
Constructing Stable Matchings Using Preference Elicitation

through Prices and Budgets

A thesis presented

by

Lisa Wang

To

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the joint degree of

Bachelor of Arts in Computer Science and Mathematics

Harvard College

Cambridge, Massachusetts

April 1, 2016

1

Abstract

Eliciting complete preference information is difficult in many two-sided matching markets.

First, there may be a very large number of options to rank. In addition, preference elic-

itation may require interviews that are time and effort costly, and furthermore, costs for

elicitation may be unbalanced on the two sides. For example, schools may have easy criteria

by which to rank students, but students may need to expend considerable time and energy

to rank schools. The problem addressed in this thesis is to achieve a stable matching while

minimizing the amount of information required from agents. I focus on the one-to-one two-

sided matching problem, or the stable marriage problem, and introduce a new mechanism

for achieving a stable matching using virtual prices and virtual budgets. I experimentally

analyze the degree of information elicited and the time to convergence, comparing the per-

formance of this new mechanism with two existing stable marriage matching algorithms,

Deferred Acceptance and Minimax Regret. The new mechanism requires less information

from one side of the market than these other algorithms, which may make it well suited to

several real-life market places.

Acknowledgements

I am indebted to Professor David Parkes for introducing me to this topic and serving as

my mentor and advisor. I am deeply grateful to him for his tireless and patient guidance

throughout this process. I would also like to express my gratitude to Hongyao Ma for

sharing her insights and critiquing my research and thesis drafts with such detail and care.

I would also like to thank Professors Yaron Singer and Yiling Chen for generously of-

fering to be my thesis readers.

Finally, thank you to my mother and father for always giving me their unconditional

love and support.

2

Contents

Acknowledgements 2

1 Introduction 6

1.1 Contribution . 8

2 Basic Theory 9

2.1 Linear Programming Theory . 9

2.1.1 Primal-Dual Algorithms . 10

2.2 Stable Marriage: Basic Terminology . 11

2.3 Matching Mechanisms . 12

2.3.1 Gale-Shapley Deferred Acceptance 13

2.3.2 Dual Ascent Algorithm . 14

2.3.3 Lazy Gale Shapley . 16

2.3.4 Minimax Regret . 18

3 Linear Program Formulations of Markets 22

3.1 Single Item Auction . 22

3.1.1 LP and Dual . 23

3.1.2 Complementary Slackness . 23

3.2 Marriage Problem . 25

3.2.1 LP and Dual . 25

3.2.2 Complementary Slackness . 26

3

4

3.3 Introducing Redundancy in Primal Constraints 27

3.3.1 LP and Dual . 28

3.3.2 Complementary Slackness . 28

3.4 Alternative Linear Formulation . 29

3.4.1 Linear Program . 29

3.4.2 Proposed Mechanism . 30

4 Iterative Price and Budget Algorithm for Preference Elicitation 33

4.1 Algorithm . 33

4.2 Convergence, Soundness and Optimality . 34

4.3 Running Example . 36

5 Experimental Methodology 38

5.1 Preference Generation . 38

5.2 Collection Process . 39

5.3 Measuring Preference Elicitation . 39

5.3.1 Profile Enumeration . 40

5.3.2 Alternative Method . 41

6 Experimental Results 42

6.1 Comparison with Deferred Acceptance . 42

6.1.1 Size of Polytope for Proposers . 42

6.1.2 Size of Polytope for Acceptors . 45

6.1.3 Iterations . 47

6.2 Comparison with Minimax Optimal Matching 48

6.2.1 Size of Polytope for Proposers . 48

6.2.2 Size of Polytope for Acceptors . 50

6.2.3 Iterations . 53

7 Conclusion 56

7.1 Implications . 56

5

7.2 Future Work . 56

A Matching Mechanisms 58

A.1 Full Minimax Regret Algorithm . 58

A.2 Full Lazy Gale Shapley Algorithm . 59

B Linear Formulations 60

B.1 Single-Sided Assignment . 60

B.1.1 LP and Dual . 60

B.1.2 Complementary Slackness . 61

B.1.3 Iterative Algorithm . 61

B.2 Two-Sided Assignment . 62

B.2.1 LP and Dual . 62

B.2.2 Complementary Slackness . 63

B.2.3 Finding Prices . 63

B.2.4 Complementary Slackness with Prices 64

Bibliography 65

Chapter 1

Introduction

In a two-sided matching market, agents are divided into two disjoint sets. Each agent has

a preference for the members on the other side. A matching over all agents is considered

stable if no two agents would prefer to leave their assigned match for each other. In a

one-to-one matching problem, agents are matched to at most one agent. For example, the

stable marriage problem uses ordinal preferences to construct a stable one-to-one matching

between a set of men and a set of women. In an extension of one-to-one, the many-to-one

matching problem lets agents on one side of the market be matched to multiple agents

from the other side. An example is the National Resident Matching Program, in which

over 40,000 residents apply to about 5,000 residency programs; a stable matching between

graduating medical students and hospitals is computed based on the preferences of both

sides [10]. Similarly, in Singapore, Boston, and New York City, stable matchings are com-

puted to assign students to secondary schools [12].

Gale and Shapley [5] introduced the deferred acceptance algorithm, assigning one side

of the market as “proposers” and the other as “acceptors,” to solve both the stable mar-

riage and the many-to-one problem. They showed that the algorithm computes a stable

matching for any complete preference profile and is computationally efficient. However, in

most cases, complete, ordinal preference orderings are not necessary to compute a stable

matching. Furthermore, as economies scale, in particular for the many-to-one cases, re-

quiring complete information becomes impractical. Consider resident matching in which

each resident would have to rank all 5,000 programs and each hospital would have to rank

all 40,000 residents. This would be both time and effort intensive, in particular if specific

criteria for ranking were not clearly defined. For example, while hospitals might have clear

cut-offs in terms of grades or MCAT scores, students may not have such clarity in ranking

6

7

their options. Moreover, both the monetary and time cost of interviews would be high for

both sides of the market.

Thus, a preference elicitation scheme that minimizes agent interviews is desirable. And

while algorithms such as deferred acceptance can be implemented interactively using pref-

erence elicitation, they were not designed to minimize elicitation [2]. Much of the work

conducted in this area is around refining partial preferences through agent interviews.

Rastegari et al. [9] showed that finding a minimal set of partial preferences that supports

an optimal matching is NP-hard. Using the assumption that there is correlation in pref-

erences, they use strongly correlated preferences on one side of the market to construct

an elicitation scheme that builds on Gale-Shapley, which they call “Lazy Gale-Shapley”.

Using equivalence classes for preferences rather than a full ordering, the algorithm is shown

to converge to an optimal, stable matching for any preference profile. Similarly, Drum-

mond and Boutilier [2] constructed an elicitation scheme that continually refines partial

preferences. A stable matching is approximated by minimizing the maximum regret any

pair of agents feels in their matching, thus giving the name “minimax regret.” For large

economies, minimax regret is shown to converge to an approximately stable matching with

less preference information than deferred acceptance, as measured by the number of agent

interviews. To compare elicitation schemes, different methodologies have been used, includ-

ing measuring the number of interviews conducted with agents and the types of question

asked to agents.

However, since Lazy Gale-Shapley requires strong correlation in preferences and mini-

max regret approximates stable matchings, it is not clear that the most efficient preference

elicitation scheme is among this set of mechanisms. This thesis explores new options, in

particular price-based approaches: a price-based, linear programming approach has been

successfully used to generate efficient preference elicitation schemes for other matching

markets. By using the primal-dual relationship and the dual variables that double as

prices, an iterative, ascending price scheme can be used to compute a utility-maximizing

allocation without complete preference information. As Parkes [8] shows, this has found

success in auctions, in which agents bid on items, and the assignment problem, a one-to-one

matching problem in which preferences are cardinal, rather than ordinal. Since the stable

marriage problem can also be formulated as a linear program, a similar approach seemed

natural. But, while it seems very difficult to find a primal-dual that exposes a natural price

structure, inspired by this mechanism, I develop a price-based approach to iteratively elicit

information. In particular, by continuously constricting the polytope of possible preference

8

profiles, an iterative process can be used to converge to a stable matching.

1.1 Contribution

The main contributions of this thesis are as follows:

• I study different primal-dual formulations of the stable marriage problem, and show

that the use of ordinal preferences makes understanding the dual variables difficult.

• I develop a price-based approach towards preference elicitation to construct a stable

matching. The resulting algorithm is shown to converge to a stable matching for any

two-sided one-to-one matching market.

• I present a method of comparing the information collection between algorithms, which

measures the size of the polytope of agent preferences upon reaching a stable match-

ing. Under this comparison, the price-based approach requires less information from

the proposing side of the market, while needing more information from the accepting

side than both deferred acceptance and minimax regret.

The thesis will be structured as follows. Chapter 2 introduces the notation and basic theory

of linear programming and the stable matching problem. Chapter 3 describes primal-dual

algorithms that exist for other matching markets to show the motivation for exploring this

approach. Chapter 4 presents a new price-based approach of preference elicitation, called

price-budget alignment, and proves both soundness and convergence. Chapter 5 presents

the experimental procedures of testing the different mechanisms. Chapter 6 compares the

number of iterations and polytope size between price-budget alignment and both deferred

acceptance and minimax regret. Chapter 7 concludes.

Chapter 2

Basic Theory

In constructing a price-based preference elicitation mechanism for finding a stable match-

ing, I first use a linear programming approach. In this chapter, a brief overview of the

linear programming theory necessary to understand this approach is given. Basic notation

used to understand the stable marriage problem is also provided for easier understanding

of the matching mechanisms discussed. In addition, four existing matching mechanisms

are detailed, in particular, the contributions from the literature that are relevant to my

investigation.

2.1 Linear Programming Theory

A linear program is a maximization or minimization of a linear function subject to a finite

number of linear constraints. A standard program takes the following form:

max cTx

s.t. Ax ≤ b

x ≥ 0

where A is an m×n matrix, x, c are vectors in Rn, and b is a vector in Rm. We define this

as the primal. The function being maximized is the objective function and the inequalities

following are the constraints. A feasible solution is one that satisfies all the constraints

of the linear program. A linear program is infeasible if it has no feasible solutions. To

solve the primal is to find a feasible solution for x that maximizes the objective function

— this solution is then optimal. A linear program is unbounded if the optimal solution

is unbounded, i.e. ±∞.

9

10

The primal is associated with another linear program, the dual:

min bT y

s.t. AT y ≥ c

y ≥ 0

where y is a vector in Rm.

Each variable xj in the primal corresponds to a constraint in the dual. And similarly,

each variable yi in the dual corresponds to a constraint in the primal. We can see that the

optimal multiplier yi corresponds to a change in the primal objective if bi in the primal

increased by 1. The yi can thus act as “prices” on their corresponding constraints, and are

called shadow prices.

We use the following two relationships between the primal and its dual.

Theorem 1 (Strong Duality Theorem). A linear program is feasible and has a finite

optimal value if and only if the dual is feasible and has a finite optimal value as well.

Furthermore, the optimal values are the same and optimal solutions to both the primal and

dual exist.

Theorem 2 (Complementary Slackness). A primal and dual solution is optimal if and

only if the primal and dual are feasible and satisfy the following complementary slackness

conditions:

• If a primal variable xj > 0 then the corresponding dual inequality is binding. Simi-

larly, if a dual variable yi > 0 then the corresponding primal inequality is binding.

• If a dual inequality is not binding, then the corresponding primal variable is equal

to 0. And similarly, if a primal equality is not binding, then the corresponding dual

variable is equal to 0.

2.1.1 Primal-Dual Algorithms

The relationship between the primal and dual can be utilized to solve matching and assign-

ment problems through iterative algorithms. The general structure is to use best-response

strategies from agents to calculate the primal and dual solutions. Then, by checking the

11

complementary slackness conditions, optimality can be verified. By using this method, in-

formation can be elicited iteratively as the mechanism runs, rather than requiring complete

information at the start.

For example, Parkes [8, 7] uses a primal-dual algorithm to solve the linear program for-

mulation of a combinatorial auction. By interpreting dual variables as prices and payoffs,

prices on item bundles can be incrementally increased based on elicited agent information

in the form of bids. Optimality can be tested by simply testing the complementary slack-

ness conditions, and the linear program never has to be directly solved.

The primal-dual algorithm takes the following form:

1. Maintain a feasible dual solution of prices.

2. Receive bids from agents for the items based on the prices.

3. Compute a feasible primal solution of item allocation, minimizing violations of com-

plementary slackness conditions given agent input.

4. Terminate if all complementary slackness conditions are satisfied. First, whether an

agent is allocated a bundle of items if and only if the bundle has non-negative utility

and maximizes utility given the prices. Second, whether the allocation is revenue

maximizing given the prices.

5. Adjust the dual solution towards an optimal solution, based on CS conditions and

the current primal solution - essentially increasing prices for over-demanded items.

Note that for this method to work, a full understanding of the dual variables, including a

price interpretation, is necessary. In particular, steps 1 and 2 require prices to construct

the dual solution and to elicit agent information.

2.2 Stable Marriage: Basic Terminology

Throughout this thesis, the following notations are used when describing the stable mar-

riage problem. We start with two disjoint sets, each of size n, denoted P and A, for

proposers and acceptors respectively. Each agent p has strictly ordered preferences con-

taining all members of the other set, denoted as �p. If agent p ∈ P prefers agent a1 ∈ A
to agent a2 ∈ A then we use the following notation

a1 �p a2

12

A matching µ is a bijective correspondence between P and A. If p and a are matched,

p = µ(a) and a = µ(p). Throughout this thesis, I assume that all agents prefer to be

matched to someone rather than remain unmatched. Thus, in a matching µ, all agents are

matched to exactly one agent on the other side of the market.

A pair (p, a) ∈ P × A is a blocking pair in a matching µ if p prefers a to her current

partner and a prefers p to her current partner,

p �a µ(a) and a �p µ(p)

A matching in which there is at least one blocking pair is defined as unstable and a

matching in which there are no blocking pairs is defined as stable.

2.3 Matching Mechanisms

First, we consider the widely referenced Gale-Shapley deferred acceptance algorithm, which

has been used as the basis for both the National Resident Matching Program as well as

New York public high school matching [10, 1]. We then examine the linear programming

approach taken by Vohra [15] as well as the elicitation mechanisms developed by Rastegari

et. al [9] and Drummond and Boutilier [2, 3].

To effectively understand and compare these mechanisms, I will use the following run-

ning example:

n = 3

P = {p1, p2, p3}

A = {a1, a2, a3}

� = {p1 : [a2, a1, a3]

p2 : [a2, a3, a1]

p3 : [a2, a3, a1]

a1 : [p2, p1, p3]

a2 : [p1, p3, p2]

a3 : [p3, p1, p2]}

where an ordering [ai, aj , ak] means that ai is the most preferred and ak is the least pre-

ferred.

13

2.3.1 Gale-Shapley Deferred Acceptance

Gale and Shapley developed an algorithm to find a stable matching by having agents on one

side of the market propose to agents of the other. The following describes the algorithm:

1. Let each unmatched proposer p propose to her most preferred choice out of the

acceptors who have not rejected p.

2. Each acceptor is tentatively matched to, or “holds,” her most preferred proposer to

date.

3. Stop when no new proposals are made and match each acceptor to the proposer she

is holding.

Gale and Shapley showed that this deferred acceptance algorithm always converges to a

stable matching under strict, ordinal preferences of agents in P and A.

The matching can also be considered in the context of optimality. An optimal stable

matching µ for agents in P is a matching where every p ∈ P is matched to her best possi-

ble partner out of all possible stable matchings. Conway and Knuth [6] showed that when

preferences are strict, if set P proposes in the deferred acceptance algorithm, then the

matching is the optimal matching for agents in P and the least optimal for agents in A.

Likewise, if the set A proposes, then the matching is the optimal matching for agents in A

and the worst for agents in P .

If we consider our running example, let P (pi) be the agent pi proposes to and let A(ai) be

the proposer ai “holds.” Then, the rounds proceed as follows:

1. P (p1) = a2, P (p2) = a2, P (p3) = a2

A(a2) = p1

2. P (p2) = a3, P (p3) = a3

A(a2) = p1, A(a3) = p3

3. P (p2) = a1

A(a1) = p2, A(a2) = p1, A(a3) = p3

So, µ = {(a1, p2), (a2, p1), (a3, p3)} and the mechanism took 3 iterations. Note that when

a proposer chooses an agent to propose to or when an acceptor chooses her most preferred

proposer, preference information is elicited. For example, from the proposals in the first

14

round, we know that each proposer prefers a2 to the other two acceptors. And on the

acceptor side, we know that a2 prefers p1 to both p2 and p3. If we let a sublist be an

equivalence class, i.e. the order within is not determined, then the information collected is

as follows:

� = {p1 : [a2, [a1, a3]]

p2 : [a2, a3, a1]

p3 : [a2, a3, a1]

a1 : []

a2 : [p1, [p3, p2]]

a3 : [p3, p2]}

Note that this is a proposer-optimal matching, and more information was required from

the proposers than the acceptors to compute a stable matching in this example..

Elicitation Mechanism

Gale-Shapley can also be implemented using an elicitation approach, such that agents are

not required to provide their full preference orders at the start. Incremental queries are

used to ask proposers their most preferred choice at each round and acceptors their most

preferred proposer rather than drawing from provided preference orders. However it can

be seen that deferred acceptance was not constructed to optimize interview minimization.

Low-ranked proposers and acceptors will specify close to their entire preference ranking,

when only the bottom of their ranking is needed. Still, deferred acceptance provides a

general basis to build a preference elicitation mechanism — assigning one side as proposers

and the other as acceptors sets up a way to collect information using agent actions. This

idea is explored more in Chapter 5.

2.3.2 Dual Ascent Algorithm

Vohra describes a dual ascent algorithm using the linear programming formulation of the

stable matching problem. In this algorithm, first, if acceptor a is proposer p’s kth choice,

then rpa = n − k, where n is the number of agents on each side. Then, the goal is to

maximize,

max{
∑
p∈P

∑
a∈A

rpaxpa} (2.1)

15

where x is a possible stable matching and xpa is an indicator variable of whether p and

a are matched. The full linear formulation is detailed in Section 3.2. Let v be the dual

variable associated with the blocking constraints for each pair (detailed further in section

3.2.1) and w the dual variable associated with the constraint that ensures each proposer

is matched with exactly one acceptor (also detailed in section 3.2.1). Then, we have the

following Lagrangian relaxation

max
∑
p∈P

∑
a∈A

[rpa − wa − vpa −
∑

k∈A:k�pa

vpk −
∑

k∈P :k�ap

vka]xkp (2.2)

s.t.
∑
a∈A

xpa = 1, ∀p ∈ P

xpa ≥ 0, ∀(p, a) ∈ P ×A

If we solve this relaxation, then each proposer p ∈ P should propose to the acceptor a ∈ A
that maximizes

rpa − wa − vpa −
∑

k∈A:k�pa

vpk −
∑

k∈P :k�ap

vkp.

Let (pt, vt) be the values of the multipliers at the start of iteration t and let (p0, v0) = 0.

And let xt be the optimal choice of x given (pt, vt) where xtpw = 1 if p proposers to a. The

variables in the dual ascent algorithm Vohra proposes change in the following way:

1. p̂ = 0 throughout

2. At iteration t, let v̂pa = xtpa for all p, a ∈ P ×A

3. Set (pt+1, vt+1) = (pt, vt) + (p̂, v̂) = (pt, vt) + (0, xtpa)

4. Set rt+1
pa = rtpa − vtpa −

∑
k∈A:k�pa

vtpk −
∑

k∈P :k�ap
vtkp.

In other words let rt+1
pa = rtpa − xtpa −

∑
k∈A:k�pa

xtpk −
∑

k∈P :k�ap
xtka.

5. Terminate if xt is a matching.

When proposers propose, this corresponds to the maximization of the relaxation, given

the current Lagrangian multipliers. The responses of the acceptors leads to the updating

of the Lagrangian multipliers. And, essentially, if proposer p proposes to acceptor a at

iteration t, a is the highest ranked choice of p at that time. And if proposer p is acceptor

a’s top choice among those proposing to a, then p’s value r for a, as well as all acceptors p

prefers less than a will decrease by 1. The value of r for all acceptors that p prefers more

than a will decrease by at least 1. This ensures at the next iteration, a will still be p’s

most preferred choice. However, if a rejects p, rpa keeps decreasing in each iteration until

16

at some point the p finds some other agent more favorable.

