

)
.

�

We use the notation A ⊥B C to indicate that A and C are conditionally independent given B.
That is, P (A|BC) = P (A|B).

Lemma B.2. For events A and B, suppose shares are purchased on the conditional event A|B. Let
P denote the distribution on Ω before the shares were purchased, and let P̃ denote the distribution
after the purchase. Then the following hold:

(1) If A ⊥B D, then P̃ (D) = P (D)
(2) If A ⊥BD C (or BD = ∅) and C ⊥D B, then P̃ (C|D) = P (C|D)
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(3) If A ⊥BD C (or BD = ∅) and A ⊥B D, then P̃ (C|D) = P (C|D)
where the conditional independence statements are with respect to P .

Proof. Note that there exist c1, c2 such that P̃ (ω) = c1P (ω) for ω ∈ AB, and P̃ (ω) = c2P (ω) for
ω ∈ ĀB. Furthermore, P̃ (ω) = P (ω) for ω 6∈ B, and P̃ (B) = P (B). We use the convention that,
for any set S, P (S|∅) = 0. Now,

P̃ (D) = c1P (ABD) + c2P (ĀBD) + P (B̄D)
= P (BD)[c1P (A|BD) + c2P (Ā|BD)] + P (B̄D)
= P (BD)[c1P (A|B) + c2P (Ā|B)] + P (B̄D)

where the last equality follows from the conditional independence assumption. Furthermore,

c1P (A|B) + c2P (Ā|B) =
c1P (AB) + c2P (ĀB)

P (B)
=

P̃ (B)
P (B)

= 1.

Consequently, P̃ (D) = P (D). To show the second statement, observe that

P̃ (C|D) =
P̃ (CD)
P̃ (D)

=
P̃ (ABCD) + P̃ (ĀBCD) + P̃ (B̄CD)

P̃ (D)

=
c1P (ABCD) + c2P (ĀBCD) + P (B̄CD)

P̃ (D)

=
c1P (C|ABD)P (ABD) + c2P (C|ĀBD)P (ĀBD) + P (C|B̄D)P (B̄D)

P̃ (D)

=
c1P (C|BD)P (ABD) + c2P (C|BD)P (ĀBD) + P (C|B̄D)P (B̄D)

P̃ (D)
where the last equality follows from the assumption A ⊥BD C. Continuing this string of equalities,
we have

P̃ (C|D) =
P (C|BD)[c1P (ABD) + c2P (ĀBD)] + P (C|B̄D)P (B̄D)

P̃ (D)

=
P̃ (C|BD)P̃ (BD) + P (C|B̄D)P̃ (B̄D)

P̃ (D)

= P (C|BD)P̃ (B|D) + P (C|B̄D)P̃ (B̄|D).(B.1)

If C ⊥D B, by (B.1) we have

P̃ (C|D) = P (C|D)[P̃ (B|D) + P̃ (B̄|D)] = P (C|D)

which proves the second statement of the theorem. For the third result, note that under the
conditional independence assumption, P̃ (D) = P (D) by the first statement of the theorem. This
implies that

P̃ (B̄|D) =
P̃ (B̄D)
P̃ (D)

=
P (B̄D)
P (D)

= P (B̄|D)

and hence, P̃ (B|D) = P (B|D). Finally, from (B.1) we have

P̃ (C|D) = P (C|BD)P (B|D) + P (C|B̄D)P (B̄|D)
= P (CB|D) + P (CB̄|D)
= P (C|D).
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�

Proof of Theorem 3.4

Proof. Each interior (i.e., non-leaf) node Xi has exactly two parents, which we denote by X̂L
i

and X̂R
i . For the leaf nodes, we use the convention that X̂L

i and X̂R
i are the two teams which

(deterministically) play in the game corresponding to Xi. Now, for the uniform distribution P0,
and i > 1

P0(Xi = xi|X1, . . . , Xi−1) =
{

1/2 X̂L
i = xi or X̂R

i = xi

0 otherwise
.

In particular, P0(Xi = xi|X1, . . . , Xi−1) = P0(Xi = xi|XL
i , XR

i ), and so P0 is represented by the
Bayesian network.

For i > 1, set A = {Xgj+1 = tj+1}, B = {{X̂L
gj+1

, X̂R
gj+1

} = {tj+1, t
′
j+1}}, C = {Xi = xi}, D =

{X1 = x1, . . . , Xi−1 = xi−1} for some configuration (x1, . . . , xi−1), and D̂ = {X̂L
i = x̂L

i , X̂R
i = x̂R

i }
where x̂L

i and x̂R
i are the values assigned in D. Consider the following cases:

(1) gj < i: If BD 6= ∅, then Pj(A|CBD) = Pj(A|BD). So A ⊥BD C, or BD = ∅. Also,
Pj(B|CD) = Pj(B|D), so C ⊥D B. Consequently, by Lemma B.2(2), P̃ (C|D) = P (C|D) =
P (C|D̂).

(2) gj > i: If BD 6= ∅, then P (A|CBD) = P (A|B) = P (A|BD). So A ⊥BD C, or BD = ∅.
Also, P (A|BD) = P (A|B), so A ⊥B D. Consequently, by Lemma B.2(3), P̃ (C|D) =
P (C|D) = P (C|D̂).

(3) gj = i: In this case, either D ⊂ B or D ⊂ B̄. If D ⊂ B̄, then

P̃ (C|D) =
P̃ (CD)
P̃ (D)

=
P (CD)
P (D)

= P (C|D) = P (C|D̂).

Now we consider D ⊂ B. Then,

P̃ (C|D) =
P̃ (CD)
P̃ (D)

=
c1P (CDA) + c2P (CDĀ)

c1P (DA) + c2P (DĀ)

=
c1P (CA|D) + c2P (CĀ|D)

c1P (A|D) + c2P (Ā|D)

=
c1P (CA|D̂) + c2P (CĀ|D̂)

c1P (A|D̂) + c2P (Ā|D̂)

Since D ⊂ B, D̂ = B̂ and the denominator above equals 1. Consequently,

P̃ (C|D) = c1P (CA|D̂) + c2P (CĀ|D̂).

In all three cases, we have that P̃ (C|D) depends only on D̂, and furthermore, only the distribution
of game i changes. �

Proof of Corollary 3.6

Proof. The result follows from the construction given in the proof of Theorem 3.4, with values of
c1 and c2 derived from (2.1) and (2.2). �


