
Passive Verification of the Strategyproofness of
Mechanisms in Open Environments

Laura Kang
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

kang@eecs.harvard.edu

David C. Parkes
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

parkes@eecs.harvard.edu

ABSTRACT
Consider an open infrastructure in which anyone can de-
ploy mechanisms to support automated decision making and
coordination amongst self-interested computational agents.
Strategyproofness is a central property in the design of such
mechanisms, allowing participants to maximize their indi-
vidual benefit by reporting truthful private information about
preferences and capabilities and without modeling or rea-
soning about the behavior of other agents. But, why should
participants trust that a mechanism is strategyproof? We
address this problem, proposing and describing a passive
verifier, able to monitor the inputs and outputs of mecha-
nisms and verify the strategyproofness, or not, of a mecha-
nism. Useful guarantees are available to participants before
the behavior of the mechanism is completely known, and
metrics are introduced to provide a measure of partial veri-
fication. Experimental results demonstrate the effectiveness
of our method.

Categories and Subject Descriptors
H.4 [Multiagent Systems and Electronic Markets]

General Terms

Keywords
Verification, strategyproofness, game theory, mechanism de-
sign, constraint networks.

1. INTRODUCTION
Recent work in computational mechanism design has un-

covered many interesting methods for decision-making in
domains with self-interested agents, each with private infor-
mation about its utility for different outcomes [7; 1; 2; 15,
e.g.]. Common to much of this work is the drive for strat-
egyproof mechanisms; i.e., direct-revelation mechanisms in
which truthful reporting of private information is a domi-
nant strategy equilibrium. This is useful because it side-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICEC ’06, August 14-16, 2006, Fredericton, Canada
Copyright 2006 ACM 1-59593-392-1 ...$5.00.

steps the semantic and computational difficulties of more
intricate equilibrium concepts, such as Bayes-Nash equilib-
rium. Many have argued that strategyproofness is impor-
tant to encourage the adoption of agent-mediated decision
making: with users able to trust autonomous agents to “do
the right thing” because agents have a simple and provably
optimal strategy.

Our work is motivated by a future in which multiple en-
tities (e.g. firms, people, organizations, network services)
are able to deploy decision mechanisms in an open com-
putational infrastructure. These mechanisms can be used,
for instance, to coordinate purchasing decisions, allocate re-
sources, schedule bandwidth, or form coordinated plans of
action.

A new issue arises for mechanism design in open set-
tings. Why should participants trust that a mechanism has
the strategyproof property that it claims? We address this
problem, proposing and describing a passive verifier, able
to monitor the inputs and outputs of mechanisms and ver-
ify the strategyproofness, or not, of a mechanism. Thus,
our focus is not on the design of new mechanisms but on
the verification of strategyproofness. Indeed, without veri-
fication careful design is worthless: it is only when a mech-
anism is both strategyproof and known to be strategyproof
that participants gain the benefits of simple strategies and
mechanisms behave as designed. Thus, verification is in the
interest of both designers and participants.

The passive verifier that we design exploits a price-based
characterization of truthful mechanisms, and is inspired by
the work of Gui et al. [11] on graph-theoretic characteriza-
tions of truthful mechanisms. We formulate the verification
problem as one of checking for feasible solutions to a con-
straint satisfaction problem defined on a graph representing
the rules of a mechanism. Verifiers are situated in the com-
putational infrastructure and intermediate between partic-
ipants and a mechanism. A verifier has the power to veto
the outcome of a mechanism when the mechanism is proved
to violate strategyproofness.

We identify techniques to both accelerate the process of
verification as well as reduce the space complexity of verifica-
tion. The idea is to place (weak) restrictions on the space of
allowable mechanisms in order to simplify the task of verifi-
cation. We provide three illustrations of this idea. First, we
introduce the notion of summarization, which requires that
a mechanism place restrictions on the complexity of its pric-
ing rule, in identifying some subset w < n of n participants,
that define the price faced by each agent. Summarization
provides an exponential reduction in the space complexity of



verification, from O(mdn−1) to O(mdw), in domains with m
alternatives and with d possible agent valuations. Second,
when a mechanism is required to satisfy a standard property
on payments, that we term natural payments, we can lever-
age constraint propagation to further accelerate verification.
Third, when a mechanism is required to satisfy a property
of envy-freeness, reasonable for simple domains, additional
acceleration is achieved.

The biggest challenge is to provide useful feedback to par-
ticipants before the complete input space for a mechanism
has been observed. Here, we identify a property that al-
lows the verifier to guarantee that an agent’s best strategy
is truthful reporting (conditioned on the mechanism passing
the verifier) even though only a subset of possible inputs
has been observed. We identify a weaker condition that en-
sures that truthful reporting maximizes the worst-case util-
ity of a participant against an adversarial (but ultimately
non-strategyproof) mechanism in early stages of verifica-
tion. We also provide two metrics, namely probability-of-
strategyproofness and price-flexibility, to measure the degree
of strategyproofness that is ensured for a mechanism that
is still not completely verified. These metrics facilitate an
empirical study in which we demonstrate the speed of verifi-
cation (or failure of verification when using a weaker, base-
line method) on various mechanisms, both strategyproof and
non-strategyproof.

1.1 Related Work
Plenty of prior work has leveraged the methods of cryptog-

raphy and secure function evaluation [18; 5, e.g.] to achieve
absolute trust (i.e. the rules of a mechanism are published
and correctness is verifiable to any party). When designing
an auction that will be used for a multi-million dollar alloca-
tion of government bonds the overhead of cryptographically-
secured proofs is well justified. Our motivation comes from
a vision of dynamic, open environments that can support a
multitude of frequent, perhaps even mundane, decisions. For
instance, we wish to enable infrastructure that can support
the minute-by-minute allocation of computational services,
the buying and selling of limited-play songs, and services
to make dinner reservations, solicit information about flight
prices, and find answers to trivia questions.

Similarly, there is a large literature on the use of logic for-
malisms to verify the correctness of mechanisms and other
institutions [20, 21, 8]. Here, a logic specification makes
explicit the rules of a mechanism and properties such as
strategyproofness can (in principle) be established through
methods such as model checking. Of particular relevance is
the work of Guerin and Pitt [10], who share the same moti-
vation of allowing for the deployment of trusted mechanisms
in open environments. Moreover, these authors discuss the
use of “sentinel agents” which can be used to verify the
properties of mechanisms at run time. Here, we are only
interested in the verification of strategyproofness and not
in the verification of other properties. Second, we deliber-
ately eschew logic-based formalisms because model checking
is intractable for appropriate logics [22], and because logic
formalisms are a bad fit for quantitative properties such as
strategyproofness and for the methods of combinatorial op-
timization that are important for internal decision making
by mechanisms.

2. PRELIMINARIES

Formally, a mechanism consists of a social choice func-
tion f : V1 × . . . × Vn → A, that chooses an alternative
f(v) = a ∈ A from a space of alternatives A, and a pay-
ment function p̃ : V1 × . . . × Vn → R

n that defines a
payment p̃i(v) by each agent. Here, vi ∈ Vi is the valu-
ation of agent i, where vi(a) ∈ R is the value of agent i
for alternative a. Also, denote v = (v1, . . . , vn) ∈ V and
v−i = (v1, . . . , vi−1, vi+1, . . . , vn). The valuation (or type)
of an agent is private information, although we assume the
type space Vi of each agent is common knowledge. Define
Ei(a) = {d ∈ A|vi(a) = vi(d), ∀vi ∈ Vi}

1, and let Rf (v−i)
denote the range of possible alternatives given social choice
function f and reports v−i from all but one agent.

Now we define a strategyproof mechanism.

Definition 1. A mechanism M is strategyproof if for all
agents i with type vi and for every v−i ∈ V−i: vi(a) −
p̃i(vi, v−i) ≥ vi(b) − p̃i(v

′
i, v−i) where a = f(vi, v−i) and

b = f(v′
i, v−i), for all types v′

i ∈ Vi, i.e., no agent can do
better by misreporting her type, no matter what the other
agents report.

Well-known examples of strategyproof mechanisms include
the family of Vickrey-Clarke-Groves(VCG) mechanisms [13],
of which the second-price Vickrey auction is a special case.
Other examples include: the greedy mechanism for single
minded agents due to Lehmann et al. [15], mechanisms for
one-parameter agents [1, e.g.], and truthful and competitive
auctions for digital goods [7].