We can apply this mechanism to our running example, where the iterations proceed as

follows:

1. r0 =

2 3 1

1 3 2

1 3 2

 , x0 =

0 1 0

0 1 0

0 1 0



2. r1 =

1 2 0

0 0 1

0 1 1

 , x1 =

0 1 0

0 0 1

0 1 0



3. r2 =

 0 1 −1

−1 −1 0

−1 −1 0

 , x2 =

0 1 0

0 0 1

0 0 1



4. r2 =

−1 0 −3

−2 −2 −2

−2 −2 −1

 , x2 =

0 1 0

0 1 0

0 0 1



5. r2 =

−2 −1 −5

−3 −4 −4

−3 −3 −2

 , x2 =

0 1 0

1 0 0

0 0 1


Thus we converge to the same matching as deferred acceptance, but with five iterations.

We also note that since r requires exact preference ordering from the start, there is no

clear way to alter this mechanism to use preference elicitation instead. Also note that

while there is repetition in proposing, the general pattern follows deferred acceptance. In

fact, Vohra shows that the dual adjusted rank r declines in a way such that proposers

will propose in about the same order as they would in deferred acceptance. In particular,

the development of this mechanism reflects the motivation to use a linear programming

approach in an iterative way.

2.3.3 Lazy Gale Shapley

Rastegari et al. [9] consider the problem of minimizing the number of interviews needed to

find a stable matching. They show that finding a minimal set of partial preferences that

supports a proposer-optimal matching is NP-hard. They also propose a model in which

17

agents provide preferences ranked in equivalence classes, where agents in higher-ranked

equivalence classes are preferred to those in lower-ranked classes. Since each agent has

a true, just unknown, strict preference ordering that is consistent with the equivalence

classes, these classes can be refined. For example, [[p1, p2], [p3, p4]] or [[p1, p2, p4], [p3]] are

equivalence classes consistent with a true ordering �= [p2, p1, p4, p3]. A query to elicit

information is called an “interview” and reveals pairwise ranking information. The goal is

to minimize the number of interviews performed to compute a stable matching.

They define a weakly-dominant interview policy to be one that performs a minimal number

of interviews for all underlying true preference profiles consistent with the partial infor-

mation. A weakly-dominant and sound interview mechanism is described, and can be

executed in polynomial time. However, to use this mechanism, which they dub “Lazy

Gale-Shapley,” identical equivalence classes on one side of the market is necessary. This

assumption is the result of observations that preferences are often positively correlated.

By using this assumption, the algorithm is then able to converge in polynomial time.

“Lazy Gale-Shapley” operates similarly to Gale-Shapley but rather than requiring com-

plete information at the start, it uses partial ordering in the form of equivalence classes —

hence “lazy,” and adds an interview mechanism to refine the partial ordering. It should be

noted however, that that the algorithm can start with just one equivalence class, with all

agents inside, thus providing no initial information and relying completely on the interview

elicitation. The interweaving of interview and matching stages are summarized below:

• In the interview stage, one unmatched proposer p that satisfies two properties is

chosen. First, there must be achievable acceptors that p has not yet interviewed,

where achievable means they have not received a better offer yet — let this set be

S. Second, if acceptors rank p in the lth equivalence class, then they rank any

other proposer p′ that satisfies the first property in a class below or equal to l. p

then interviews all acceptors in the highest ranking equivalence class that contains

members of S.

• In the matching stage, each unmatched proposer p proposes to her most achiev-

able, interviewed acceptor. Each acceptor accepts her most preferred proposal. The

matching phase ends when there are no unmatched proposers that have achievable,

interviewed acceptors left.

The algorithm terminates when there are no longer any unmatched employers that still

have achievable applicants with whom they have not interviewed. Otherwise, it returns to

18

the interview stage. The complete algorithm can be found in Appendix A.

We use our running example to illustrate the mechanism. In order to have identical equiv-

alence classes for acceptors, we put all proposers in the same class, so we have [[p1, p2, p3]],

and similarly for acceptors. This, allows the algorithm to start with no preference infor-

mation. The rounds proceed as follows:

1. p1 interviews with all acceptors. p1 is matched to a2 and a2 is thus no longer achiev-

able for both p2 and p3.

2. p2 interviews with a1 and a3. p2 is matched to a3.

3. p3 interviews with a1 and a3. p3 proposes to a3 who accepts and rejects p2.

4. p2 interviews with and is matched to a1.

The matching is the same proposer-optimal matching as deferred acceptance, and took

four iterations of the algorithm to converge. The information collected is as follows:

� = {p1 : [a2, a1, a3]

p2 : [a2, a3, a1]

p3 : [a2, a3, a1]

a1 : []

a2 : [p1, [p2, p3]]

a3 : [p3, p2]}

While it seems that Lazy Gale-Shapley requires more information than deferred acceptance

in this instance, the idea of using equivalence classes to reduce information collection is used

heavily in both the next algorithm discussed and the mechanism introduced in Chapter 4.

2.3.4 Minimax Regret

Drummond and Boutilier (2013) similarly use the idea of equivalence classes as a basis for

their regret-based halving elicitation method, in which agents split a block of preferences

into a more preferred half and less preferred half. This method of refining preferences

also plays a role in the elicitation mechanism introduced in Chapter 4. They also focus

on approximating a stable match by minimizing the instability of any given pair under a

matching.

19

Drummond and Boutilier define several concepts to describe instability. Regret for an

agent is defined as the possible improvement in rank position of a new partner. Instability

of an unmatched pair (p, a) under a matching µ is the minimum of the potential regret

each would feel by choosing their matched partner under µ over each other, taken over

all possible preference profiles. Instability of a match is the maximum instability over all

possible pairs, and the goal is to minimize this value. So, a matching is chosen that mini-

mizes the maximum regret (ties are broken with randomization) — thus giving the name

minimax regret.

The algorithm runs minimax regret to find a matching µ, interviews the agents contribut-

ing to the max regret of µ to refine the partial preferences, then repeats, until the minimum

maximum regret is below some threshold. For small economies, finding a suitable thresh-

old is impossible. Any viable threshold (i.e. convergence under all preferences profiles)

admits both stable and unstable matchings. To better understand, consider our running

example once again. For full understanding of how the blocks that are split on each round

are chosen, refer to the full algorithm in Appendix A. With no initial information, every

matching has the same regret, so we choose one at random and the iterations proceed as

follows:

1. µ = {(p1, a3), (p2, a2), (p3, a1)}. Minimum maximum regret is 2, and every agent

contributes a possible blocking pair that has regret 2. Every agent is thus asked to

halve their preferences with the following result:

� = {p1 : [[a1, a2], a3]

p2 : [[a2, a3], a1]

p3 : [[a2, a3], a1]

a1 : [[p1, p2, p3]]

a2 : [[p1, p2, p3]]

a3 : [[p1, p2, p3]]}

2. µ = {(p1, a3), (p2, a1), (p3, a2)}. Minimum maximum regret is 2, and agents p1 and

p2 contribute possible blocking pairs with regret 2. Agents are asked to halve their

20

preferences with the following result:

� = {p1 : [[a1, a2], a3]

p2 : [[a2, a3], a1]

p3 : [[a2, a3], a1]

a1 : [[p1, p2, p3]]

a2 : [[p1, p2], p3]

a3 : [[p1, p3], p2]]}

3. µ = {(p1, a1), (p2, a2), (p3, a3)}. Minimum maximum regret is 2, and agents p1 and

p2 contribute possible blocking pairs with regret 2. Agents are asked to halve their

preferences with the following result:

� = {p1 : [a2, a1, a3]

p2 : [a2, a3, a1]

p3 : [[a2, a3], a1]

a1 : [[p1, p2, p3]]

a2 : [[p1, p2], p3]

a3 : [[p1, p3], p2]]}

4. µ = {(p1, a2), (p2, a1), (p3, a3)} is the resulting stable matching.

To measure success, Drummond and Boutilier use the number of iterations and number of

queries to compare with existing algorithms. However, this methodology does not take into

account the different amounts of information different queries elicit. For example, eliciting

the following pair-wise orders,

(1, 2), (1, 3)

provides less information than eliciting

(1, 2), (2, 3).

They attempt to address the problem by using different types of interviews. Drummond

and Boutilier [?] extend their minimax regret algorithm to take into consideration the idea

that the closer together two options are in an agent’s preference, the more difficult they

are to compare. They create distinctions between a “query” and an “interview.” A halving

“query” as in above, is said to take less cognitive effort than multiple pair wise comparisons,

21

or an “interview.” The reasoning for this is not entirely convincing, and thus, we focus more

on the original minimax regret algorithm throughout this paper for comparison, and present

an alternative method of measuring information collection in Chapter 5.

Chapter 3

Linear Program Formulations of

Markets

As mentioned, many market based problems involve maximizing some linear function of

decision variables. This can be seen in auctions, where the auctioneer is either maximizing

revenue or social welfare and the agents are maximizing utility. Because the corresponding

dual of the linear program has intuitive interpretations of prices and pay-offs, a primal-dual

algorithm can be constructed. As described in Chapter 2, such a mechanism converges to

the optimal solution of a linear program without having to solve it directly. In particular,

for market problems, the primal-dual mechanism allows for incremental preference elicita-

tion, removing the need for providing complete information at the outset. This chapter

demonstrates the use of this mechanism and explores the possibility of using it to solve the

stable marriage problem.

3.1 Single Item Auction

The simplest example is the single item auction. The economy has one item and a set N

of n agents. Intuitively, the auctioneer maximizes the welfare of the agents by allocating

the item to the agent who values it the most.

22

23

3.1.1 LP and Dual

We can write the primal of the LP formulation as follows:

max
∑
i∈N

xivi

s.t.
∑
i∈N

xi ≤ 1

xi ≥ 0, ∀i ∈ N

where xi is an indicator variable representing whether or not bidder i gets the item and vi

is the value bidder i would get from the item. The dual is then

min p

s.t. p ≥ vi, ∀i ∈ N

p ≥ 0

where the dual variable p has a natural interpretation as a price.

