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ABSTRACT
The coalitional manipulation problem is one of the central prob-
lems in computational social choice. In this paper, we focus on
solving the problem under the important family of positional scor-
ing rules, in an approximate sense that was advocated by Zucker-
man et al. [SODA 2008, AIJ 2009]. Our main result is a polynomial-
time algorithm with (roughly speaking) the following theoretical
guarantee: given a manipulable instance withm alternatives, the
algorithm finds a successful manipulation with at mostm − 2 ad-
ditional manipulators. Our technique is based on a reduction to the
scheduling problem known asQ|pmtn|Cmax, along with a novel
rounding procedure. We demonstrate that our analysis is tight by
establishing a new type of integrality gap. We also resolve a known
open question in computational social choice by showing that the
coalitional manipulation problem remains (strongly) NP-complete
for positional scoring rules even when votes are unweighted. Fi-
nally, we discuss the implications of our results with respect to the
question: “Is there a prominent voting rule that is usually hard to
manipulate?”

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics

General Terms
Economics, Theory

Keywords
Social choice, Coalitional manipulation, Positional scoring rules,
Scheduling

1. INTRODUCTION
In settings with multiple agents, the agents often need to make

a group decision regarding a set of alternatives (also called “candi-
dates”). A natural way of doing this is byvoting. Each agent (also
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known asvoter) is asked to submit a linear order over the set of
alternatives, which represents her preferences, and a winning alter-
native is determined by applying avoting ruleto the collection of
submitted linear orders.

Ideally the voters would submit linear orders that represent their
true preferences. However, sometimes a voter can submit a false
vote (an order that does not represent her true preferences) that
makes her better off. This phenomenon is calledmanipulation, and
the culprit is called amanipulator. If, under voting ruler, there is
no instance where a voter benefits from manipulation, thenr is said
to bestrategy-proof.

Unfortunately, it is impossible to design a strategy-proof voting
rule that satisfies some very basic additional properties, due to the
well-known Gibbard-Satterthwaite theorem [12, 18] (see [15] for
an overview). To get around this very negative result, it has been
suggested to consider computational complexity as a barrier against
manipulation. The idea is that the mere existence of an effective
manipulation does not guarantee that the manipulators can find it
in a reasonable amount of time. The computational complexity of
manipulation in voting systems is one of the main research topics
in the burgeoning field ofcomputational social choice; numerous
papers have been devoted to this problem, covering different rules
and different assumptions regarding the manipulation setting.

In the earliest work on the complexity of manipulation [2, 1] it
was shown that (if the number of alternatives is unbounded) it is
NP-complete to determine whether a single manipulator can effec-
tively manipulate the election, under both the second-order Copeland
and the STV rules. Later work studied how to modify prominent
voting rules in a way that makes them hard to manipulate for a sin-
gle voter [4, 8].

A more general manipulation setting is that ofweighted coali-
tional manipulation (WCM). In this setting, multiple manipulators
have formed a coalition, with the goal of making an agreed-upon
alternative win the election. Furthermore, the voters in this setting
are weighted, where a voter with weightk is equivalent tok un-
weighted voters that cast identical ballots. Weights are common,
e.g., in corporate elections, where voters are weighted according to
the amount of stock they hold. Conitzer et al. [6] have established
that this problem is computationally hard under a variety of promi-
nent voting rules, even when the number of alternatives is constant.

Subsequent work by Hemaspaandra et al. [14] has dealt withpo-
sitional scoring rules. Each rule in this family can be represented
by a vector~s = (s1, . . . , sm). Each voter then awardssi points
to the alternative that she ranks in theith position; the alterna-
tive with most points wins the election. This family includes three
of the most prominent voting rules:Plurality (where each voter
awards one point to her favorite alternative),Borda (where each
voter awardsm − i points to the alternative rankedith), andVeto



(where each voter awards one point to all the alternatives, except
for the last-ranked one). Hemaspaandra et al. have established a
dichotomy theorem for WCM in scoring rules. This theorem clas-
sifies whether WCM is NP-complete or in P, depending on the pa-
rameters~s.

A special case of weighted coalitional manipulation is itsun-
weightedversion (UCM), which is perhaps more natural in most
settings (e.g., political elections). Progress on the UCM problem
has been significantly slower than on other variations, but many of
the questions have recently been resolved. The exact complexity of
the problem is now known with respect to almost all of the promi-
nent voting rules [9, 22, 23], with the glaring exception of Borda.
Researchers have believed for some years that UCM under Borda is
NP-complete; this belief was explicitly put forward as a conjecture
by Zuckerman et al. [23], but the question still remains open. In
fact, although UCM under some positional scoring rules is known
to be tractable (e.g., Plurality and Veto), previous work has failed
to find any positional scoring rule for which UCM is hard.

The main thrust of the results of Zuckerman et al. [23] is the
design of algorithms for WCM and UCM with unusual approxima-
tion guarantees. The most interesting of these results deals with
Borda in the context of WCM: it is shown that a greedy manipu-
lation algorithm has the curious property that given an instance of
WCM under Borda where there is a manipulation, the algorithm is
guaranteed to find a manipulation that requires only one additional
manipulator with maximum weight, that is, with weight as large as
any of the original manipulators. Furthermore, it is observed that
the unweighted coalitional manipulation setting begs the consid-
eration of a natural optimization problem,unweighted coalitional
optimization (UCO). In this problem, we are given the votes of an
unweighted set of voters, and the goal is to determine the minimum
number of manipulators needed to make a given alternative win the
election. It follows from the result mentioned above that the greedy
algorithm approximates UCO in Borda to an additive term of one.

Our results and techniques. In this paper, we focus on WCM,
UCM, UCO, and COd (the problem that asks for the minimum
weight that a single manipulator who can cast adivisiblevote needs
in order to make a given alternative win) under positional scoring
rules; we look for approximability in the sense of Zuckerman et
al. [23], as discussed above. Our main contribution is the explo-
ration of a surprising and fruitful connection between coalitional
manipulation and scheduling. We demonstrate that the huge body
of work on the latter problem can be leveraged to obtain nontrivial
algorithmic results for the former problem.

The intuition behind the reduction is as follows. The scheduling
problem to which we reduce is that of scheduling on parallel ma-
chines where the goal is to minimize makespan. In the coalitional
manipulation problem, each manipulatorj always ranks the coali-
tion’s preferred alternativec first, but must awardsi · wj points to
the alternative it ranksith, wherewj is the manipulator’s weight.
For anyi ≥ 2, we define a machine forsi; the largersi is in rela-
tion tos1, the slower the machine is. Furthermore, each alternative
besidesc is a job; the larger the gap between the score of this alter-
native and the score ofc, the larger the job is. When a manipulator
with weightwj ranks an alternative in theith position, it decreases
the gap betweenc and this alternative by(s1−si)wj points, which,
under the detailed reduction, is equivalent to processing the corre-
sponding job on the(i− 1)th slowest machine forwj time units.

In Section 3.1, we consider a version of WCM where votes are
divisible, that is, each voter is allowed to submit a convex combi-
nation of linear orders (instead of a single linear order, as in the tra-
ditional setting). This “divisible” variant of the problem is denoted
by WCMd (whereas the traditional coalitional manipulation prob-

lem (the indivisible version) is denoted by WCM). WCMd may be
interesting in its own right, but mainly serves to prepare the ground
for our results regarding WCM. We give a polynomial-time algo-
rithm for WCMd under any positional scoring rule by reducing it to
the well-studied scheduling problem known asQ|pmtn|Cmax (in
which preemptions are allowed). This algorithm also solves COd.