The key observation that we use for verifying the truthful-
ness (or strategyproofness) of mechanisms is that they must
be price-based (see for instance [3, 23]).

Theorem 1. A mechanism M =< f, p̃ > is strategyproof
if and only if for every agent i and every v−i:

(A1) the mechanism charges an agent-independent price

pi(a, v−i) whenever alternative a is selected

(A2) for any report vi, any v−i, the mechanism chooses
an alternative a ∈ Rf (v−i) that maximizes vi(a) −
pi(a, v−i).

Here is some intuition for the sufficiency of (A1) and (A2)
for strategyproofness: an agent cannot change the price that
it faces (A1), and the mechanism maximizes its utility with
respect to its reported valuation given these prices (A2). A
simple argument can also be constructed for the necessary
direction.

2.1 Problem Definition
Our verifiers act as lightweight trusted intermediaries (or

“wrappers”) that are situated as a default interface between
published mechanisms and participants. A verifier receives
bids from agents, passes them on the a mechanism and then
receives the outcome and payments from the mechanism.
At this point the verifier checks that the mechanism has
not violated strategyproofness, and if this is OK it will pass
the outcome on to the agents. Otherwise the verifier can
exercise veto power on the outcome.

1For instance, in a resource allocation setting with no
allocative-externalities the set of equivalent alternatives
Ei(a) would be all allocations that give agent i the same
bundle of goods.



A mechanism is treated as a black box, i.e., the verifier can
only observe a sequence of inputs, v1, v2, . . . vk, . . ., where vk

denotes the reported valuations of the agents in the kth run
of the mechanism, and a sequence of outputs, < a1, p1 >,
< a2, p2 >, . . ., < ak, pk >, . . . where < ak, pk > denotes the
alternative and vector of payments produced by the mecha-
nism in the kth run.

Definition 2 (passive verification problem). An
online decision problem in which a verifier observes a se-
quence of inputs and outputs to a mechanism (assumed fixed
and deterministic) and determines whether the mechanism
is strategyproof or not strategyproof.

A useful verifier will also reject a non-strategyproof mech-
anism quickly, and provide guidance on whether or not a
mechanism is likely to be strategyproof even before a final
“reject” or “accept” is generated. We also demonstrate that
a verifier can prove that a mechanism is strategyproof given
the private valuation of a bidder, even before the mechanism
has been fully verified.

Here are our main assumptions:

1. The space of alternatives and the type space are finite.

2. The verifier is trusted, is able to observe all inputs and out-
puts to a mechanism, and has veto power on any decision
made by the mechanism (e.g. as soon as some decision,
perhaps this decision, provides proof that the mechanism is
not strategyproof).

3. Once the mechanism has decided on an alternative and pay-
ments for an instance, it can no longer change that decision
in the future.2

4. The mechanism is anonymous, meaning that f(vi, v−i) ∈

Ei(a) for all permutations of v−i.

The first assumption is needed to ensure that a sound and
complete verifier can operate with bounded memory require-
ments. The second assumption is essential to our approach
to passive verification. The third assumption ensures that
the entire history of instances is always relevant for validat-
ing or invalidating strategyproofness. The final assumption
allows the valuation profile, v−i, of all agents except i to
be treated as an unordered set of n − 1 elements (allowing
for repeated elements). This is helpful computationally, but
should be relaxed in settings where anonymity is not pro-
vided (e.g. optimal auctions [17] where prior information
about bidder valuations is used to bias the outcome of a
mechanism.) These anonymous semantics for v−i will be
assumed for the rest of the paper.

3. PASSIVE VERIFICATION
In this section we define a set of rules that can be im-

plemented by a passive verifier, and prove that verification
with these rules is sound and complete. A constraint net-
work formulation is given for the rules, which leads to a
concrete algorithmic instantiation for a verifier.

3.1 SimpleChecker: Rules for Verification
Fix v−i. By condition (A2) from Theorem 1, a strate-

gyproof mechanism must choose an alternative a ∈ A such
that vi(a)−pi(a, v−i) is maximized. Hence, if f(vi, v−i) = a,
then vi(a) − pi(a, v−i) ≥ vi(b) − pi(b, v−i) for all b 6= a ∈ A.

2For ties, this requires that ties are broken the same way
each time. Notice that this does not rule out some forms of
adaptiveness: a mechanism can update its prices via learn-
ing on any (a, v−i) that has not been observed.

SimpleChecker. Initialize history H to an empty history.

1. For a new instance < vk, ak, pk >, and for each agent
i, consider history fH(vk

−i) and if non-empty:

(a) if vk
i ∈ vH

i (vk
−i) check ak ∈ Ei(f

H(vk)).

(b) if ak ∈ fH(vk
−i) check pk

i = pH
i (ak, vk

−i).

(c) if ak /∈ fH(vk
−i) check the price pk

i is no less than:

sup
b∈fH(vk

−i
)

8

<

:

pH
i (b, vk

−i) + sup
vi∈vH

i
(b,vk

−i
)

(vi(a
k) − vi(b))

9

=

;

(5)

(d) if vk
i /∈ vH

i (vk
−i) check the price pk

i is no greater
than:

vk
i (ak) + inf

b∈fH(vk
−i

)

n

pH
i (b, vk

−i) − vk
i (b)

o

(6)

2. If any check fails, then reject the mechanism, else
update history for vk

−i as necessary (i.e. whenever a
new vi and/or new alternative was observed).

3. Once all vi ∈ Vi for all v−i ∈ V−i have been observed,
then pass the mechanism.

Let Ga ⊆ {vi ∈ Vi|a ∈ Ei(f(vi, v−i))}. Rearranging, we
have, pi(a, v−i) − pi(b, v−i) ≤ vi(a) − vi(b) ∀b 6= a for all
vi ∈ Ga. Hence, we get the following inequality:

pi(a, v−i) − pi(b, v−i) ≤ inf
vi∈Ga

{vi(a) − vi(b)} (1)

Similarly, considering cases where f(vi, v−i) = b, we get:

pi(b, v−i) − pi(a, v−i) ≤ inf
vi∈Gb

{vi(b) − vi(a)} (2)

Combining the two, for each pair < a, b >, we have:

sup
vi∈Gb

{vi(a) − vi(b)} ≤ pi(a, v−i) − pi(b, v−i) (3)

≤ inf
vi∈Ga

{vi(a) − vi(b)} (4)

This is well known, see for instance Gui et al. [11] and Lavi
et al. [14], and suggests the following simple verification pro-
cedure.

Let H denote the history of instances currently available
to the verifier. Define the following: v ∈ vH denotes bids v ∈
V N received so far; vi ∈ vH

i (v−i) denotes the bids from agent
i that have been observed for v−i from the other agents; vi ∈
vH

i (a, v−i) denote the bids received from agent i with the
additional restriction that alternative a (or an equivalent)
was selected; a = fH(v) denotes the alternative selected
given input v (it is sufficient to choose any one of a set
of equivalent alternatives); fH(v−i) ⊆ A denotes the set
of alternatives selected for v−i, and pH

i (a, v−i) denotes the
payment made by agent i given alternative a and v−i. For
every new instance we first check whether the exact same
value profile has been seen before. If this is the case then
the same alternative must be selected. By case (b), if ak

(or equivalent) has been seen before for vk
−i then by (A1)

the payment by i must be the same. Case (c) ensures that
previous agents could not have done better given this new



information: if ak is a new alternative for vk
−i then the price

on this alternative must be high enough for (A2), and thus
for inequality (3) to hold for bids that have already been
observed. Case (d) ensures that the current agent could not
have done better given the current history: if vk

i is a new
bid for vk

−i then the price on this alternative must be low
enough for (A2), and thus for inequality (4) to hold for other
alternatives that have been observed.

Example 1. Consider an auction mechanism for an al-
location problem with multiple identical items. Suppose that
the sequence of instances in Table 1 are observed (all with
two bidders and two items). Instance 1 indicates that bid-
der 1 has value 4 for 1 unit and 8 for 2 units. Bidder 2
has value 4 for 1 unit and 9 for 2 units. The allocation
gives both units to bidder 2, and bidder 2 makes payment 8.
The auction implements the VCG mechanism for instances
1–3 but deviates in instance 4 (The VCG mechanism would
choose the same allocation but with payments (0, 9)).