3.1.2 Complementary Slackness

The complementary slackness theorem implies that for an optimal allocation of the item,

the following must be true:

1. p > 0 =⇒
∑

i∈N xi = 1

2. xi > 0 =⇒ p = vi

By the first implication, if the price is non-zero then the item has been sold. And by the

next implication, if the item is sold to bidder i, the price must be equal to the value bidder

i ascribes to the item. This follows the intuitive logic of a single-item auction. Thus, if

any proposed feasible allocation does not follow these implications, it is not an optimal

allocation.

If we consider a primal-dual algorithm to determine the optimal allocation, we start with

the simplest feasible dual solution of p = max vi. But because there are not explicit pay-off

variables for agents, determining subsequent agent actions is not straightforward. However,

we can add in redundant constraints to induce payoff variables in the dual, such that the

24

primal is as follows:

max
∑
i∈N

xivi

s.t.
∑
i∈N

xi ≤ 1

xi ≤ 1, ∀i ∈ N

xi ≥ 0, ∀i ∈ N

The dual then has an additional n variables that can be interpreted as profits:

min p+
∑
i∈N

πi

s.t. p+ πi ≥ vi, ∀i ∈ N

p ≥ 0

Now the complementary slackness conditions are richer:

1. p > 0 =⇒
∑

i∈N xi = 1

2. πi > 0 =⇒ xi = 1

3. xi > 0 =⇒ p+ πi = vi

In particular, the interpretation of the third condition is that if the item is allocated to

agent i, then her pay-off is the value she gains from the item, vi, minus the price she pays, pi.

We note that the optimal dual conditions are

πi = max(0, vi − p)

which allows for minimization of the dual objective as well as feasibility. A primal-dual

algorithm could start with the feasible dual solution of p = 0, πi = max(0, vi − p) = vi. A

feasible primal would then assign the item to some agent xj who has πj > 0, but then most

of the complementary slackness conditions in Category 2 are violated. So, we increase the

price to p = 1 and decrease profits to πi = max(vi − p, 0). We continually repeat this pro-

cess until only one agent xj has πj > 0. At this point, complementary slackness conditions

are all satisfied and we have converged to the optimal allocation.

For more examples of primal-dual process, such as the primal-dual formulation of single-

sided assignment and two-sided assignment, see Appendix B.

25

3.2 Marriage Problem

We now consider the linear formulation of the stable marriage problem. Important to note

is that in the Gale-Shapley model, preferences are purely ordinal, rather than cardinal, such

as in the auction problem. In addition, there is no utility transfer between agents. A model

in which there are transfers, also known as the two-sided assignment problem, can be found

in Appendix A. When preferences are cardinal, dual variables can be easily interpreted as

payoff vectors for agents, and the optimal dual conditions and complementary slackness

conditions can be easily interpreted and checked. However, in the stable marriage problem,

the ordinal preferences makes a dual variable interpretation more difficult.

3.2.1 LP and Dual

As noted before, we assume the same number of proposers and acceptors, n, and all agents

prefer to be matched than to be single. A matching is represented by a matrix x ∈ [0, 1]n×n

where xp,a = 1 if proposer p and acceptor a are matched. Vande Vate [13] showed that

a reasonable objective is to maximize the number of matchings. Constraints 3.2 and 3.3

ensure that each agent is matched to at most one other agent on the other side. Constraint

3.4 ensures that there are no blocking pairs, in other words, for any pair (p, a) ∈ P × A
either agent p is matched to someone she prefers to agent a, or agent a is matched to

someone she prefers to agent p, or they are matched with each other. These constraints

ensure stability. Gale and Shapley [5] showed that the solution space for this primal is

nonempty.

The primal is as follows:

max
∑

(i,j)∈P×A

xi,j (3.1)

s.t.
∑
j∈A

xp,j ≤ 1, ∀p ∈ P (3.2)

∑
i∈P

xi,a ≤ 1, ∀a ∈ A (3.3)∑
j�pa

xp,j +
∑
i�ap

xi,a + xp,a ≥ 1, ∀(p, a) ∈ P ×A (3.4)

xp,a ≥ 0, ∀(p, a) ∈ P ×A

26

The dual for this primal is as follows:

min
∑
i∈P

αi +
∑
j∈A

βj −
∑
i∈P

∑
j∈A

γi,j (3.5)

s.t. αp + βa −
∑
j≺pa

γp,j −
∑
i�ap

γi,a ≥ 1, ∀(p, a) ∈ P ×A

α, β, γ ≥ 0

From Roth et al. [11] we know that given a solution x to the primal, the following is a

corresponding dual solution:

αp =
∑
j∈A

xp,j , ∀p ∈ P

βa =
∑
i∈P

xi,a, ∀a ∈ A

γp,a = xp,a, ∀(p, a) ∈ P ×A

And if the solution x is optimal, then the above dual solution is also optimal. However,

a primal-dual mechanism is still not clear, so we turn to the complementary slackness

conditions for better understanding.

3.2.2 Complementary Slackness

The conditions for optimal solutions are as follows:

1. xp,a > 0 =⇒ αp + βa −
∑

j�pa
γp,j −

∑
i�ap

γi,a = 1

2. αp > 0 =⇒
∑

j∈A xp,j = 1

3. βa > 0 =⇒
∑

i∈P xi,a = 1

4. γp,a > 0 =⇒
∑

j�pa
xp,j +

∑
i�ap

xi,a + xp,a = 1

First we note that none of the dual variables have an immediate, clear interpretation as

prices or pay-offs. In addition, the high degree of freedom that the dual variables have

makes any interpretation difficult. To better understand, consider our running example

27

from Chapter 2. To refresh,

n = 3

P = {p1, p2, p3}

A = {a1, a2, a3}

� = {p1 : [a2, a1, a3]

p2 : [a2, a3, a1]

p3 : [a2, a3, a1]

a1 : [p2, p1, p3]

a2 : [p1, p3, p2]

a3 : [p3, p1, p2]}

Our optimal primal solution is

x =

0 1 0

1 0 0

0 0 1


The complementary slackness constraints on the corresponding optimal dual are:

1. α1 + β2 − γ1,2 = 1

2. α2 + β1 − γ2,2 − γ2,3 − γ2,1 = 1

3. α3 + β3 − γ3,2 − γ3,3 = 1

We first note that we can set all αi = βj = 1 and γp,a = xp,a as previously discussed, to

get an optimal dual solution and optimal value of 3. However, we also have the optimal

solution all αi = 1 and all βj = γi,j = 0, which satisfies the constraints of the dual and the

complementary slackness conditions. This level of potential variability makes an intuitive

interpretation of the dual variables unclear and in particular, none of the dual variables

resemble prices or payoffs.

3.3 Introducing Redundancy in Primal Constraints

As in the auction, we can add redundancy to the linear program in order to gain additional

insight into the problem. Similarly, we add the constrain that all xp,a ≤ 1.

28

3.3.1 LP and Dual

The primal is as follows:

max
∑

(i,j)∈P×A

xi,j (3.6)

s.t.
∑
j∈A

xp,j ≤ 1, ∀p ∈ P

∑
i∈P

xi,a ≤ 1, ∀a ∈ A∑
j�pa

xp,j +
∑
i�ap

xi,a + xp,a ≥ 1, ∀(p, a) ∈ P ×A

xp,a ≤ 1, ∀(p, a) ∈ P ×A

xp,a ≥ 0, ∀(p, a) ∈ P ×A

The dual is as follows:

min
∑
i∈P

αi +
∑
j∈A

bj −
∑
i∈P

∑
j∈A

γi,j + ci,j (3.7)

s.t. αp + βa −
∑
j≺pa

γp,j −
∑
i�ap

γi,a + cp,a ≥ 1, ∀(p, a) ∈ P ×A

α, β, γ, p ≥ 0

3.3.2 Complementary Slackness

From this primal-dual model, we have the following complementary slackness conditions:

1. xp,a > 0 =⇒ αp + βa −
∑

j�pa
γp,j −

∑
i�ap

γi,a + cp,a = 1

2. αp > 0 =⇒
∑

j∈A xp,j = 1

3. βa > 0 =⇒
∑

i∈P xi,a = 1

4. γp,a > 0 =⇒
∑

j�pa
xp,j +

∑
i�ap

xi,a + xp,a = 1

5. cp,a > 0 =⇒ xp,a = 1

The cp,a variables do indeed have a price interpretation — if cp,a is positive, then agents

p, a must be matched, and if they are not matched, then cp,a must be 0. However, even so,

the other dual variables still have high degrees of freedom and are not easily interpretable,

particularly as prices or pay-offs.

29

3.4 Alternative Linear Formulation

We note that even if there were a clear interpretation of prices and pay-offs in the linear

formulation, the “affordability” of an acceptor a is not only based on the demand for a but

also on the preferences of a. A suitable price mechanism then, should include budgets for

the proposers that reflect the preferences of the acceptors. Because preferences are ordinal,

the actual values of prices and budgets do not matter as long as they reflect the preference

orderings. For example, if acceptor a1 is the first choice of all the proposers, the price of a1

should be higher than the prices for other acceptors, but the actual price value is irrelevant.

Ideally, under some set of prices and budgets, if each proposer is matched to the acceptor

she most prefers out of the ones she can afford, then this results in a stable matching.

To construct such prices and budgets, we use ri for each i ∈ A and budgets bi,j , for each

i, j ∈ P × A that represent the budget proposer i has for acceptor j. Intuitively, prices

are based on how “demanded” acceptors are, and budgets are based on the preferences of

the acceptors. Agent-specific budgets allow for more flexible budgets in response to both

prices and acceptor preferences. This price and budget structure is the basis for both the

linear formulation in this section as well as for the mechanism constructed in Chapter 4.