In Section 3.2 we deal with the indivisible case (WCM), and
augment the WCMd algorithm with a rounding technique. Based
on existing results from the scheduling literature, we can assume
that the scheduling solutions use relatively few preemptive break
points. We then show that in the coalitional manipulation problem,
we need at most one additional voter per preemptive break point.
We obtain the following theorem, which is a somewhat weaker but
far more generally applicable version of the main result of Zucker-
man et al. regarding Borda [23, Theorem 3.4].

THEOREM 3.9. Algorithm 2 runs in polynomial time and

1. if the algorithm returnsfalse, then there is no successful ma-
nipulation (even for the WCMd version of the instance);

2. otherwise, the algorithm returns a successful manipulation
for a modified set of manipulators, consisting of the original
manipulators plus at mostm − 2 additional manipulators,
each with weight at mostW/2, whereW is the maximum
weight of the manipulators.

Crucially, in most settings of interest (e.g., political elections),
the number of alternativesm is small compared to the number
of voters, or even the number of manipulators. Moreover, WCM
is NP-complete under scoring rules such as Borda and Veto, even
when there are only three alternatives [6]. Therefore, in many im-
portant scenarios,m− 2 additional manipulators constitute a very
small fraction of the total number of manipulators, that is, the algo-
rithm gives a good “approximation” to WCM.

A direct implication of Theorem 3.9 is that in the unweighted
case (UCM) our approximation algorithm always finds a manipu-
lation with at mostm − 2 additional manipulators, if there exists
one for the given instance. Put another way, the algorithm approx-
imates UCO to an additive term ofm− 2.

In Section 4, we establish an “integrality gap,” in the following
sense: the optimal solution to UCO can requirem−2 more manipu-
lators than the optimal solution to UCOd (Theorem 4.3). Moreover,
we show that there is a family of instances of UCO such that any
algorithm that is based on rounding an optimal solution for COd
requiresm − 2 more votes than the optimal UCO solution (Theo-
rem 4.4). These results suggest that the analysis of the guarantees
provided by our technique is tight.

Our final major result asserts that UCM under a specific posi-
tional scoring rule is strongly NP-complete. (We note that in this
context, this is actually a positive result, because manipulation is
undesirable—just as the results earlier in the paper are actually neg-
ative results.) This shows that the answer to the previously open
question of whether there exists an efficient algorithm that solves
UCM under any positional scoring rule is “no” (assuming P6=NP).
While the problem remains open for Borda, the positional scor-
ing rule for which we show the hardness result displays significant
similarities to Borda; hence, we believe that our result gives strong
support to the conjecture that UCM under Borda is hard. This result
also justifies our approximation results for UCM and UCO, since
it implies that we are approximating a problem that is indeed NP-
hard. Moreover, our result implies thatQ|pmtn|Cmax is strongly
NP-complete in discrete time, that is, when preemptions are only
allowed at integral times.1

1Pinedo [16], after asserting that the special case of this problem



Implications with respect to frequency of manipulation. Despite
the large volume of work on worst-case hardness of manipulation,
it is becoming increasingly clear that the question should be: “Is
there a prominent voting rule that isusuallyhard to manipulate?” A
stream of papers in recent years lends support to the belief that the
answer is negative. It is possible to identify two main approaches.

One approach tries to define general basic properties that cannot
be satisfied by any voting rule that is usually hard to manipulate
(see, e.g., [10, 20, 7]). In this line of work, “usually” refers to using
the uniform distribution for the preferences of the agents, known
in the social choice literature as theimpartial culture assumption.
However, in realistic settings one would expect to encounter biased
distributions that, e.g., favor specific alternatives or exhibit a con-
centration of voters around opposing camps.

A second approach strives to design efficient heuristic manip-
ulation algorithms for prominent voting rules that are NP-hard to
manipulate. Early work on this includes the work of Procaccia and
Rosenschein [17] and Conitzer and Sandholm [5]. The work of
Zuckerman et al. [23] also falls into this framework, but has the
important advantage of allowing for theoretical guarantees without
making any distributional assumptions.

Let us reconsider our Theorem 3.9 according to the perspec-
tive offered by Zuckerman et al. This theorem naturally applies
to UCM (Corollary 4.1). Our algorithm might fail to correctly de-
cide a given “no” instance of UCM (in the sense that it actually re-
turns a solution, with additional manipulators), but given a similar
instance with slightly fewer manipulators, the algorithm would an-
swer “no”. Hence, ifm is relatively small, the algorithm’s “window
of error”—the family of instances on which the algorithm might
fail—is relatively small. Without claiming anything formally, it
would appear to follow that under “reasonable” distributions over
preferences, the probability of drawing an instance on which the
algorithm fails is small. Put another way, our results suggest that,
although coalitional manipulation is NP-hard under prominent po-
sitional scoring rules, the problem is in fact usually quite easy under
any positional scoring rule.

Future research. Several intriguing questions remain open. The
first is whether a better additive approximation is possible.

OPEN QUESTION 1. Is there a polynomial-time algorithm that
gives an additive approximation of less thanm− 2 to UCO under
all positional scoring rules?

Our Theorem 4.4 shows that any such algorithm will have to
use a fundamentally different technique. Another open problem is
to understand the guarantees that the Greedy algorithm—the algo-
rithm that was used by Zuckerman et al. [23] to prove the earlier
result for Borda—gives with respect to general scoring rules.

OPEN QUESTION 2. What additive approximation to UCO does
the Greedy algorithm give for positional scoring rules?

We also note that our Theorem 5.1 still has not resolved the com-
plexity of UCM under Borda.

OPEN QUESTION 3. Is UCM under Borda NP-complete?

Finally, a more open-ended direction for future research is to in-
vestigate whether the techniques in this paper can be used for more

where all machines have the same speed can be solved in polyno-
mial time, claims that the results of his chapter can be extended
to the case where they do not have the same speed (his Theorem
5.2.12). In light of our results, and based on a correspondence with
the author, we conclude that this result is incorrect.

general classes of voting rules (for example, generalized scoring
rules [19, 21]). If so, this would cast further doubt on our ability to
find a voting rule that is “usually” hard to manipulate.

2. PRELIMINARIES
LetC be the set ofalternatives. A linear order onC is a transitive,

antisymmetric, and total relation onC. The set of all linear orders
on C is denoted byL(C). The set of all convex combinations over
L(C) is denoted by∆(L(C)). An (indivisible) voteis a linear order
over C, that is, it is an element ofL(C). A divisible voteis an
element of∆(L(C)). An n-voter indivisible profileP onC consists
of n linear orders onC, that is,P = (R1, . . . , Rn), where for every
i ≤ n, Ri ∈ L(C). Similarly, ann-voter divisible profileP on C
consists ofn convex combinations overL(C). In the remainder
of the paper we letm denote the number of alternatives (that is,
m = |C|), and letC = {c, c1, . . . , cm−1}.

