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Abstract
Recent work has shown that the quality of work
produced in a crowdsourcing working session can
be influenced by the presence of performance-
contingent financial incentives, such as bonuses for
exceptional performance, in the session. We take
an algorithmic approach to decide when to offer
bonuses in a working session to improve the over-
all utility that a requester derives from the ses-
sion. Specifically, we propose and train an input-
output hidden Markov model to learn the impact of
bonuses on work quality and then use this model
to dynamically decide whether to offer a bonus on
each task in a working session to maximize a re-
quester’s utility. Experiments on Amazon Mechan-
ical Turk show that our approach leads to higher
utility for the requester than fixed and random
bonus schemes do. Simulations on synthesized
data sets further demonstrate the robustness of our
approach against different worker population and
worker behavior in improving requester utility.

1 Introduction
Recent advances in crowdsourcing present great potentials in
harnessing the dispersed crowd intelligence for various pur-
poses, such as data collection [Wah et al., 2011], scientific
discovery [Khatib et al., 2011] and disaster relief [Zook et
al., 2010]. A crucial factor that affects the success of a
crowdsourcing attempt is the incentive design. Many domain-
specific crowdsourcing systems are designed smartly to en-
gage participants with their intrinsic motivations such as
enjoyment in game playing and curiosity for new knowl-
edge [Von Ahn, 2006; Savage, 2012]. However, on most
general crowdsourcing platforms such as Amazon Mechan-
ical Turk (MTurk), the primary type of incentive remains to
be extrinsic motivation, that is, crowd workers complete tasks
in exchange for monetary compensations.

Many studies have been conducted to understand the ef-
fects of financial incentives in crowdsourcing settings. Ini-
tial exploration suggested that financial incentives affect only
the quantity of tasks that workers complete but not the work
quality [Mason and Watts, 2009]. However, recent exper-
iments showed that when a worker’s reward is dependent

on her performance in the task, financial incentives can in-
fluence the quality of work. For example, Harris [2011]

found that adding performance-contingent bonus on top of
the performance-independent base payment in each task leads
to higher work quality and Ho et al. [2015] further identified
that performance based payment can improve work quality
when the task is “effort-responsive”, that is, workers can pro-
duce higher quality work by exerting more efforts in the task.
Moreover, it was also observed in previous studies that chang-
ing the magnitude of performance-contingent bonus in a task
sequence leads to fluctuating work quality [Yin et al., 2013a;
2013b].

While all such evidence suggests that performance-
contingent rewards can affect the quality of crowd work, it
is not necessarily always beneficial to provide such rewards
in a crowdsourcing working session (i.e. a sequence of tasks)
as the potentially improved quality comes with an increase
in cost. Thus, a key challenge for a crowdsourcing system
designer (i.e. requester) to address is whether and when to
offer such rewards in a working session to maximize the over-
all utility he derives from the session. Currently, a common
practice among requesters is to follow a fixed or a random
scheme to offer a performance-contingent bonus on none of
the tasks, all of the tasks or a number of randomly selected
tasks in a working session, and each worker is awarded in the
same way. Can we improve requester utility by dynamically
adjusting the placement of bonuses in a working session?

We provide an initial answer to this question by presenting
an algorithmic approach to control bonuses in crowdsourcing
working sessions based on a probabilistic model. In partic-
ular, our algorithmic approach helps a requester to dynami-
cally decide for each task in a working session, whether or
not he should offer an extra performance-contingent bonus to
a worker given his observation on the worker’s past perfor-
mance. We make the following contributions:

• We propose to train an input-output hidden Markov model
(IOHMM) to characterize the impact of performance-
contingent bonuses on work quality in a working session.

• We augment the learned IOHMM with a requester’s util-
ity function and turn the bonus placement problem into a
problem of utility maximization under uncertainty. Three
heuristic algorithms are provided to solve for a utility-
maximizing, dynamic policy of bonus placement.
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• We design and conduct a randomized experiment on
Amazon Mechanical Turk (MTurk) to evaluate our ap-
proach of dynamic bonus placement against three other
baseline bonus schemes. Our approach improves the re-
quester utility by as much as 27.22% beyond what is
achieved by the best-performing baseline bonus scheme.
To the best of our knowledge, this is the first time
that the effectiveness of algorithmically-controlled bonus
schemes is shown with real crowd workers.

