A Scheduling Approach to Coalitional Manipulation

Lirong Xia Vincent Conitzer Ariel D. Procaccia
Department of Computer Department of Computer School of Engineering and
Science Science Applied Sciences
Duke University Duke University Harvard University
Durham, NC 27708, USA Durham, NC 27708, USA Cambridge, MA 02138, USA
Ixia@cs.duke.edu conitzer@cs.duke.edu arielpro@seas.harvard.edu
ABSTRACT known asvotel is asked to submit a linear order over the set of

The coalitional manipulation problem is one of the central prob- alte_rna_tives, Whi.Ch represents_ her p_references, and ""Wif‘”ing alter-
lems in computational social choice. In this paper, we focus on Native is determined by applyingwating ruleto the collection of

solving the problem under the important family of positional scor- submitted linear orders. - .
ing rules, in an approximate sense that was advocated by Zucker- Ideally the voters would submit linear orders that represent their

man et al. [SODA 2008, AlJ 2009]. Our main resultis a polynomial- true preferences. However, sometimes a voter can submit a false
time algorithm with (roughly speaking) the following theoretical vote (an order that does not represent her true preferences) that

guarantee: given a manipulable instance withalternatives, the ~ makes her better off. This phenomenon is caifehipulation and

algorithm finds a successful manipulation with at mest- 2 ad- the_ culprit is called ananipulator_ If, under vo_ting rl.“e'“’ there _is
ditional manipulators. Our technique is based on a reduction to the nokl)nstance Wherefa voter benefits from manipulation, thersaid
scheduling problem known a@|pmtn|Cina., along with a novel 1 bestrategy-proaf _ _ .
rounding procedure. We demonstrate that our analysis is tight by Unfortuna_te!y, itis impossible I.[O des_lgn a strategy_—proof voting
establishing a new type of integrality gap. We also resolve a known rule that satlsfles some very ba§|c additional properties, due to the
open question in computational social choice by showing that the well-known Gll?rbard-Sattertzwr?_lte theorem [.12’ 18] l(sgeh[15]bfor
coalitional manipulation problem remains (strongly) NP-complete an overview). To get around t IS very negatlye result, it nas been
for positional scoring rules even when votes are unweighted. Fi- SU99ested to consider computational complexity as a barrier against
nally, we discuss the implications of our results with respect to the manipulation. The idea is that the mere existence of an effective

question: “Is there a prominent voting rule that is usually hard to Manipulation does not guarantee that the manipulators can find it
in a reasonable amount of time. The computational complexity of

manipulate?” . L .) . :
manipulation in voting systems is one of the main research topics
. . . in the burgeoning field o€omputational social choicenumerous
Categories and Subject Descriptors papers have been devoted to this problem, covering different rules
1.2.11 [Distributed Artificial Intelligence]: Multiagent Systems; and different assumptions regarding the manipulation setting.
J.4 [Computer Applications]: Social and Behavioral Sciences— In the earliest work on the complexity of manipulation [2, 1] it
Economics was shown that (if the number of alternatives is unbounded) it is

NP-complete to determine whether a single manipulator can effec-
tively manipulate the election, under both the second-order Copeland

General Terms and the STV rules. Later work studied how to modify prominent

Economics, Theory voting rules in a way that makes them hard to manipulate for a sin-
gle voter [4, 8].
Keywords A more general manipulation setting is thatwéighted coali-

i) » . . .) tional manipulation (WCM)In this setting, multiple manipulators
Social ch0|ce, Coalitional manipulation, Positional scoring rules, have formed a coalition, with the goal of making an agreed-upon
Scheduling alternative win the election. Furthermore, the voters in this setting

are weighted, where a voter with weightis equivalent tok un-
1. INTRODUCTION weighted voters that cast identical ballots. Weights are common,

In settings with multiple agents, the agents often need to make €-9-; in corporate elections, where vpters are weighted according to
a group decision regarding a set of alternatives (also called “candi- the amount of stock they hold. Conitzer et al. [6] have established

dates”). A natural way of doing this is byoting Each agent (also that this problem is computationally hard under a variety of promi-
nent voting rules, even when the number of alternatives is constant.

Subsequent work by Hemaspaandra et al. [14] has dealpwith
sitional scoring rules Each rule in this family can be represented

by a vectors = (si1,...,sm). Each voter then awards points
Permission to make digital or hard copies of all or part of thizkafor to the alternative that she ranks in tith position; the alterna-
personal or classroom use is granted without fee providatidbpies are tive with most points wins the election. This family includes three
not made or distributed for profit or commercial advantage aatidbpies of the most prominent voting rulesPlurality (where each voter

bear this notice and the full citation on the first page. Toyooiherwise, to . . .
republish, to post on servers or to redistribute to listguees prior specific awards one point to her favorite alternativéprda (where each

permission and/or a fee. voter awardsn — 4 points to the alternative ranketh), andVeto
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

(where each voter awards one point to all the alternatives, exceptlem (the indivisible version) is denoted by WCM). WCMd may be
for the last-ranked one). Hemaspaandra et al. have established anteresting in its own right, but mainly serves to prepare the ground
dichotomy theorem for WCM in scoring rules. This theorem clas- for our results regarding WCM. We give a polynomial-time algo-
sifies whether WCM is NP-complete or in P, depending on the pa- rithm for WCMd under any positional scoring rule by reducing it to
rameterss. the well-studied scheduling problem known@gmitn|Ciqee (in

A special case of weighted coalitional manipulation isuts which preemptions are allowed). This algorithm also solves COd.
weightedversion (UCM), which is perhaps more natural in most In Section 3.2 we deal with the indivisible case (WCM), and
settings (e.g., political elections). Progress on the UCM problem augment the WCMd algorithm with a rounding technique. Based
has been significantly slower than on other variations, but many of on existing results from the scheduling literature, we can assume
the questions have recently been resolved. The exact complexity ofthat the scheduling solutions use relatively few preemptive break
the problem is now known with respect to almost all of the promi- points. We then show that in the coalitional manipulation problem,
nent voting rules [9, 22, 23], with the glaring exception of Borda. we need at most one additional voter per preemptive break point.
Researchers have believed for some years that UCM under Borda isVe obtain the following theorem, which is a somewhat weaker but
NP-complete; this belief was explicitly put forward as a conjecture far more generally applicable version of the main result of Zucker-
by Zuckerman et al. [23], but the question still remains open. In man et al. regarding Borda [23, Theorem 3.4].
fact, although UCM under some positional scoring rules is known
to be tractable (e.g., Plurality and Veto), previous work has failed
to find any positional scoring rule for which UCM is hard. 1. if the algorithm returndalse then there is no successful ma-

The main thrust of the results of Zuckerman et al. [23] is the nipulation (even for the WCMd version of the instance);
design of algorithms for WCM and UCM with unusual approxima-
tion guarantees. The most interesting of these results deals with
Borda in the context of WCM: it is shown that a greedy manipu-
lation algorithm has the curious property that given an instance of
WCM under Borda where there is a manipulation, the algorithm is
guaranteed to find a manipulation that requires only one additional
manipulator with maximum weight, that is, with weight as large as Crucially, in most settings of interest (e.g., political elections),
any of the original manipulators. Furthermore, it is observed that the number of alternatives: is small compared to the number
the unweighted coalitional manipulation setting begs the consid- of voters, or even the number of manipulators. Moreover, WCM
eration of a natural optimization problemnweighted coalitional is NP-complete under scoring rules such as Borda and Veto, even
optimization (UCO) In this problem, we are given the votes of an when there are only three alternatives [6]. Therefore, in many im-
unweighted set of voters, and the goal is to determine the minimum portant scenariosp — 2 additional manipulators constitute a very
number of manipulators needed to make a given alternative win the small fraction of the total number of manipulators, that is, the algo-
election. It follows from the result mentioned above that the greedy rithm gives a good “approximation” to WCM.
algorithm approximates UCO in Borda to an additive term of one. A direct implication of Theorem 3.9 is that in the unweighted
case (UCM) our approximation algorithm always finds a manipu-
lation with at mostn — 2 additional manipulators, if there exists
one for the given instance. Put another way, the algorithm approx-
imates UCO to an additive term of — 2.

In Section 4, we establish an “integrality gap,” in the following
sense: the optimal solution to UCO can require 2 more manipu-
lators than the optimal solution to UCOd (Theorem 4.3). Moreover,
we show that there is a family of instances of UCO such that any
algorithm that is based on rounding an optimal solution for COd
requiresm — 2 more votes than the optimal UCO solution (Theo-
rem 4.4). These results suggest that the analysis of the guarantees
provided by our technique is tight.

Our final major result asserts that UCM under a specific posi-
tional scoring rule is strongly NP-complete. (We note that in this
context, this is actually a positive result, because manipulation is
undesirable—just as the results earlier in the paper are actually neg-
ative results.) This shows that the answer to the previously open
e question of whether there exists an efficient algorithm that solves
UCM under any positional scoring rule is “no” (assuming\P).

While the problem remains open for Borda, the positional scor-
ing rule for which we show the hardness result displays significant
similarities to Borda; hence, we believe that our result gives strong
support to the conjecture that UCM under Borda is hard. This result
also justifies our approximation results for UCM and UCO, since
it implies that we are approximating a problem that is indeed NP-
hard. Moreover, our result implies th@pmtn|Cr.qz is strongly
NP-complete in discrete time, that is, when preemptions are only
allowed at integral times.

THEOREM 3.9. Algorithm 2 runs in polynomial time and

2. otherwise, the algorithm returns a successful manipulation
for a modified set of manipulators, consisting of the original
manipulators plus at most: — 2 additional manipulators,
each with weight at modt’/2, whereW is the maximum
weight of the manipulators.

Our results and techniques. In this paper, we focus on WCM,
UCM, UCO, and COd (the problem that asks for the minimum
weight that a single manipulator who can cadhasiblevote needs

in order to make a given alternative win) under positional scoring
rules; we look for approximability in the sense of Zuckerman et
al. [23], as discussed above. Our main contribution is the explo-
ration of a surprising and fruitful connection between coalitional
manipulation and scheduling. We demonstrate that the huge body
of work on the latter problem can be leveraged to obtain nontrivial
algorithmic results for the former problem.

The intuition behind the reduction is as follows. The scheduling
problem to which we reduce is that of scheduling on parallel ma-
chines where the goal is to minimize makespan. In the coalitional
manipulation problem, each manipulagoalways ranks the coali-
tion’s preferred alternative first, but must award; - w; points to
the alternative it ranksth, wherew; is the manipulator's weight.
For anyi > 2, we define a machine fay;; the largers; is in rela-
tion to s1, the slower the machine is. Furthermore, each alternativ
besides: is a job; the larger the gap between the score of this alter-
native and the score of the larger the job is. When a manipulator
with weightw; ranks an alternative in thgh position, it decreases
the gap betweenand this alternative b{is; —s;)w; points, which,
under the detailed reduction, is equivalent to processing the corre-
sponding job on th¢: — 1)th slowest machine fow; time units.

In Section 3.1, we consider a version of WCM where votes are
divisible, that is, each voter is allowed to submit a convex combi-
nation of linear orders (instead of a single linear order, as in the tra-
ditional setting). This “divisible” variant of the problem is denoted
by WCMd (whereas the traditional coalitional manipulation prob- *Pinedo [16], after asserting that the special case of this problem

Implications with respect to frequency of manipulation. Despite general classes of voting rules (for example, generalized scoring
the large volume of work on worst-case hardness of manipulation, rules [19, 21]). If so, this would cast further doubt on our ability to

it is becoming increasingly clear that the question should be: “Is find a voting rule that is “usually” hard to manipulate.

there a prominent voting rule thatisuallyhard to manipulate?” A

stream of papers in recent years lends support to the belief thatthe2 . PRELIMINARIES

answer is negative. It is possible to identify two main approaches.

One approach tries to define general basic properties that cannot LetC be the set oélternatives A linear arder orC is a transitive,
- app X genel prop - antisymmetric, and total relation @h The set of all linear orders
be satisfied by any voting rule that is usually hard to manipulate

(see, e.g., [10, 20, 7]). In this line of work, “usually” refers to wgsin onC is denoted by.(C). The set of all convex combinations over
the uniform distribution for the preferences of the agents, known L(C) is denoted bYA(L(C)). An (indivisible) votess a linear order

. over C, that is, it is an element of.(C). A divisible voteis an
in the social choice literature as thapartial culture assumptian S . .

. _ X : element ofA(L(C)). An n-voter indivisible profileP onC consists
However, in realistic settings one would expect to encounter biased

distributions that, e.qg., favor specific alternatives or exhibit a con- 9f<71 linear ordLers Oﬂé’.thfflﬂ ||s,P = (R, d’ Rnt))l wherft_al f?jr every
centration of voters around opposing camps. i <, Ri € L(C). Similarly, ann-voter divisible profilel” onC

. . . - . consists ofn convex combinations ovek(C). In the remainder
A second approach strives to design efficient heuristic manip-

ulation algorithms for prominent voting rules that are NP-hard to of tﬁe paperdvxlle Iein denote the number of alternatives (that is,
manipulate. Early work on this includes the work of Procaccia and m= ‘CD’ an | et(? . {fc’ Cls - - f’ Cm’lh}' £ all indivisibl
Rosenschein [17] and Conitzer and Sandholm [5]. The work of .. A voting ruler is a function from the _set ofa |nd|V|s_|be pro-
Zuckerman et al. [23] also falls into this framework, but has the files onC to ntc))nem]?ty. subsets @T,.t.hat IIS, the.rule (?e5|gnat.es a
important advantage of allowing for theoretical guarantees without go?empty su se_t 0 w|nne£s. (hositional) scoring ru eln_verc’ 1S
making any distributional assumptions. de |?/ed bz/ acscorlgg vectors C: I(sth v ’,sz' For ahny mgarﬂg;r-
Let us reconsider our Theorem 3.9 according to the perspec- raer:k Ofe, in(‘} a'rzlorzr;]yck < N’ :n s‘(/) T/Sj‘ Evceregnlz ane
tive offered by Zuckerman et al. This theorem naturally applies ¢ : y ek LAy Vi,..., Vi € L(C), y
to UCM (Corollary 4.1). Our algorithm might fail to correctly de- ~ 1:---» @k = 0 such thad~;_, ai =1, we let
cide a given “no” instance of UCM (in the sense that it actually re- k k
turns a solution, with additional manipulators), but given a similar S(Z apVi,) = Z ak - 5(Vi,).
instance with slightly fewer manipulators, the algorithm would an- i=1 i=1
swer “no”. Hence, ifn is relatively small, the algorithm’s “window
of error’—the family of instances on which the algorithm might
fail—is relatively small. Without claiming anything formally, it
would appear to follow that under “reasonable” distributions over
preferences, the probability of drawing an instance on which the
algorithm fails is small. Put another way, our results suggest that,
although coalitional manipulation is NP-hard under prominent po-
sitional scoring rules, the problemis in fact usually quite easy under
any positional scoring rule.