A voting ruler is a function from the set of all indivisible pro-
files onC to nonempty subsets ofC, that is, the rule designates a
nonempty subset of winners. A(positional) scoring ruleoverC is
defined by ascoring vector~s = (s1, . . . , sm). For any linear or-
derV ∈ L(C) and anyc′ ∈ C, let s(V, c′) = sj , wherej is the
rank ofc′ in V . For anyk ∈ N, anyV1, . . . , Vk ∈ L(C), and any
α1, . . . , αk ≥ 0 such that

∑k

i=1 αi = 1, we let

s(
k∑

i=1

αkVk, c′) =
k∑

i=1

αk · s(Vk, c′).

For any profileP = (V1, . . . , Vn), let s(P, c′) =
∑n

i=1 s(Vi, c
′).

The rule selects alternativesc′ ∈ C that maximizes(P, c′). Three
prominent examples of scoring rules areBorda, for which the scor-
ing vector is(m − 1, m − 2, . . . , 1, 0); Plurality, for which the
scoring vector is(1, 0, . . . , 0, 0); andVeto, for which the scoring
vector is(1, 1, . . . , 1, 0).

The definitions naturally extend to the case in which voters are
weighted; the weights are represented by a vector
~w = (w1, . . . , wn) ∈ R

n
+, where for anyi ≤ n, wi is the weight

of voteri. In particular, we let

s(P, ~w, c′) =
n∑

i=1

wi · s(Vi, c
′),

and letr(P, ~w) denote the set of winners (the alternatives with the
highest score).

Let us now turn to the definition of the computational problems
that we shall investigate. We study the so-calledconstructivema-
nipulation variants, in which the goal is to make a given alternative
win.2

DEFINITION 2.1. TheUnweighted Coalitional Manipulation
(UCM) problem is defined as follows. An instance is a tuple
(r, P NM , c, k), wherer is a voting rule,P NM is the non-manipulators’
profile, c is the alternative preferred by the manipulators, andk is
the number of manipulators. We are asked whether there exists
a profile P M of indivisible votes for the manipulators such that
c ∈ r(P NM ∪ P M ).

DEFINITION 2.2. TheWeighted Coalitional Manipulation
(WCM) problem is defined as follows. An instance is a tuple
2Contrast with thedestructiveversions of these problems, where
the goal is to ensure that a given alternative doesnot win. The
constructive versions are by far the more commonly studied ones,
in part because an algorithm for a constructive version can be used
to obtain an algorithm for a destructive version, simply by solving
the constructive version for each other alternative.



(r, P NM , ~wNM , c, k, ~wM ), wherer is a voting rule,P NM is the
non-manipulators’ profile,~wNM represents the weights ofP NM ,
c is the alternative preferred by the manipulators,k is the number
of manipulators, and~wM = (w1, . . . , wk) represents the weights
of the manipulators. We are asked whether there exists a pro-
file P M of indivisible votes for the manipulators such thatc ∈
r((P NM , P M ), (~wNM , ~wM )).

Since we only focus on positional scoring rules in this paper,r
will simply be represented by the scoring vector(s1, s2, . . . , sm).
In the above definitions, we use theco-winner formulation. An-
other possibility is to consider theunique winnerformulation which
is similar, only we require that the winning set be the singleton
{c}, that is,r((P NM , P M ), (~wNM , ~wM )) = {c}. Unless explic-
itly mentioned otherwise, our results hold for the unique winner
formulation as well.

Zuckerman et al. [23] noted that the unweighted manipulation
setting allows for a natural optimization problem: theunweighted
coalitional optimizationproblem. Given, essentially, an unweighted
coalitional manipulation instance, we askhow manymanipulators
are needed in order to makec win. Formally:

DEFINITION 2.3. TheUnweighted Coalitional Optimization
(UCO) problem is defined as follows. An instance is a tuple
(r, P NM , c), wherer is a voting rule,P NM is the non-manipulators’
profile, andc is the alternative preferred by the manipulators. We
must find the minimumk such that there exists a a profileP M con-
sisting ofk indivisible manipulator votes that satisfiesc ∈ r(P NM∪
P M ).

In the weighted version of the optimization problem, we look for
the minimum totalweightof the manipulators that is sufficient to
makec a co-winner.3

DEFINITION 2.4. TheCoalitional Optimization for divisible votes
(COd)problem is defined as follows. An instance is a tuple
(r, P NM , ~wNM , c), wherer is a voting rule,P NM is the non-
manipulators’ profile,~wNM represents the weights ofP NM , and
c is the alternative preferred by the manipulators. We are asked to
find the minimumW M such that there exist a divisible voteV M

for one manipulator with weightW M , such that

c ∈ r((P NM , {V M}), (~wNM , W M ))

We let WCMd, UCMd, UCOd denote the variants of WCM,
UCM, UCO, respectively, in which votes are divisible. We note
that it is irrelevant whether the votes of the non-manipulators are
divisible or not; what matters is whether the manipulators’ votes
are divisible.

3. ALGORITHMS FOR WCM AND COD
In this section we present algorithms for WCM. For the divisible

case, we devise a polynomial-time algorithm that solves WCMd by
reducing it to the scheduling problem known asQ|pmtn|Cmax.
This algorithm also solves COd exactly. For WCM, we augment
the algorithm for WCMd with a rounding technique, and obtain an
approximation algorithm as a result. While our solution for WCMd
may be interesting in its own right, its main purpose is to provide
intuitions and techniques that are subsequently leveraged for ap-
proximating WCM.

3Our approach can be easily extended to the solve the unique-
winner case, in which the objective is to find the infimum total
weight of the manipulators that is sufficient to makec the unique
winner.

3.1 The divisible case
We will show how to reduce WCMd/COd to the scheduling prob-

lem of parallel uniform machines with preemption, categorized as
Q|pmtn|Cmax (see, for example, [3] for the meaning of the no-
tation). In an instance ofQ|pmtn|Cmax, we are givenn′ jobs
J = {J1, . . . Jn′} andm′ machinesM = {M1, . . . , Mm′}; each
job Ji has a workloadpi ∈ R+, and the processing speed of ma-
chineMi is si ∈ R+, that is, it will finish si amount of work in
one unit of time. Apreemptionis an interruption of the job that
is being processed on one machine (the job may be resumed later,
not necessarily on the same machine). Preemptions are allowed in
Q|pmtn|Cmax. We are asked for the minimum makespan, i.e., the
minimum time to complete all jobs, and an optimal schedule.

We first draw a natural connection between WCMd/COd under
positional scoring rules andQ|pmtn|Cmax. After counting the
non-manipulators’ votes only, each alternative will have a total non-
manipulator score. For anyi ≤ m − 1, we letpi denote the gap
between the non-manipulator score ofci and the non-manipulator
score ofc (which is positive if the former is larger; the case where
the gap is negative is trivial). In particular, thepi’s can be seen as
the workload ofm−1 jobs. We note that, without loss of generality,
the manipulators will always rankc in the top position. Therefore,
a manipulator vote (of weight1) in which cj is ranked in theith
position decreases the gap betweencj andc by s1 − si points.

