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The margin of victory of an election, defined as the smallest number k such that k voters can change the winner by voting
differently, is an important measurement for robustness of the election outcome. It also plays an important role in imple-
menting efficient post-election audits, which has been widely used in the United States to detect errors or fraud caused by
malfunctions of electronic voting machines.

In this paper, we investigate the computational complexity and (in)approximability of computing the margin of victory
for various voting rules, including approval voting, all positional scoring rules (which include Borda, plurality, and veto),
plurality with runoff, Bucklin, Copeland, maximin, STV, and ranked pairs. We also prove a dichotomy theorem, which states
that for all continuous generalized scoring rules, including all voting rules studied in this paper, either with high probability
the margin of victory is Θ(

√
n), or with high probability the margin of victory is Θ(n), where n is the number of voters.

Most of our results are quite positive, suggesting that the margin of victory can be efficiently computed. This sheds some
light on designing efficient post-election audits for voting rules beyond the plurality rule.

Categories and Subject Descriptors: J.4 [Computer Applications]: Social and Behavioral Sciences—Economics; I.2.11
[Distributed Artificial Intelligence]: Multiagent Systems

General Terms: Algorithms, Economics, Theory
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1. INTRODUCTION

The margin of victory is an important measurement in voting for robustness of the election outcome.
Given a voting rule and a collection of votes, the margin of victory is the smallest number k such
that changing k votes can change the winners. In that sense, an election with a large margin of
victory is usually thought to be more robust than an election with a small margin of victory.

In addition to being interesting in its own right, margin of victory also plays an important role in
conducting efficient post-election audits, which are nowadays a standard method used in the United
States to detect incorrect outcome of electronic voting caused by software or hardware problems of
voting machines [Norden et al. 2007]. When voters use voting machines to cast votes, their votes
might not be correctly counted electronically, due to various problems including software bugs,
programming mistakes, other machine output errors, or even some clip-on devices that manipulate
the memory of voting machines [Wolchok et al. 2010]. In fact, according to [Norden et al. 2007], at
least thirty states in the US have reported such problems by 2007. Post-election audits require voter-
verifiable paper records, that is, when a voter casts her vote on a voting machine, a paper record of
the vote is stored for possible future auditing. After all voters have cast their votes, some randomly
selected electronic votes are compared to their paper copies manually to decide whether the election
outcome is trustworthy. If there are too many mismatches indicating that with high probability the
election outcome might be wrong, then a full recount (which is extremely costly) would occur. Since
manually checking part of paper records may still be costly, risk-limiting audit methods have been
proposed to audit as few votes as possible, while limiting the risk to a low level [Stark 2008a,b,
2009b,a, 2010]. In risk-limiting audit methods, the margin of victory is a critical parameter of risk
guarantees. The larger the margin of victory is, the less votes are needed to be manually checked.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
EC’12, June 4–8, 2012, Valencia, Spain. Copyright 2012 ACM 978-1-4503-1415-2/12/06...$10.00.



So far, most post-election auditing techniques were designed specifically for elections that use
the plurality rule, where each voter votes for a single alternative, and the alternative with most votes
(the number is called plurality score) wins. For the plurality rule, the margin of victory is very easy
to compute, which is the difference between the highest and the second-highest plurality scores
divided by 2. Therefore, risk-limiting audit methods can be applied with low computational costs
for plurality. While the plurality rule is the most widely-used voting rule in political elections at the
moment, it is important to extend the study to other popular voting rules. For example, alternative
vote (AV) (a.k.a. instant runoff voting (IRV) or single transferable vote (STV)) is currently being
used in political elections in Australia, India, and Ireland. Moreover, in 2011, the United Kingdom
held a nation-wide referendum (the second nationwide referendum in the history) to change their
voting system from plurality to STV.1 To extend risk-limiting audit methods to other voting systems,
naturally, a first step is to compute the margin of victory. For example, [Sarwate et al. 2011] proposed
a risk-limiting audit method for STV based on the computation of the margin of victory. However,
some recent work suggests that at least for STV, computing the margin of victory is much harder
than for plurality [Magrino et al. 2011; Cary 2011], and it was conjectured that computing the
margin of victory for STV is NP-complete [Magrino et al. 2011].

1.1. Our Contributions

In this paper, we investigate the computational complexity and (in)approximability of computing the
margin of victory (MOV) for various voting rules, including approval voting, all positional scoring
rules (which include Borda, plurality, and veto), plurality with runoff, Bucklin, Copeland, maximin,
STV, and ranked pairs. Our results are summarized in Table I. It can be seen from the table that de-
ciding whether the margin of victory is 1 is NP-complete for ranked pairs and STV, which proves the
conjecture proposed in [Magrino et al. 2011]. Deciding whether the margin of victory is larger than
some given number is NP-complete for Copeland and maximin, but the problem can be solved in
polynomial-time (in theory) if the margin of victory is bounded from above by a constant. For other
rules, we design polynomial-time algorithms. For the four voting rules where exact computation is
NP-hard (Copeland, maximin, STV, and ranked pairs), we show that for Copeland (respectively,
maximin), there is a polynomial-time Θ(logm) (respectively, 2)-approximation algorithm (where
m is the number of alternatives), and there is no polynomial-time 2-approximation algorithm for
STV or ranked pairs, unless P=NP. We also reveal a connection between the margin of victory
and the destructive unweighted coalitional optimization (UCO) problem [Zuckerman et al. 2009],
which allows us to convert an approximation algorithm for MOV to an approximation algorithm for
destructive UCO, and vice versa. Finally, we ask typically how large the margin of victory is, when
the votes are drawn i.i.d. Our main result is the following dichotomy theorem, which states that for
a large class of voting rules called continuous generalized scoring rules [Xia and Conitzer 2008]
(we will give formal definitions in Section 6.1), either with high probability the margin of victory is
Θ(
√
n), where n is the number of voters, or with high probability the margin of victory is Θ(n).

Theorem 14 Let r be a continuous generalized scoring rule and let π be a distribution over all
linear orders, such that for each linear order V , π(V ) > 0. Suppose we fix π and the number of
alternatives, generate n votes i.i.d. according to π, and let Pn denote the profile. Then, one (and
exactly one) of the following two observations holds.

(1) For any ε, there exists β > 0 such that limn→∞ Pr( 1β
√
n ≤ MoV(Pn) ≤ β

√
n) ≥ 1− ε.

(2) There exists β > 0 such that limn→∞ Pr(MoV(Pn) ≥ βn) = 1.
It was shown in [Xia and Conitzer 2008] that all voting rules studied in this paper are generalized

scoring rules. In this paper, we show that they are continuous generalized scoring rules. Due to the
space constraint, some proofs are omitted. They can be found on the author’s homepage.

1http://en.wikipedia.org/wiki/United_Kingdom_Alternative_Vote_referendum,_2011



Table I. Complexity of computing the margin of victory. In all NP-
hardness proofs, m (the number of alternatives) and n (the number
of voters) are not restricted.

Voting rule Margin of Victory
Approval voting P (Theorem 10)

Positional scoring rules
(incl. Borda and plurality) P (Theorem 5)

Plurality with runoff P (Theorem 7)
Bucklin P (Theorem 6)

Copeland
O(nMOV) (Theorem 8)

NPC (Theorem 4)
Θ(logm)-apprx. (Algorithm 4)

Maximin
O(nMOV) (Theorem 9)

NPC (Theorem 3)
2-apprx. (Algorithm 5)

STV (a.k.a. IRV, AV)
NPC for MOV1 (Theorem1)

No 2-apprx. (Corollary 1)

Ranked pairs NPC for MOV1 (Theorem2)
No 2-apprx. (Corollary 1)

1.2. Related Work and Discussion

When the voting rule always selects a single winner, deciding whether the margin of victory is
larger than a given threshold k is identical to the destructive BRIBERY problem [Faliszewski et al.
2009], where we are given a profile, a disfavored alternative d, and a number k, and we are asked
whether there is a way to change no more than k votes to make d not the unique winner. Despite
the similarity in definitions, MOV and BRIBERY are motivated in completely different ways. For
BRIBERY, hardness of computation is good news, because computational complexity can serve as
a barrier against bribery.2 On the other hand, we would like to compute MOV as fast as possible to
extend risk-limiting audit methods beyond plurality. Therefore, negative results for “using compu-
tational complexity to protect elections” are positive results for computing the margin of victory.
For example, it is commonly believed that strategic behavior (including manipulation and bribery)
is typically easy to compute, which can be interpreted as evidence that computing the margin of
victory is typically easy. Indeed, this is witnessed by our dichotomy theorem (Theorem 14). In addi-
tion, in BRIBERY, the briber usually only has partial information about voters’ votes or preference,
while in MOV, we have complete information about the electronic votes.

Moreover, from a technical point of view, to the best of our knowledge, little was known about
the computational complexity of destructive BRIBERY. 3 Therefore, most of our results for MOV are
also new results for destructive BRIBERY. Moreover, we also show that for STV and ranked pairs,
constructive BRIBERY is NP-complete even for k = 1; and for Copeland and maximin, constructive
BRIBERY is NP-complete.

The dichotomy theorem proved in this paper is related to two lines of research on different (yet
closely related) problems. The first is the study of “frequency of manipulability”, defined as the
probability for a randomly generated profile to be manipulable by a group of manipulators, where
the non-manipulators’ votes are generated i.i.d. according to some distribution [Peleg 1979; Baharad
and Neeman 2002; Slinko 2002, 2004; Procaccia and Rosenschein 2007; Xia and Conitzer 2008].
Specifically, in [Xia and Conitzer 2008], we showed that for generalized scoring rules, when the
non-manipulators votes are drawn i.i.d., if the number of manipulators is o(

√
n), where n is the

number of non-manipulators, then the probability that the manipulators can succeed goes to 0 as n
goes to infinity; if the number of manipulator is ω(n), then for some distributions the probability

2This belongs to a popular research direction in Computational Social Choice, i.e., using computational complexity to protect
elections. See [Faliszewski et al. 2010; Faliszewski and Procaccia 2010; Rothe and Schend 2012] for recent surveys.
3Constructive BRIBERY has been shown to be in P for plurality and veto [Faliszewski et al. 2009], which implies that
destructive BRIBERY for plurality and veto is also in P.



that the manipulators can succeed goes to 1. This tackles the UCO problem, but it is not clear how
this result can be generalized to MOV.

The second is the study of the “minimum manipulation coalition size” problem, which is defined
similarly to MOV, except that all voters who change their votes must prefer the new winner to the
old one [Nitzan 1982; Chamberlin 1985; Pritchard and Slinko 2006; Pritchard and Wilson 2007,
2009]. Specifically, in [Pritchard and Wilson 2009], the authors investigated the distribution over
the minimum manipulation coalition size for positional scoring rules when the votes are drawn
i.i.d. from the uniform distribution. However, it is not clear how their techniques can be extended
beyond the uniform distributions and positional scoring rules, which are a very special case of
generalized scoring rules.

2. PRELIMINARIES

Let C denote the set of alternatives, |C| = m. We assume strict preference orders.4 That is, a vote is
a linear order over C. The set of all linear orders over C is denoted by L(C). A (preference-)profileP
is a collection of n votes for some n ∈ N, that is, P ∈ L(C)n. Let L(C)∗ =

⋃∞
n=1 L(C)n. A voting

rule r is a mapping that assigns to each preference-profile a set of non-empty winning alternatives.
That is, r : L(C)∗ → (2C \ ∅). Throughout the paper, we let n denote the number of votes and let m
denote the number of alternatives.

For any profile P and any pair of alternatives (c, d), let DP (c, d) denote the number of times that
c � d in P minus the number of times that d � c in P . The weighted majority graph (WMG) of P ,
denoted by WMG(P ), is a directed graph whose vertices are the alternatives, and there is an edge
between each pair of vertices, where the weight on c→ d is DP (c, d). We note that in the WMG of
any profile, all weights on the edges have the same parity (and whether it is odd or even depends on
the parity of the number of votes n), and DP (c, d) = −DP (d, c).

In this paper, we study the following voting rules.

— Approval: Each voter approves a subset of alternatives. The alternative that is approved by most
voters is the winner.

— (Positional) scoring rules: Given a scoring vector �sm = (�sm(1), . . . , �sm(m)) of m integers, for
any vote V ∈ L(C) and any c ∈ C, let �sm(V, c) = �sm(j), where j is the rank of c in V . For
any profile P = (V1, . . . , Vn), let �sm(P, c) =

∑n
j=1 �sm(Vj , c). The rule will select c ∈ C so that

�sm(P, c) is maximized. We assume score components in �sm are nonincreasing. Some examples of
positional scoring rules are Borda, for which the scoring vector is (m−1,m−2, . . . , 0); plurality,
for which the scoring vector is (1, 0, . . . , 0); and veto, for which the scoring vector is (1, . . . , 1, 0).
When there are only two alternatives, Borda, plurality, and veto (as well as all other voting rules
introduced below) become majority.

— Copelandα (0 ≤ α ≤ 1): For any two alternatives c and c′, we can simulate a pairwise election
between them, by seeing how many votes prefer c to c′, and how many prefer c′ to c; the winner
of the pairwise election is the one preferred more often. Then, an alternative receives one point
for each win in a pairwise election, α points for each tie, and zero point for each loss. This is the
Copeland score of the alternative. A Copeland winner maximizes the Copeland score.

— Maximin: A maximin winner c maximizes the maximin score SM (P, c) = min{DP (c, c
′) : c′ ∈

C, c′ 	= c}.
— (Simplified) Bucklin: The Bucklin score of an alternative c, denoted by SB(P, c), is the smallest

number t such that more than half of the votes rank c somewhere in the top t positions. A Bucklin
winner minimizes the Bucklin score.

— Plurality with runoff: The rule has two steps. In the first step, all alternatives except the two that
are ranked in the top positions the most often are eliminated; in the second round, the majority
rule is used to select the winner.

4Approval voting is an exception, where a voter’s preferences are represented by a subset of alternatives she approves.



— Single transferable vote (STV), a.k.a. instant runoff voting (IRV) or alternative vote (AV):
The election has m rounds. Fix a tie-breaking order among the alternatives. In each round, the
alternative that gets the lowest plurality score (the number of times that the alternative is ranked in
the top position) drops out, and is removed from all of the votes (so that votes for this alternative
transfer to another alternative in the next round). When there are ties, we use the fixed tie-breaking
mechanism to eliminate an alternative. The last-remaining alternative is the winner.

— Ranked pairs: This rule first creates an entire ranking of all the alternatives. In each step, we
will consider a pair of alternatives c, c′ that we have not previously considered; specifically, we
choose the remaining pair with the highest DP (c, c

′). When there are ties among multiple pairs,
we use a fix a tie-breaking mechanism to select one pair.5 We then fix the order c � c′, unless
this contradicts previous orders that we fixed (that is, it violates transitivity). We continue until we
have considered all pairs of alternatives (hence we have a full ranking). The alternative at the top
of the ranking wins.

For plurality with runoff, in cases where we do not mention the tie-breaking mechanism, we adopt
the parallel-universes tie-breaking [Conitzer et al. 2009]. That is, an alternative is a winner, if it wins
w.r.t. some tie-breaking mechanism. We study the computation of the margin of victory for STV and
ranked pairs with fixed tie-breaking mechanism mainly because computing the winner(s) for these
two rules under the parallel-universes tie-breaking mechanism is already NP-complete [Conitzer
et al. 2009; Brill and Fischer 2012].

A voting rule r is WMG-based, if the winners only depend on the WMG of the input profile.
That is, for any pair of profiles P1, P2, if WMG(P1) = WMG(P2), then r(P1) = r(P2). Borda,
Copeland, maximin, and ranked pairs are WMG-based. To improve readability, we defer the defi-
nition of generalized scoring rules to Section 6.1. This will not hinder the presentation of the com-
plexity results.

2.1. Margin of Victory, Bribery, and Manipulation

Definition 1 Given a voting rule r and a profile P , the margin of victory (MoV) of P , denoted by
MoV(P, r), is the smallest number k such that the set of winners can be changed by changing k
votes in P , while keeping the other votes unchanged.

In this paper, we sometimes use MoV(P ) to denote MoV(P, r) when causing no confusion. We
now define the computational problems.

Definition 2 In the MOV problem, we are given a voting rule r and a profile P . We are asked to
compute MoV(P ). MOVk is the decision variant of MOV, where we are given a natural number k,
and we are asked whether the margin of victory is at most k.

MOVk is closely related to the BRIBERY problem [Faliszewski et al. 2009], defined as follows.

Definition 3 In a constructive (respectively, destructive) BRIBERY problem, we are given a profile
P composed of n votes, a quota k < n, and a (dis)favored alternative d ∈ C. We are asked whether
the briber can change no more than k votes such that d is the unique winner (respectively, d is not
the unique winner).

More precisely, for voting rules that always outputs a unique winner, destructive BRIBERY is equiva-
lent to MOVk. MOV is also closely related to the unweighted coalitional optimization problem [Zuck-
erman et al. 2009], defined as follows.

Definition 4 In a constructive (respectively, destructive) UNWEIGHTED COALITIONAL OPTIMIZA-
TION (UCO) problem, we are given a voting rule r, a profile PNM of the non-manipulators, and
a (dis)favored alternative d ∈ C. We are asked to compute the smallest number of manipulators

5This is is similar to the fixed tie-breaking mechanism for STV. The difference is that in STV, the order is among alternatives,
while in ranked pairs, the order is among pairs of alternatives.



who can cast votes PM such that {d} = r(PNM ∪ PM ) (respectively, {d} 	= r(PNM ∪ PM )).
Constructive (respectively, destructive) UNWEIGHTED COALITIONAL MANIPULATION (UCMk) is
the decision variant of UCO, where we are given k manipulators, and we are asked whether they
can cast votes PM such that {d} = r(PNM ∪ PM ) (respectively, {d} 	= r(PNM ∪ PM )).

3. HARDNESS RESULTS

For STV and ranked pairs, constructive UCM1 is NP-complete [Bartholdi and Orlin 1991; Xia
et al. 2009]. The next two theorems prove that for both rules MOV1 and constructive (destructive)
BRIBERY are NP-complete, by showing reductions from constructive UCM1.

Theorem 1 It is NP-complete to compute MOV1 and constructive (destructive) BRIBERY for STV.
This holds for any fixed tie-breaking mechanism.

Proof of Theorem 1: It is easy to check that MOV1 for STV is in NP. We prove the NP-hardness
by a reduction from a special constructive UCM1 problem for STV, where c is ranked in the top
position in at least one vote in PNM . This problem has been shown to be NP-complete [Bartholdi
and Orlin 1991]. For any constructive UCM1 instance (STV, PNM , c) where c is ranked in the top
positions in at least one vote in PNM (|PNM | = n−1), we construct the following MOV1 instance.
Let C′ = {c, c1, . . . , cm−1} denote the set of alternatives in the constructive UCM1 instance.

Alternatives: C′ ∪ {d}, where d is an auxiliary alternative.
Profile: Let P denote a profile of 2n− 1 votes as follows. The first n− 1 votes are obtained from

PNM by putting d right below c. The next n votes ranks d in the first position (other alternatives
are ranked arbitrarily).

It is easy to check that STV(P ) = {d}. Suppose the constructive UCM1 instance has a solution,
denoted by V . Then, let V ′ denote the linear order over C′ ∪ {d} obtained from V by ranking d in
the bottom position. Let P ′ denote the profile where voter n changes her vote to V ′. We note that
d is ranked in the top position for n − 1 time in P ′. Therefore, d is never eliminated in the first
|C′| − 1 rounds. Moreover, for any j ≤ |C′| − 1, the alternative that is eliminated in the jth round
for P ′ is exactly the same as the alternative that is eliminated in the jth round for PNM ∪ {V }. In
the last round, c is ranked in the top for n times, which means that STV(P ′) = {c} 	= {d}. Hence,
MoV (P ) = 1.

On the other hand, suppose MoV (P ) = 1. Then, there exists a voter n′ and a vote V ′
n′ such that

STV (P−n′ , V ′
n′) 	= {d}. Let P ′ = (P−n′ , V ′

n′). We note that in STV for P ′, d must be eliminated
in the last round, because d is ranked in the top position for at least n − 1 times. Moreover, we
recall that c is ranked in the first position in at least one vote in PNM , and d is ranked right below
c in the corresponding vote in P ′. Therefore, d beats all alternatives in C′ \ {c} in their pairwise
elections, which means that in the last round the only remaining alternatives must be c and d. This
only happens when d � c in Vn′ and c � d in V ′

n′ . Therefore, w.l.o.g. we can let n′ = n. Let V be
a linear order obtained from V ′

n′ by removing d. It follows that V is a solution to the constructive
UCM1 instance. This shows that it is NP-complete to compute MOV1.

For constructive (respectively, destructive) BRIBERY we ask whether we can bribe one voter to
make c win (respectively, to make d not the unique winner). �

Theorem 2 It is NP-complete to compute MOV1 and constructive (destructive) BRIBERY for ranked
pairs with some fixed tie-breaking mechanism.

Proof of Theorem 2: It is easy to check that MOV1 for ranked pairs is in NP. We prove the NP-
hardness by a reduction from a special constructive UCM1 problem for ranked pairs, where n is
odd (we note that |PNM | = n − 1), and no weight in the majority graph is larger than n − 5.
Let C′ = {c, c1, . . . , cm−1} denote the set of alternatives in the constructive UCM1 instance. Let
I = [c1 � c2 � · · · � cm−1] and R = [cm−1 � cm−2 � · · · � c1]. If the weight on some edge is
larger than n−5, then we tweak the instance by adding two pairs of {[c � I], [R � c]}. This special



constructive UCM1 has been shown to be NP-complete [Xia et al. 2009]. For any such a constructive
UCM1 instance (RP, PNM , c), we construct the following instance of MOV1.

Alternatives: C′ ∪ {d, e}, where d and e are auxiliary alternatives.
Profile: Let P denote a profile of 3n− 2 votes as follows.
• The first n− 1 votes are obtained from PNM by putting d � e right below c.
• The remaining votes are defined in the following table.

Number of votes Preferences
n d � e � I � c

(n− 1)/2 d � c � e � R
(n− 1)/2 e � c � d � R

Let P ′ denote the profile obtained from P by removing one vote of d � e � I � c. We make the
following observations on the weighted majority graph of P ′.
• The sub-graph for alternatives in C′ is the same as the weighted majority graph of the construc-

tive UCM1 instance.
• There is an edge from d to e with weight 2(n− 1).
• There are no edges between d and c, and e and c.
• The weights on the edges from d or e to C′ \ {c} is at least n− 1.
Therefore, in the final ranking, it is fixed that d � e � (C′ \ {c}). Suppose ties among edges are

broken in the order where e → c is fixed before c → d. It is not hard to see that the winner under
ranked pairs for P is d. If the constructive UCM1 instance has a solution, denoted by V , then, the
margin of victory is 1. This is because if one voter whose vote was [d � e � I � c] switches to
[c � e � d � V ], then the winner becomes c.

On the other hand, suppose the margin of victory is 1, where voter j can cast a different vote V ′
to change the winner. We next show that voter j’s vote must be [d � e � I � c]. We note that in
P , [d � e � c] in only one type of votes, which are [d � e � I � c]. Therefore, this is the only
type of votes from which voter j can make c beats both d and e in their pairwise elections. In the
tie-breaking mechanism we described above, if d or e beats c in their pairwise elections, then d will
be the winner under ranked pairs. This proves that j’s vote was [d � e � I � c]. Then, c is the
winner under ranked pairs if and only if (1) both d and e are ranked below c in V ′, and (2) the vote
obtained from V ′ by removing d and e is a solution to the constructive UCM1 instance. Therefore,
MOV1 for ranked pairs is NP-complete to compute.