For any profileP = (V1,...,V,), lets(P,c') = 37, s(Vs,).
The rule selects alternative$ € C that maximizes(P, ¢’). Three
prominent examples of scoring rules &erda, for which the scor-
ing vector is(m — 1,m — 2,...,1,0); Plurality, for which the
scoring vector ig1,0,...,0,0); andVeta for which the scoring
vectoris(1,1,...,1,0).

The definitions naturally extend to the case in which voters are
weighted; the weights are represented by a vector
W = (wi,...,wn) € R}, where for anyi < n, w; is the weight
Future research. Several intriguing questions remain open. The of voteri. In particular, we let
first is whether a better additive approximation is possible. n
o) s(P,@,c) = Zwi -s(Vi,),
OPENQUESTION 1. Is there a polynomial-time algorithm that et
gives an additive approximation of less then— 2 to UCO under

all positional scoring rules? and letr (P, @) denote the set of winners (the alternatives with the

highest score).

Our Theorem 4.4 shows that any such algorithm will have to L&t us now turn to the definition of the computational problems
use a fundamentally different technique. Another open problem is that we shall investigate. We study the so-calledstructivema-
to understand the guarantees that the Greedy algorithm—the a|goni_puzlation variants, in which the goal is to make a given alternative
rithm that was used by Zuckerman et al. [23] to prove the earlier Win.
result for Borda—gives with respect to general scoring rules.
DEFINITION 2.1. TheUnweighted Coalitional Manipulation
OPENQUESTION 2. What additive approximationto UCO does (UCM) problem is defined as follows. An instance is a tuple
the Greedy algorithm give for positional scoring rules? r, PYM ¢, k), wherer is a voting rule,P™ ™ is the non-manipulators’
profile, c is the alternative preferred by the manipulators, dnts
We also note that our Theorem 5.1 still has not resolved the com- the number of manipulators. We are asked whether there exists
plexity of UCM under Borda. a profile PM of indivisible votes for the manipulators such that
cer(PNMypM).
OPENQUESTION 3. Is UCM under Borda NP-complete?
DEFINITION 2.2. TheWeighted Coalitional Manipulation
Finally, a more open-ended direction for future research is to in- (WCM) problem is defined as follows. An instance is a tuple

vestigate whether the techniques in this paper can be used for MO ontrast with thedestructiveversions of these problems, where

where all machines have the same speed can be solved in polynothe goal is to ensure that a given alternative doeswin. The

mial time, claims that the results of his chapter can be extended constructive versions are by far the more commonly studied ones,
to the case where they do not have the same speed (his Theorenn part because an algorithm for a constructive version can be used
5.2.12). In light of our results, and based on a correspondence withto obtain an algorithm for a destructive version, simply by solving
the author, we conclude that this result is incorrect. the constructive version for each other alternative.

PNM s the

(r, PNM ™M o | ™M), wherer is a voting rule
@fNA/I

non-manipulators’ profiles™¥* represents the weights
c is the alternative preferred by the manipulatoksis the number

of manipulators, ands™ = (ws, ..., ws) represents the weights

of the manipulators. We are asked whether there exists a pro-
file P of indivisible votes for the manipulators such thate
T((PNA/I, P]M)’ (u—;NIM7 u—)»]vi)).

Since we only focus on positional scoring rules in this paper,
will simply be represented by the scoring vecter, sz, ..., $m).

In the above definitions, we use tlkke-winnerformulation. An-
other possibility is to consider thaique winneformulation which

is similar, only we require that the winning set be the singleton
{c}, that is,r((PYM, PM) (@M w™M)) = {c}. Unless explic-
ity mentioned otherwise, our results hold for the unique winner
formulation as well.

Zuckerman et al. [23] noted that the unweighted manipulation
setting allows for a natural optimization problem: tineweighted
coalitional optimizatiorproblem. Given, essentially, an unweighted
coalitional manipulation instance, we alskw manymanipulators
are needed in order to makevin. Formally:

DerINITION 2.3. TheUnweighted Coalitional Optimization
(UCO) problem is defined as follows. An instance is a tuple
(r, PYM ¢}, wherer is a voting rule,PY is the non-manipulators’
profile, andc is the alternative preferred by the manipulators. We
must find the minimurh such that there exists a a profi* con-
si?éing ofk indivisible manipulator votes that satisfies r(PY™ U
P,

In the weighted version of the optimization problem, we look for
the minimum totalweightof the manipulators that is sufficient to
makec a co-winner

DEFINITION 2.4. TheCoalitional Optimization for divisible votes
(COd)problem is defined as follows. An instance is a tuple
(r, PYM 5NM), wherer is a voting rule, P is the non-
manipulators’ profile g™ represents the weights &, and
c is the alternative preferred by the manipulators. We are asked to
find the minimuni¥* such that there exist a divisible vote
for one manipulator with weight’ ™, such that

ce T((PN]M’ {V]M}), (u—;N]W’ WIM))

We let WCMd, UCMd, UCOd denote the variants of WCM,
UCM, UCO, respectively, in which votes are divisible. We note
that it is irrelevant whether the votes of the non-manipulators are
divisible or not; what matters is whether the manipulators’ votes
are divisible.

3. ALGORITHMS FOR WCM AND COD

In this section we present algorithms for WCM. For the divisible
case, we devise a polynomial-time algorithm that solves WCMd by
reducing it to the scheduling problem known @gpmin|Craz.
This algorithm also solves COd exactly. For WCM, we augment
the algorithm for WCMd with a rounding technique, and obtain an
approximation algorithm as a result. While our solution for WCMd
may be interesting in its own right, its main purpose is to provide

intuitions and techniques that are subsequently leveraged for ap-

proximating WCM.

30ur approach can be easily extended to the solve the unique-workloads arer; = 6 = (9 —3),po =5 = (8 — 3),p3 = 1

winner case, in which the objective is to find the infimum total
weight of the manipulators that is sufficient to makée unique
winner.

3.1 The divisible case

We will show how to reduce WCMd/COd to the scheduling prob-
lem of parallel uniform machines with preemptiocategorized as
Q|pmin|Cmaz (See, for example, [3] for the meaning of the no-
tation). In an instance of)|pmitn|Ci,.., We are givenn’ jobs
J = {J1,...J} andm’ machines\t = {M, ..., M, }; each
job J; has a workloag; € R, and the processing speed of ma-
chine M; is s* € Ry, that is, it will finish s* amount of work in
one unit of time. Apreemptionis an interruption of the job that
is being processed on one machine (the job may be resumed later,
not necessarily on the same machine). Preemptions are allowed in
Q|pmin|Cmaz. We are asked for the minimum makespan, i.e., the
minimum time to complete all jobs, and an optimal schedule.

We first draw a natural connection between WCMd/COd under
positional scoring rules an@|pmin|Cy.q... After counting the
non-manipulators’ votes only, each alternative will have a total non-
manipulator score. For any< m — 1, we letp; denote the gap
between the non-manipulator scorecpfand the non-manipulator
score ofc (which is positive if the former is larger; the case where
the gap is negative is trivial). In particular, tpgs can be seen as
the workload ofn—1 jobs. We note that, without loss of generality,
the manipulators will always rankin the top position. Therefore,

a manipulator vote (of weight) in which ¢; is ranked in theth
position decreases the gap betweeandc by s; — s; points.