We consider a set ofm − 1 machinesM1, . . . , Mm−1 whose
speeds ares1 − s2, . . . , s1 − sm, respectively. A ranking (a vote)
is equivalent to an allocation of them − 1 jobs to machines: an
alternative rankedi positions belowc corresponds to a job allocated
to the ith slowest machine. We can now see that the minimum
makespan of the scheduling problem is the minimum total weight
of the manipulators required to makec a winner, that is, the optimal
solution to COd. For WCMd, the goal is to compute the votes for
∑k

i=1 wi “amount” of manipulators (since the votes are divisible, a
problem instance withk manipulators with weights~w is equivalent
to a problem instance with a single manipulator whose weight is
∑k

i=1 wi), such that the final total score ofc is at least the final
total score of any other alternative. This is equivalent to computing
a schedule that completes all jobs within time at most

∑k

i=1 wi.
Formally, for a WCMd instance((s1, . . . , sm), P NM , wNM ,

c, k, (w1, . . . , wk)), we construct an instance ofQ|pmtn|Cmax

with m− 1 jobs andm− 1 machines (that is,m′ = n′ = m− 1)
as follows. For anyi ≤ m − 1, we let si = s1 − si+1, pi =
max{s(P NM , wNM , ci)− s(P NM , wNM , c), 0}. We do not dis-
tinguish between alternativeci and jobJi. This reduction is illus-
trated in the following example.

EXAMPLE 3.1. Let m = 4, C = {c, c1, c2, c3}. The posi-
tional scoring rule is Borda (which corresponds to the scoring vec-
tor (3, 2, 1, 0)). The non-manipulators are unweighted (that is, their
weights are1), and their profile is
P NM = (V NM

1 , V NM
2 , V NM

3 , V NM
4 ), defined as follows.

V NM
1 = [c1 ≻ c ≻ c2 ≻ c3], V NM

2 = [c2 ≻ c1 ≻ c ≻ c3]

V NM
3 = [c3 ≻ c2 ≻ c1 ≻ c], V NM

4 = [c1 ≻ c2 ≻ c3 ≻ c]

We have thats(P NM , c) = 3, s(P NM , c1) = 9, s(P NM , c2) =
8, s(P NM , c3) = 4. Therefore, we construct aQ|pmtn|Cmax

instance in which there are3 machinesM1, M2, M3 whose speeds
ares1 = 1, s2 = 2, s3 = 3, corresponding to the 2nd, 3rd, and
4th position in the votes, respectively, and3 jobsJ1, J2, J3, whose
workloads arep1 = 6 = (9 − 3), p2 = 5 = (8 − 3), p3 = 1 =
(4− 3), respectively. 2

Let W0 = 0, W = maxj≤k wj , and for any1 ≤ i ≤ k, Wi =



∑i

j=1 wj . A schedule is usually represented by aGantt chart, as
illustrated in Figure 1. (We note that Figure 1 is not the solution to
Example 3.1.)

J1 J2 J3

J1 J3 J2

J2 J3 J1

M1

M2

M3

0 T1 T2 T3 T4 w

Figure 1: An example schedule. The machines are idle in
shaded areas.

Let w be the minimum makespan for theQ|pmtn|Cmax in-
stance constructed above, and letf∗ : M× [0, w] → J ∪ {I}
be an optimal solution toQ|pmtn|Cmax, whereI means that the
machine is idle. Ifw > Wk, then there is no successful manip-
ulation that makesc a winner. If w ≤ Wk, we first extend the
optimal solutionf∗ to make it fully occupy the whole time interval
[0, Wk]; any way of allocating jobs to machines in the added time
would suffice.4 Let f be the solution obtained in this way.

Givenf , for any timet ∈ [0, Wk], we say thatt is apreemptive
break pointif there is a preemption att—formally, there exists a
machineMi such that for someǫ′ > 0, we have that for allǫ ∈
[0, ǫ′], f(Mi, t−ǫ) 6= f(Mi, t+ǫ), that is, the job being processed
at time t − ǫ on Mi is different from the job being processed at
time t+ ǫ. We letBf = {T1, . . . , Tl} denote the preemptive break
points off , where0 < T1 < T2 < . . . < Tl < Wk. For example,
the set of preemptive break points of the schedule in Figure 1 is
Bf = {T1, T2, T3, T4}.

EXAMPLE 3.2. The minimum makespan of the scheduling prob-
lem instance in Example 3.1 is(6 + 5)/5 = 11/5. An optimal
schedulef is as follows.

M1 : For any0 ≤ t ≤ 11/5, f(M1, t) = J3.

M2 : For any0 ≤ t ≤ 8/5, f(M2, t) = J2; for any8/5 < t ≤
11/5, f(M2, t) = J1.

M3 : For any0 ≤ t ≤ 8/5, f(M3, t) = J1; for any8/5 < t ≤
11/5, f(M3, t) = J2.

t = 8/5 is the only preemptive break point in this schedule. 2

Any solution to theQ|pmtn|Cmax instance obtained from the
reduction can be converted to a solution to WCMd in the following
way. First, we assign jobs to all idle machines arbitrarily to ensure
that at any time between0 andWk, no machines are idle and all
jobs are allocated. Formally, we definef ′ : M × [0, Wk] →
J such that{f ′(M1, t), . . . , f

′(Mm−1, t)} = {J1, . . . , Jm−1}
for all t, and for anyM ∈ M and t ∈ [0, Wk], we have that if
f(M, t) ∈ J , thenf ′(M, t) = f(M, t). For example, we can
assign jobs to the shaded areas (which represent idle time) in the
schedule in Figure 1 in the way illustrated in Figure 2.

Next, for any1 ≤ i ≤ k, we convert the schedule to the manip-
ulators’ votes in the natural way:
4This works for the co-winner case. For the unique-winner case,
in order to have a solution we needw < Wk, and then in the time
interval [w, Wk] we allocate the jobs in an arbitrary way such that
each job runs on each machine for some time.

J1 J1 J2 J3

J1 J3 J2

J2 J3 J1J3 J3

J2 J2

J1

M1

M2

M3

J3 J2

J1

W0 T1 T2 T3 T4 W2W1

α1
1 α1

2 α1
3 α2

1 α2
2 α2

3{ { { { { {

{ {w1 w2

Figure 2: Conversion of an optimal schedule to a solution for
WCMd.

• If there are no preemption break points in(Wi−1, Wi), we let
manipulatori vote forc ≻ f ′(M1, Wi−1+ǫ) ≻ f ′(M2, Wi−1+
ǫ) ≻ . . . ≻ f ′(Mm−1, Wi−1 + ǫ), whereǫ > 0 is suffi-
ciently small.

• If there are preemptive break points in(Wi−1, Wi), denoted
by Ta, Ta+1, . . . , Ta+b−1, then we letV i

1 , . . . , V i
b+1 denote

the orders that correspond to the schedule at timesWi−1 +
ǫ, Ta + ǫ, . . . , Ta+b−1 + ǫ, respectively. Letαi

1 = Ta −
Wi−1, αi

2 = Ta+1−Ta, . . . , αi
b+1 = Wi−Ta+b−1. We let

manipulatori vote for
∑b+1

j=1[α
i
j/(Wi −Wi−1)] · V

i
j .

EXAMPLE 3.3. Suppose there are two manipulators whose weights
w1 andw2 are illustrated in Figure 2. Manipulator 1 votes[(1/4)(c ≻
c1 ≻ c3 ≻ c2) + (1/4)(c ≻ c1 ≻ c2 ≻ c3) + (1/2)(c ≻
c2 ≻ c1 ≻ c3)]; manipulator 2 votes[(1/3)(c ≻ c2 ≻ c1 ≻
c3) + (1/3)(c ≻ c2 ≻ c3 ≻ c1) + (1/3)(c ≻ c3 ≻ c2 ≻ c1)]. 2

On the basis of the exposition above we now refer the reader to
Algorithm 1. The algorithm solves WCMd in three steps: 1. con-
vert the WCMd instance to aQ|pmtn|Cmax instance; 2. apply a
polynomial-time algorithm that solvesQ|pmtn|Cmax (for exam-
ple, the algorithm in [13]); 3. convert the solution to the scheduling
instance to a solution to the WCMd instance. Algorithm 1 also
solves COd, because the makespanw computed in Line 3 is the
optimal solution to COd. It is easy to verify that the algorithm runs
in polynomial time. To conclude, we have the following result.