For constructive (respectively, destructive) BRIBERY we ask whether we can bribe one voter to
make c win (respectively, to make d not the unique winner). �

For STV and ranked pairs, a polynomial-time 2-approximation algorithm for MOV can be used to
solve MOV1 in polynomial-time. Therefore, we have the following inapproximability result.

Corollary 1 There is no polynomial-time 2-approximation algorithm for MOV for STV or ranked
pairs, unless P= NP.

For maximin and Copeland, we will use McGarvey’s trick [McGarvey 1953], which constructs
a profile whose WMG is the same as some targeted weighted directed graph. This will be helpful
because when we present the proof, we only need to specify the WMG instead of the whole profile,
and then by using McGarvey’s trick, a profile can be constructed in polynomial time. The trick
works as follows. For any pair of alternatives (c, d), if we add the following pair of votes

[c3 � · · · � c�m/2�+1 � c � d � c�m/2�+2 � · · · � cm]
[cm � · · · � c�m/2�+2 � c � d � c�m/2�+1 � · · · � c3]

to a profile P , then in the WMG the weight on c→ d is increased by 2 and the weight on d→ c
is decreased by 2, and the weights on other edges do not change. Moreover, c, d, and c�m/2�+1 are
ranked within top �m/2�+2 positions in the two votes. This observation (that we can ensure that for
any given alternative e, when we apply McGarvey’s trick, e is always ranked among top �m/2�+2
positions) will be useful in the proofs.



Theorem 3 When k is a part of input, it is NP-complete to compute MOVk and constructive (de-
structive) BRIBERY for maximin.

Proof of Theorem 3: We prove the theorem by a reduction from EXACT COVER BY 3-SETS
(X3C) [Garey and Johnson 1979]. In an X3C instance, we are given two sets A = {a1, . . . , aq}
(where q is a multiple of 3) and E = {E1, · · · , Et}, where for each E ∈ E , E ⊆ A and |E| = 3.
We are asked whether there exist q/3 elements E ′ = {Ej1 , . . . , Ejq/3} in E such that each element
in A appears in one and exactly one element in E ′. Given an X3C instance where w.l.o.g. q > 16,
we construct the following MOVk instance for maximin.

Alternatives:A ∪ {c, d}. Let k = q/3.
Profile: The profile is composed of two parts P1 and P2, where P1 encodes the X3C instance and

P2 is used to implement the McGarvey’s trick. P1 is composed of the following t votes: for each
j ≤ t, there is a vote Vj = [d � (A \ Ej) � c � Ej ]. P2 is the profile such that in the WMG of
P1 ∪ P2, we have the following edges.
• d→ c with weight 2q/3− 1.
• For every i ≤ q, d→ ai with weight 2q/3 + 3 and ai → c with weight 2q/3− 1.
Moreover, when applying McGarvey’s trick to obtain P2, we always ensure that c is ranked within

top �m/2�+ 2 = �q/2�+ 4 positions. Let P = P1 ∪ P2.
Since d is the Condorcet winner in P , d is the maximin winner. Suppose the X3C instance has

a solution, w.l.o.g. {E1, . . . , Eq/3}. Then, we change V1, . . . , Vq/3 to [c � Others], and in the
resulting profile, the maximin score of d is −1 (via c) and the maximin score of c is −1 (via any
alternative in A), which means that d is not the unique winner. Hence, the MoV is at most q/3.

If the MoV is at most q/3, then there is a way to change the outcome by changing q/3 votes. By
changing q/3 votes, the weights on each edge cannot be changed by more than 2q/3. Therefore, the
maximin score of alternatives inA is no more than−3 (via d), and the maximin score of d is at least
−1 (only possible via c), which means that only c can end up in a tie with d. For the maximin score
of c to be −1, the weights on the edges from A to c must be reduced to −1 or less. Because when
applying McGarvey’s trick, c is always ranked within top �q/2�+4 < q− 3 positions, if any of the
q/3 votes are in P2, then there must exist an alternative a ∈ A such that the weight of a → c is at
least 3. It follows that that q/3 votes correspond to an exact cover of A. This proves the theorem.

For constructive (respectively, destructive) BRIBERY we ask whether we can bribe q/3 voters to
make c win (respectively, to make d not the unique winner). �

Theorem 4 When k is a part of input, it is NP-complete to compute MOVk and constructive (de-
structive) BRIBERY for Copelandα (for all 0 ≤ α ≤ 1).

Proof of Theorem 4: The proof is similar to the proof of Theorem 3. The difference is that in the
MOVk instance the set of alternatives is A ∪ {c, d, e}, and in the WMG of P1 ∪ P2, we have the
following edges.
• d→ e, e→ c, c→ d, a1 → e with weight 2q/3 + 1.
• For every i ≤ q, there is an edge d→ ai with weight 2q/3+ 3 and an edge ai → c with weight

2q/3− 1.
• For every i ≤ q, d → ai with weight 2q/3 + 3 and ai → c with weight 2q/3 − 3; and for ai

there exits �q/2� − 1 incoming edges from other elements in A with weight 2q/3 + 3.
It follows that d is not the unique winner when the q/3 votes correspond to an exact cover of
A. For constructive (respectively, destructive) BRIBERY we ask whether we can bribe q/3 voters to
make c win (respectively, to make d not the unique winner). �

4. POLYNOMIAL-TIME ALGORITHMS

For simplicity, we present polynomial-time algorithms for destructive BRIBERY, which is equiva-
lent to MOV with unique winner. The algorithms can easily extend to general MOV problems. The
corresponding ways to change the winners can also be computed easily.



Theorem 5 Let r be a positional scoring rule. Algorithm 1 runs in polynomial time and computes
MOV for r.

The idea behind the algorithm is to check (for each k less than n and each “adversarial” alternative
c) whether k voters can change their votes to reduce the score difference between the current winner
d and c to 0. We note that c might not be a winner. If c’s score is as high as d’s, then d is not the
unique winner (and the winner can be an alternative different from c and d).

Algorithm 1: MoVScoring
Input: A position scoring rule r and a profile P of n votes.
Output: The margin of victory for r.

1 Let {d} = r(P ).
2 for any number k = 1→ n do
3 for any alternative c 	= d do
4 Rank the votes in P by the score of d minus the score of c in non-increasing order.
5 Choose the top k votes and change them to [c � Others � d].
6 if in the resulting profile d is not the winner then
7 Output that the margin of victory is k and terminate the algorithm.
8 end
9 end

10 end

Theorem 6 Algorithm 2 runs in polynomial time and computes MOV for Bucklin.

The idea behind the algorithm is to check (for each k less than n, each “adversarial” alternative c,
and each targeted position l ≤ �m/2� + 1) whether k voters can change their votes to make the
Bucklin score of c at most l while making the Bucklin score of the current winner at least l. We
only need to check l up until �m/2�+1 because the Bucklin score of the Bucklin winner is at most
�m/2�+ 1.

Algorithm 2: MoVBucklin
Input: A profile P of n votes.
Output: The margin of victory for Bucklin.

1 Let {d} = r(P ).
2 for any k = 1→ n and any l = 1→ �m/2�+ 1 do
3 for any alternative c 	= d do
4 For each vote in P , compute whether changing it to [c � Others � d] increases the

number of times c is ranked within top l positions and/or decreases the number of times
d is ranked within top l − 1 positions.

5 Compute whether k voters can make c ranked in top l positions in more than half of the
votes, while making d ranked in top l − 1 positions in less than half of the votes.

6 if there exist such votes then
7 Output that the margin of victory is k and terminate the algorithm.
8 end
9 end

10 end

Theorem 7 Algorithm 3 runs in polynomial time and computes MOV for plurality with runoff.