We consider a set afu — 1 machinesMy, ..., M,,—1 whose
speeds are; — s2,...,S1 — Sm, respectively. A ranking (a vote)
is equivalent to an allocation of the — 1 jobs to machines: an
alternative rankedpositions below: corresponds to a job allocated
to theith slowest machine. We can now see that the minimum
makespan of the scheduling problem is the minimum total weight
of the manipulators required to maka winner, that is, the optimal
solution to COd. For WCMd, the goal is to compute the votes for
Zle w; “amount” of manipulators (since the votes are divisible, a
problem instance witk manipulators with weightsj is equivalent
to a problem instance with a single manipulator whose weight is
S°F w;), such that the final total score efis at least the final
total score of any other alternative. This is equivalent to computing
a schedule that completes all jobs within time at t, w;.

Formally, for a WCMd instancé(sy, . . ., sm), PV, w™M
¢, k, (w1, ..., wk)), we construct an instance 6§|pmin|Crax
with m — 1 jobs andm — 1 machines (thatisp’ =n’ =m — 1)
as follows. For anyi < m — 1, we lets’ = s1 — s;41, pi =
max{s(PVM wNM ¢} — s(PNM ™M ¢),0}. We do not dis-
tinguish between alternative and job.J;. This reduction is illus-
trated in the following example.

ExampPLE 3.1. Letm = 4, C = {¢,c1,c2,c3}. The posi-
tional scoring rule is Borda (which corresponds to the scoring vec-
tor (3,2, 1,0)). The non-manipulators are unweighted (that s, their
weights arel), and their profile is
PNM — (VM NM oy NM oy NMY - defined as follows.

NM
Va

VlN]VI:[Cl>-C>-CQ>-63], [ca > c1 = ¢ = c3]

\@NM:[03>02>C1 = ¢, V4NM:[01 = co = c3 > (]

We have thas(PYM ¢) = 3, s(PYM ¢;) = 9, s(PVM,¢2) =

8, s(PYM ¢3) = 4. Therefore, we construct @|pmtn|Ciaz
instance in which there agemachines\/;, Ms, M3 whose speeds
ares! = 1,5 = 2,5 = 3, corresponding to the 2nd, 3rd, and
4th position in the votes, respectively, ahgbbs J;, J2, J3, whose

(4 — 3), respectively. O

Let Wy = 0, W = max;<x wj, and foranyl < i < k, W;

23:1 w;. A schedule is usually represented bantt chart as

illustrated in Figure 1. (We note that Figure 1 is not the solution to

Example 3.1.)
M1 A N7} J3
M> J N7 N7
Ms| NS N
0 Ty -|I'2 T3 Ta w

Figure 1: An example schedule. The machines are idle in

shaded areas.

Let w be the minimum makespan for th@|pmitn|Cinqe. in-
stance constructed above, and fét: M x [0,w] — J U {I}
be an optimal solution t&)|pmtn|Ci.a.., Wwherel means that the
machine is idle. Ifw > Wy, then there is no successful manip-
ulation that makes a winner. Ifw < Wj, we first extend the
optimal solutionf™* to make it fully occupy the whole time interval
[0, Wy]; any way of allocating jobs to machines in the added time
would suffice? Let f be the solution obtained in this way.

Given f, for any timet € [0, W}], we say that is apreemptive
break pointif there is a preemption dt—formally, there exists a
machineM; such that for some’ > 0, we have that for alt €
[0,€], f(M;,t—e) # f(M;,t+e€), thatis, the job being processed
at timet — € on M; is different from the job being processed at
timet¢+e. We letB; = {11, ...,T;} denote the preemptive break
points of f, where0 < Th < Tx < ... < T; < Wy. For example,

. .
M| & | % % k| Xk
|
/
M2 Js //// J Ji Jh | B | &
Mal & | 5 1 3% S| W Pu
|
Wo T T Wi T3 T2 W
W1 Wo

Figure 2: Conversion of an optimal schedule to a solution for
WCMd.

e Ifthere are no preemption break pointg I, _1, W;), we let
manipulator vote forc = f'(My, W;_1+¢€) = f' (M2, W;_1+
€) = ... = f'(Mm—1,W;i_1 + €), wheree > 0 is suffi-
ciently small.

e If there are preemptive break points(i;_1, W;), denoted
bY To, Tat1, - -+, Tats—1, then we letVy, ..., Vi, ; denote
the orders that correspond to the schedule at tiiies; +
6,Tu 4+ ¢,...,Tatp_1 + €, respectively. Lent = T, —
Wi—1,ah = Toy1—Ta,...,ayy = Wi —Tagp_1. Welet

manipulatori vote for>-""1[al /(W; — Wi_1)] - V.

j=1
ExampPLE 3.3. Suppose there are two manipulators whose weights
wy andws are illustrated in Figure 2. Manipulator 1 vo{€$/4)(c >~
cr = c3 = c2)+ (1/4)(c = a1 > c2 = ¢c3) + (1/2)(c >
c2 > c1 > c3)]; manipulator 2 vote$(1/3)(c = c2 > c1 >

the set of preemptive break points of the schedule in Figure 1 is ¢3) + (1/3)(c = c2 = ¢z = c1) + (1/3)(c = ¢z = c2 = ¢1)]. O

By = {T1,T5,T5,T4}.

ExampPLE 3.2. The minimum makespan of the scheduling prob-

lem instance in Example 3.1 {$ + 5)/5 = 11/5. An optimal
schedulef is as follows.

M; : Forany0 <t < 11/5, f(My,t) = Js.

M, : Forany0 <t < 8/5, f(Ma,t) = Jo; forany8/5 < t <
11/5, f(M2,t) = Ji.

Mg : Forany0 < ¢ < 8/5, f(Ms,t) = Ji; forany8/5 < t <

11/5, f(Ms3,t) = Ja.
t = 8/5 is the only preemptive break point in this schedule. O

Any solution to theQ|pmtn|Crnaz instance obtained from the
reduction can be converted to a solution to WCMd in the following

On the basis of the exposition above we now refer the reader to
Algorithm 1. The algorithm solves WCMd in three steps: 1. con-
vert the WCMd instance to @|pmin|Cma. instance; 2. apply a
polynomial-time algorithm that solved|pmin|Ch.q. (for exam-
ple, the algorithm in [13]); 3. convert the solution to the scheduling
instance to a solution to the WCMd instance. Algorithm 1 also
solves COd, because the makespaeomputed in Line 3 is the
optimal solution to COd. It is easy to verify that the algorithm runs
in polynomial time. To conclude, we have the following result.