Consider the build-up of history for v−i = (4, 9), and con-
sider allocations in which bidder i receives 0, 1 or 2 items.
Let pi(n) denote the price that agent i faces when it wins n
items. After instance 1, we get pi(0) = 0. After the second
instance, the verifier learns that pi(1) = 5, and checks that
the constraints (c) pi(1) ≥ pi(0) − (v1

i (0) − v1
i (1)) = 4 and

(d) pi(1) ≤ pi(0) + v2
i (1) − v2

i (0) = 5 are satisfied. After
instance 3, agent i wins one item and pays the price of 5,
so the verifier checks that (b) p3

i (1) = pi(1) = 5 holds. After
instance 4, the verifier learns pi(2) = 10, and checks that (c)
pi(2) ≥ max{pi(0)−(v1

i (0)−v1
i (2)), pi(1)−(v2

i (1)−v2
i (2))} =

9. However, the verifier also checks for the constraint (d)
pi(2) ≤ pi(1) + v4

i (2) − v4
i (1) = 9, which is violated (the

price is too high). Hence, this mechanism is rejected by Sim-
pleChecker after the fourth instance.

Alternatively, suppose that the fourth instance is changed
to v4 = ((7, 9), (4, 9)), a4 = (2, 0), p4 = (8, 0), where the
mechanism still deviates from the VCG outcome (a4

V CG =
(1, 1) and p4

V CG = (5, 2)). This time, after instance 4,
the verifier learns pi(2) = 8, and checks that (c) pi(2) ≥
max{pi(0) − (v1

i (0) − v1
i (2)), pi(1) − (v2

i (1) − v2
i (2))} = 9.

Now this constraint is violated (the price too low), and the
mechanism is rejected after the fourth instance.

instance values allocation payments
1 ((4, 8), (4, 9)) (0, 2) (0, 8)
2 ((4, 9), (5, 9)) (1, 1) (4, 5)
3 ((5, 8), (4, 9) (1, 1) (5, 4)
4 ((4, 9), (5.5, 10)) (0, 2) (0, 10)

Table 1: Sequence of Instances: 2 Agents and 2

Identical Items

3.2 Establishing Soundness and Correctness
The first task is to establish soundness and correctness of

the verifier. We hold these properties to be necessary for
an (exact) verifier, although insufficient to show the util-
ity of passive verification. Soundness simply proves that
SimpleChecker will detect the failure of strategyproofness
eventually, once all inputs are observed. The main challenge
is to provide intermediate feedback, discussion of which is
delayed until Section 5.

Theorem 2 (soundness). The rules as defined by Sim-
pleChecker will detect a non-strategyproof mechanism even
if all agents are not truthful as long as all inputs are even-
tually observed.

Proof. A mechanism is not strategyproof if either:

¬ (A1) there exists some i, v−i and vi, v
′
i ∈ Vi such that f(vi,

v−i) = f(v′
i, v−i), but p̃i(vi, v−i) 6= p̃i(v

′
i, v−i), or

¬ (A2) There exists some i, v−i and vi, v
′
i ∈ Vi, vi 6= v′

i such
that vi(f(vi, v−i))−pi(f(vi, v−i), v−i) < vi(f(v′

i, v−i))−
pi(f(v′

i, v−i), v−i).

Suppose toward contradiction that a non-strategyproof mech-
anism passes the SimpleChecker after all possible reports
v ∈ V are observed. First, suppose ¬ (A1). This is not pos-
sible because check (b) of SimpleChecker would catch the
price deviation. Second, suppose ¬ (A2), such that there
exists some i, v−i and vi, v

′
i ∈ Vi such that

vi(f(vi, v−i)) − pi(f(vi, v−i), v−i) <

vi(f(v′
i, v−i)) − pi(f(v′

i, v−i), v−i)
(7)

Let vi = vk
i and v′

i = vl
i. If k > l, then when instance k is

observed, al ∈ fH(v−i). By (7),

pk
i (ak, v−i) > pl

i(a
l, v−i) + vk

i (ak) − vk
i (al)

≥ inf
b∈fH(vk

−i
)
[pH

i (b, vk
−i) + (vk

i (ak) − vk
i (b))],

and step (d) of SimpleChecker would fail. A contradiction.
If l > k, then when instance l is observed, ak ∈ fH(v−i).
By (7), we have pl

i(a
l, v−i) <

pk
i (ak, v−i) + vk

i (ak) − vk
i (al)

≤ pk
i (ak, v−i) + sup

vi∈vH
i

(ak,v−i)

(vi(a
k) − vi(a

l))

≤ sup
b∈fH(v−i)

[pH
i (b, v−i) + sup

vi∈vH
i

(b,v−i)

(vi(a
l) − vi(b))],

and step (c) would fail. A contradiction.

Theorem 3 (correctness). The rules as defined by
SimpleChecker will never halt a strategyproof mechanism
even for agents that are untruthful.

Proof. Suppose toward contradiction that a strategyproof
mechanism M is rejected by SimpleChecker after k in-
stances. Since M satisfies (A1), it will not fail step (b). So
it either fails (c) or fails (d). Suppose it fails (c). Then there
exists al ∈ fH(vk

−i), pk
i (ak, vk

−i) < pl
i(a

l, vk
−i) + (vl

i(a
k) −

vl
i(a

l)) for some l < k. Then vl
i(a

k)− pk
i (ak, vk

−i) > vl
i(a

l)−
pl

i(a
l, vk

−i), violating (A2) and a contradiction. Now, sup-
pose the mechanism fails (d). Then there exists al ∈ fH(vk

−i),
pk

i (ak, vk
−i) > pl

i(a
l, vk

−i) + (vk
i (ak) − vk

i (al)) for some l < k.
Then vl

i(a
k) − pk

i (ak, vk
−i) < vl

i(a
l) − pl

i(a
l, vk

−i), violating
(A2) and a contradiction.

3.3 Passive Verification via Constraint Net-
works

An algorithm for SimpleChecker can be identified by
reformulating the task as that of checking for a feasible so-
lution to a constraint network.

We gain two main advantages from formulating the prob-
lem in terms of constraint networks. First, we can leverage



standard data structures (e.g. linked-lists) and standard
algorithms (e.g. all-pairs shortest path algorithms) to con-
struct a passive verifier. Second, we can gain additional ac-
celerations by introducing constraints between networks to
capture additional problem structure (see Section 4.2).

For each v−i, we construct a constraint network in which
each node in the network is associated with an alternative
and arcs in the network impose constraints on the difference
in prices between pairs of alternatives. Each network con-
tains a single node for each set of equivalent alternatives;
e.g. one node for all allocations in which agent i receives
bundle of goods S, irrespective of the allocation to other
agents. In addition to binary constraints, each node is also
annotated with an exact price, once known.3

Recall that every strategyproof mechanism must satisfy
inequalities (3) and (4). In order to capture this requirement
for some pair of alternatives < a, b > given current history
H, a directed arc b → a is labeled with a weight w(b, a)
representing the linear inequality pi(a, v−i) − pi(b, v−i) ≤
w(b, a), with w(b, a) = infvi∈vH

i
(a,v−i)

{vi(a) − vi(b)}. Simi-

larly, a directed arc a → b is created and labeled with weight
w(a, b). In addition, each node that represents an observed
alternative can be annotated with the price.

As described, our constraint network is of the same form
as a Simple Temporal Problem (STPs)(Dechter et al. [6]).
Prices take the role of time and the weights on arcs are
now bounds on the difference between prices. The existence
of prices that form a feasible solution to this network is
equivalent to the nonexistence of negative-length cycles in
the constraint network.

Theorem 4. [6] A given STP T is consistent if and only
if it has no negative-length cycles.

Thus, we can check for the existence of prices satisfying all
constraints by checking for the existence of negative-length
cycles using an all-pairs-shortest-path algorithm. We also
refer to this process as tightening the network.

Let N denote the current set of networks (one for each
v−i that has been observed). New networks are introduced
dynamically (for new v−i sets) and a new node is introduced
on a network when an additional alternative is observed.

Algorithm NetworkChecker implements the sound and
correct rules defined in SimpleChecker. If a set of feasible
prices exist, by step (c) and step (e) of NetworkChecker,
pa

i − pk
i ≤ w(ak, a) = infvi∈vH

i
(a,v−i)

(vi(a)− vi(a
k)) or pk

i −

pa
i ≥ supvi∈vH

i
(a,v−i)

(vi(a
k)−vi(a)) for all existing nodes a.