Given a profile, for every alternative e, we let Te denote the set of votes where e is ranked in the top
positions. Let d denote the current winner. For each k from 1 to n, the algorithm does the following
two checks in sequence:

— Check 1: We first check whether there is a way to convert k votes to make d not in the runoff. It
suffices to focus on converting k votes in Td. If there is a way to do so, then the margin of victory
is at most k, and we can skip Check 2 below.

— Check 2: Otherwise d must be in the runoff. Then, the algorithm checks that for each adversarial
c and the “threshold” of plurality scores l ≤ Plu(c) + k, whether k voters can change their votes
such that in the new profile, the following three conditions are satisfied.
(1) The plurality scores of c is at least l.
(2) The plurality score of any other alternative is no more than l.
(3) c beats d in their pairwise election.

For Check 2, we partition the votes as follows. For any alternative e, let Ae denote the set of votes
where e is ranked in the top position and where d � c; let Be denote the set of votes where e
is ranked in the top position and where c � d. In the algorithm, we try to first convert votes in
Ae to meet Condition (2) (the plurality score of e in the new profile is no more than l). Given a
profile, for any alternative e (e 	= d) and any l, we define tle = max{Plu(e) − l, 0}. That is, tle
is the least number of times that votes in Te must be changed to meet Condition (2). For every
k, every adversarial c, and every l such that l ≤ Plu(c) + k, the algorithm always makes sure that
Condition (2) is satisfied, and tries to increase the weight on the edge c→ d in the WMG as much as
possible. This is achieved by first trying to change votes in Ae to rank c in the top position, because
each of such changes increases the weight on c → d by 2. If all votes in Ae are used up, then we
have to change votes in Be to reduce the plurality score of e, but changing votes in Be does not
increase the weight on c → d. Let k′ = k −∑

e∈C\{c,d} t
l
e. If k′ ≥ 0, then we can change k′ votes

in Td to rank c in the top position. Because Check 1 failed, c and d enter the runoff. Finally, let Q
denote the resulting profile. We check whether c beats d in their pairwise election in the following
way.

DQ(c, d) = DP (c, d) + 2 · (k′ +
∑

e∈C\{c,d}
min{tle, |Ae|}) (1)

If DQ(c, d) ≥ 0, then the margin of victory is at most k. If both checks
fail for some specific k, then the margin of victory is more than k, and the al-
gorithm continues to check k + 1. Formally, we have the following algorithm.

Algorithm 3: MoVPluRunOff
Input: A profile P of n votes.
Output: The margin of victory for plurality with runoff.

1 Let {d} = r(P ).
2 Compute the partition Ae and Be for each alternative e.
3 for any k = 1→ n do
4 Check 1: Let c1, c2 denote the alternatives who have the highest plurality scores in C \ {d}.

If max{Plu(d)− k − Plu(c1), 0}+max{Plu(d)− k − Plu(c2), 0} ≤ k, then output
that the margin of victory is k and terminate the algorithm.

5 Check 2: for each c 	= d and each l ≤ Plu(c) + k do
6 Compute DQ(c, d) as defined in Equation (1).
7 if DQ(c, d) ≥ 0 then
8 Output that the margin of victory is k and terminate the algorithm.
9 end

10 end
11 end

Theorem 8 For any fixed number k, MOVk for Copeland is in P.



Theorem 9 For any fixed number k, MOVk for maximin is in P.

Both problems are solved by the following algorithm: for each adversarial alternative c, we enumer-
ate all subsets of k voters and check if we can change the winner by ranking c in the top position
and the current winner d in the bottom position.

Theorem 10 There exists a polynomial-time algorithm that computes MOV for approval.

The algorithm is very similar to Algorithm 1. We check for each adversarial c whether changing
k votes to {c} can make the current winner no longer a unique winner. We note that constructive
BRIBERY is NP-complete [Faliszewski et al. 2009] for approval.

5. APPROXIMATION ALGORITHMS

In this section, we first present approximation algorithms for Copeland and maximin. Then, we
study the relationship between MOV and destructive UCO. For simplicity of presentation, we assume
that the input profile has a unique winner.

Algorithm 4: AppMoVCopeland
Input: A profile P of n votes.
Output: The margin of victory for Copelandα.

1 Let {d} = r(P ), P ∗ = P , I = ∅, Q = ∅. W = [c∗ � Others � d]
2 Compute RM(d, c) for every c 	= d, and let c∗ = argminc RM(d, c).
3 for RM(d, c∗) iterations do
4 Let Cd = {c : DP∗∪Q(d, c) > 0}.
5 for �logm�+ 1 rounds do
6 Find a vote Vj ∈ P ∗ where d � c holds for at least half of alternatives c in Cd.
7 Cd ← Cd \ {c : d �Vj c}, P ∗ ← P ∗ \ {Vj}, Q← Q ∪ {W}, I ← I ∪ {j}.
8 end
9 Let C∗ = {c : DP∗∪Q(c, c

∗) > 0}.
10 for �logm�+ 1 rounds do
11 Find a vote Vj ∈ P ∗ where c � c∗ holds for at least half of alternatives c in C∗.
12 Cd ← Cd \ {c : c �Vj c∗}, P ∗ ← P ∗ \ {Vj}, Q← Q ∪ {W}, I ← I ∪ {j}.
13 end
14 end
15 return |I|.

5.1. Copeland

We first present a polynomial-time2(�logm�+1)-approximation algorithm for MOV for Copelandα.
The idea is the following. Let d denote the current winner whose Copeland score is denoted by
sC(P

NM , d). For any profile, any alternative c, and any number t, we let
s′t(PNM , c) = |{c′ : c′ 	= c,DP (c

′, c) < 2t}|+ α · |{c′ : c′ 	= c,DP (c
′, c) = 2t}|.

That is, s′t(P
NM , c) is the Copeland score of c if for every c′ 	= c, we increase the weight on

c → c′ in the WMG by 2t, where t can be negative. We will use this value as a lower bound on
MoV(PNM ), as it captures the effect of ranking c first instead of last in t votes. For every c 	= d,
we compute a relative margin RM(d, c) between d and c, defined as the minimum t such that
s′−t(P

NM , d) ≤ s′t(P
NM , c). Let c∗ be the alternative that has the smallest relative margin from d.

It follows that MoV(PNM ) is at least RM(d, c∗), because by changing t votes, the Copeland score
of d cannot be less than s′−t(P

NM , d) and the Copeland score of c cannot be more than s′t(P
NM , c).

Moreover, in the WGM the weight on any edge cannot be changed by more than 2t. Algorithm 4
finds 2(�logm� + 1) · RM(d, c∗) votes in RM(d, c∗) iterations, and then change all of them to
[c∗ � Others � d]. In each of the RM(d, c∗) iterations, we first find �logm� + 1 votes where for



each alternative c 	= d that loses to d in pairwise election, d � c in at least one of these votes.
Therefore, if we change these (�logm� + 1) votes to [c∗ � Others � d], then for each alternative
c that loses to d in pairwise election, the weight on d → c is reduced by at least 2. In each of the
RM(d, c∗) iterations, we find (�logm� + 1) votes to increase the weights on the outgoing edges
from c∗ to alternatives that beat c∗ in pairwise elections by 2.

Theorem 11 Algorithm 4 runs in polynomial time and computes a 2(�logm� + 1)-approximation
for MOV for Copelandα.

Proof of Theorem 11: It suffices to show that in each of the RM(d, c∗) iterations (Step 3), there
always exists a vote that “covers” at least half of the alternatives in Cd (Step 6) and a vote that
“covers” at least half of the alternatives in C∗ (Step 11). We recall that for each alternative c ∈ Cd,
DP∗∪Q(d, c) > 0 and c � d in all votes in Q. Therefore, d � c in at least half of the votes in
P ∗, which means that there exists a vote Vj ∈ P where d � c for at least half of alternatives
c ∈ Cd. Similarly, Step 11 always successfully finds a vote. When the algorithm returns, |I| ≤
2(�logm�+ 1) · RM(d, c∗) ≤ 2(�logm�+ 1) ·MoV(P ), which proves the theorem. �

We feel that Θ(logm) is a good approximation ratio in practice, because in most political elec-
tions, the number of alternatives is not very large.