3.4.1 Linear Program

So, given a matching µ and preference orders �, if proposer p is matched to acceptor

a, then p should be able to afford a. And if proposer p is matched to acceptor a but

prefers acceptor a′, p should not be able to afford a′. Furthermore, variation in proposer

p’s different budgets should be minimized in order to better reflect a true market. These

constraints result in the following linear program, which we will refer to as the Price LP.

min z − y (Price LP)

s.t. cj ≤ bi,j , if µ(i) = j

cj > bi,j , if j �i µ(i)

bi,j − bi,k ≥ y, ∀j, k ∈ A, i ∈ P

bi,j − bi,k ≤ z, ∀j, k ∈ A, i ∈ P

c, b, z, y ≥ 0

Note, that when implementing this linear program, the second constraint, which uses a

strict inequality, must be changed to

cj ≥ ε+ bi,j , if j �i µ(i)

30

Consider the running example from Chapter 2 once more, using this LP and ε = 0.05, the

price and budget matrices are

c =
[
0 0.05 0.05

]

b =

0 0.05 0

0 0 0

0 0 0.05


We can see that the only proposer that can afford a2 is b1 and the only proposer that can

afford a3 is b3, and the only acceptor b2 can afford is a1. This results in the stable matching

achieved through the previous mechanisms and follows from the following theorem:

Theorem 3 (Proof of Price and Budget Soundness). Given a stable matching µ and

preference order �, if the prices and budgets resulting from the Price LP are used such that

proposers are matched with their most preferred, affordable acceptor, then µ is the resulting

match.

Proof: Let µ be stable matching for preference profile �. Suppose the prices resulting

from the Price LP are c, b and that if proposers are matched with their most preferred,

affordable acceptor, a matching µ′ 6= µ results. This implies that there exists a matched

pair (p, a) ∈ µ′ that does not exist in µ. First, if (p, a) both prefer the matching in µ′ over

µ, (p, a) would be a blocking pair of µ, which cannot be true since µ is stable. So either

only p prefers µ′ or only a prefers µ′. If p prefers a to µ(p), then ca > bp,a, so they could

not be matched in µ′. If a prefers p to µ(a), p cannot prefer a to µ(p), and since p can still

afford µ(p), (p, a) would not be matched in µ′. Thus, we have a contradiction, so µ = µ′.

3.4.2 Proposed Mechanism

A proposed iterative algorithm initializes prices and budgets to 0 and guesses a preference

profile for the participating agents based on the prices and budgets. Using this preference

profile, a matching is simulated and fed into the Price LP to get new prices and budgets.

The proposers are queried as to whether, under the new prices and budgets and true

preferences, they would prefer to be matched to a different agent. If all proposers are

happy, then terminate. If proposers prefer otherwise, then update the preferences and

repeat.

31

Algorithm 1

1: procedure Algorithm 1(P,A)

2: c[j]← 0 for j ∈ A
3: b[i, j]← 0 for (i, j) ∈ P ×A
4: randomly initialize �
5: loop:

6: input � into deferred acceptance to compute stable matching µ

7: input µ into the Price LP to get new c, b

8: for p ∈ P do

9: if under c, b and true preferences, i prefers an acceptor a 6= µ(p) then

10: update � to reflect a �p µ(p)

11: terminate if � unchanged and return µ

We can again use the running example to understand how this algorithm works. Recall,

n = 3

P = {p1, p2, p3}

A = {a1, a2, a3}

� = {p1 : [a2, a1, a3]

p2 : [a2, a3, a1]

p3 : [a2, a3, a1]

a1 : [p2, p1, p3]

a2 : [p1, p3, p2]

a3 : [p3, p1, p2]}

has stable matching {(p1, a2), (p2, a1), (p3, a3)}. The algorithm proceeds as follows:

1. Guess � to get µ = {(p1, a1), (p2, a2), (p3, a3)}. Using the Price LP, we find

c =
[
0 0.05 0.05

]
, b =

0 0 0

0 0.05 0

0 0 0.05


Under these prices and budgets, the proposers are with their most preferred, afford-

able acceptor, so the algorithm terminates.

However, µ is not a stable matching, as (p1, a2) is a blocking pair.

32

Prices and budgets were theorized to converge towards reflecting the true preferences.

Under this assumption, proposers would only be happy if they were matched to their

most preferred, affordable acceptor, which would imply the matching is stable. Because

the prices and budgets reflect guessed preferences, proposers might still be able to afford

agents they truly preferred to their match. However, in some circumstances, as above, the

proposers are not able to afford any acceptors they actually prefer to their match. In these

cases, the algorithm terminates with an unstable matching.

Chapter 4

Iterative Price and Budget

Algorithm for Preference

Elicitation

While the linear formulation was not a successful approach, it raised the idea of using prices

and budgets to elicit information from agents, in particular asking proposers to identify

their most preferred, affordable acceptor. Drawing on the method of refining preferences

in the form of equivalence classes, as raised by Drummond and Boutilier [2] and Rastegari

et al. [9] as described in Chapter 2, prices and budgets can be refined similarly. In this

chapter, these two methods are combined to construct an iterative, elicitation mechanism

for computing a stable matching.

4.1 Algorithm

In this mechanism, the same structure of prices and budgets are used as in Section 3.4,

where each acceptor is given a price ca and each proposer has acceptor-specific budgets bp,a.

Each proposer is matched to her most preferred, affordable acceptor. If each acceptor is

matched to one proposer, the algorithm terminates, returning the matching. Otherwise, the

price of any over-demanded acceptor is increased. If no proposers can afford the acceptor at

this new price, the acceptor is asked to identify the proposal she most prefers. The acceptor

then splits her preference into a block she prefers at least as much as this proposer, and

one she prefers less. The budget of each proposer in the more preferred block is increased,

and the mechanism repeats. Since the algorithm is essentially incrementally aligning prices

33

34

and budgets with agent preferences to achieve a stable matching, the mechanism will be

referred to as price-budget alignment.

Algorithm 2

1: procedure price-budget alignment(P,A, k)

2: ca ← 0, ∀a ∈ A
3: bp,a ← 0, ∀(p, a) ∈ P ×A
4: loop

5: for p ∈ P do

6: Bp ← {a|a ∈ A, ca ≤ bp,a}
7: m(p)← most preferred a ∈ Bp
8: if m is bipartite then

9: return m

10: for a ∈ A do

11: Da = {p|m(p) = a}
12: if |Da| > 1 then

13: ca ← ca + δ

14: if @p ∈ P s.t. ca ≤ bp,a then

15: p′ ← a’s most preferred in Da

16: for p ∈ P do

17: if p �a p′ then
18: bp,a ← bp,a + δ

As we can show below, this procedure converges to a stable, proposer-optimal matching

for any sets P,A.

4.2 Convergence, Soundness and Optimality

Theorem 4 (Convergence). Given two disjoint sets of agents, each of size n, where each

agent has strict, ordinal preferences over the other set, price-budget alignment converges

to a matching µ.

Proof: First note that at the beginning of each iteration k, at least one acceptor is over-

demanded, otherwise the algorithm must have terminated. For each acceptor a who is

over-demanded, the price of a will increase. If p is the most preferred proposer of a among

those who proposed to a during iteration k, then an identical increase in budget will occur

35

for agents a prefers at least as much as p. So, at least one proposer will still be able to

afford a. However, less preferred proposers will no longer be able to afford a, and the

number of proposers who can afford a will decrease after iteration k. Thus, since the

number of proposers who can afford each acceptor can never go below one, the algorithm

must terminate and converge to a matching.

Theorem 5 (Soundness). The matching that price-budget alignment converges to is stable.

Proof: Let µ be the matching the algorithm terminates at. Assume that there is a blocking

pair (p, a). If p can afford a, then they would be matched, so it must be that p cannot

afford a. But if p cannot afford a, then a must have been proposed to, and subsequently

matched to, a more preferred proposer p′, causing the price of a to increase without an

equivalent increase in the budget of p for a. So (p, a) is not a blocking pair, and we have

a contradiction.

We can also show that price-budget alignment converges to the proposer-optimal matching,

using the idea behind the Conway, Knuth [6] proof.

Theorem 6 (Proposer-Optimal). The matching that price-budget alignment converges to

is proposer-optimal.

Proof: We say that a is achievable for p if p, a are matched in some stable matching. We can

show by induction that no acceptor a is even unaffordable to a proposer p if a is achievable

for p. This is trivially true at iteration 1, because prices and budgets are all 0. Suppose

that this is true through iteration k of the algorithm. Then, suppose at iteration k + 1,

an achievable acceptor a is unaffordable to proposer p. This would imply there is some

preferred proposer p′ who proposed to a during iteration k, thereby increasing the price of

a, but not the budget of p for a. Since a is achievable for p, p, a are matched in some stable

matching µ. Then under µ, p′ must be matched to some a′ she prefers, otherwise (p′, a) is

a blocking pair of µ. However, since a′ is achievable for p, then at round k of the algorithm,

a′ is affordable for p, so p will have proposed to a′ rather than a, which contradicts our

assumption.

36

4.3 Running Example

We can use our running example to better illustrate this mechanism:

n = 3

P = {p1, p2, p3}

A = {a1, a2, a3}

� = {p1 : [a2, a1, a3]

p2 : [a2, a3, a1]

p3 : [a2, a3, a1]

a1 : [p2, p1, p3]

a2 : [p1, p3, p2]

a3 : [p3, p1, p2]}

The mechanism proceeds in the following iterations:

1. All proposers match to a2. So, c2 updates to 0.05 and b2,2 updates to 0.05.

2. p2 matches to a2 and p1, p3 match to a3. So, c3 updates to 0.05 and b3,3 updates to

0.05

3. p2 matches to a3, p1 matches to a2 and p3 matches to a3, so the algorithm terminates.

This is the same stable matching we previously found, and the algorithm converged after

three iterations, with the following information collected:

� = {p1 : [a2, [a1, a3]]

p2 : [a2, a3, a1]

p3 : [a2, a3, a1]

a1 : []

a2 : [p1, [p3, p2]]

a3 : [p3, p2]}

37

We compare this to the information collected by deferred acceptance:

� = {p1 : [a2, [a1, a3]]

p2 : [a2, a3, a1]

p3 : [a2, a3, a1]

a1 : []

a2 : [p1, [p3, p2]]

a3 : [p3, p2]}

and the information collected by Lazy Gale-Shapley:

� = {p1 : [a2, a1, a3]

p2 : [a2, a3, a1]

p3 : [a2, a3, a1]

a1 : []

a2 : [p1, [p2, p3]]

a3 : [p3, p2]}

and the information collected by minimax regret:

� = {p1 : [a2, a1, a3]

p2 : [a2, a3, a1]

p3 : [[a2, a3], a1]

a1 : []

a2 : [[p1, p2], p3]

a3 : [[p1, p3], p2]]}

We see immediately that less information is collected than Lazy Gale-Shapley, and the same

amount as deferred acceptance. The comparison between minimax regret is less clear. This

sort of uncertainty motivates the comparison analysis in Chapter 5.