Rewriting, we get pk
i ≥ pa

i + supvi∈vH
i

(a,v−i)
(vi(a

k) − vi(a))

∀a ∈ H(vk
−i), which is precisely the condition that is checked

in step (c) of the SimpleChecker. Now consider step (d),
in combination with step (e), of NetworkChecker: if an
arc from node a to node ak already exists, and the arc has

weight w < vk
i (ak)−vk

i (a), then we know that pak

i −pa
i ≤ w

even before observing instance k, and no constraints are

3Compared with the directed graph formalism introduced
in Gui et al. [11] for reasoning about strategyproof mech-
anisms, the constraint network of a passive verifier is typ-
ically incomplete (only containing a subset of alternatives)
and associates fixed prices with alternatives that have been
observed. These prices imply constraints on future prices.
In comparison, Gui et al. use the constraint network to rea-
son (in analysis) about whether any assignment of prices is
possible.

NetworkChecker. Initialize N = ∅.

1. For a new instance < vk, ak, pk >, and for each agent
i, if there is a constraint graph G ∈ N for vk

−i work
with this graph. Otherwise, create an empty graph G
and add to set N . Then:

(a) if vk
i ∈ vH

i (vk
−i) check ak ∈ Ei(f

H(vk)).

(b) if node ak (or equivalent4) exists in graph G then
check pk

i equals price on node.

(c) Otherwise, add node ak and assign price pk
i to the

node, and for every other node a in the graph:

add a new arc from the new node ak to a with
weight w = infvi∈vH

i
(a,v−i)

(vi(a) − vi(a
k))

(d) add a new arc from every other node a to the
new node ak with weight vk

i (ak)− vk
i (a) if no arc

exists. If one already exists, and vk
i (ak) − vk

i (a)
is less than the current weight then update the
weight to be vk

i (ak) − vk
i (a).

(e) tighten the network and check for feasibility.

2. If any check fails, then reject the mechanism, else
update the history as necessary.

3. Once all vi ∈ Vi for all v−i ∈ V−i have been observed
then pass the mechanism.

updated. Otherwise, we have a new (or tighter) constraint
on the set of feasible prices, namely, pk

i − pa
i ≤ w(a, ak) =

vk
i (ak) − vk

i (a) for all a such that w(a, ak) is updated after
observing instance k. pk

i ≤ pa
i + (vk

i (ak) − vk
i (a)) for all a

such that w(a, ak) is updated. Combining the two cases,
we get pk

i ≤ vk
( ak) + infa∈fH(vk

−i
)[p

a
i − vk

i (a)], which is the

condition checked in step (d) of the SimpleChecker.

Example 2. We can revisit the example in Table 1. Fig-
ure 1 illustrates the constraint network for v−i = (4, 9). Af-
ter instance 4, the arc from node < 1, 5 > to node < 2, 10 >
has weight 4, the arc from node < 2, 10 > to node < 1, 5 >
has weight -4, the arc from node < 0, 0 > to node < 2, 10 >
has weight 10, and the arc from node < 2, 10 > to node
< 0, 0 > has weight -8. Given these weights, we see that the
prices p(0) = 0, p(1) = 5, and p(2) = 10 are inconsistent,
since p(1) − p(2) = −5 < −4.

5

1,5

0,0

−4

(a) After

instance 2

5

0,0

−4

−4

4

−8
10

1,5 2,10

(b) After instance 4

Figure 1: Constraint network for Multiple Identical

Items with Two Bidders and Two items.



4. ACCELERATED VERIFICATION VIA
STRUCTURAL REQUIREMENTS

The biggest potential shortcoming of this approach to ver-
ification is that the space complexity quickly becomes un-
tenable: there are dn−1 subnetworks, for a type space of size
d and n agents, and thus the space complexity is exponential
in the number of agents.

In order to address this problem we propose that the pas-
sive verifier impose structural requirements. We consider
three kinds of structural requirements: (a) summarization,
(b) natural payments, (c) envy-freeness. These are illustra-
tive of a more general approach which is to restrict the space
of implementable mechanisms in order to allow for efficient
verification. More than just reducing the space requirements
for verification, these structural requirements also accelerate
verification by allowing for stronger inference and more rapid
proofs of non-strategyproofness.

A strategyproof mechanism may wish to volunteer struc-
tural requirements in order to facilitate faster verification.
But, given that the concern in verification is to identify the
“bad apples” then it is in general more appropriate for the
verifier to require certain additional properties, especially
properties that appear to hold for many plausible mecha-
nisms. We will comment on the restrictiveness of each prop-
erty as it is introduced.

4.1 Summarization
Summarization provides an exponential reduction in mem-

ory and computational requirements on the verifier and also
significantly accelerates the process of verification.

Definition 3 (valid summarization function).
Given reports v−i, a summarization function s se-
lects a subset s(v−i) of reports, and is valid when
pi(a, v−i) = p′

i(a, s(v−i)) for all a, all v−i, for some price
function p′

i.

Example 3. In a single-item Vickrey auction the price
that an agent faces is determined by the highest bid among
bids from other agents and s(v−i) = {maxj 6=i{vj}} is a valid
summarization function. In this case, the induced price rule
p′

i(i wins item, s(v−i)) = x given s(v−i) = x and p′
i(i does

not win item, s(v−i)) = 0.

Example 4. Consider a combinatorial auction with single-
minded bidders. A bidder is single-minded if there exists a
set g of goods and value b such that v(g′) = b if g ⊆ g′,
and v(g′) = 0 otherwise. The LOS mechanism[15] con-
sists of the greedy allocation rule and the greedy payment
rule. The greedy allocation rule works as follows: bids are
sorted in decreasing order according to the average amount5

of a bid vj =< gj , bj >, defined as
bj

|gj |
, where |gj | is the

number of goods in the desired set gj of agent j, and bj

is her value for gj. Then given this sorted list L, each
bid is examined in order and is granted if and only if it
does not conflict with any of the bids previously granted.
For each vj ∈ L, define the set Dj = {i|i > j, gi ∩ gj 6=
∅, ∀l < i, l 6= j, l′th bid granted ⇒ gl ∩ gi = ∅}. Note that

i > j ⇔ bi

|gi|
≤

bj

|gj |
. Dj is the set of indices of the bids that

5The average amount can be replaced with any norm that
satisfied bid-monotonicity, i.e., is nondecreasing in bi and
norm(< g, b >) ≥ norm(< g′, b >) ∀g ⊆ g′.

are denied, but would have been granted if it were not for the
presence of vj . Under the greedy payment rule, if agent j’s
bid is granted and Dj 6= ∅, j pays |gj |

bi

|gi|
where i = min Dj .

In other words, j pays the average amount of the first bidder
whose bid was denied due to j, per good won. Otherwise, j
pays 0. In the LOS mechanism, the summarization function
s(v−i) = {vj | ∀k < j, k 6= i, gk ∩ gj = ∅}. If VCG payments
are used instead, the set s(v−i) is given by first sorting the
set v−i according to the norm used in the LOS allocation rule
and then removing each bid whose set of desired items is a
superset of the set of desired items of any bid that appears
before it in the ordered list.

Summarization information can be defined by a mecha-
nism incrementally, by identifying a subset of values v−i that
define the prices to agent i for each instance. In this case,
this is done by extending the interface between the verifier
and the mechanism. Summarization functions can also be
defined statically by instantiating an explicit function. As
long as the summarization function is constant, then passive
verification remains sound and correct.

Theorem 5. A passive verifier that implements rules Sim-
pleChecker will continue to detect a non-strategyproof mech-
anism and continue to pass any strategyproof mechanism
when used in combination with a fixed summarization func-
tion.

Proof. See appendix.

The following example shows that summarization can fa-
cilitate faster identification of a non-strategyproof mecha-
nism.