5.2. Maximin

The idea behind the algorithm is the following. Changing one vote cannot change the max-
imin score of any alternative by more than 2. Therefore, given a profile P , let {d} =
Maximin(P ) and let c∗ denote the alternative that has the largest maximin score among all
alternatives different from d. It follows that the MoV is at least (SM (P, d) − SM (P, c∗))/4.
Let d′ denote an arbitrary alternative such that DP (d, d

′) = SM (P, d). Algorithm 5 finds
(SM (P, d) − SM (P, c∗))/2 votes where d � d′, and then change all of them to [c∗ �
Others � d]. In the new profile, the maximin score of d is no more than SM (P, c∗) and
the maximin score of c is at least SM (P, c∗), which means that d is not the unique winner.

Algorithm 5: AppMoVMaximin
Input: A profile P of n votes.
Output: The margin of victory for maximin.

1 Let {d} = r(P ), c∗ = argmaxc 
=d SM (P, c), d′ = argminc 
=dDP (d, c),
W = [c∗ � Others � d].

2 Let I denote the indices of (SM (P, d) − SM (P, c∗))/2 votes in P where d � d′.
3 return |I|.
Theorem 12 Algorithm 5 runs in polynomial time and computes a 2-approximation for MOV for
maximin.

5.3. Connection between MOV and Destructive UCO

In this section, we reveal a connection between the optimal solution to MOV and the optimal solution
to destructive unweighted coalition optimization problem (DUCO, see Definition 4) for the four
voting rules studied in this paper where MOV is hard to compute (i.e., STV, ranked pairs, maximin,
and Copeland). These bounds will tell us how to convert an approximation algorithm for DUCO to
an approximation algorithm for MOV w.r.t. the same rule, and vice versa.

We first show upper bounds for MOV in terms of solutions to DUCO.

Theorem 13 For any profile PNM ,
•MoV(PNM , STV) ≤ OPTDUCO(P

NM , STV);
•MoV(PNM ,maximin) ≤ OPTDUCO(P

NM ,maximin);
•MoV(PNM ,Copelandα) = O((logm) · OPTDUCO(P

NM ,Copelandα));•MoV(PNM ,RP) = O((logm) · OPTDUCO(P
NM ,RP)).



Proof of Theorem 13: Let {d} = r(PNM ), k = OPTDUCO(P
NM , r) and PM denote the manipu-

lators’ votes in the DUCO problem. Let P ∗ = PNM ∪ PM .
STV: W.l.o.g. the plurality score of d is more than k (otherwise we can easily make the plurality

score of d to be zero, which means that d is not the unique winner.) Let c be an arbitrary alternative
that is still in the election when d is eliminated in round T when we apply STV on P ∗. We choose
arbitrary k voters in PNM who rank d in their top positions, and change their votes to PM . Let
P ′ denote the profile obtained in this way. We next show that d is eliminated no later than round T
when we apply STV to P ′. Suppose for the sake of contradiction, d is eliminated later than round
T . Then, when we apply STV to P ′, the only changes in the first T − 1 rounds are that the plurality
score of c increases and the plurality score of d decreases. Since c remains in round T for P , in
each of the first T − 1 rounds for P ′, the alternative that drops out is the same as the alternative that
drops out in the same round for P . Therefore, d must drop out in the T th round for P ′, which is a
contradiction. Therefore, the MoV is no more than k.

maximin: The proof is similar to Algorithm 5. Let c∗ be an arbitrary alternative that minimizes
DP∗(d, c∗). We choose arbitrary k votes in PNM where d � c∗ and change them to PM .

Copeland: The proof is similar to Algorithm 4. Let c∗ denote the alternative that has the largest
relative margin from d, that is, RM(d, c∗) is maximized. Because a single manipulator’s vote can-
not reduce the relative margin between any pair of alternatives by more than one, we have k ≥
RM(d, c∗). We recall that Algorithm 4 outputs a MoV no more than 2(�logm�+ 1) · RM(d, c∗) ≤
2(�logm�+ 1)k. This proves the upper bound.

Ranked pairs: Let �′ denote the order output by ranked pairs for P ∗. Let c∗ denote the alterna-
tive ranked on top of �′. We note that changing one vote will change the weight on any edge by no
more than 2. Therefore, changing one manipulator’s vote cannot change the weight difference be-
tween any pair of edges by more than 4. We first show the following claim, whose proof is omitted
and can be found on the author’s homepage.

Claim 1 If in the WMG of PNM the weights on all edges a→ b incompatible with �′ are reduced
by at least min(4k,max(DPNM (a, b), 0)), then ranked pairs will output�′ in the resulting WMG.

We are now ready to prove the upper bound for ranked pairs. The idea is similar to Algorithm 4
for Copeland. We find Θ(k logm) votes in PNM and change them to �′. These votes are found
in a way such that each edge a → b that is not compatible with �′ is in at least k such votes,
unless its weight has already become zero. We note that when the weight on a → b is larger than
zero, a � b in at least half of the votes in PNM . Therefore, we can apply the following greedy
algorithm to find the Θ(k logm) votes. The algorithm has 2k iterations, each of which contains
�log(m2)�+ 1 = �2 logm�+ 1 rounds. In each round, we first compute the remaining edges (that
have positive weights and are not compatible with �′), and then we find a vote that covers at least
half of them. After �2 logm� + 1 rounds, by changing the votes to �′, the weight on each edge
that is not compatible with �′ either is reduced by 2, or becomes 0 or lower. Therefore, after 2k
iterations, we can apply Claim 1, concluding that ranked pairs will output�′, where d is not ranked
in the top. This proves the upper bound. �

Obviously the upper bounds for STV and maximin shown in Theorem 13 are tight. The next
proposition shows that the Θ(logm) upper bound for Copeland is almost asymptotically tight,
whose proof can be found on the author’s homepage.

Proposition 1 For any α 	= 1 and any ε > 0, there exists a profile PNM such that
MoV(PNM ,Copelandα) ≥ (logm)1−ε · OPTDUCO(P

NM ,Copelandα).

We next give a general lower bound for voting rules that satisfy some canceling-out condition,
defined as follows.

Definition 5 For L ∈ N, a voting rule r satisfies L-canceling-out if for any vote V , there exists a
profile Q(V ) composed of no more than L − 1 votes, such that for any profile P , r(P ) = r(P ∪
{V } ∪Q(V )). That is, the votes in Q(V ) cancels out V .



Proposition 2 Any WMG-based rule (including Borda) satisfy 2-canceling-out. Any positional
scoring rule satisfies m-canceling-out. STV satisfies (m!)-canceling-out.

Proof of Proposition 2: For any V , WMG(V,Rev(V )) does not have any edge with positive
weight. Therefore, any WMG-based rule satisfies 2-canceling-out, where Q(V ) = Rev(V ). Let
M denote a cyclic permutation among alternatives. That is, M : c1 → c2 → · · · → cm → c1.
Then, for any positional scoring rule r, any vote V , and any profile P , we have r(P ) = r(P ∪
{V,M(V ), . . . ,Mm−1(V )}), which means that it satisfies m-canceling-out. Finally, it is not hard
to verify that for any profile P , STV(P ∪ L(C)) = STV(P ), which means that STV satisfies (m!)-
canceling-out. �

Proposition 3 For any voting rule r that satisfies L-canceling-out and any profile PNM ,
OPTDUCO(P

NM , r)/L ≤ MoV(PNM , r)

Proof of Proposition 3: Let {d} = r(PNM ), k = MoV(PNM , r). k votes P ⊆ PNM are changed
to P ′ such that d is not the unique winner. For DUCO, let the PM denote the following Lk votes
for the manipulators. There are k votes for P ′, and for each V ∈ P , there are L − 1 votes Q(V ).
It follows that r((PNM \ P ) ∪ P ′) = r(PNM ∪ PM ), which means that OPTDUCO(P

NM , r) ≤
L ·MoV(PNM , r). �

We can use these bounds to convert approximation algorithms for DUCO to approximation algo-
rithms for MOV, and vice versa. The following corollary follows from Proposition 2, Proposition 3,
and Theorem 13.