• We further validate the robustness of our approach
through simulations on two synthesized data sets that
are generated according to two different worker behav-
ior models respectively. Simulation results show that our
approach consistently leads to improved requester utility
for both models of worker behavior and different compo-
sitions of worker population.

1.1 Related Work
The lack of quality assurance hence the potentially low re-
quester utility is a big concern in crowdsourcing. To tackle
this problem, researchers have proposed different solutions
from various aspects. For example, to boost the accuracy of
labeling tasks based on redundant annotations, a large number
of algorithms are designed to infer task difficulty, worker reli-
ability and the underlying true labels simultaneously [White-
hill et al., 2009; Raykar et al., 2009]. Researchers also take
real-world constraints such as the limited budget into consid-
eration and investigate how to optimally allocate the budget
among tasks and workers to elicit high quality labels [Chen
et al., 2013]. In addition, machine learning and decision-
theoretic techniques have been adopted to guarantee the re-
quester’s utility by dynamically controlling the crowdsourc-
ing process through decisions on worker recruitment [Kamar
et al., 2012], task assignment [Dai et al., 2010] and workflow
switches [Lin et al., 2012].

One common assumption of these previous studies is that
worker performance is decided by the worker’s inherent ca-
pability level, which is independent of her working environ-
ment, such as how much she gets paid in each of the com-
pleted tasks. The empirical observations that we have men-
tioned before, however, indicate that worker performance can
be dependent on the provided incentives in tasks, and thus
lead to an interesting question of how to reward workers in
an optimal way such that the requester utility is maximized.
To this end, Wang and Ipeirotis [2013] proposed a “payment
with reimbursement” scheme based on the conjectures that
the fluctuation of payments in task sequences is undesirable
as workers may interpret a decrease of financial incentives as
a punishment. Ho et al. [2014] used the classical principal-
agent model to characterize how a worker makes strategic
decisions when provided with a performance-contingent pay-
ment and studied how to adaptively adjust such payment over
time. Different from these studies, in this paper, we propose
to first learn a model from the data to empirically character-
ize worker behavior in reaction to financial incentives, and
then use this model to make decisions on the placement of
bonuses. Huang et al. [2010] adopted a similar approach to
optimize crowdsourcing task environment. However, they fo-
cused on design variables such as how many HITs (i.e. Hu-

man Intelligence Tasks on MTurk) to post and how many
tasks to be bundled in one HIT, and followed a fixed rate of
pay for each task in the HIT.

Finally, our work is different from several pricing mech-
anisms proposed to elicit more (or faster) work from ratio-
nal workers given a fixed budget [Singer and Mittal, 2013;
Singla and Krause, 2013; Gao and Parameswaran, 2014] —
our goal is to elicit high-quality work and we have no assump-
tion on the rationality of workers.

2 An Algorithmic Approach
Our algorithmic approach for bonus control in a crowd-
sourcing working session can be decomposed into two steps:
First, we collect a training data set and learn an input-output
hidden Markov model to characterize how the presence of
performance-contingent bonuses affect the work quality in
a working session; second, we incorporate utilities with the
learned IOHMM and dynamically determine whether to place
a bonus on each task for a new incoming worker by solving a
utility maximization problem.

2.1 Characterizing the Impact of Bonuses with an
IOHMM

Suppose we have collected a data set on worker behavior in a
working session, which is a sequence of tasks that a worker
completes without interruption. For each task in the session,
we record the provided bonus level and the worker perfor-
mance in it. To enable the algorithmic bonus control for fu-
ture workers, we first aim at leveraging this training data set
to quantitatively model the impact of bonuses on work quality
in a working session.

A natural model choice is the input-output hidden Markov
model, which is a generative probabilistic model for sequen-
tial data. In our context, consider that time step t in IOHMM
corresponds to the t-th task in a session. For each t, there is
an input at and an output xt, which represents the level of
bonus and the observed work quality in task t, respectively.
Furthermore, there is a hidden state zt, which comes from one
of the K states and can capture the unobserved properties of a
crowd worker in the t-th task. Worker behavior is controlled
by the transition and emission probabilities: Ptr(zt|zt−1, at)
gives a worker’s chance of transiting to state zt in the t-th task
conditioned on that her state in the (t− 1)-th task is zt−1 and
the input for the t-th task is at, and Pe(xt|zt, at) represents
how likely a worker will produce output xt in the t-th task
given her current state zt and input at.