Chapter 5

Experimental Methodology

In this chapter, the experimental environment is described, including the methods used

to generate preferences and compare algorithm performance. As seen in the comparison

in Section 4.3, comparisons of preference elicitation can be tricky due to the different

possible measurements available, so a method of computing the size of the agent polytope

of preferences is described.

5.1 Preference Generation

In testing the different mechanisms, we use uncorrelated, weakly correlated, strongly cor-

related, and for some comparisons, perfectly correlated preferences. Using different lev-

els of correlation allows comparison of the different mechanisms under different possible

economies. It is possible to imagine a market where interests might be highly correlated,

such as high-school matching for a more homogenous population, versus a market where

interests are weakly correlated, such as residency matching, versus a market where interests

are uncorrelated, such as matching internet advertisements to users [4].

Generating uncorrelated preferences is straightforward, simply randomize for each agent.

And for generating perfectly correlated preferences, we use the same randomized order for

all agents. To generate weakly correlated preferences for n agents, we used the following

method:

1. Choose an ordering �1 uniformly at random for agent 1. Let r�1(i) be the ranking

of agent i in agent 1’s preference order.

38

39

2. Set the distribution of the preferences to be such that

P (i) =
n+ 1− r�1(i)∑n

k=1 k

3. For agents 2...n, choose an ordering without replacement using the distribution P .

For example, suppose �1= (2, 1, 3, 4), then p = [0.3, 0.4, 0.2, 0.1]. When we generate pref-

erences for each agent, we use p to “draw” agents without replacement to formulate an

ordering. So when we generate �2, we choose the most preferred agent using p. Suppose

we choose agent 1 first, then we remove the probability for agent 1 from p and normalize

the distribution, so p = [0, 4/7, 2/7, 1/7]. Then we choose again using p, repeating until a

full preference order �2 is generated.

To generate strongly correlated preferences, we use the same method, except in step 2,

we set the distribution to be

P (i) = 0.8(0.2)i−1, if i 6= n (5.1)

P (i) = 1−
n−1∑
k=1

P (k), if i = n (5.2)

5.2 Collection Process

We store preference information as ordered pairs, so if the following information,

[(a1, a2), (a1, a3)]

has been collected for agent p1, we know that the agent p1 prefers a1 to both a2 and

a3. To get the possible full rankings that abide by the information collected, we use the

algorithm described in Varol and Rotem [14] that uses topological sort to find all the

complete orderings that are possible given a partial order.

5.3 Measuring Preference Elicitation

Drummond and Boutilier [2] compute the number of iterations to convergence and the

number of interviews required to approximate a stable matching in order to compare be-

tween minimax regret and deferred acceptance. While the number of iterations required

gives a fair estimate on the time required for the mechanism to converge, using the number

40

of interviews to measure preference elicitation has a few problems. As discussed in Section

2.3.4, different queries provide varying amounts of information.

In this analysis, the polytope of possible preference profiles after the elicitation mecha-

nism completes is used for comparison — the larger the polytope, the less information

collected from agents. The size of the polytope is calculated by enumerating the prefer-

ences profiles that fit the information collected, and normalizing over the set of all possible

preference profiles. As the number of ordered pairs of information collected increases, the

number of preference profiles that match the information collected decreases, and thus

the size of the polytope decreases. Thus, the size of the polytope is an effective measure

of the information collected. Below, the methodology for calculating the polytope size is

described.

5.3.1 Profile Enumeration

To calculate the size, we simply take the fraction of the number of preference profiles

across agents in the polytope over the total number of possible profiles. So if we have three

proposers where the possible rankings for each are

�p1 ∈ {[a1, a3, a2], [a1, a2, a3]}

�p2 ∈ {[a2, a1, a3]}

�p3 ∈ {[a1, a2, a3], [a1, a3, a2]}

And we have three acceptors where the possible rankings for each are

�a1 ∈ {[p2, p3, p1]}

�a2 ∈ {[p3, p2, p1], [p3, p1, p2]}

�a3 ∈ {[p1, p2, p3]}

Then there are a total of 8 different complete preference profiles for this economy. The

total number of possible profiles is

(n!)2n = (3!)6 = 46656

So the size of the polytope is
8

46656
= 1.71× 10−4

41

5.3.2 Alternative Method

For cases where preferences are correlated, we can consider the probability of each pref-

erence profile when we calculate the polytope. Let fp be the PDF for preference profiles

for proposers and let fa be the PDF for acceptors. Let Xp, Xa be the set of all possible

preference profiles for n proposers and n acceptors respectively. Finally, for i ∈ Xp, let

Ip(i) = 1 if x is in the polytope and 0 otherwise, and similarly for acceptors. Then, we

note that the probability of a polytope X is

S(X) =

∫
(i,j)∈X

f(i, j)

=

∫
i∈Xp

Ip(i)fp(i)×
∫
j∈Xa

Ia(j)fa(j)

Recall that the preferences of agents p2, ..., pn are dependent on agent p1 and the preferences

of agents a2, ..., an are dependent on a1. Because the generating process and the preferences

are conditionally independently and identically distributed, the probability of a profile

x = [x1, x2, ..., xn] is equal to

fp(x) = P (x1)

n∏
i=2

P (xi|x1)

This can then be substituted into the equation for S(X).

However, this method is much more computationally expensive, as the probability of each

preference profile must be individually calculated. And in the cases we tested, the direc-

tion of comparison does not change even if this method is used. Thus, in the experiments

conducted, only the method of profile enumeration is used.

Chapter 6

Experimental Results

In this chapter, the performance of price-budget alignment is compared with minimax

regret and deferred acceptance, as implemented with incremental preference elicitation.

For each measurement, markets with up to 8 agents on each side, over 100 trials with

different preference profiles, are tested. The limitations in the size of the economies tested

is due to the computational complexity of enumerating the polytope — all three algorithms

can be run on economies of large scale efficiently. The comparisons are split up pairwise

into price-budget alignment versus deferred acceptance and price-budget alignment versus

minimax regret.

6.1 Comparison with Deferred Acceptance

6.1.1 Size of Polytope for Proposers

As can be seen in Figures 6.1a, b, and c, the size of the polytope for proposers was larger

under price-budget alignment than under deferred acceptance for all levels of correlation in

preferences. This implies price-budget alignment requires less information from proposers

than deferred acceptance does. In addition, Figures 6.1b and c show that for weakly and

strongly correlated preferences, as the size of the economy increases, the gap between the

two mechanisms widens. Furthermore, as the correlation between preferences increases,

the gap also widens, which can be seen when comparing between Figures 6.1a, b, and c.

42

43

(a) Uncorrelated Preferences (b) Weakly Correlated Preferences

(c) Strongly Correlated Preferences

Figure 6.1: Comparison of Proposer Polytope Size (DA)

In Figures 6.2a, b, and c, the number of profiles in the polytope, rather than the proportion,

is compared between price-budget alignment and deferred acceptance. We can see that

there are more possible profiles in the polytope under price-budget alignment than under

deferred acceptance. Similarly, the gap between the two mechanisms widens as the size

of the economy increases for weak and strong correlation. And as we compare between

Figures 6.2a, b, and c, we can again see that the gap also widens as the level of correlation

increases.

44

(a) Uncorrelated Preferences (b) Weakly Correlated Preferences

(c) Strongly Correlated Preferences

Figure 6.2: Comparison of Absolute Proposer Polytope Size (DA)

The intuition for this gap is that under price-budget alignment, the prices adjust such that

proposers cannot afford acceptors they might have proposed to, and been rejected by, under

deferred acceptance. For example, if an acceptor a is over demanded in the first round,

the price of a will increase, making her unaffordable to proposers less appealing than her

most preferred proposal. Unmatched proposers for whom a is the second choice have the

opportunity to proposer to a in deferred acceptance, but in price-budget alignment, may

not be able to afford a. In particular in larger economies, this effect is magnified - in each

round when the price for an acceptor increases, more and more agents are unable to afford

that acceptor. This effect also causes the gap to widen as correlation increases. As the level

of correlation increases, proposers are more likely to propose to the same set of acceptors

under deferred acceptance, but would not be able to do so under price-budget alignment.

45

6.1.2 Size of Polytope for Acceptors

As can be seen in Figures 6.3a, b, and c, the size of the polytope for acceptors was smaller

under price-budget alignment than under deferred acceptance. We can see that the gap

between deferred acceptance and price-budget alignment widens under all levels of cor-

relation as the size of the market increases. In addition, the gap widens as the level of

correlation increases, as can be seen when comparing between Figures 6.3a, b, c.

(a) Uncorrelated Preferences (b) Weakly Correlated Preferences

(c) Strongly Correlated Preferences

Figure 6.3: Comparison of Acceptor Polytope Size (DA)

In Figures 6.4a, b, c, the number of profiles in the polytope, rather than the proportion,

is compared between price-budget alignment and deferred acceptance. We can see that

there are more possible profiles in the polytope under deferred acceptance than under

price-budget alignment. A similar effect in the size of the gap with relation to level of

correlation and size of the market can be seen when comparing the two mechanisms.

46

(a) Uncorrelated Preferences (b) Weakly Correlated Preferences

(c) Strongly Correlated Preferences

Figure 6.4: Comparison of Absolute Acceptor Polytope Size (DA)

The intuition here is actually quite similar to the intuition for why the opposite gap exists

for proposers. As mentioned, in price-budget alignment, acceptors who are queried are

asked to give information on all proposers, even ones that might not have ever proposed.

And in particular, as the size of the economy grows, the number of proposers grows, so

acceptors are giving more information that deferred acceptance would not elicit.

Through conducting these experiments, it can seen that both deferred acceptance and

price-budget alignment require far more information from proposers than acceptors. This

makes any marginal increase in the level of information elicited from proposers significant,

as proposers are forced to pin down their preferences at a higher and higher level of ac-

curacy. For acceptors, both algorithms perform generally well, requiring relatively little

information from agents, in particular when considering uncorrelated or weakly correlated

47

preferences. Thus, a marginal increase in information elicited from proposers is of more

significance than a marginal increase in information elicited from acceptors.