THEOREM 3.4. Algorithm 1 solves WCMd and COd (exactly)
in polynomial time.

3.2 The indivisible case
We now move on to the more difficult indivisible case. We first

note that Algorithm 1 cannot be directly applied to WCM, because
the manipulators’ votes constructed in Line 16 can be divisible. For
any positional scoring rule, if there is a successful manipulation (in
which all manipulators rankc in the top position), and we increase
the weights of the manipulators, thenc still wins the election. This
property is known asmonotonicity in weights(see [23] for a formal
definition and the proof). Therefore, instead of having manipulator
i cast the divisible vote

∑

j [α
i
j/(Wi−Wi−1)] ·V

i
j , we let her cast

the indivisible voteV i
j∗ , which is one of theV i

j with the highest
weight among all theV i

j ’s constructed for manipulatori. In addi-
tion, for anyj 6= j∗, we add one extra manipulator whose weight is
αi

j , and let the new manipulator voteV i
j . It turns out that if we use

a particular algorithm for the scheduling problem, then the solution
will not require too many additional manipulators. This gives us
Algorithm 2 for WCM.



Algorithm 1 : compWCMd

∀i ≤ m− 1, si ← s1 − si+11

∀i ≤ m− 1,2

pi ← max{s(P NM , wNM , ci)− s(P NM , wNM , c), 0}
Solve theQ|pmtn|Cmax instance (for example, using the3

algorithm in [13]). Letw andf denote the minimum
makespan and an extended optimal schedule; letT1, . . . , Tl

denote the preemptive break points.
if w > Wk then4

return false.5

end6

Let f ′ :M× [0, Wk]→ J be such that7

{f ′(M1, t), . . . , f
′(Mm−1, t)} = {J1, . . . , Jm−1}, and for

anyM ∈M, anyt ∈ [0, Wk], we have that iff(M, t) ∈ J ,
thenf ′(M, t) = f(M, t).
for i = 1 to k do8

Let V i
1 = [c ≻ f ′(M1, Wi−1 + ǫ) ≻ . . . ≻9

f ′(Mm−1, Wi−1 + ǫ)]
j ← 210

for each preemptive break pointT ∈ (Wi−1, Wi) (in11

order)do
Let12

V i
j = [c ≻ f ′(M1, T + ǫ) ≻ . . . ≻ f ′(Mm−1, T + ǫ)]

j ← j + 113

end14

For anyj, let αi
j be the length of thejth interval in15

[Wi−1, Wi] induced by the preemptive break points.
Let manipulatori vote

∑

j [α
i
j/(Wi −Wi−1)] · V

i
j , and16

add this vote toP M

end17

return P M18

Algorithm 2 : compWCM

This algorithm is the same as Algorithm 1, except for the
following two lines:

3 Use the algorithm in [13] to solve the scheduling problem
16 Let manipulatori vote forV i

j∗ , where for anyj 6= j∗,
αi

j∗ ≥ αi
j ; and for anyj 6= j∗, we add a new manipulator

whose weight isαi
j , and let her voteV i

j

EXAMPLE 3.5. Let the coalitional manipulation problem instance
be the same as in Example 3.1. Suppose we have two manipulators
whose weights are both1; then, because the minimum makespan
is 11/5 > 2 (as observed in Example 3.2), there is no solution to
the WCMd and WCM problem instances. The solution to the COd
problem instance is11/5.

Now suppose we have two manipulators, whose weights arew1 =
1 andw2 = 6/5, respectively. Letf be the optimal schedule de-
fined in Example 3.2. A solution to the WCMd problem instance
is obtained as follows. Manipulator 1 votes[c ≻ c3 ≻ c2 ≻ c1],
and manipulator 2 votes[(1/2)(c ≻ c3 ≻ c2 ≻ c1) + (1/2)(c ≻
c3 ≻ c1 ≻ c2)]. For WCM, the vote of manipulator 1 is the same,
the vote of manipulator 2 is[c ≻ c3 ≻ c2 ≻ c1], and there is
one additional manipulator, whose weight is3/5 and whose vote is
[c ≻ c3 ≻ c1 ≻ c2]. 2

EXAMPLE 3.6. Suppose there are two manipulators whose
weights are illustrated in Figure 2. The vote of manipulator 1 is
c ≻ c2 ≻ c1 ≻ c3, and we introduce two new manipulators with

weightw1/4 whose votes arec ≻ c1 ≻ c3 ≻ c2 andc ≻ c1 ≻
c2 ≻ c3. The vote of manipulator 2 isc ≻ c2 ≻ c1 ≻ c3, and we
introduce two new manipulators with weightw2/3 whose votes are
c ≻ c2 ≻ c3 ≻ c1 andc ≻ c3 ≻ c2 ≻ c1. Since|Bf | (the number
of preemptive break points) is4, there are in total four additional
manipulators. 2

For anyj 6= j∗, we must haveαi
j ≤ (Wi −Wi−1)/2 ≤ W/2

(recall thatW = maxj≤k wj). Moreover, for any preemptive
break point we introduce at most one extra manipulator. Therefore,
we immediately have the following lemma that relates the number
of the new manipulators to the number of preemptive break points.

LEMMA 3.7. If w ≥ Wk, then there is no successful manipu-
lation for WCMd (nor for WCM); otherwise, Algorithm 2 returns a
manipulation with at most|Bf | additional manipulators, each with
weight at mostW/2.

Therefore, the smaller|Bf | is, the fewer new manipulators are
introduced by Algorithm 2.|Bf | depends on which algorithm we
use to solveQ|pmtn|Cmax in Line 3. In fact, there are many effi-
cient algorithms that solveQ|pmtn|Cmax. For example,
Q|pmtn|Cmax can be solved in timeO(n′2m′) by a greedy al-
gorithm [3]. At each time pointt, the algorithm (called thelevel
algorithm) assigns jobs to the machines in a way such that the
greater the remaining workload of a job, the faster the machine
it is assigned to.5 However, this algorithm in some cases gen-
erates a schedule that has as many asm′(m′ − 1)/2 preemptive
break points. Therefore, we turn to the algorithm by Gonzalez and
Sahni [13], which runs in timeO(n′ + m′ log n′) using at most
2(m′ − 1) preemptions. Gonzalez and Sahni also showed that this
bound is tight. We note that one preemptive break point corre-
sponds to at least two preemptions, and in the instances that were
used to show that the2(m′ − 1) bound is tight,m′ − 1 preemp-
tive break points are required. Therefore, we immediately have the
following lemma.

LEMMA 3.8. The number of preemptive break points in the so-
lution obtained by the algorithm of Gonzalez and Sahni [13] is at
mostm′ − 1. Furthermore, this bound is tight.

We note thatm′ = m − 1. Hence, combining Lemma 3.7 and
Lemma 3.8, we have the following theorem, which is our main
result.