For simplicity, we illustrate our algorithmic approach in the
rest of the paper assuming that the work quality for a task is
binary (i.e. incorrect or correct, low-quality or high-quality,
etc.) and the requester can choose one of two bonus levels in a
task — either place a bonus of fixed magnitude or not provide
any bonus at all. Suppose the number of tasks bundled in a
working session is T . The IOHMM model details for this
simplified problem are as follows:

• Inputs: at ∈ {0, 1}, t = 1, 2, · · · , T , with 0 representing
bonus is not placed on the task.

• Outputs: xt ∈ {0, 1}, t = 1, 2, · · · , T , with 0 represent-
ing an incorrect (or low-quality) answer for the task.
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• Hidden States: zt ∈ {1, 2, · · · ,K}, t = 1, 2, · · · , T .

• Transition probability: Ptr(zt|zt−1, at); e.g.,
Ptr(k

′|k, 0) gives the probability of a worker tran-
siting from hidden state k in task t − 1 to hidden state k′
in task t given that there is no extra bonus in task t.

• Emission probability: Pe(xt|zt, at); e.g., Pe(1|k, 0)
gives the probability of a worker submitting a correct (or
high-quality) answer to task t when the current state is k
and no extra bonus is offered on task t.

With the training data set that is collected from a group of
workers, we can learn the IOHMM for this worker popula-
tion through an expectation-maximization algorithm, which
is similar to the Baum-Welch algorithm for learning hidden
Markov models [Bengio and Frasconi, 1996].

2.2 Decision Making with the learned IOHMM
Given the learned IOHMM M to describe the impact of
bonuses on work quality in a working session, the next ques-
tion is to decide for a new incoming worker whether or not the
requester places a bonus on each task in her working session.

To quantify the requester’s tradeoff between work quality
and cost, we assume that the requester obtains a utility of wh

(or wl) when he gets a high-quality (or low-quality) answer,
while the economic cost for paying a performance-contingent
bonus is c. We further assume that the requester has a quasi-
linear utility function U = whNHQ +wlNLQ − cNB , where
NHQ (or NLQ) and NB represents the number of high-
quality (or low-quality) answers elicited and the number of
times a performance-contingent bonus is incurred, respec-
tively. As a requester can continuously make observations on
worker performance over time, we are interested in dynami-
cally controlling the placement of bonus in a working session
in an online fashion. That is, we keep making decisions on
whether the requester should provide a bonus to a worker in
her next task given the history of inputs and outputs in all
tasks that the worker has completed so far in the session.

In particular, for a worker who has completed tc tasks,
we estimate the distribution of her current state as b(tc) (i.e.
the “state belief”) based on M. We define EUmax(b, a, l)
as the maximum expected utility a requester can obtain in
the next l tasks given that the current state belief is b =
(b(1), · · · , b(K)), the input level for the next task is a,
and input levels for later tasks follow the optimal policy.
Thus, the optimal input level for the next task is atc+1 =
argmaxa∈{0,1} EUmax(b(tc), a, T − tc) — when atc+1 = 1,

we offer a bonus on the next task; otherwise, we don’t.
EUmax(b, a, l) can be calculated recursively. Specifi-

cally, we denote R(b, a) =
∑K

i=1 b(i)(
∑K

j=1 Ptr(j|i, a) ·
(Pe(0|j, a)wl + Pe(1|j, a)(wh − I(a = 1)c))) as the re-
quester’s expected utility in the next task when the current
state belief is b and the next input is a. When there is only
one task left in the session, that is, l = 1, EUmax(b, a, l) =
R(b, a); otherwise, we have:

EUmax(b, a, l) = R(b, a)+

∑
x∈{0,1}

(
K∑
i=1

b(i)
K∑
j=1

Ptr(j|i, a)Pe(x|j, a))V (b
′
a,x, l − 1)

where V (b, l) = maxa∈{0,1} EUmax(b, a, l) and b
′
a,x is the

updated state belief if the input for the next task is a and the
observed output is x, which can be computed as follows:

b
′
a,x(j) ∝

K∑
i=1

b(i)Ptr(j|i, a)Pe(x|j, a)

And finally, in preparation for the decision making in fu-
ture tasks, we update the belief state after implementing the
input level atc+1 and observing the output level xtc+1, that

is, b(tc + 1) = b
′
atc+1,xtc+1

.