Example 5. Consider an auction for multiple identical
items, and suppose three instances are observed for the case
of three bidders and two items. The auction implements

instance values allocation payments
1 ((4, 8), (4, 9), (3, 6)) (0, 2, 0) (0, 8, 0)
2 ((0, 8), (4, 9), (5, 9)) (0, 1, 1) (0, 3, 5)
3 ((4, 9), (2, 8), (6, 10)) (0, 0, 2) (0, 0, 10)

Table 2: Sequence of Instances: 3 Agents and 2

Identical Items

a VCG mechanism for the first two instances but deviates
in instance 3. Now, consider the summarization function
s(v−i) = {vj |∀j 6= i, j wins at least 1 item in the allocation
without agent i}. Note that s(v1

−1) = s(v3
−1) = s(v2

−3) =
s(v3

−3) = {(4, 9)}. Consider the constraints when s(v−i) =
{(4, 9)}. Following the notation from Example 1, after in-
stance 1, we get pi(0) = 0. After the second instance,
the verifier learns that pi(1) = 5, and checks that the con-
straints (c) pi(1) ≥ pi(0) − (v1

i (0) − v1
i (1)) = 4 and (d)

pi(1) ≤ pi(0)+v2
i (1)−v2

i (0) = 5 are satisfied. After instance
3, agent i wins one item and pays the price of 5, so the ver-
ifier checks that (b) p3

i (1) = pi(1) = 5 holds. After instance
3, the verifier also learns pi(2) = 10, and checks that (c)
pi(2) ≥ max{pi(0)−(v1

i (0)−v1
i (2)), pi(1)−(v2

i (1)−v2
i (2))} =

9. However, the verifier also checks for the constraint (d)
pi(2) ≤ pi(1)+v3

i (2)−v3
i (1) = 9, which is violated (the price

is too high). Hence, this mechanism is rejected.

Without summarization none of the v−i subnetworks have
more than one node and the mechanism would not have been
rejected until more instances were seen.



Summarization also provides an exponential improvement
in space complexity. Let d = maxi|Vi|, m = |A| and let n
denote the maximal number of agents. Without summariza-
tion, we need dn−1 subnetworks, each with at most m nodes
and thus O(mdn−1) nodes.

Theorem 6. With summarization there are O(mdw) nodes
across all subnetworks, where w is the maximal number of
agents required in a summarization, i.e. w = maxi,vi

|s(v−i)|.

Thus, the space complexity is exponential in the worst-
case number of agents required for summarization instead
of the worst-case number of agents.

Example 6. Consider the single item Vickrey auction with
4 agents, where |Vi| = 10. In this case, only the highest bid
among bids of other agents matters. Without summariza-
tion, we would need to keep 1000 subnetworks, while with
summarization, we only need to keep 10 subnetworks.

4.2 Natural Payment Functions
So far we have focused on the constraints within a sin-

gle v−i subnetwork. The additional structure provided by
natural payments, allows internetwork constraints which im-
prove the speed with which a mechanism can be validated
as strategyproof, or proved not to be strategyproof.

Consider again inequalities (3) and (4). Following Lavi
et al. [14], define δab(v−i) = inf{vi(a) − vi(b)|vi ∈ Vi, a ∈
Ei(f(vi, v−i))}. Then, we have:

−δba(v−i) ≤ pi(a, v−i) − pi(b, v−i) ≤ δab(v−i) (8)

Definition 4 (natural payment functions). A mech-
anism has a natural payment function if the agent-independent
price function satisfies

pi(a, v−i) − pi(b, v−i) = δab(v−i) = −δba(v−i), (9)

for all pairs < a, b >.

The natural payment function is often satisfied by known
mechanisms, for instance, it is typically satisfied by the VCG
mechanism (this depends on the value domain) and the LOS
mechanism. Natural payments permit the introduction of
internetwork constraints, as demonstrated by the following
lemma.

Lemma 1. Consider a strategyproof mechanism with nat-
ural payment functions. Suppose for an alternative a, v−i

and v′
−i are such that ∀j 6= i, either v′

j = vj or v′
j(a) −

v′
j(b) > vj(a) − vj(b) for all b 6= a. Then pi(a, v′

−i) −
pi(b, v

′
−i) ≤ pi(a, v−i) − pi(b, v−i), for all b 6= a.

Proof. See appendix.

Thus, given a constraint in the subnetwork for v−i and
some alternate reports v′

−i by all agents except one that
satisfies the condition of Lemma 1, then we can add a corre-
sponding constraint to the subnetwork for v′

−i, or vice versa.
The additional constraint provides the following kind of in-
ference: given pi(a, v−i) ∈ [c, d] for some constants c and d,
then pi(a, v′

−i) ≤ d. To illustrate the condition of Lemma 1,
consider the case of single-minded bidders. Here, the condi-
tion is satisfied if each agent j 6= i bids for the same bundle
in v′

−i as in v−i, and all agents j 6= i who win in v−i sub-
mit the same or larger value in v′ while losing agents do not
increase their bid in v′.

Modified NetworkChecker. Add a new step (d1) between
steps (d) and (e):

(d1) For each v−i such that G(v−i) ∈ N and ak ∈ fH(v′
−i):

– if I(ak, vk
−i, v−i) = 1, then

∗ In G(vk
−i): update the weight on the arc from

ak to each a ∈ fH(vk
−i) ∩ fH(v−i) to be

min{wvk
−i (ak, a), wv−i (ak, a)}.

∗ In G(v−i): update the weight on the arc from
a ∈ fH(vk

−i) ∩ fH(v−i) to ak to be

min{wvk
−i (a, ak), wv−i (a, ak)}.

– If I(ak, v−i, v
k
−i) = 1, then reverse the role of vk

−i

and v−i, and repeat previous step.

Example 7. Consider a strategyproof mechanism with 2
agents and two items s and t, and suppose a = {agent 1
wins s, agent 2 wins t }. If v′

2 is such that agent 2 values
alternative a higher relative to all other alternatives, then if
the alternative is a for both v and v′, agent 1 must not pay
a higher price under v′.

We can implement the internetwork constraints as follows.
First, define the indicator function:

I(a, v−i, v
′
−i) =

8

<

:

1, if vj = v′
j or

v′
j(a) − v′

j(b) > vj(a) − vj(b) ∀b 6= a;
0, otherwise.

Then, for each alternative a and valuations vi, v−i

such that I(a, v−i, v
′
−i) = 1, we add the follow-

ing constraints: pi(a, v′
−i) − pi(b, v

′
−i) ≤ maxpi∈Fi(v−i)

[pi(a, v−i) − pi(b, v−i)] to subnetwork v′
−i and pi(a, v−i) −

pi(b, v−i) ≥ minpi∈Fi(v
′

−i
)[pi(a, v′

−i) − pi(b, v
′
−i)] to sub-

network v−i, where Fi(v−i) denotes the space of feasi-
ble prices defined by the constraint network. Note that
maxpi∈Fi(v−i) [pi(a, v−i) − pi(b, v−i)] = wv−i (b, a) and

minpi∈Fi(v
′

−i
)[pi(a, v′

−i) − pi(b, v
′
−i)] = −wv′

−i (a, b), where

w(v−i)(a, b) denotes the weight on the arc from a to b in
subnetwork v−i.

4.3 Envy-freeness
Our third example to illustrate the power of structural

requirements is the property of envy-freeness [9].
Let fi(v) denote the allocation of goods to agent i defined

by social choice function f .

Definition 5. Mechanism M =< f, p̃ > is envy-free if
vi(fi(v)) − p̃i(v) ≥ vi(fj(v)) − p̃j(v), ∀i, ∀j, ∀v ∈ V .

This property is easily verified by checking that there is no
agent that prefers an outcome-price pair that was received
by another agent. Thus, this can be checked by adding an
additional set of internetwork constraints.

Many strategyproof mechanisms are also envy-free. For
example, VCG mechanisms in domains with superadditive
valuations satisfy the property of envy-freeness [19]. As an-
other example, it is easy to show that envy-freeness holds
for any strategyproof mechanism in the domain of single-
minded combinatorial auctions that is fair, which requires



that for any set w and any two agents i and j such that
the bids are bi = (w, vi) and bj = (w, vj) where vi > vj ,
then agent j should not win. The LOS family of mecha-
nisms satisfy fairness and therefore all LOS mechanisms are
envy-free.

5. PROVIDING INTERMEDIATE FEED-
BACK TO PARTICIPANTS

We describe in this section some intermediate feedback
that can be provided to participants to guide their behav-
ior even before a mechanism’s strategyproofness (or lack
thereof) is completely established. This is the main tech-
nical achievement of our work.

5.1 Partial Strategyproofness
First, recall that the verifier is able to check the outcome

of a mechanism before the outcome is implemented and be-
fore payments are collected from agents and veto the result
if the input-output instance provides proof that the mecha-
nism is not strategyproof. This veto power is important in
establishing the following useful result.

Theorem 7. Given history H, and consider an instance
in which the reports of agents except i are v̂−i and instance
(vi, v̂−i) has been observed by the mechanism for agent i’s
true valuation vi. In this case, and conditioned on the mech-
anism passing the verifier in this instance, then agent i’s
best-response is to report her true valuation.