THEOREM 3.4. Algorithm 1 solves WCMd and COd (exactly)
in polynomial time.
3.2 The indivisible case

We now move on to the more difficult indivisible case. We first
note that Algorithm 1 cannot be directly applied to WCM, because

way. First, we assign jobs to all idle machines arbitrarily to ensure the manipulators’ votes constructed in Line 16 can be divisible. For

that at any time betweeh and W;, no machines are idle and all
jobs are allocated. Formally, we defiffé : M x [0, Wi] —
J such that{f/(M1, t)7 ey f,(Mmfht)} = {J17 RN Jm71}
for all ¢, and for anyM € M andt € [0, W], we have that if
f(M,t) € J, thenf'(M,t) = f(M,t). For example, we can

any positional scoring rule, if there is a successful manipulation (in

which all manipulators rank in the top position), and we increase

the weights of the manipulators, thestill wins the election. This
property is known amonotonicity in weightésee [23] for a formal
definition and the proof). Therefore, instead of having manipulator

assign jobs to the shaded areas (which represent idle time) in thet cast the divisible vot§_ [/ (W: — Wi—1)] - V, we let her cast

schedule in Figure 1 in the way illustrated in Figure 2.

the indivisible voteV}’., which is one of thel; with the highest

Next, for anyl < i < k, we convert the schedule to the manip- weight among all thé’;"’s constructed for manipulatar In addi-

ulators’ votes in the natural way:

4This works for the co-winner case. For the unigue-winner case,

in order to have a solution we nead< W}, and then in the time

tion, for anyj # 5, we add one extra manipulator whose weight is
o, and let the new manipulator votg'. It turns out that if we use
a particular algorithm for the scheduling problem, then the solution

interval [w, W] we allocate the jobs in an arbitrary way such that Will not require too many additional manipulators. This gives us

each job runs on each machine for some time.

Algorithm 2 for WCM.

Algorithm 1: compWCMd

1 Vigm—l,si<—51—5H1

2Vi<m-—1,

pi — max{s(PYM w™M ¢) — s(PYM w™M ¢),0}
Solve theQ|pmin|Crn.aqz instance (for example, using the
algorithm in [13]). Letw and f denote the minimum
makespan and an extended optimal schedul&ilet. . | T;
denote the preemptive break points.

w

4 if w > Wy then
5 | retun false
6 end
7 Let f' : M x [0, W] — J be such that
{f/(Ml,t),. . .,f/(Mmfl,t)} = {Jl, ey Jmfl}, and for

anyM € M, anyt € [0, W], we have thatiff (M, t) € J,
thenf’'(M,t) = f(M,t).
g fori =1tokdo

9 | LetV¥=[c> f/(Mi,Wii+€)>=...=
F (Mp—1, W1 +€)]
10 j—2
11 for each preemptive break poifit € (W;_1, W;) (in
order) do
12 Let
Vi=lcw f'(M1,T+e€) > ... = f(Mmn—1,T+e¢)]
13 j—j+1
14 end
15 For anyj, let aj~ be the length of thgth interval in
[W;—1, W;] induced by the preemptive break points.
16 | Letmanipulator vote)" [} /(Wi — Wi—1)] -V}, and
add this vote taP™
17 end

18 return PM

Algorithm 2: compWCM
This algorithm is the same as Algorithm 1, except for the
following two lines:
3 Use the algorithm in [13] to solve the scheduling problem
16 Let manipulator vote for V., where for anyj # j*,
o« > af; and for anyj # j*, we add a new manipulator
whose weight isy}, and let her voté/;

ExAMPLE 3.5. Letthe coalitional manipulation problem instance

weightw, /4 whose votes are >~ ¢ > c3 = cz andc > ¢1 >
c2 > c3. The vote of manipulator 2 is = ¢3 = ¢1 > c3, and we
introduce two new manipulators with weigtt /3 whose votes are
¢ > c2 > cg > c1ande > c3 > c2 > c1. Since|By| (the number
of preemptive break points) i& there are in total four additional
manipulators. O

For any;j # j*, we must haver: < (W; — W;_1)/2 < W/2
(recall thatW = max; < w;). Moreover, for any preemptive
break point we introduce at most one extra manipulator. Therefore,
we immediately have the following lemma that relates the number
of the new manipulators to the number of preemptive break points.

LEMMA 3.7. If w > Wy, then there is no successful manipu-
lation for WCMd (nor for WCM); otherwise, Algorithm 2 returns a
manipulation with at mogtB | additional manipulators, each with
weight at mosiv/2.

Therefore, the smalldiBy| is, the fewer new manipulators are
introduced by Algorithm 2| B;| depends on which algorithm we
use to solve&)|pmin|Chmaz in Line 3. In fact, there are many effi-
cient algorithms that solv@|pmin|Ci,a.. For example,
Q|pmtn|Crmas can be solved in tim@(n'*m’) by a greedy al-
gorithm [3]. At each time point, the algorithm (called théevel
algorithm) assigns jobs to the machines in a way such that the
greater the remaining workload of a job, the faster the machine
it is assigned t3. However, this algorithm in some cases gen-
erates a schedule that has as manynagn’ — 1)/2 preemptive
break points. Therefore, we turn to the algorithm by Gonzalez and
Sahni [13], which runs in tim&(n’ + m’logn’) using at most
2(m' — 1) preemptions. Gonzalez and Sahni also showed that this
bound is tight. We note that one preemptive break point corre-
sponds to at least two preemptions, and in the instances that were
used to show that the(m’ — 1) bound is tight;n’ — 1 preemp-
tive break points are required. Therefore, we immediately have the
following lemma.

LEMMA 3.8. The number of preemptive break points in the so-
lution obtained by the algorithm of Gonzalez and Sahni [13] is at
mostm’ — 1. Furthermore, this bound is tight.

We note thatn’ = m — 1. Hence, combining Lemma 3.7 and
Lemma 3.8, we have the following theorem, which is our main
result.

THEOREM 3.9. Algorithm 2 runs in polynomial time and

1. if the algorithm returngalse then there is no successful ma-
nipulation (even for the WCMd version of the instance);

be the same as in Example 3.1. Suppose we have two manipulators ;- oiheryise, the algorithm returns a successful manipulation

whose weights are both; then, because the minimum makespan
is11/5 > 2 (as observed in Example 3.2), there is no solution to
the WCMd and WCM problem instances. The solution to the COd
problem instance i$1/5.

Now suppose we have two manipulators, whose weightg are
1 andws = 6/5, respectively. Letf be the optimal schedule de-
fined in Example 3.2. A solution to the WCMd problem instance
is obtained as follows. Manipulator 1 votes> c3 > c2 > ci],
and manipulator 2 votel§1/2)(c > c3 > c2 > 1) + (1/2)(c >
c3 = ¢1 = c2)]. For WCM, the vote of manipulator 1 is the same,
the vote of manipulator 2 i > c3 > c2 > ci1], and there is
one additional manipulator, whose weigh8j& and whose vote is
[C>C3>C1>CQ]. O

EXAMPLE 3.6. Suppose there are two manipulators whose
weights are illustrated in Figure 2. The vote of manipulator 1 is
c > c2 = c1 > c3, and we introduce two new manipulators with

for a modified set of manipulators, consisting of the original
manipulators plus at most — 2 additional manipulators,
each with weight at most¥//2.

4. ALGORITHMS FOR UCM AND UCO

We now consider the case where votes are unweighted. UCMd
and UCOd can be solved using Algorithm 1. As for UCM/UCO,
every manipulator’s weight is one (so th&t = 1), and we are only
allowed to add new manipulators whose weight is also 1. We re-
call that increasing the weights of the manipulators never prevents
¢ from winning. Therefore, in the context of UCM/UCO we use a
slight modification of Algorithm 2, by adding one unweighted ma-
nipulator whenever Algorithm 2 proposes adding a weighted ma-
nipulator (whose weight can be at masp).

5The greedy algorithm of Zuckerman et al. [23] is effectively a
discrete-time version of the level algorithm.