Corollary 2 For STV, a polynomial-time β-approximation algorithm for DUCO (respectively, MOV)
can be used to compute an (m!β)-approximation for MOV (respectively, DUCO) in polynomial time.
For ranked pairs, a polynomial-time β-approximation algorithm for DUCO (respectively, MOV) can
be used to compute anΘ(β logm)-approximation for MOV (respectively, DUCO) in polynomial time.

As we have mentioned, in political elections usually m is not large. Therefore, the (m!β)-
approximation ratio may not be as unacceptable as it seems to be.

For Copeland and maximin, it is known that DUCO is in P [Conitzer et al. 2007], which means
that there exist polynomial-time 1-approximation algorithms. However, a similar corollary does not
yield a better bound than Algorithm 4 and Algorithm 5.

6. TYPICALLY HOW LARGE IS THE MARGIN OF VICTORY?

Let us start with a simple example for the majority rule for two alternatives {a, b}.
Example 1 Suppose there are n voters, whose votes are drawn i.i.d. from a distribution π over
all possible votes (i.e., voting for a with probability π(a) or voting for b with probability π(b)).
Let Ya (respectively, Yb) denote random variable that represents the total number of voters for a
(respectively, for b). The margin of victory is thus a random variable (Ya−Yb)/2. Let X denote the
random variable that takes 1 with probability π(a) and takes −1 with probability π(b). It follows
that (Ya − Yb)/2 = (X + · · ·+X︸ ︷︷ ︸

n

)/2. By the Central Limit Theorem, (Ya − Yb)/2 converges to a

normal distribution with mean n ·E(X)/2 and variance n · Var(X)/2.
We are interested in usually how large is (Xa − Xb)/2. Not surprisingly, the answer depends

on the distribution π. If π(a) = π(b) = 1/2, then the mean of (Xa − Xb)/2 is zero, and the
probability that it is a few standard deviations away from the mean is small. For example, the
probability that its absolute value is larger than 4

√
n · Var(X)/2 is less than 0.01, which means

that with 99% probability the margin of victory is no more than 4
√
n · Var(X)/2. On the other

hand, if π(a) 	= π(b), w.l.o.g. π(a) > π(b), then the mean of (Xa −Xb)/2 is n(π(a) − π(b))/2,
which means that with high probability the margin of victory is very close to n(π(a)− π(b))/2.



We see in the above example that for the majority rule, depending on the distribution π over possible
votes, the margin of victory is either Θ(

√
n) or Θ(n), when we fix the number of alternatives and

let the number of voters go to infinity. In this section, we prove this dichotomy theorem for a large
class of generalized scoring rules, defined in the next subsection.

6.1. Generalized Scoring Rules

First, we recall the definition of generalized scoring rules (GSRs) [Xia and Conitzer 2008]. For any
K ∈ N, let OK = {o1, . . . , oK}. A total preorder (preorder for short) is a reflexive, transitive,
and total relation. Let Pre(OK) denote the set of all preorders over OK . For any �p ∈ RK , we let
Ord(�p) denote the preorder � over OK where ok1 � ok2 if and only if pk1 ≥ pk2 . That is, the k1th
component of �p is at least as large as the k2th component of �p. For any preorder �, if o � o′ and
o′ � o, then we write o =� o′. Each preorder � naturally induces a (partial) strict order �, where
o � o′ if and only if o � o′ and o′ � o. A preorder �′ is a refinement of another preorder �, if �′
extends �. That is, �⊆�′. We note that � is a refinement of itself. When ���′, we say that �′ is
a strict refinement of �.

Definition 6 (Generalized scoring rules [Xia and Conitzer 2008]) Let K ∈ N, f : L(C) → RK

and g : Pre(OK) → (2C \ ∅). f and g determine a generalized scoring rule (GSR) GS(f, g)
as follows. For any profile P = (V1, . . . , Vn) ∈ L(C)n, let f(P ) =

∑n
i=1 f(Vi), and let

GS(f, g)(P ) = g(Ord(f(P ))). We say that GS(f, g) is of order K .

For any V ∈ L(C), f(V ) is called a generalized score vector, f(P ) is called a total generalized
score vector, and Ord(f(P )) is called the induced preorder of P . A generalized scoring rule is
non-redundant, if for any pair k1, k2 ≤ K with k1 	= k2, there exists a vote V ∈ L(C) such
that (f(V ))k1 	= (f(V ))k2 . All voting rules studied in this paper are generalized scoring rules,
which admit a natural axiomatic characterization [Xia and Conitzer 2009]. In this paper, we assume
w.l.o.g. that all generalized scoring rules are non-redundant. Our results can be naturally extended
to redundant generalized scoring rules.

For any pair of preorders �1, �2, we let (�1 ⊕ �2) denote the preorder � where o � o′ if and
only if (1) o �1 o′ or (2) o′ �1 o and o′ �2 o. That is, (�1 ⊕ �2) is the preorder where�2 is used to
break ties in �1. Given a generalized scoring rule r = GS(f, g), let H(f) = {Ord(f(P1)−f(P2)) :
P1, P2 ∈ L(C)∗, |P1| = |P2|}. For any preorder �, we let Nbr(�) denote the set of all linear orders
that are (� ⊕ �′) for some �′∈ H(f). We now define continuous generalized scoring rules.

Definition 7 (Continuous generalized scoring rules) A voting rule r is a continuous generalized
scoring rule, if there exist f, g such that (1) r = GS(f, g), and (2) for every profile P the following
condition holds. If for all �∈ Nbr(Ord(f(P ))), g(�) is the same, then for any refinement �′ of
Ord(f(P )), g(�′) is also the same (as Ord(f(P ))).

We note that continuity is a property for a GSR w.r.t. a specific (f, g) pair. This is because multiple
(f, g) pairs may correspond to the same voting rule (meaning that for each profile, these GS(f, g)’s
select the same winner), but it is possible that GS(f, g) is not continuous for some of these (f, g)
pairs. In the above definition, Nbr(�) represents the set of profiles “around” P . Nbr(�) consists of
all profiles whose induced preorders over OK are linear orders, and are obtained from Ord(f(P ))
by using preorders in H(f) to break ties. We require that all preorders in Nbr(Ord(f(P ))) are linear
orders for a technical reason, which will be clear in the proof of the dichotomy theorem. Later we
will show that Nbr(Ord(f(P ))) is always non-empty, and all voting rules studied in this paper are
continuous generalized scoring rules. We do not know any commonly studied non-continuous GSR.

6.2. The Dichotomy Theorem

Theorem 14 Let r = GS(f, g) be a continuous generalized scoring rule and let π be a distribution
over L(C) such that for every V ∈ L(C), π(V ) > 0. Suppose we fix π and the number of alterna-
tives, generate n votes i.i.d. according to π, and let Pn denote the profile. Then, one (and exactly
one) of the following two observations holds.



(1) For any ε, there exists β > 0 such that limn→∞ Pr( 1β
√
n ≤ MoV(Pn) ≤ β

√
n) ≥ 1− ε.

(2) There exists β > 0 such that limn→∞ Pr(MoV(Pn) ≥ βn) = 1.

In Theorem 14, Observation (1) states that with high probability (that can be arbitrarily close to 1),
the margin of victory is Θ(

√
n). Following the intuition presented in Example 1, this happens when

all alternatives are “tied”. However, this intuition only works at a high level—the notion of being
tied largely depends on the representation of f and g, which is not clear for voting rules beyond
positional scoring rules. If Observation (2) holds, then the margin of victory is Θ(n) with high
probability, because the margin of victory is always no more than n.
Proof of Theorem 14: We first show that for any generalized scoring rule, if we fix the number
of alternatives and the distribution π, and let the number of votes go to infinity, then the probability
that the margin of victory is ω(

√
n) is arbitrarily close to 1.