6.1.3 Iterations

In Figure 6.5, we can see that the number of iterations that each algorithm needs to

compute a stable matching was also measured, and on average for each size, price-budget

alignment required less iterations than deferred acceptance. This average is taken across

all levels of correlation in preferences.

Figure 6.5: Comparison of Iterations Required for Stable Matching (DA)

The intuition for this is again similar to the intuition for the better proposer performance.

Because the prices adjust such that proposers cannot afford acceptors they might have

proposed to, and been rejected by, under deferred acceptance, fewer proposals are needed

to arrive at a stable matching. Thus, fewer iterations are required for the mechanism to

converge. This ties in well with the polytope comparisons — because more information

is required from acceptors each round under price-budget alignment, proposers require

fewer iterations to achieve a stable matching, and less information is thus required from

proposers.

48

6.2 Comparison with Minimax Optimal Matching

First, we note that in recording the number of pairwise comparisons that are asked of

agents, the minimax regret algorithm does not make it clear how much information is

collected in a halving query. Drummond and Boutilier [2] measure information collection

through number of halving queries, rather than information collected. It is clear that the

number of pairwise comparisons needed to divide a block into a more preferred half and a

less preferred half is less than the number needed to completely sort the block. Thus, to be

generous to the minimax algorithm, we use the underlying true ranking to sort the block,

then only record the pairwise comparisons that emerge from having an unsorted better and

lesser half. For example, if a preference block is

B = [1, 2, 4, 5]

and the true preference order is

�= [4, 1, 5, 2]

then we use the true order to split B into

B′ = [[1, 4], [2, 5]]

and record the pairwise queries to be

I = [(4, 5), (4, 2), (1, 5), (1, 2)]

Note that this is a lower bound on the true number of queries and information necessary

to split B into B′.

6.2.1 Size of Polytope for Proposers

As can be seen in Figures 6.6a, b, and c, the size of the polytope for proposers is larger

under price-budget alignment than under minimax regret, and the gap widens as the size

of the economy increases for all levels of correlation. In addition, the gap remains about

the same even as the level of correlation increases, as can be seen when comparing between

Figures 6.6a, b, and c. We also note that both algorithms require a high level of information

from proposers.

49

(a) Uncorrelated Preferences (b) Weakly Correlated Preferences

(c) Strongly Correlated Preferences

Figure 6.6: Comparison of Proposer Polytope Size (MMR)

In Figure 6.7, the number of profiles in the proposer polytope, rather than the proportion,

is compared between price-budget alignment and minimax regret. We can see that there

are more possible profiles in the polytope under price-budget alignment than under min-

imax regret. And, again we note that as the size of the economy increases, regardless of

correlation level, the gap widens. In addition, the size of the gap remains about the same

regardless of the level of correlation in preferences, as can be seen when comparing between

Figures 6.7a, b, and c.

50

(a) Uncorrelated Preferences (b) Weakly Correlated Preferences

(c) Strongly Correlated Preferences

Figure 6.7: Comparison of Proposer Polytope Size (MMR)

We first note that each proposer interview in minimax regret elicits more information than

proposer interviews in price-budget alignment. The proposer polytope is constricted less

after asking a proposer to pick her most preferred acceptor out of a subset of all acceptors

than after asking a proposer to split a block of acceptors into more and less preferred halves.

With fewer iterations, as Figure 6.10 shows, this results in a larger proposer polytope under

price-budget alignment versus minimax regret.

6.2.2 Size of Polytope for Acceptors

For acceptors, we can see via Figures 6.8a, and b, that with uncorrelated and weakly

correlated preferences, the size of the polytope for acceptors is larger under minimax regret.

However, as Figure 6.8c shows, with strongly correlated preferences, this changes at n = 8,

51

with a larger acceptor polytope under price-budget alignment. To further examine this

change, we performed the same experiment with perfectly correlated preferences and, as

can be seen in Figure 6.8d, found that for n > 4, the acceptor polytope is larger under

price-budget alignment. Also of note, under both mechanisms, the level of information

collected for acceptors is of smaller magnitude than that of proposers.

(a) Uncorrelated Preferences (b) Weakly Correlated Preferences

(c) Strongly Correlated Preferences (d) Perfectly Correlated Preferences

Figure 6.8: Comparison of Acceptor Polytope Size (MMR)

In Figures 6.9a, b, c, and d, the number of profiles in the proposer polytope, rather than the

proportion, is compared between price-budget alignment and minimax regret. Similarly

we note that the number of profiles in the polytope is greater under minimax regret with

uncorrelated and weakly correlated preferences. However, price-budget alignment results

in a larger number of profiles in the polytope at n = 8 for strongly correlated preferences

and at n = 5 for perfectly correlated preferences.

52

(a) Uncorrelated Preferences (b) Weakly Correlated Preferences

(c) Strongly Correlated Preferences (d) Perfectly Correlated Preferences

Figure 6.9: Comparison of Acceptor Polytope Size (MMR)

First, we note that for n small, there is a relatively small number of possible matchings,

and thus few matchings with the minimum maximum regret value. So, it is fairly likely

a stable matching, rather than an unstable matching, is picked each round, allowing the

algorithm to require relatively few agent interviews. As n grows, the number of matchings

with the minimum maximum regret value each round grows as well, leading to a higher

probability that an unstable matching is chosen each round. How quickly the matching

stabilizes depends on the level of information elicited.

Now, note that each acceptor interview in minimax regret elicits less information than

acceptor interviews in price-budget alignment. The acceptor polytope is constricted more

after asking an acceptor to pivot all proposers around one agent than after asking an accep-

tor to split a block of proposers into more and less preferred halves. With a larger polytope,

53

the possible matchings with the same minimum maximum regret value increases. When

n is small, this is not a problem, as mentioned earlier — a stable matching will be found

relatively quickly, and thus less information is required under minimax regret than under

price-budget alignment. However, as n grows, the number of interviews required to con-

strict the polytope enough for a stable matching surpasses that of price-budget alignment,

thus requiring more total information from acceptors.

Similarly, as the correlation in agent preferences increases, the less information collected

from acceptors, the more interviews necessary to reach a stable matching. With more

acceptor interviews, the total information collected from acceptors increases, shrinking the

size of the acceptor polytope.

6.2.3 Iterations

As Figures 6.10a, b, c, d show, the number of iterations needed to achieve a stable matching

is initially smaller for minimax, but as n grows, begins to swap such such that price-budget

alignment requires fewer iterations. In Figure 6.10a, we see that the change begins at n = 5

when using uncorrelated preferences. And in Figures 6.10b, c, and d, we see that the change

begins at n = 4 when using correlated preferences.

54

(a) Uncorrelated Preferences (b) Weakly Correlated Preferences

(c) Strongly Correlated Preferences (d) Perfectly Correlated Preferences

Figure 6.10: Comparison of Iterations Required for Stable Matching(MMR)

The intuition here follows from the intuition for the acceptor polytope comparison: as n

grows, more information is needed to use minimax regret to approximate a stable match-

ing. This increases the number of interviews needed, which in turn increases the iterations

necessary to reach a stable matching. Furthermore, as can be seen by comparing Figures

6.10a, b, c, and d, the gap between minimax and price-budget alignment widens as the

correlation in preferences increases. This also follows from our analysis of the acceptor

polytope sizes, in particular, as correlation increases, the gaps in Figures 6.10 widen, and

the points at which price-budget alignment requires less information than minimax regret

in Figures 6.9 happen earlier.

We note that Drummond and Boutilier [2] compare minimax regret with Gale-Shapley

for economies of size n = 20 and n = 250. For n = 250, they found that minimax regret

55

requires less queries from both proposers and acceptors than Gale-Shapley under corre-

lated preferences, and requires more from both sides under uncorrelated preferences. For

n = 20, they found that minimax regret requires about one more query per acceptor than

Gale-Shapley and about six fewer queries per proposer under both correlated and uncorre-

lated preferences. However, we found that for sizes n = 3 to n = 8, the proposer polytope

under minimax regret is smaller for proposers and about the same size for acceptors in

comparison to Gale-Shapley. While the economy sizes are not exactly the same, if the

trends continue, this implies that the additional, marginal query per acceptor does not

constrict the polytope by too much, and while fewer queries from proposers are needed,

they require more information. We note that more information is elicited per proposer

query by minimax regret than by price-budget alignment, and the proposer queries for

Gale-Shapley and price-budget alignment are similar. This implies that more information

is elicited per proposer query by minimax regret than by Gale-Shapley, which matches our

above analysis.

Chapter 7

Conclusion

7.1 Implications

Through the comparative analysis, we find that the price-budget alignment algorithm re-

quires less information from proposers than both deferred acceptance and minimax regret,

but more information from acceptors. When considering some of the real-life applications,

we note that there are settings where the preferences of the accepting side are clear-cut

and easy to describe, whereas the preferences of the proposing side are more difficult to

describe. In these settings, it may be more effective to use the price-budget alignment

algorithm such that less information is required from the proposers and more information

is required from the acceptors.

For example, in resident matching, the proposer is the student who applies to various

schools, and the acceptors are schools. For a student, ranking schools may be more difficult

considering the many different factors such as academics, research programs, student-life,

extracurriculars, etc. But for schools, students may be more easily ranked with quantitative

measurements for GPA and MCAT scores.

7.2 Future Work

Although the attempts at understanding the stable marriage primal in a way that sup-

ports a primal-dual algorithm were not successful, it would be interesting to consider the

construction of an alternative linear formulation that captures the blocking constraint in

the objective, rather than in the constraints. Further progress is also likely possible with

56

57

the iterative, elicitation method described as well. While the algorithm requires less infor-

mation from proposers, ideally, less information would also be required from acceptors as

well. Different methods of utilizing the prior probabilities for correlated preferences is a

possible way to improve the elicitation mechanism.