Algorithm 3: compWCM

This algorithm is the same as Algorithm 1, except for the
following two lines:
3 Use the algorithm in [13] to solve the scheduling problem.
16 Let manipulator vote forVy'; for anyj > 1, we add a new
manipulator who votes fov’.

The following corollary immediately follows from Theorem 3.9.

COROLLARY 4.1. For UCM, if Algorithm 3 returndalse then
there is no successful manipulation; otherwise, Algorithm 3 returns
a successful manipulation with at moat— 2 additional manipu-
lators.

Recall that Lines 1-3 of Algorithm 3 compute the minimum
makespanw (the solution to COd) of the scheduling problem that
is obtained from the UCM instance. It is easy to see that if votes
are divisible therfw] is the minimum number of unweighted ma-
nipulators required to makewin the election, that is[w] is the
optimal solution to UCOd. Therefore, Algorithm 1 can easily be
modified to yield an algorithm that solves UCOd. We further note
that Algorithm 3 is an approximation algorithm for UCO, as the
number of manipulators returned by Algorithm 3 is no more than
[w] +m — 2. Put another way, Algorithm 3 returns a solution to
UCO (with indivisible votes) that approximates the optimal solu-
tion to UCQOd (with divisible votes) to an additive termsaf — 2.

Generally, if there exists a successful manipulation, then Algo-
rithm 3 returns a manipulation with additional manipulators. How-
ever, there are some special positional scoring voting rules under
which UCM can always be solved exactly by Algorithm 1. Given
ke {1,...,m — 1}, thek-approval rule is the scoring rule where
s1 . Sk landsgt1 = ... sm = 0. For ex-
ample, Plurality (with scoring vectdd, 0, ..., 0)) and Veto (with
scoring vectof1, ..., 1,0)) are 1-approval antin — 1)-approval,

THEOREM 4.3. For anym > 3, there exists a UCO instance
such that the (additive) gap between the optimal solution to UCOd
and the optimal solution to UCO is — 2.

PROOF For anym > 3, we let the scoring vector bgn(m —
H(m—-2)—1,....m(m—-1)(m—-2)—1,m(m—1)(m—2) —
2,0). LetV = [c1 > ... = cm—1 > c], and letr be the cyclic
permutation orC \ {c}, that is, = : — Cm-1 — C1.
For any: < m — 1, letV; be the linear order ovet in which c is
ranked in position(m — 1), andzn’(c1) =v; 7'(c2) =v; ... =v;
7' (em-1). L&t P = (V,Vi,...,Vin—1), P’ = PUn(P)U
...Un™™2(P). It follows that for anyi < m — 1, s(PYM ¢;) —

Cl — ...

s(P"M o) =(m—-1)2—-1.LetV' =[c>c1... > Cm_1]; it
can be verified that the divisible vote
1 / ’ 2 ’ m—2 1’
—— (V' (V) (V). 7" RV)

is sufficient to make win, hence the optimal solution to UCOd is

We next prove that the solution to UCOris— 1. Clearly the pro-
file (V/,7(V'),n*(V"),..., 7™ (V")) is a successful manipula-
tion. Hence, it remains to show that the solution is at least 1.
For the sake of contradiction we assume that the solution-is2,
and P is the corresponding successful manipulation. Therefore,
there must exist < m — 1 such that; is not ranked at the bottom
of any of the votes oP* . Therefore,

s(PM e) —s(PM ;) <m—2< (m—1)>—1,

which means thag(P™* U P ¢) — s(PYM U PM ¢;) < 0.
This contradicts the assumption tifa! is a successful manipula-
tion. [

We next ask the following natural question: is it possible to im-
prove the rounding technique so that the algorithm achieves a better
bound, relative to the optimal solution for the indivisible case? This
is not ruled out by Theorem 4.3, since that theorem compares to the
optimal UCOd solution rather than the optimal UCO solution. Nev-

respectively. We note that UCM under akyapproval rule re- ertheless, the answer is negative, as long as all linear orders in an
duces to the scheduling problem in which all machines have the optimal solution to the COd problem appear in the output of the
same speed. This corresponds exactly to the scheduling p"Ob'emalgorithm. We say that an approximation algoritbinfor UCO
Plpmtn|Crna. in discrete time (that is, the preemptions are al- s hased on COdf for any UCO instance, there exists an optimal
lowed only at integer time points), which has a polynomial-time - gqjytion to COd such that every linear order that appears in that so-

algorithm: Longest Remaining Processing Time first (LRFB). lution also appears in the output.df(as a fraction of the vote of a
Therefore, if we modify Algorithm 3 by solving the reduced schedul- manjpylator).

ing instance with LRPT, then we can solve UCM under &ny
approval voting rule in polynomial tim&To summarize: THEOREM 4.4. Let A be an approximation algorithm based on
COd. For anym > 3, there exists a UCO instance such that the
gap between the optimal solution to UCO and the outputlaé

m — 2.

COROLLARY 4.2. Letk € {1,...,m — 1}. UCM/UCO under
k-approval is in P.

. PrROOF For anym > 3, we construct an instance such that the

41 Onthe tlghtness of the results solution to the UCO problem is 1, but at least— 1 linear orders
We presently wish to argue that we have made the most of our appear in any optimal solution to the COd problem (so the gap is

technique. The next theorem states thatrthe- 2 bound is tight m — 2).

in terms of the difference between the optimal solution to UCO We let the scoring vector bgn + 2, 1,0,...,0). Let

and the optimal solution to UCOd under the same input. It also

implies that Algorithm 3 is optimal in the sense that for any

m — 2, there is no approximation algorithm for UCO that always gand

outputs a manipulation with at mogtmanipulators more than the

optimal solution to UCOd. This result can be seen as a new type of

integrality gap, which applies to our special flavor of rounding.

V=lc=c1>...=cm-1],

Vi=lem_1>=cl>=C>cCo> ... Cm_2].
Furthermore, let

micClL —C2 — ... > Cm—1 — C1,

®The simple observation that UCM is in P under approval voting and
rules was also recently made by Andrew Lin (via personal commu-
nication), who employed a completely different (greedy) approach. T ic—c1— ... — Cm—1 — C.

We define preference profiles by letting 6. REFERENCES

P=(V,V,x"(V),(x")(V),....(x")"*(V)) _ o
[1] John Bartholdi, IIl and James Orlin. Single transferable vote

andP™™ = PUr(P)U...Ur™ 2(P). resists strategic votingocial Choice and Welfare
8(4):341-354, 1991.
We have thas(P,c) = m + 2, s(P,c1) = m + 4, a]r}(]jwfor any [2] John Bartholdi, 11, Craig Tovey, and Michael Trick. The
2<i<m-1,sPc)=m+3. Therefore,s(PNM c) = computational difficulty of manipulating an electid®ocial
(m +2)(m — 1) and for any2 < i < m — 1, s(P vl ci) = Choice and Welfare6(3):227-241, 1989.
(m+3)(m—1)+1. Therefore, forany < m—1, s(P"", ¢;) — [3] Peter BruckerScheduling AlgorithmsSpringer Publishing
s(P™*, ¢) = m. It follows that one manipulator suffices to make Company, Incorporated, 2007.

c the winner (by voting: > ¢1 > ... > cm—1).