Lemma 1 For any generalized scoring rule and any ε, there exists β > 1 such that
limn→∞ Pr(MoV(Pn) ≥ 1

β

√
n) ≥ 1− ε.

Lemma 1 follows after the following claim, which is proved by the Central Limit Theorem. Let
Pπ =

∑
V ∈L(C) π(V ) · V . The induced preorder of f(Pπ) overOK is denoted by �π.

Claim 2 For any generalized scoring rule, fix m and π, let Pn denote the profile of n votes gener-
ated i.i.d. from π, and let n go to infinity. For any ε, there exists β > 1 and N ∈ N such that when
n > N , with probability at least 1− ε all following observations hold.
• For any i, j with oi =�π oj , 1

β

√
n ≤ |(f(Pn))i − (f(Pn))j | ≤ β

√
n.

• For any i, j with oi�πoj , 1
β

√
n ≤ |(f(Pn))i − (f(Pn))j − n[(f(Pπ))j − (f(Pπ))i]| ≤ β

√
n.

The idea for the rest of the proof is the following. By Claim 2, with high probability f(Pn)/n
is approximately f(Pπ). Therefore, with high probability if we only change o(n) votes, then we
cannot change the order between any pair of o, o′ ∈ OK where o �π o′. It follows that changing
no more than o(n) votes only plays the role of a tie-breaker to obtain a refinement of �π. If we
are allowed to change Θ(

√
n) votes, then all linear orders in Nbr(�π) can be obtained. Then, the

continuity of r guarantees that to decide whether changing Θ(
√
n) votes can change the winners, it

suffices to check whether the set of winners is the same for all linear orders in Nbr(�π). Formally,
we prove the following claim.

Claim 3 If there exist �1,�2∈ Nbr(�π) such that g(�1) 	= g(�2), then Observation (1) holds;
otherwise Observation (2) holds.

Proof of Claim 3: Suppose there exist �1,�2∈ Nbr(�π) such that g(�1) 	= g(�2). We first show
that for any ε > 0, there exists β > 0 such that the probability that changing no more than β

√
n

votes can change the order to �1 is larger than 1 − ε/2. Let Tmin denote the minimum number of
votes that are sufficient to induce any order in H(f). That is,

Tmin = argminT {∀ �∈ H(f), ∃P 1, P 2 s.t. |P 1| = |P 2| ≤ T,�= Ord(f(P 1)− f(P 2))}
Because |H(f)| is finite, Tmin is also finite. Let �1= (�π ⊕ �′), where �′∈ H(f) such that

�′= Ord(f(P 1)− f(P 2)) with |P 1| = |P 2| ≤ Tmin. We partition {{k1, k2} : k1 	= k2} into two
setsK1∪K2. {k1, k2} ∈ K1 if and only if (f(Pπ))k1 = (f(Pπ))k2 , that is, ok1 =�π ok2 . Otherwise
{k1, k2} ∈ K2. For all {k1, k2} ∈ K1, E[(f(Pn))k1 − (f(Pn))k2 ] = 0. For all {k1, k2} ∈ K1,
|E[(f(Pn))k1 − (f(Pn))k2 ]| = Θ(n).

Because �1= (�π ⊕ �′) is a linear order, for any pair {k1, k2} ∈ K1, either ok1 �′ ok2

or ok2 �′ ok1 . Similar to the proof of Lemma 1, by the Central Limit Theorem, for each pair
{k1, k2} ∈ K1, there exist N(k1,k2) and β(k1,k2) such that for any n ≥ N(k1,k2), the probability for
|(f(Pn))k1 − (f(Pn))k2 | to be larger than β(k1,k2)

√
n|(f(P 1)− f(P 2))k1 − (f(P 1)− f(P 2))k2 |

is no more than ε/(4m2). Then, we let β1 = max{β(k1,k2)}, and we choose N1 that satisfies the
following conditions.

(1) N1 is larger than all N(k1,k2).



(2) For any n ≥ N1 and any {k1, k2} ∈ K2, the probability for β
√
n|(f(P 1) − f(P 2))k1 −

(f(P 1) − f(P 2))k2 | to be larger than |(f(Pn))k1 − (f(Pn))k2 | is no more than ε/(4m2). This
follows from the Central Limit Theorem and |E[(f(Pn))k1 − (f(Pn))k2 ]| = Θ(n).

(3) For any n ≥ N1 and any L ∈ L(C), the probability for the number of L-votes in Pn to be
smaller than β1Tmin

√
n is smaller than ε/(4m!). This follows from the assumption that π takes

positive probability on every L ∈ L(X ), and again, by the Central Limit Theorem, with high prob-
ability the number of L-votes in Pn is Θ(n), which is asymptotically larger than Θ(

√
n).

Condition (1) ensures that with high probability, changing no more than β1Tmin
√
n votes (chang-

ing β1
√
n copies of P 2 to β1

√
n copies of P 1) can break ties in �π as in �′. Condition (2) ensures

that with high probability changing no more than β1Tmin
√
n votes does not change any strict order

in �π. Condition (3) ensures that with high probability Pn contains β1
√
n copies of P 2 for us to

change. Therefore, when n ≥ N1, with probability larger than 1− ε/2 we can change no more than
β1Tmin

√
n votes to change the order to �1.

Similarly, there exist β2 and N2 such that when n ≥ N2, with probability larger than
1 − ε/2 we can change no more than β2Tmin

√
n votes to change the order to �2. We let

β = max{β1Tmin, β2Tmin} and N = max{N1, N2}. It follows that for any n ≥ N , with proba-
bility larger than 1− ε we can change no more than β

√
n votes to change the order to �1 and mean-

while, we can change no more than β
√
n votes to change the order to �2. Because g(�1) 	= g(�2),

one of them must be different from r(Pn), which means that with probability that is at least 1 − ε,
the margin of victory is no more than β

√
n.

We now show that if for all �1,�2∈ Nbr(�π), g(�1) = g(�2), then Observation (2) holds.
Let dmin denote the minimum positive difference between the k1th component of f(Pπ) and k2th
component of f(Pπ) for all pairs (k1, k2). Because the mean of f(Pn) is nf(Pπ), by the Central
Limit Theorem, the probability for the following condition to hold goes to 1 as n goes to infinity:
The difference between any pair of components of f(Pn) is either 0 or larger than ndmin/2. Let
dmax denote the largest component of f(L) for all L ∈ L(X ). Let β = dmin

8dmax
. It follows that by

changing any βn votes, the difference between any pair of components in the total generalized score
vector cannot be changed by more than 4βndmax = ndmin/2. Therefore, with high probability (that
goes to 1), changing any βn votes are only tie-breakers for �π. Because r is continuous and for all
�1,�2∈ Nbr(�π), g(�1) = g(�2), no matter how ties in �π are broken, the winner is always
g(�1). This completes the proof. �

The theorem follows directly after Claim 3. �
Finally, all voting rules studied in this paper are continuous generalized scoring rules, which

means that Theorem 14 applies to these rules.
Theorem 15 All positional scoring rules, maximin, Coepalndα, ranked pairs, plurality with runoff,
Bucklin, STV, and approval are continuous generalized scoring rules.

7. SUMMARY AND FUTURE WORK
In this paper, we investigate the computational complexity and (in)approximability of computing the
margin of victory for various commonly studied voting rules. We also prove a dichotomy theorem
on the margin of victory when the votes are drawn i.i.d. Most of our results are quite positive,
suggesting that margin of victory can be efficiently computed or approximated.

For future work, we plan to continue working on designing practical approximation or random-
ization algorithms to compute the margin of victory for STV and ranked pairs. It seems that our
dichotomy theorem can extend to other types of strategic behavior, e.g., control by adding and con-
trol by deleting voters [Bartholdi et al. 1992]. More importantly, how to extend risk-limiting audit
methods beyond plurality is an important topic for future research.
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