Appendix A

Matching Mechanisms

A.1 Full Minimax Regret Algorithm

Algorithm 3 Minimax Regret

1: procedure MMR(E,A)

2: P← ∅
3: loop

4: choose a completion �∈ C(P)

5: use Gale-Shapley to find a stable matchingµ using �
6: if MMR(µ,P) ≤ τ then

7: return µ

8: for q ∈ RI(µ) s.t. q not queried this round do

9: if r and µ(q) are in the same block B of Pq for some r ∈ BP (q) then

10: Ask q to split B

11: else

12: for r ∈ BP (q) s.t. r not queried this round do

13: if q and µ(r) are in the same block B of Pr then

14: Ask r to split B

15: if no preferences were updated this round then

16: for Pj ∈ P do

17: Ask j to split j’s largest block in Pj

58

59

A.2 Full Lazy Gale Shapley Algorithm

Algorithm 4 Lazy Gale Shapley

1: procedure LGS(E,A, cE,A)

2: l← 0

3: µ(ei)← ∅, µ(aj)← ∅,∀ei ∈ E,∀aj ∈ A
4: Xei ← ∅, ∀ei ∈ E
5: while at least one proposer is not matched and has possible achievable matches do

6: for ei ∈ E do

7: if µ(ei) = ∅ then
8: Pei ← set of achievable acceptors in the highest-ranked equivalence class

of ei among those with his achievable applicants, whom he has not

interviewed yet

9: Eµ,l ← set of unmatched ed in equiv. class l of the acceptors with Ped 6= ∅
10: while Eµ,l = ∅ do
11: l← l + 1

12: Eµ,l ← the set of unmatched proposers ed in equivalence class l of the

acceptors with nonempty Ped

13: ei ← an arbitrary proposer in Eµ,l

14: for aj ∈ Pei do
15: ei interview aj

16: Xei = Pei
17: Pei ← ∅
18: while exists an unmatched employer ei with Xei = ∅ do
19: for ei ∈ E do

20: if µ(ei) = ∅ and Xei 6= ∅ then
21: ei proposes to the achievable acceptor it prefers the most.

22: Remove that acceptor from Xei

23: Update µ such that each acceptor who has received one or more proposals

tentatively accepts the proposer he most prefers and rejects the rest.

24: Xei is updated for all ei ∈ E such that each tentatively matched acceptor

is no more achievable to those proposers that are in the equivalence classes

ranked lower than the one µ(aj belongs to - he is removed from the lists of

such proposers.

25: return µ

Appendix B

Linear Formulations

B.1 Single-Sided Assignment

Assume we have a set A of n agents and a set T of n items, where item j has value vij to

agent i and xij is a binary representing allocation of item j to agent i. Each agent can only

be allocated one item and each item can only be allocated to one agent. The objective of

both sides of the economy is, again, to maximize utility.

B.1.1 LP and Dual

Our primal is as follows:

max
∑
i∈A

∑
j∈T

xijvij

s.t.
∑
j∈T

xij ≤ 1, ∀i ∈ A

∑
i∈A

xij ≤ 1, ∀j ∈ T

xij ≥ 0, ∀(i, j) ∈ A× T

60

61

The dual is then:

min
∑
j∈T

pj +
∑
i∈A

πi

s.t. pj + πi ≥ vij ∀(i, j) ∈ A× T

pj ≥ 0, ∀j ∈ T

πi ≥ 0, ∀i ∈ A

We note that p has a natural interpretation as price of item j and π has a natural inter-

pretation as profit of agent i.

B.1.2 Complementary Slackness

We note the following implications of the complementary slackness theorem.

1. xij > 0 =⇒ πi + pj = vij

2. πi > 0 =⇒
∑

j∈T xij = 1

3. pj > 0 =⇒
∑

i∈B xij = 1

By the first implication, if item j is allocated to agent i, then the profit of agent i is equal

to the difference between the value gained and the price paid. By the second implication,

if agent i has non-zero profit, an item must have been allocated to him. And by the

third implication, if item j has non-zero price, it must have been allocated to some agent.

Intuitively, these all make sense, and we can use them to formulate an iterative algorithm.

B.1.3 Iterative Algorithm

Let C be our complementary slackness conditions. Then we have the following iterative

algorithm:

62

Algorithm 5 Single Sided Assignment

1: procedure match(A, T, V)

2: pj ← 0 for all j ∈ T
3: optimal ← false

4: while not optimal do

5: for i ∈ A do

6: πj ← maxj∈T vij − pj
7: match[i] = arg(maxj∈T vij − pj)

8: if match satisfies C then

9: optimal ← true

10: else

11: for j ∈ T s.t. j is allocated to more than one agent do

12: pj+ = 1

B.2 Two-Sided Assignment

To further add complexity, and approach the marriage problem, we consider the two-sided

assignment problem. There are two finite, disjoint sets of size n representing agents. Let

the sets be denoted P,A. The parameters are aij : (i, j) ∈ P ×A where αij is the combined

utility of a match between agent i and agent j. Further xij is a binary representing whether

or not agent i and agent j are matched.

B.2.1 LP and Dual

The primal is as follows:

max
(i,j)∈M×W

αijxij

s.t.
∑
j∈W

xij ≤ 1, ∀i ∈M

∑
i∈M

xij ≤ 1, ∀j ∈W

xij ≥ 0, ∀(i, j) ∈M ×W

63

And the dual is as follows:

min
∑
i∈M

ui+
∑
j∈W

vj

s.t. ui + vj ≥ αij , ∀(i, j) ∈M ×W

ui, vj ≥ 0, ∀i ∈M, j ∈W

We note that ui corresponds to the utility of i ∈ M and vj corresponds to the utility of

j ∈W .

B.2.2 Complementary Slackness

We note the following implications of the complementary slackness theorem.

1. ui > 0 =⇒
∑

j∈W xij = 1

2. vj > 0 =⇒
∑

i∈M xij = 1

3. xij > 0 =⇒ ui + vj = αij

The first two indicates that a non-zero utility for an agent implies the agent is matched to

someone. The third indicates that a match between agent i and j implies their utility is

equal to the value of the match.

B.2.3 Finding Prices

In the auction and single-assignment problems, we were able to find prices from the dual.

However, here, in the two-sided assignment problem, the dual variables represent utility,

rather than prices. We can introduce redundancy into the formulation to find prices. Our

primal is then as follows:

max
∑

(i,j)∈M×W

aijxij

s.t.
∑
j∈W

xij ≤ 1, ∀i ∈M

∑
i∈M

xij ≤ 1, ∀j ∈W

xij ≤ 1, ∀(i, j) ∈M ×W

xij ≥ 0, ∀(i, j) ∈M ×W

64

And the dual is as follows:

min
∑
i∈M

ui +
∑
j∈W

vj +
∑

(i,j)∈M×W

pij

s.t. ui + vj + pij ≥ aij , ∀(i, j) ∈M ×W

ui, vj ≥ 0, ∀i ∈M, j ∈W

We can interpret the dual variables similarly to above, with the added variable pij as the

cost of matching agent i to agent j.

B.2.4 Complementary Slackness with Prices

We note the following implications of the complementary slackness theorem

1. ui > 0 =⇒
∑

j∈W xij = 1

2. vj > 0 =⇒
∑

i∈M xij = 1

3. pij > 0 =⇒ xij = 1

4. xij > 0 =⇒ ui + vj = αij − pij

The interpretation of the first two implications is that if an agent i ∈ M has a non-zero

utility, the agent must be matched. The third implication means that if the price of forming

a match between agents i, j is non-zero, they must be matched. And the last implication

means that if agents i, j are matched, then their total utility is equal to the value of the

match minus the cost of the match. The dual thus provides both payoff and price variables

which make an iterative primal-dual mechanism possible.

Bibliography

[1] Atila Abdulkadiroglu, Parag A. Pathak, and Alvin E. Roth. The New York High

School Match. American Economic Review, 95(2), 2005.

[2] Joanna Drummond and Craig Boutilier. Elicitation and approximately stable match-

ing with partial preferences. IJCAI International Joint Conference on Artificial In-

telligence, pages 97–105, 2013.

[3] Joanna Drummond and Craig Boutilier. Preference Elicitation and Interview Mini-

mization in Stable Matchings (working paper). 2016.

[4] B. Edelman, M. Ostrovsky, and Schwarz M. Internet advertising and the general-

ized price auction: Selling billions of dollars worth of keywords. American Economic

Review, 97:242–259, 2007.

[5] D Gale and LS Shapley. College admissions and the stability of marriage. American

Mathematical Monthly, 1962.

[6] D.E. Knuth. Stable Marriage and its Relation to Other Combinatorial Problems,

CRM Proceedings and Lecture Notes. American Mathematical Society, 10, 1997.

[7] David C. Parkes. Iterative Combinatorial Auctions: Achieving Economic And Com-

putational Efficienty. PhD Theses, 2001.

[8] David C Parkes and Lyle H. Ungar. Iterative Combinatorial Auctions: Theory and

Practice. In Proc. 17th National conference on Artificial Intelligence (AAAI-00), pages

74–81, 2000.

[9] Baharak Rastegari, Anne Condon, Nicole Immorlica, and Kevin Leyton-Brown. Two-

sided matching with partial information. Proceedings of the fourteenth ACM conference

on Electronic commerce - EC ’13, 1(212):733, 2013.

65

66

[10] Alvin E. Roth and Elliott Peranson. The Redesign of the Matching Market for Amer-

ican Physicians: Some Engineering Aspects of Economic Design. American Economic

Review, 89(4):748–780, 1999.

[11] Alvin E. Roth, Uriel G. Rothblum, and John H Vande Vate. Stable Matchings, Opti-

mal Assignments, and Linear Programming, 1993.

[12] C.-P. Teo, J. Sethuraman, and W.-P. Tan. Gale-Shapley stable marriage problem

revisited: strategic issues and applications. Proc. of IPCO ’99: the 7th Conference on

Integer Programming and Combinatorial Optimisation, pages 429–438, 1999.

[13] John H. Vande Vate. Linear programming brings marital bliss. Operations Research

Letters, 8(DMC):147–153, 1989.

[14] Y.L. Varol and D. Rotem. An algorithm to generate all topological sorting arrange-

ments. The Computer Journal, 24:83–84, 1979.

[15] Rakesh V Vohra. Stable matchings and linear programming. Current Sci-

ence(Bangalore), 103(9):1051–1055, 2012.