L !) [4] Vincent Conitzer and Tuomas Sandholm. Universal voting
On the other hand, the minimum weight for COdiis — 1) /m,

protocol tweaks to make manipulation hard Aroc. of

for example, IJCAI-03 pages 781788, 2003.
M_m—1 1 1 1 m_2 [5] Vincent Conitzer and Tuomas Sandholm. Nonexistence of
Vi =—1o (m — V= 17T(V)+' T V). voting rules that are usually hard to manipulatePhoc. of

AAAI-06 pages 627-634, 2006.

[6] Vincent Conitzer, Tuomas Sandholm, and Jér6me Lang.
When are elections with few candidates hard to manipulate?
Journal of the ACM54(3):1-33, 2007.

[7] Shahar Dobzinski and Ariel D. Procaccia. Frequent
manipulability of elections: The case of two votersFroc.

In any manipulator’s vote corresponding to the minimum total weight,
every alternative exceptmust appear in the second position for a
fraction of the vote. Therefore, any algorithm based on COd must
output at leastn — 1 linear orders. [J

5. UCM UNDER POSITIONAL SCORING of WINE-08 pages 653—664, 2008.
RULES IS STRONGLY NP-COMPLETE [8] Edith Elkind and Helger Lipmaa. Hybrid voting protocols
In this section, we show that UCM under a specific positional and hardness of manipulation. Roc. of ISAAC-Oppages
scoring rule is strongly NP-complete, even when there are only two 206-215, 2005.
manipulators. We slightly abuse terminology here, since a voting [9] Piotr Faliszewski, Edith Hemaspaandra, and Henning
rule is formally defined with respect to a specific number of alter- Schnoor. Copeland voting: ties matterRroc. of

natives; for the purposes of this section, a positional scoring rule AAMAS-08pages 983-990, 2008.
defines a separate score vector for each possible number of alternaf1l0] Ehud Friedgut, Gil Kalai, and Noam Nisan. Elections can be
tives. Indeed, Plurality, Veto, and Borda fit this description, so the manipulated often. IIProc. of FOCS-08pages 243-249,
rule that we introduce here is a single positional scoring rule in the 2008.
same sense that these three rules are. [11] Michael Garey and David JohnsdBomputers and
Let us define our positional scoring rule, denoted-kytq. Given Intractability. W. H. Freeman and Company, 1979.
K € N, the scoring vector fo8 K + 1 alternatives is [12] Allan Gibbard. Manipulation of voting schemes: a general
(10K,10K — 1,...,10K —1,10K —2,...,10K —2,..., result.Econometricad1:587-602, 1973. .
[13] Teofilo Gonzalez and Sartaj Sahni. Preemptive scheduling of

2K 2K uniform processor system&. ACM 25(1):92-101, 1978.
9K,...,9K,7K, ..., 7K 3K, ... 3K, K, ..., K, [14] Edith Hemaspaandra and Lane A. Hemaspaandra.
oK oFe2 ore2 T Dichotomy for voting systemslournal of Computer and
K-1 . K-1 1 1) System Sciences3(1):73-83, 2007.
L N [15] Noam Nisan. Introduction to mechanism design (for
2K 2K computer scientists). In N. Nisan, T. Roughgarden, E.
If the number of alternatives: cannot be written a8K? + 1 for Tardos, and V. Vazirani, editor/gorithmic Game Theory
someK,, our scoring rule can behave arbitrarily. chapter 9. Cambridge University Press, 2007.
We have the following theorem, whose proof appears in Ap- [16] Michael L. PinedoScheduling: Theory, Algorithms, and
pendix A. SystemsSpringer, 2008.
[17] Ariel D. Procaccia and Jeffrey S. Rosenschein. Junta
THEOREM 5.1. UCM underryein is strongly NP-complete, even distributions and the average-case complexity of
when the number of manipulators is two. manipulating electionslournal of Artificial Intelligence

Research28:157-181, 2007.

[18] Mark Satterthwaite. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems for
voting procedures and social welfare functiodsurnal of

It follows from the proof thatQ|pmin|Cuas is strongly NP-
complete in discrete time.

Acknowledgments Economic Theory10:187-217, 1975.
We thank Edith Hemaspaandra, Lane Hemaspaandra, Jeff RosenkL9] Lirong Xia and Vincent Conitzer. Generalized scoring rules
schein, and Michael Zuckerman for helpful comments. Lirong Xia and the frequency of coalitional manipulability. Boc. of

is supported by a James B. Duke Fellowship and Vincent Conitzer EC-08 pages 109-118, 2008.

is supported by an Alfred P. Sloan Research Fellowship. Xia and [20] Lirong Xia and Vincent Conitzer. A sufficient condition for
Conitzer are also supported by NSF under award numbers IIS- voting rules to be frequently manipulable.Pnoc. of EC-08
0812113 and CAREER 0953756. Ariel Procaccia is supported by pages 99-108, 2008.

a Rothschild Postdoctoral Fellowship. [21] Lirong Xia and Vincent Conitzer. Finite local consistency

characterizes generalized scoring rules?tac. of IJCAI-09
pages 336-341, 2009.

Lirong Xia, Michael Zuckerman, Ariel D. Procaccia, Vincent
Conitzer, and Jeffrey S. Rosenschein. Complexity of
unweighted coalitional manipulation under some common
voting rules. InProc. of IJCAI-09 pages 348-353, 2009.
Michael Zuckerman, Ariel D. Procaccia, and Jeffrey S.
Rosenschein. Algorithms for the coalitional manipulation
problem.Artificial Intelligence 173(2):392—-412, 2009.
Preliminary version in SODA-08.

(22]

(23]

APPENDIX
A. PROOF OF THEOREM 5.1

We prove the hardness by a reduction frROMERICAL MATCH -
ING WITH TARGET SUMS(NMTS), which is strongly NP-complete
[11]. An NMTS instance consists of three disjoint setsB,Y
where|A| = |B| = |Y| = 1 > 2, and a weight functionov :
AUBUY — N. We are asked whether there is a partitir=
SyU...US; of AUBUY suchthatforany <, S; = {a’,b",y'},
wherea’ € A,b' € B,y* € Y andw(a’) + w(b’) = w(y").

Let A, B,Y,w be an NMTS instance, wheté = {a1,...,a},
B = {bl,...,bl},y ={y1,.-,ui}, wla) <wlaz) < ... <
w(ar), wb) < wb) < ... < w(b). WlLo.g.,, we make the

following assumption about the NMTS instance.

ASSUMPTION 1.

e Foranya,a’,a* € A, and anyb € B, we havew(a
w(a) +w(a") < w(b).

e Foranya € A, and anyb, b’ € B, we havew(a) < w(b') <
w(a) + w(b).

e Foranyb,b’ € B, and anyy € Y, we havew(b) < w(y) <
w(b) + w(b).