THEOREM 3.9. Algorithm 2 runs in polynomial time and

1. if the algorithm returnsfalse, then there is no successful ma-
nipulation (even for the WCMd version of the instance);

2. otherwise, the algorithm returns a successful manipulation
for a modified set of manipulators, consisting of the original
manipulators plus at mostm − 2 additional manipulators,
each with weight at mostW/2.

4. ALGORITHMS FOR UCM AND UCO
We now consider the case where votes are unweighted. UCMd

and UCOd can be solved using Algorithm 1. As for UCM/UCO,
every manipulator’s weight is one (so thatW = 1), and we are only
allowed to add new manipulators whose weight is also 1. We re-
call that increasing the weights of the manipulators never prevents
c from winning. Therefore, in the context of UCM/UCO we use a
slight modification of Algorithm 2, by adding one unweighted ma-
nipulator whenever Algorithm 2 proposes adding a weighted ma-
nipulator (whose weight can be at most1/2).
5The greedy algorithm of Zuckerman et al. [23] is effectively a
discrete-time version of the level algorithm.



Algorithm 3 : compWCM

This algorithm is the same as Algorithm 1, except for the
following two lines:

3 Use the algorithm in [13] to solve the scheduling problem.
16 Let manipulatori vote forV i

1 ; for anyj > 1, we add a new
manipulator who votes forV i

j .

The following corollary immediately follows from Theorem 3.9.

COROLLARY 4.1. For UCM, if Algorithm 3 returnsfalse, then
there is no successful manipulation; otherwise, Algorithm 3 returns
a successful manipulation with at mostm − 2 additional manipu-
lators.

Recall that Lines 1-3 of Algorithm 3 compute the minimum
makespanw (the solution to COd) of the scheduling problem that
is obtained from the UCM instance. It is easy to see that if votes
are divisible then⌈w⌉ is the minimum number of unweighted ma-
nipulators required to makec win the election, that is,⌈w⌉ is the
optimal solution to UCOd. Therefore, Algorithm 1 can easily be
modified to yield an algorithm that solves UCOd. We further note
that Algorithm 3 is an approximation algorithm for UCO, as the
number of manipulators returned by Algorithm 3 is no more than
⌈w⌉ + m − 2. Put another way, Algorithm 3 returns a solution to
UCO (with indivisible votes) that approximates the optimal solu-
tion to UCOd (with divisible votes) to an additive term ofm− 2.

Generally, if there exists a successful manipulation, then Algo-
rithm 3 returns a manipulation with additional manipulators. How-
ever, there are some special positional scoring voting rules under
which UCM can always be solved exactly by Algorithm 1. Given
k ∈ {1, . . . , m− 1}, thek-approval rule is the scoring rule where
s1 = . . . = sk = 1 and sk+1 = . . . = sm = 0. For ex-
ample, Plurality (with scoring vector(1, 0, . . . , 0)) and Veto (with
scoring vector(1, . . . , 1, 0)) are 1-approval and(m− 1)-approval,
respectively. We note that UCM under anyk-approval rule re-
duces to the scheduling problem in which all machines have the
same speed. This corresponds exactly to the scheduling problem
P |pmtn|Cmax in discrete time (that is, the preemptions are al-
lowed only at integer time points), which has a polynomial-time
algorithm: Longest Remaining Processing Time first (LRPT)[16].
Therefore, if we modify Algorithm 3 by solving the reduced schedul-
ing instance with LRPT, then we can solve UCM under anyk-
approval voting rule in polynomial time.6 To summarize:

COROLLARY 4.2. Letk ∈ {1, . . . , m− 1}. UCM/UCO under
k-approval is in P.

4.1 On the tightness of the results
We presently wish to argue that we have made the most of our

technique. The next theorem states that them − 2 bound is tight
in terms of the difference between the optimal solution to UCO
and the optimal solution to UCOd under the same input. It also
implies that Algorithm 3 is optimal in the sense that for anyq <
m − 2, there is no approximation algorithm for UCO that always
outputs a manipulation with at mostq manipulators more than the
optimal solution to UCOd. This result can be seen as a new type of
integrality gap, which applies to our special flavor of rounding.

6The simple observation that UCM is in P under approval voting
rules was also recently made by Andrew Lin (via personal commu-
nication), who employed a completely different (greedy) approach.

THEOREM 4.3. For any m ≥ 3, there exists a UCO instance
such that the (additive) gap between the optimal solution to UCOd
and the optimal solution to UCO ism− 2.

PROOF. For anym ≥ 3, we let the scoring vector be(m(m −
1)(m− 2)− 1, . . . , m(m− 1)(m− 2)− 1, m(m− 1)(m− 2)−
2, 0). Let V = [c1 ≻ . . . ≻ cm−1 ≻ c], and letπ be the cyclic
permutation onC \ {c}, that is,π : c1 → . . . → cm−1 → c1.
For anyi ≤ m − 1, let Vi be the linear order overC in which c is
ranked in position(m − 1), andπi(c1) ≻Vi

πi(c2) ≻Vi
. . . ≻Vi

πi(cm−1). Let P = (V, V1, . . . , Vm−1), P NM = P ∪ π(P ) ∪
. . . ∪ πm−2(P ). It follows that for anyi ≤ m− 1, s(P NM , ci)−
s(P NM , c) = (m − 1)2 − 1. Let V ′ = [c ≻ c1 . . . ≻ cm−1]; it
can be verified that the divisible vote

1

m− 1
(V ′, π(V ′), π2(V ′), . . . , πm−2(V ′))

is sufficient to makec win, hence the optimal solution to UCOd is
1.

We next prove that the solution to UCO ism−1. Clearly the pro-
file (V ′, π(V ′), π2(V ′), . . . , πm−1(V ′)) is a successful manipula-
tion. Hence, it remains to show that the solution is at leastm − 1.
For the sake of contradiction we assume that the solution ism− 2,
andP M is the corresponding successful manipulation. Therefore,
there must existi ≤ m− 1 such thatci is not ranked at the bottom
of any of the votes ofP M . Therefore,

s(P M , c)− s(P M , ci) ≤ m− 2 < (m− 1)2 − 1,

which means thats(P NM ∪ P M , c) − s(P NM ∪ P M , ci) < 0.
This contradicts the assumption thatP M is a successful manipula-
tion.

We next ask the following natural question: is it possible to im-
prove the rounding technique so that the algorithm achieves a better
bound, relative to the optimal solution for the indivisible case? This
is not ruled out by Theorem 4.3, since that theorem compares to the
optimal UCOd solution rather than the optimal UCO solution. Nev-
ertheless, the answer is negative, as long as all linear orders in an
optimal solution to the COd problem appear in the output of the
algorithm. We say that an approximation algorithmA for UCO
is based on COdif for any UCO instance, there exists an optimal
solution to COd such that every linear order that appears in that so-
lution also appears in the output ofA (as a fraction of the vote of a
manipulator).

THEOREM 4.4. LetA be an approximation algorithm based on
COd. For anym ≥ 3, there exists a UCO instance such that the
gap between the optimal solution to UCO and the output ofA is
m− 2.

PROOF. For anym ≥ 3, we construct an instance such that the
solution to the UCO problem is 1, but at leastm − 1 linear orders
appear in any optimal solution to the COd problem (so the gap is
m− 2).