Proof. Fix v̂−i. Condition on the case that all checks
in the verifier pass. First, if the agent reports vi then the
mechanism must make the same decision as previously, by
checks (a) and (b) in SimpleChecker. Now suppose the
agent reports some v′

i 6= vi. We argue that this cannot im-
prove the agent’s utility. Case 1. The mechanism selects
an alternative a′ already observed. Now we argue that the
agent must actually prefer the outcome, a, that would have
been selected given truthful report vi. Either a′ was ob-
served after a in which case check (c) would have ensured
that a was preferred to a′ by an agent with type vi, or
a was observed after a′ and check (d) would have ensured
that a was preferred to a′ by an agent with type v′. Case
2. The mechanism selects a new alternative, not previously
observed for v̂−i. In this case, because vi was already ob-
served (with outcome a) then to pass check (c) it must be
the case that outcome a would preferred by an agent with
true type vi. This concludes the proof.

Note that the above theorem continues to hold even if the
mechanism is ultimately not strategyproof: it is still rational
for an agent to bid her true type if vi and v̂−i (reports by
the other agents) have already been observed. Moreover,
the observation leads to the following two corollaries. Here,
when truthful reporting is an ex post Nash equilibrium given
knowledge Ṽ ⊂ V about joint types, then every agent must
maximize its utility by reporting its true type in equilibrium
as long as every other agent is truthful and whatever the
actual joint valuation v ∈ Ṽ .

Corollary 1. Given history H, let Ṽ ⊂ V denote some
subspace of joint type space V for which all joint inputs
v ∈ V have been observed. Given knowledge that v ∈ Ṽ , and
conditioned on the mechanism passing the verifier in this
instance, then truthful reporting is an ex post Nash equilib-
rium.

Corollary 2. Given history H, and considering agent i
with true type vi, then if (vi, v−i) has been observed by the
verifier for all v−i, then conditioned on the mechanism pass-
ing the verifier in this instance truthful bidding is a dominant
strategy for bidder i.

We see that there are reasonable conditions under which
a partially informed agent (e.g. with information about the
space of possible types of other agents) should report its type
truthfully even before the strategyproofness of a mechanism
is fully verified. Moreover, these observations suggest that
it will be useful for a verifier to publish the set of types for
which the mechanism is provably strategyproof. Note also
that these results can all be rephrased in terms of summa-
rizations of reports from other agents when summarization
is used.

A somewhat weaker guarantee is also available to a bidder
in the case that report v̂−i has been observed but not in
combination with the agent’s type vi. This guarantee is
provided in the context of an adversarial mechanism, which
seeks to minimize the utility to agent i while passing the
verifier in this instance. The earlier guarantees are provided
for any mechanism.

Theorem 8. Given history H, then agent i maximizes
her worst-case utility against an adversarial mechanism by
reporting truthfully whenever report v̂−i has been observed,
contingent on the mechanism passing the verifier in this in-
stance.

Proof. Worst-case utility refers to the minimum util-
ity achieved over all possible choices that can be made by
the mechanism in responding to the input, while still pass-
ing the verifier. Fix vi and v̂−i ∈ H. First suppose the
agent is truthful. In this case the best the adversary can
do, in terms of minimizing the utility to the agent, and still
pass the checks (e.g. in SimpleChecker) is to select the
preferred alternative for the agent in a ∈ fH(v̂−i). Choos-
ing some less-preferred alternative in fH(v̂−i), or some less-
preferred alternative outside of fH(v̂−i) would violate check
(d) in SimpleChecker. Now suppose the agent is untruth-
ful and reports v′

i 6= vi. In this case, the mechanism can
always choose one of the current alternatives and pass since
check (c) would not be triggered and check (d) is satisfied
by choosing a′ ∈ fH(v̂−i), the most-preferred alternative
with respect to v′

i. Note that the alternative selected when
reporting vi is at least this good. Also, if the mechanism
chooses to select some new alternative then this must nec-
essarily be even worse for the agent (since the mechanism is
adversarial). This completes the proof.

5.2 Metrics for Partial Verification
We introduce two quantitative metrics for the degree to

which a mechanism’s strategyproofness has been partially
verified. First, Corollary 1 can be used to define a lower-
bound on the probability that truthful reporting is an ex post
Nash equilibrium, given history H and given a distribution
on types of bidders.

Corollary 3. Given history H and probability distribu-
tion g on agent types, then truthful bidding is an ex post
Nash equilibrium conditioned on the mechanism passing the
verifier in this instance, with probability:

Pr(SP |H) =
X

v∈V N

g(v)IH(v) (10)



where g(v) is the probability that agents have types v and
I
H(v) is an indicator function, and equal to 1 if and only if

v ∈ vH .

We refer to this metric as the probability-of-
strategyproofness. In combination with summarization, this
becomes:

Pr (SP |H) =
X

v∈V N

g(v)IH(s(v−1), . . . , s(v−N )) (11)

where I
H(s(v−1), . . . , s(v−N )) is an indicator function, and

equal to 1 if and only if summarizations s(v−i) for all i
have been observed by the mechanism given history H. A
probability-of-strategyproofness metric can also be defined
for a single agent i, where the average is computed with
respect to the marginal distribution on the reports of agents
6= i, given agent i’s type vi.

A complementary measure is provided by the price-
flexibility metric. This metric takes into account the range
of prices still available to a mechanism in setting prices on
alternatives not yet observed. Let FeasH(v) ⊆ A denote the
set of alternatives that can be selected without failing the
verifier given input v and history H. If v has been observed
this is the singleton containing the alternative fH (v) that
was previously selected. But, even when v has not been
observed we have restrictions on alternatives that can be
selected. There can be alternatives for which, if selected,
there is no price that can be assigned to satisfy checks (c)
and (d) in the verifier for all agents.

For a ∈ FeasH(v), we define the price flexibility on a,
denoted flexH(v, a) as:

vi(a) + inf
b∈fH(v−i)

{pH
i (b, v−i) − vi(b)}

−

"

sup
b∈fH(v−i)

(

pH
i (b, v−i) + sup

v′

i
∈vH

i
(b,v−i)

(v′
i(a) − v′

i(b))

)#

(12)

This represents the range of prices available to the mech-
anism without violating the checks in the verifier, and is
non-empty since a is in the feasibility set. Now, for val-
uation profile v = (v1, . . . , vN ), define the price-flexibility,
as:

PFH(v) =
X

v∈V N

g(v)

2

4

1

NH(v)

X

a∈FeasH (v)

flexH(v, a)

3

5 , (13)

where NH(v) = |FeasH(v)|. Notice that if all inputs v−i

have been observed for vi then PFH(vi) = 0. This is as we
would expect: a fully-verified mechanism has no flexibility
and must continually make the same decisions and assign
the same prices as in the past.

6. EXPERIMENTS
We present experimental results to demonstrate that the

verifier can impose useful restrictions on the mechanism de-
sign space (via summarization, natural payments, and envy-
freeness) and increase the confidence in truthful mechanisms
and accelerate the detection of failure in manipulable mech-
anisms.

For illustrative purposes, the experimental results are pre-
sented for a mixture of known and invented mechanisms.
We consider both Vickrey and first-price auctions for the

 0

 100

 200

 300

 400

 500

 600

 1  2  3  4  5  6

nu
m

be
r 

of
 in

st
an

ce
s

number of agents/number of items

base (items)
prop (items)

base (agents)
prop (agents)

Figure 2: Number of instances before failure in a

first-price multi-item auction.

allocation of multiple identical items. In addition, we con-
sider single-minded bidders in a combinatorial auction (with
multiple non-identical items) and the LOS mechanism [15]
as well as the LOS greedy allocation rule in combination
with VCG payments (this mechanism is called greedyVCG,
and is manipulable). We also find it useful to construct an
artificial, manipulable mechanism for single-minded bidders
using local search techniques combined with VCG payments.
We call this mechanism localVCG.

To provide a baseline we compare with an algorithm that
simply checks for violations of (A1). This algorithm is sound
but not complete. Actually, it completely fails to reject the
greedyVCG mechanism, which only makes errors of type
(A2). On the other hand, it is sound against first-price auc-
tions, which only violate (A1). The localVCG mechanism
is useful because it violates both (A1) and (A2), permit-
ting a comparison between the baseline and our verification
methods.