*) <

This assumption does not limit generality since we can convert any

instanced, B,Y, w’ toan NMTS instancel, B, Y, w whose inputs
are polynomially larger (in the unary sense) in the following way:
let

"(b),w'(y)}

a€A, bEB yey
Foranya € A,b € B,y €Y, letw(a) = w'(a) + 2(wnae + 1),
w(b) = w'(b) +6(Whap +1), andw(y) = w'(y) +8(Wias +1).
Given an NMTS instance that satisfies Assumption 1, we con-
struct the UCM instance as follows. The manipulators’ goal is
to makec a co-winner. A similar reduction exists for the unique-
winner case. LeK = max{wmaaz, !}, Where

Wmas = {w(a), w(b), w(y)}.

a€A, beB ,WYEY
Alternatives: There areEK2+1 aIternativesC = {C}UYUDAU
DpUD,whereDy = {di,...dJ2 ,}, Dp = {d?,.
D == {dl, P 7d4K2+l}'
Non-manipulators’ profile: PN™ = P, U P,. We first describe
the properties thaP; and P, satisfy, then show how to construct
them.

e P satisfies the following condition: L& be a multiset, de-
fined as

{w'(a), w

Wmaz =

d2K2 l

F={1,...,1,2,...,2,...,K,... K}.
N N — N—_——
2K 2K

That is, F' is composed o2K copies of{1,2,..., K}. Let
E = EUEB,whereE4 = F\w(A)andEg = F\w(B),

2K

wherew(A) is a multiset, defined as(A) = {w() :

A} (similarly forw(B)). We also writeF 4 = {ef! ,..,,62K2 s
Ep={ef,..., 6§K271}.
For anyi < 2K? — [, we haves(Py,) —s(Py,d) = e —

17K ands(Pi,c) — s(P1,d?) = e? — 17K; forany1 <
Jj<l,welets(Pi,c)—s(P,y;) = w(y]) — 20K.

e P, satisfies the following conditions: foranye Y U D4 U
Dg, we haves(Pz, c) = s(Ps, z); for anyi < 4K? +1, we
haves(P1 U Ps, C) > S(P1 U Pg,di).

To constructP;, we first make the following observation: for any
{x1,...,21} = X C CwhereL < 4K? and anyr € C\ X, let

% =z > (C\ (X U{z}))]

[I1>-$>-$2>-...

and

=[(C\X) = ar = xr-1 > ... = x1],

where the elements ifi\ X are ranked in an arbitrary way; letting
P* = (V1, V2), we must have that forary< ¢ < L, s(P*,z1) —
s(P*,z;) = 1. Therefore,P; can be constructed out of no more
than2-20K-(4K2—1) votes (by choosing = {c}UYUDaUDg,
and applying theP™ trick no more thar20K times per alternative
in X), and for anyd € D, we haves(Pi,c) — s(Pi,d) > —2-
20K - (4K* —1) - 10K.

Next we show how to construd®. Let m; be the cyclic per-
mutation on{c} UY U D4 U D, defined ag — y1 — ...
y—di — .. = diee —dP — = dB | — c Let
w2 be the cyclic permutation ob, defined agl; — d2 — ...
dyp2 g — di.

For anyt € N, we letr! = 7 o ni™%, 7{ = 71, where for any
z € {c}UY UDsUDp, m ot (z) = m(ri" (). nbis
defined similarly. We note that*"” ~1+2 = 7, gik*+i+1
For anyj € N, we let

[(wl(c) = w () = ... = wl(w) = w](dT) =~
W{ (d2K2‘ 1) - W{ (dB) .- W{ (dng—l)
%(1) = 7Tz(d4K2+l)]

Let P' = (Wh,...,Wug2_i11)ax2+1)- It follows that for any
x € YUDAUDB,we haves(P’ c) = s(P',z); foranyd € D,
we have

—

—

= 2.

j=

(P',c) — s(P',d)
>MAK® +1) 7K - (4K® — 1 +1)
— (4K* -1+ 1)4K* - 3K + 7K -1)
=(4K* —1+1)16K>
Let P, be composed of 25 copies &f. For anyd € D, we have
s(PrU P, c) — s(P1U Py, d)
=s(P1,¢) — s(P1,d) + s(Pa2,c) — s(P2,d)
> —400K*(4K% —1) 4+ 25- 16 K*(4K> — 1+ 1)
>0.

This completes the description of the reduction.

Next, we show that the UCM instance has a solution if and only
if the NMTS instance has a solution. Assume that the NMTS prob-
lem has a solutiorsy,...,S;. W.l.o.g., for any: < [, S; =
{ax(@y, by, y: }, Wherer and~y are permutations ovel, ... 1}.

We construct two vote§):, Q- that satisfy the following condi-
tions.

e For anyi < 2K? — [, we haves({Q:1},d?) = e and is a solution to the NMTS instance.
s({Q1},dP) = 3K, foranyj < I, we haves({Q1},v;) = We remark that the size of the input of UCM is polynomial in
w(ar(5))- andwmaz, even if all parameters are represented in unary form.

. 2 AN B Because NMTS is strongly NP-complete, UCM is also strongly

) ioégr]?éélzf ;ll \cvvim?(/eses(é{%}}’ di g _ ?ffb S(_{)QQ}’ d’) NP-hard. It is easy to check that UCM under any positional scor-

i J = 25543 V@) ing rule is in NP. It follows that UCM undefyeiq is strongly NP-
In Q1 andQ2, cis ranked in the top position, and the alternatives complete. [

in D are ranked arbitrarily); and@- are well defined, because

F = EsUw(A) = Ep Uw(B). Let PM = (Q1,Q2). For any

j < I, we have the following calculations. First,

s(PYMuPM) —s(PYM U PY y))
=w(y;) — 20K 4 20K — (w(ax(;)) + w(by())) =0
For any: < 2K? — I, we have
s(PY"MuPM ¢) — s(PYM U PM dfy
=e' — 17K + 20K — (e +3K) =0,
and
s(PYM y PM) — s(PYM U PM dP)
=eP — 17K 4+ 20K — (ef + 3K) = 0.
Foranyl < i < 4K? + [, we have
s(P"MuPM) —s(P"MUPM di)>04+2>0.

Thereforec is a co-winner of the election.

Finally, we prove that if the UCM instance has a solut! =
(Q1,Q2), then the NMTS instance has a solution. First we note
that for anyl < i < 2K2 — [, d2* must be ranked withir &2
positions from the bottom in bot®); andQ, otherwised?* will
obtain at least K points inP*, thus

s(PYM y PM) — s(PYM U PM d)
< K —17K 4+ 20K — 7K <0,

which means that does not win the election. Similarly, any alter-
native inDp andY must be ranked withid 2 positions from the
bottom in bothQ; andQ-.

It is easy to check that for any < i < 2K? — [, we must have
thats(PM, d#) = 3K + e ands(PM,dP) = 3K + €7, for any
y € Y, we must have that(P™ | y) = w(y).

Next, for anyl < i < 2K? — [, we must have that

{s(Q1,d;"), s(Q2,di")} = {3K, €'}

and

{S(Ql’de)7s(Q27d1B)} = {3Ka 61'],3}7

because? < K ande? < K. Foranyy € Y, we have3K ¢
{5(Q1,¥),s(Q2,y)}, becaus8K > w(y). Hence,

{S(th)vs(QLy) NS Y}
={w(a1),...,wlar),wbr),...,w(b)}

Note that both sides are multisets. We further note that for any
y € Y,anya,a’ € A, and anyb,b’ € B, we havew(a) +
w(a') <w(y) < w)+w(") andw(a) < w(b) (Assumption 1).
Therefore,{min(s(Q1,y),s(Q2,y)) : v € Y} = w(A) and
{max(s(Q1,y), 5(Q2,y)) 1y € Y} = w(B). Letfa: Y — A

be a bijection such that for anye Y, min(s(Q1, z), s(Q2,x)) =
w(fa(y)); let fg : Y — B be a bijection such that for anyc Y,
max(s(Q1,),s(Qz2,z)) = w(fr(y)). It follows that the parti-
tion

{y1, fayr), fe(y)}, - {w, faly), fe(y)}