We let the scoring vector be(m + 2, 1, 0, . . . , 0). Let

V = [c ≻ c1 ≻ . . . ≻ cm−1],

and

V ′ = [cm−1 ≻ c1 ≻ c ≻ c2 ≻ . . . ≻ cm−2].

Furthermore, let

π : c1 → c2 → . . .→ cm−1 → c1,

and

π∗ : c→ c1 → . . .→ cm−1 → c.



We define preference profiles by letting

P = (V ′, V, π∗(V ), (π∗)2(V ), . . . , (π∗)m−2(V ))

andP NM = P ∪ π(P ) ∪ . . . ∪ πm−2(P ).

We have thats(P, c) = m + 2, s(P, c1) = m + 4, and for any
2 ≤ i ≤ m − 1, s(P, ci) = m + 3. Therefore,s(P NM , c) =
(m + 2)(m − 1) and for any2 ≤ i ≤ m − 1, s(P NM , ci) =
(m+3)(m−1)+1. Therefore, for anyi ≤ m−1, s(P NM , ci)−
s(P NM , c) = m. It follows that one manipulator suffices to make
c the winner (by votingc ≻ c1 ≻ . . . ≻ cm−1).

On the other hand, the minimum weight for COd is(m− 1)/m,
for example,

V M =
m− 1

m
(

1

m− 1
V +

1

m− 1
π(V )+. . .+

1

m− 1
πm−2(V )).

In any manipulator’s vote corresponding to the minimum total weight,
every alternative exceptc must appear in the second position for a
fraction of the vote. Therefore, any algorithm based on COd must
output at leastm− 1 linear orders.

5. UCM UNDER POSITIONAL SCORING
RULES IS STRONGLY NP-COMPLETE

In this section, we show that UCM under a specific positional
scoring rule is strongly NP-complete, even when there are only two
manipulators. We slightly abuse terminology here, since a voting
rule is formally defined with respect to a specific number of alter-
natives; for the purposes of this section, a positional scoring rule
defines a separate score vector for each possible number of alterna-
tives. Indeed, Plurality, Veto, and Borda fit this description, so the
rule that we introduce here is a single positional scoring rule in the
same sense that these three rules are.

Let us define our positional scoring rule, denoted byrweird. Given
K ∈ N, the scoring vector for8K2 + 1 alternatives is

(10K, 10K − 1, . . . , 10K − 1
︸ ︷︷ ︸

2K

, 10K − 2, . . . , 10K − 2
︸ ︷︷ ︸

2K

, . . . ,

9K, . . . , 9K
︸ ︷︷ ︸

2K

, 7K, . . . , 7K
︸ ︷︷ ︸

2K2

, 3K, . . . , 3K
︸ ︷︷ ︸

2K2

, K, . . . , K
︸ ︷︷ ︸

2K

,

K − 1, . . . , K − 1
︸ ︷︷ ︸

2K

, . . . , 1, . . . , 1
︸ ︷︷ ︸

2K

)

If the number of alternativesm cannot be written as8K2 + 1 for
someK, our scoring rule can behave arbitrarily.

We have the following theorem, whose proof appears in Ap-
pendix A.

THEOREM 5.1. UCM underrweird is strongly NP-complete, even
when the number of manipulators is two.

It follows from the proof thatQ|pmtn|Cmax is strongly NP-
complete in discrete time.
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APPENDIX

A. PROOF OF THEOREM 5.1
We prove the hardness by a reduction fromNUMERICAL MATCH -

ING WITH TARGET SUMS(NMTS), which is strongly NP-complete
[11]. An NMTS instance consists of three disjoint setsA, B, Y
where |A| = |B| = |Y | = l ≥ 2, and a weight functionw :
A ∪ B ∪ Y → N. We are asked whether there is a partitionS =
S1∪. . .∪Sl of A∪B∪Y such that for anyi ≤ l, Si = {ai, bi, yi},
whereai ∈ A, bi ∈ B, yi ∈ Y andw(ai) + w(bi) = w(yi).

Let A, B, Y, w be an NMTS instance, whereA = {a1, . . . , al},
B = {b1, . . . , bl}, Y = {y1, . . . , yl}, w(a1) ≤ w(a2) ≤ . . . ≤
w(al), w(b1) ≤ w(b2) ≤ . . . ≤ w(bl). W.l.o.g., we make the
following assumption about the NMTS instance.

ASSUMPTION 1.

• For any a, a′, a∗ ∈ A, and anyb ∈ B, we havew(a∗) <
w(a) + w(a′) < w(b).

• For anya ∈ A, and anyb, b′ ∈ B, we havew(a) < w(b′) <
w(a) + w(b).

• For anyb, b′ ∈ B, and anyy ∈ Y , we havew(b) < w(y) <
w(b) + w(b′).

This assumption does not limit generality since we can convert any
instanceA, B, Y, w′ to an NMTS instanceA, B, Y, w whose inputs
are polynomially larger (in the unary sense) in the following way:
let

w′
max = max

a∈A,b∈B,y∈Y
{w′(a), w′(b), w′(y)}

For anya ∈ A, b ∈ B, y ∈ Y , let w(a) = w′(a) + 2(w′
max + 1),

w(b) = w′(b)+6(w′
max +1), andw(y) = w′(y)+8(w′

max +1).
Given an NMTS instance that satisfies Assumption 1, we con-

struct the UCM instance as follows. The manipulators’ goal is
to makec a co-winner. A similar reduction exists for the unique-
winner case. LetK = max{wmax, l}, where

wmax = max
a∈A,b∈B,y∈Y

{w(a), w(b), w(y)}.

Alternatives: There are8K2+1 alternatives.C = {c}∪Y ∪DA∪
DB∪D, whereDA = {dA

1 , . . . dA
2K2−l}, DB = {dB

1 , . . . dB
2K2−l},

D = {d1, . . . , d4K2+l}.
Non-manipulators’ profile: P NM = P1 ∪ P2. We first describe
the properties thatP1 andP2 satisfy, then show how to construct
them.

• P1 satisfies the following condition: LetF be a multiset, de-
fined as

F = {1, . . . , 1
︸ ︷︷ ︸

2K

, 2, . . . , 2
︸ ︷︷ ︸

2K

, . . . , K, . . . , K
︸ ︷︷ ︸

2K

}.

That is,F is composed of2K copies of{1, 2, . . . , K}. Let
E = EA∪EB , whereEA = F \w(A) andEB = F \w(B),

wherew(A) is a multiset, defined asw(A) = {w(a) : a ∈
A} (similarly forw(B)). We also writeEA = {eA

1 , . . . , eA
2K2−l};

EB = {eB
1 , . . . , eB

2K2−l}.

For anyi ≤ 2K2 − l, we haves(P1, c)− s(P1, d
A
i ) = eA

i −
17K ands(P1, c) − s(P1, d

B
i ) = eB

i − 17K; for any1 ≤
j ≤ l, we lets(P1, c)− s(P1, yj) = w(yj)− 20K.

• P2 satisfies the following conditions: for anyx ∈ Y ∪DA ∪
DB , we haves(P2, c) = s(P2, x); for anyi ≤ 4K2 + l, we
haves(P1 ∪ P2, c) > s(P1 ∪ P2, di).