6.1 Multi-item Auctions
We consider a first-price multi-item auction with g iden-

tical goods and construct agent valuations by defining the
marginal value of the kth item for agent i as independently
drawn from a uniform distribution over {0, 1, . . . , z − 1}.
Here, z denotes the max number of values in the value do-
main for any one of these items. With g items the size of
the type space for each agent is m = zg. We consider the
verifier both with and without the internetwork constraints
that arise from the requirement of natural payment func-
tions (which hold for the VCG mechanism in this auction
environment), but do not consider the use of summarization.

Figure 2 illustrates the number of instances observed be-
fore failure. Fixing z = 5, we first vary the number of items
g from 1 to 10 for n = 3 agents (i.e. with m = zg = 5g

types per agent, m3 different instances, and at most m2

networks). Second, we vary the number of agents n from
1 to 10 for g = 3 items (i.e. with m = 53 = 125 types
per agent, 125n instances and at most 125n−1 networks).
For each experiment each point represents an average over
10 runs. The NetworkChecker is tested with and with-
out internetwork constraints due to natural payments, and
labeled base and prop accordingly.

Observe that internetwork constraints considerably speed



 0

 50

 100

 150

 200

 250

 2  3  4  5  6  7

nu
m

be
r 

of
 in

st
an

ce
s

number of agents

base
sum

envy-free

(a) Number of instances before failure in greedyVCG: Agents.

 0

 500

 1000

 1500

 2000

 2500

 3  4  5  6  7  8

nu
m

be
r 

of
 in

st
an

ce
s

number of items

base
sum

envy-free

(b) Number of instances before failure in greedyVCG: Items.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2  3  4  5  6  7

nu
m

be
r 

of
 in

st
an

ce
s

number of agents

our algorithm
benchmark

our algorithm with sum
benchmark with sum

(c) Number of instances before failure in localVCG: Agents.

 0

 100

 200

 300

 400

 500

 600

 3  3.5  4  4.5  5  5.5  6  6.5  7

nu
m

be
r 

of
 in

st
an

ce
s

number of items

our algorithm
benchmark

our algorithm with sum
benchmark with sum

(d) Number of instances before failure in localVCG: Items.

Figure 3: Exploring Verification with Single-Minded Bidders.

up the verification process. In addition, since at most n new
nodes are created for each instance, the number of nodes in
the graph is roughly proportional to a multiple of n times the
number of instances observed before failure and the running
time and space complexity of the verifier is roughly linear in
the number of instances observed. Thus, imposing natural
payments and enabling internetwork constraints improves
space and time complexity.

6.2 Single-Minded Bidders
For single-minded bidders we generated a distribution of

instances by using the L4 Legacy distribution of the Com-
binatorial Auctions Test Suite (CATS) [16]. We discretized
the type space by rounding the values to the nearest 250
(the values fell into a range of [0, 3000]). There are g dis-
tinct items, and each agent can choose any subset of the g
items, and have a value ∈ {0, 250, . . . , 2750, 3000} for the
desired bundle. The results are averaged over 10 trials.

In this experiment we impose both summarization and
envy-freeness, which is a reasonable structural requirement
in this environment (as noted in Section 4). As a summariza-
tion function we adopt the summarization function defined
in Example 4 for the VCG mechanism, which is also valid
for the LOS mechanism and therefore reasonable to impose.
We also compare with the benchmark algorithm, which fails
to catch the non-strategyproofness of greedyVCG but is ef-
fective for localVCG.

Figures 3 (a) and (b) illustrate the results for Network
Checker (“base”), and also with summarization (“sum”)
and with the additional structure provided by envy-freeness
(“envy-free”), which is used here without summarization 6

In Figure 3 (a) we vary the number of agents n while fixing
the number of items at g = 3 (m = 137 types, since there
are 23 − 1 bundles of 3 items). In Figure 3 (b) we vary the
number of items g while fixing the number of agents at n = 4
(m = 132g−1). The use of summarization provides a signif-
icant speed-up, and the imposition of envy-freeness makes
the verification of a non-strategyproof mechanism almost
immediate. As expected, summarization becomes more im-
portant as the number of agents increases, and its benefit
increases, because without summarization it gets less and
less likely that the history contains observations relevant to
a new instance. Figures 3 (c) and (d) illustrate the results for
Network Checker with and without summarization and
the benchmark algorithm with and without summarization,
this time with the localVCG mechanism. The same summa-
rization function is adopted as above.7 We again vary the

6For single minded bidders, the internetwork constraints
from natural payments used in NetworkChecker are triv-
ially satisfied, and do not improve the checking.
7Local search is modeled after the stochastic local search
algorithm by Hoos and Boutilier [12]. The only difference is
that our search is non-stochastic: we do greedy hill climbing
with their neighborhood definition and improvement crite-



number of agents, and then the number of items. In com-
parison with the benchmark algorithm, the verifier detects
non-strategyproofness more quickly both with and without
summarization, with the benefit over the benchmark with
summarization most noticeable as the number of items in-
creases.

6.3 Computing Metrics
We have also experimented with the probability of strate-

gyproofness (PrSP) and price flexibility (PF) metrics defined
in Section 5. These metrics allow the verifier to provide feed-
back to agents before finally verifying that a mechanism is
strategyproof (or not). We present results for single-minded
combinatorial auctions and the (strategyproof) LOS mech-
anism. Monte Carlo analysis is used to estimate PrSP and
PF over all possible valuations v ∈ V , where the valuations
are drawn according to the CATS Legacy distribution.

Figure 4 (a) displays the estimated PrSP for LOS in a
domain with 4 agents and 3 items. The results are aver-
aged over 100 trials. We consider NetworkChecker with-
out summarization and then with the two summarization
functions described in Example 4 (the first is the more gen-
eral VCG rule, the second is the rule designed for LOS.)
Summarization greatly improves the probability that truth-
ful reporting is a dominant strategy at any given point in
the verification process, especially the second summariza-
tion function which is designed for LOS. Thus, in deploying
the LOS mechanism it would be useful to instruct the veri-
fier to adopt this strict summarization function in order to
accelerate verification.

Figure 4 (b) displays the estimated PF for LOS in a do-
main with 3 agents and 3 items. The results are averaged
over 300 trials. We compare NetworkChecker with and
without the imposition of natural payments and thus with
and without the availability of internetwork constraints. We
find that internetwork constraints are somewhat effective in
reducing the price flexibility, although the effect is not as
pronounced as that of summarization on the probability of
strategyproofness.

7. CONCLUSIONS AND FUTURE WORK
We have introduced the problem of verifying whether

a mechanism is strategyproof and provided a constraint-
network based algorithm for verification. The verifier is able
to reject mechanisms that are not strategyproof based on the
violation of constraints imposed by strategyproofness on the
price space. Experimental results demonstrate the potential
for accelerated checking when there is additional structure
to exploit and also suggests metrics that can be informa-
tive in guiding bidders before a mechanism is fully verified.
Useful intermediate guarantees can also be provided to par-
ticipants.

In practice, we believe that the most benefit from passive
verification (as defined here) will be realized in combination

ria. Local search is used first to approximate a solution with
all agents. During this phase we also track the best solution
found for each marginal economy. For payments, we then
run local search with a smaller number of search steps on
each of the marginal economies and adopt for the economy
without i the best allocation discovered in the main search
and in the explicit search in the marginal economy. In addi-
tion to failing (A2), localVCG can also fail (A1) because the
price to a buyer can now depend on the search path adopted
in the main economy, which can on the buyer’s own bid.

with approximations that allow the verifier to forget some
of its history and further reduce the space complexity of
verifiers. In future work we will explore limited memory
checking, where we let the verifier forget part of the history,
and allow false positives; e.g. using data structures such as
Bloom filters [4] to allow for fast checking. Another impor-
tant avenue for future work is to introduce methodologies
that can allow for a continuous type space.

8. REFERENCES
[1] A Archer and E Tardos. Truthful mechanisms for

one-parameter agents. In Proc. 42nd IEEE Symp. on
Foundations of Computer Science, 2001.

[2] Moshe Babaioff, Noam Nisan, and Elan Pavlov.
Mechanisms for a spatially distributed market. In
Proc. 5th ACM Conf. on Electronic Commerce, pages
9–20. ACM Press, 2004.

[3] Y Bartal, R Gonen, and N Nisan. Incentive
compatible multi unit combinatorial auctions. In In
Proc. Theoretical Aspect of Rationality and
Knowledge, 2003.

[4] A. Broder and M.Mitzenmacher. Network applications
of bloom filters: A survey. Internet Math, 1, no. 4,
2003.