To constructP1, we first make the following observation: for any
{x1, . . . , xL} = X ⊆ C whereL ≤ 4K2, and anyx ∈ C \X, let

V1 = [x1 ≻ x ≻ x2 ≻ . . . ≻ xL ≻ (C \ (X ∪ {x}))]

and

V2 = [(C \X) ≻ xL ≻ xL−1 ≻ . . . ≻ x1],

where the elements inC \X are ranked in an arbitrary way; letting
P ∗ = (V1, V2), we must have that for any2 ≤ i ≤ L, s(P ∗, x1)−
s(P ∗, xi) = 1. Therefore,P1 can be constructed out of no more
than2·20K·(4K2−l) votes (by choosingX = {c}∪Y ∪DA∪DB ,
and applying theP ∗ trick no more than20K times per alternative
in X), and for anyd ∈ D, we haves(P1, c) − s(P1, d) ≥ −2 ·
20K · (4K2 − l) · 10K.

Next we show how to constructP2. Let π1 be the cyclic per-
mutation on{c} ∪ Y ∪ DA ∪ DB , defined asc → y1 → . . . →
yl → dA

1 → . . . → dA
2K2−l → dB

1 → . . . → dB
2K2−l → c. Let

π2 be the cyclic permutation onD, defined asd1 → d2 → . . . →
d4K2+l → d1.

For anyt ∈ N, we letπt
1 = π1 ◦ πt−1

1 , π1
1 = π1, where for any

x ∈ {c} ∪ Y ∪ DA ∪ DB , π1 ◦ πt−1
1 (x) = π1(π

t−1
1 (x)). πt

2 is

defined similarly. We note thatπ4K2−l+2
1 = π1, π4K2+l+1

2 = π2.
For anyj ∈ N, we let

Wj =
[
(πj

1(c) ≻ πj
1(y1) ≻ . . . ≻ πj

1(yl) ≻ πj
1(d

A
1 ) ≻ . . .

≻ πj
1(d

A
2K2−l) ≻ πj

1(d
B
1 ) ≻ . . . ≻ πj

1(d
B
2K2−l)

≻ πj
2(d1) ≻ . . . ≻ πj

2(d4K2+l)
]

Let P ′ = (W1, . . . , W(4K2−l+1)(4K2+l)). It follows that for any
x ∈ Y ∪DA ∪DB , we haves(P ′, c) = s(P ′, x); for anyd ∈ D,
we have

(P ′, c)− s(P ′, d)

>(4K2 + l) · 7K · (4K2 − l + 1)

− (4K2 − l + 1)(4K2 · 3K + 7K · l)

=(4K2 − l + 1)16K3

Let P2 be composed of 25 copies ofP ′. For anyd ∈ D, we have

s(P1 ∪ P2, c)− s(P1 ∪ P2, d)

=s(P1, c)− s(P1, d) + s(P2, c)− s(P2, d)

>− 400K2(4K2 − l) + 25 · 16K2(4K2 − l + 1)

>0.

This completes the description of the reduction.
Next, we show that the UCM instance has a solution if and only

if the NMTS instance has a solution. Assume that the NMTS prob-
lem has a solutionS1, . . . , Sl. W.l.o.g., for anyi ≤ l, Si =
{aπ(i), bγ(i), yi}, whereπ andγ are permutations over{1, . . . l}.
We construct two votesQ1, Q2 that satisfy the following condi-
tions.



• For any i ≤ 2K2 − l, we haves({Q1}, d
A
i ) = eA

i and
s({Q1}, d

B
i ) = 3K; for anyj ≤ l, we haves({Q1}, yj) =

w(aπ(j)).

• For anyi ≤ 2K2−l, we haves({Q2}, d
A
i ) = 3K, s({Q2}, d

B
i )

= eB
i ; for anyj ≤ l, we haves({Q2}, yj) = w(bγ(j)).

In Q1 andQ2, c is ranked in the top position, and the alternatives
in D are ranked arbitrarily.Q1 andQ2 are well defined, because
F = EA ∪ w(A) = EB ∪ w(B). Let P M = (Q1, Q2). For any
j ≤ l, we have the following calculations. First,

s(P NM ∪ P M , c)− s(P NM ∪ P M , yj)

=w(yj)− 20K + 20K − (w(aπ(j)) + w(bγ(j))) = 0

For anyi ≤ 2K2 − l, we have

s(P NM ∪ P M , c)− s(P NM ∪ P M , dA
i )

=eA
i − 17K + 20K − (eA

i + 3K) = 0,

and

s(P NM ∪ P M , c)− s(P NM ∪ P M , dB
i )

=eB
i − 17K + 20K − (eB

i + 3K) = 0.

For any1 ≤ i ≤ 4K2 + l, we have

s(P NM ∪ P M , c)− s(P NM ∪ P M , di) > 0 + 2 > 0.

Therefore,c is a co-winner of the election.
Finally, we prove that if the UCM instance has a solutionP M =

(Q1, Q2), then the NMTS instance has a solution. First we note
that for any1 ≤ i ≤ 2K2 − l, dA

i must be ranked within4K2

positions from the bottom in bothQ1 andQ2, otherwisedA
i will

obtain at least7K points inP M , thus

s(P NM ∪ P M , c)− s(P NM ∪ P M , dA
i )

≤ K − 17K + 20K − 7K < 0,

which means thatc does not win the election. Similarly, any alter-
native inDB andY must be ranked within4K2 positions from the
bottom in bothQ1 andQ2.

It is easy to check that for any1 ≤ i ≤ 2K2 − l, we must have
thats(P M , dA

i ) = 3K + eA
i ands(P M , dB

i ) = 3K + eB
i ; for any

y ∈ Y , we must have thats(P M , y) = w(y).
Next, for any1 ≤ i ≤ 2K2 − l, we must have that

{s(Q1, d
A
i ), s(Q2, d

A
i )} = {3K, eA

i }

and

{s(Q1, d
B
i ), s(Q2, d

B
i )} = {3K, eB

i },

becauseeA
i ≤ K andeB

i ≤ K. For anyy ∈ Y , we have3K 6∈
{s(Q1, y), s(Q2, y)}, because3K > w(y). Hence,

{s(Q1, y), s(Q2, y) : y ∈ Y }

={w(a1), . . . , w(al), w(b1), . . . , w(bl)}

Note that both sides are multisets. We further note that for any
y ∈ Y , any a, a′ ∈ A, and anyb, b′ ∈ B, we havew(a) +
w(a′) < w(y) < w(b)+w(b′) andw(a) < w(b) (Assumption 1).
Therefore,{min(s(Q1, y), s(Q2, y)) : y ∈ Y } = w(A) and
{max(s(Q1, y), s(Q2, y)) : y ∈ Y } = w(B). Let fA : Y → A
be a bijection such that for anyy ∈ Y , min(s(Q1, x), s(Q2, x)) =
w(fA(y)); let fB : Y → B be a bijection such that for anyy ∈ Y ,
max(s(Q1, x), s(Q2, x)) = w(fB(y)). It follows that the parti-
tion

{y1, fA(y1), fB(y1)}, . . . , {yl, fA(yl), fB(yl)}

is a solution to the NMTS instance.
We remark that the size of the input of UCM is polynomial inl

andwmax, even if all parameters are represented in unary form.
Because NMTS is strongly NP-complete, UCM is also strongly
NP-hard. It is easy to check that UCM under any positional scor-
ing rule is in NP. It follows that UCM underrweird is strongly NP-
complete.