[5] D.C.Parkes, M.O.Rabin, S.M.Shieber, and
C.A.Thorpe. Practical secrecy-preserving, verifiably
correct and trustworthy auctions. In Proc. 8th Int.
Conf. on Electronic Commerce (ICEC’06), 2006.

[6] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal
constraint networks. Artificial Intelligence Journal,
49:61–95, 1991.

[7] Amos Fiat, Andrew Goldberg, Jason Hartline, and
Anna Karlin. Competitive generalized auctions. In
Proc. 34th ACM Symposium on Theory of Computing
(STOC’02), 2002.

[8] A. Garcia-Camino, P. Noriega, and J. A.
Rodriguez-Aguilar. Implementing norms in electronic
institutions. In Proceedings of the 4th Int. Joint Conf.
on Autonomous Agents and Multiagent Systems
(AAMAS-05), 2005.

[9] Andrew Goldberg and Jason Hartline. Envy-free
auctions for digital goods. In Proc. ACM
E’Commerce, 2003.

[10] F. Guerin and J. V. Pitt. Guaranteeing properties for
e-commerce systems. In O. Shehory and N. Sadeh
J. Padget, D. Parkes, editor, LNAI 2531:
Agent-Mediated Electronic Commerce IV, pages
253-272. Springer-Verlag, 2002.

[11] Honwei Gui, Rudolf Muller, and Rakesh V Vohra.
Dominant strategy mechanisms with multidimensional
types. Technical report, Northwestern Univ., 2004.

[12] Holger H Hoos and Craig Boutilier. Solving
combinatorial auctions with stochastic local search. In
Proc. 17th National Conference on Artificial
Intelligence (AAAI-00), July 2000.

[13] Matthew O. Jackson. Mechanism theory. In The
Encyclopedia of Life Support Systems. EOLSS
Publishers, 2000.

[14] R Lavi, A Mu’alem, and N Nisan. Towards a
characterization of truthful combinatorial auctions. In
Proc. 44th Annual Symposium on Foundations of
Computer Science, 2003.

[15] Daniel Lehmann, Liadan Ita O’Callaghan, and Yoav
Shoham. Truth revelation in approximately efficient
combinatorial auctions. Journal of the ACM,
49(5):577–602, September 2002.

[16] Kevin Leyton-Brown, Mark Pearson, and Yoav
Shoham. Towards a universal test suite for
combinatorial auctions. In Proc. 2nd ACM Conf. on
Electronic Commerce (EC-00), 2000.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000

P
r(

tr
ut

hf
ul

)

number of instances observed

base algorithm
summarization 1
summarization 2

(a) Estimated probability of strategyproofness: Ef-
fect of summarization

 0

 100

 200

 300

 400

 500

 600

 700

 800

 200  400  600  800  1000  1200  1400  1600  1800  2000

av
er

ag
e 

pr
ic

in
g 

fle
xi

bi
lit

y

number of instances observed

base algorithm
with propagation

(b) Estimated pricing flexibility: Effect of internet-
work constraints (from natural payments)

Figure 4: Evaluating metrics for partial strategyproofness in verification of the LOS mechanism in single-

minded combinatorial auctions.

[17] Robert B Myerson. Optimal auction design.
Mathematics of Operation Research, 6:58–73, 1981.

[18] M Naor, B Pinkas, and O Reingold. Privacy
preserving auctions and mechanism design. In Proc.
1st ACM Conf. on Electronic Commerce (EC-99),
pages 129–139, 1999.

[19] S. Papai. Groves sealed bid auctions of heterogeneous
objects with fair prices. Social Choice and Welfare,
20:371–385, March 2003.

[20] M. Pauly. Programming and verifying subgame
perfect mechanisms. Journal of Logic and
Computation, 15(3):295-316, 2005.

[21] M. Pauly and M. Wooldridge. Logic for mechanism
design - a manifesto. Proceedings of the Game
Theoretic and Decision Theoretic Agents Workshop,
2003.

[22] W. van der Hoek, A. Lomuscio, and M. Wooldridge.
On the complexity of practical atl model checking. In
Proceedings of the 5th Int. Joint Conf. on Autonomous
Agents and Multi-Agent Systems (AAMAS-06), 2006.

[23] Makoto Yokoo. The characterization of
strategy/false-name proof combinatorial auction
protocols: Price-oriented, rationing-free protocol. In
Proc. 18th Int. Joint Conf. on Art. Intell., 2003.

APPENDIX

A. PROOFS

Proof of Theorem 5. Correctness is immediate. To
show soundness, suppose a mechanism is demonstrated to be
non-strategyproof without summarization after k instances.
We argue that the mechanism will still be demonstrated to
be non-strategyproof with summarization. First, note that
the use of summarization function does not affect step (a)
of SimpleChecker. We now have the following 3 cases:

1. Check fails in (b) of SimpleChecker: ak ∈ fH(vk
−i)

and pk
i (ak, vk

−i) 6= pl
i(a

k, vk−i) = pH
i (ak, vk

−i) for some
l < k. By definition of the summarization function,
pk

i (ak, vk
−i) = pk

i (ak, s(vk
−i) and pl

i(a
k, vk−i) = pl

i(a
k,

s(vk−i)). It follows that pk
i (ak, s(vk

−i) 6= pl
i(a

k, s(vk
−i).

2. Check fails in (c) of SimpleChecker: there exists al ∈
fH(vk

−i), pk
i (ak, vk

−i) < pl
i(a

l, vk
−i) + (vl

i(a
k) − vl

i(a
l))

for some l < k. Since pk
i (al, vk

−i) = pk
i (al, s(vk

−i))
and pl

i(a
l, vk

−i) = pk
i (al, s(vk

−i)), pk
i (ak, s(vk

−i)) <
pl

i(a
l, s(vk

−i)) + (vl
i(a

k) − vl
i(a

l)).

3. Check fails in (d) of SimpleChecker: there exists al ∈
fH (vk

−i), pk
i (ak, vk

−i) > pl
i(a

l, vk
−i) + (vk

i (ak) − vk
i (al))

for some l < k. Then pk
i (ak, s(vk

−i)) > pl
i(a

l, s(vk
−i)) +

(vk
i (ak) − vk

i (al)).

Hence, if the mechanism fails the check in one of the 3 steps
above without summarization, then it will fail the check in
the same step with summarization.

Lemma 2. Consider a truthful social choice function f
and some valuations v for which f(v) = a. Suppose v′ is
such that for each j, either v′

j = vj or v′
j(a)−v′

j(b) > vj(a)−
vj(b) ∀b 6= a. Then f(v′) = a.

Proof. The proof follows from W-MON [14], which is a
necessary condition for truthfulness.

Definition 6. A social choice function f satisfies W-
MON if ∀ v ∈ V, i, and vi ∈ Vi: f(v) = a and f(v′

i, v−i) =
b ⇒ v′

i(b) − vi(b) ≥ v′
i(a) − vi(a).

Without loss of generality, suppose the first k agents
are such that v′

j = vj and the rest of the agents
are such that v′

j(a) − v′
j(b) > vj(a) − vj(b) ∀b 6=

a. By W-MON, f(v′
1, . . . , v

′
k, v′

k+1, vk+2, . . . , vN ) =
f(v1, . . . , vk, v′

k+1, vk+2, . . . , vn) = a. Now, applying W-
MON again with agent k + 2, f(v′

1, . . . , v
′
k, v′

k+1, v′
k+2, vk+3

. . ., vn) = a. We can repeatedly apply W-MON up to agent
n to get f(v1, v

′
2, . . . , v

′
n) = a.

Proof of Lemma 1. First, note that for any vi such
that f(vi, v−i) = a, f(vi, v

′
−i) = a by Lemma 2. Consider

v̄i such that for a fixed b ∈ A, b 6= a,

v̄i = argvi
inf{vi(a) − vi(b)|f(vi, v−i) = a}.

Then v̄i(a) − v̄i(b) = δab(v−i). Now, since f(v̄i, v
′
−i) = a,

δab(v−i) ∈ {vi(a) − vi(b)|f(vi, v
′
−i) = a}. So, δab(v−i) ≥

inf{vi(a) − vi(b)|f(vi, v
′
−i) = a} = δab(v

′
−i). Hence,

δab(v
′
−i) ≤ δab(v−i). Since δab(v−i) = pi(a, v−i) −

pi(b, v−i) (by natural payments), it follows that pi(a, v′
−i)−

pi(b, v
′
−i) ≤ pi(a, v−i) − pi(b, v−i).