Heuristic Solutions
The decision making problem above is essentially equivalent
to solve a finite-horizon partially observable Markov deci-
sion process (POMDP), with “action” corresponding to “in-
put” in M and the reward of taking action a in state k being

R(k, a) =
∑K

i=1 Ptr(i|k, a)(Pe(0|i, a)wl + Pe(1|i, a)(wh −
I(a = 1)c)). In practice, finding exact solutions for
POMDPs are often computationally intractable [Papadim-
itriou and Tsitsiklis, 1987]. Therefore, we list a few heuristic
algorithms to solve the problem approximately:

Algorithm 1 (n-step look-ahead) When making decisions
for whether to place an extra bonus on the next
task, we look ahead for at most n tasks. That is,
atc+1 = argmaxa∈{0,1} EUmax(b(tc), a, n

′), where n′ =

min(n, T−tc). A similar strategy is used in [Dai et al., 2010]

for optimal control of crowdsourcing workflows.

Note that if a worker’s hidden state ztc after completing tc
tasks as well as her states in the future tasks can be accurately
identified, the finite horizon POMDP degenerates into a finite
horizon MDP, for which we can calculate the Q-functions and
optimal policies efficiently. We thus consider two algorithms
that leverage this advantage:

Algorithm 2 (MLS-MDP) We infer the most likely se-
quence (MLS) of hidden states up to the current task (i.e.

Ẑtc
1 = (ẑ1, · · · , ẑtc)) using the Viterbi algorithm [Viterbi,

1967] and estimate ztc as ẑtc . The input level for the next
task atc+1 is then set to be πT−tc(ztc), that is, the optimal
MDP policy on state ztc when the length of horizon is T − tc.

Algorithm 3 (Q-MDP) We first calculate QT−tc(k, a) for
the underlying MDP, which is the Q-function value for tak-
ing action a on state k with T − tc steps to go. Then,

atc+1 = argmaxa∈{0,1}
∑K

k=1 pkQT−tc(k, a), with pk be-

ing the k-th element of b(tc) [Littman et al., 1995].

3 MTurk Experiment
To examine whether our algorithmic approach of placing
bonuses can effectively improve requester utility in a real
crowdsourcing working session, we design and conduct an
online experiment on MTurk.

3.1 Task
We use a word puzzle game as our task in the experiment: In
each task, a worker will see a 12×12 board filled with capital
letters and a “target” word on the screen. This target word can
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be placed on the board horizontally, vertically or diagonally
and for multiple times. The worker is asked to identify as
many appearance of the target word on the board as possible
and specify the location of each identified appearance. Each
worker completes 9 tasks in a working session (i.e. one HIT).
A similar task is previously used by Mason and Watts [2009]

to study the effects of financial incentives on the performance
of crowds.

A worker earns a performance-independent reward of 5
cents in each task, that is, the base payment for the HIT is
45 cents. In addition, we also inform the worker that some
tasks in the session are “bonus tasks” (specified with a bonus
icon), in which she may earn an extra bonus of 5 cents if she
submits a high-quality answer to it by pointing out more than
80% of all appearances of the target word. By design, each
board in our experiment contains the target word 11 times
(workers are not aware of this fact, however), which means
that a worker can only earn the extra reward in a bonus task
if she identifies the target word for at least 9 times.

3.2 Procedure
Corresponding to the two steps in our algorithmic approach,
we divide our experiment into two phases.

In the first phase, we collect a training data set by recruit-
ing 50 MTurk workers to participate in our experiment. For
each of the 9 tasks that a worker completes in the HIT, we
randomly set it as a bonus task with a 20% chance; whether
that task is a bonus task and whether the worker submits a
high-quality answer to it (i.e. finds out the target word at
least 9 times) is recorded. We then learn an IOHMM to un-
derstand the impact of bonuses on worker performance in
the word puzzle game sequences using the collected data set.
Specifically, we run the expectation-maximization algorithm
with 100000 random restarts, and each run is terminated after
convergence or 500 iterations, whichever is reached earlier.
In searching for a parsimonious model, we experiment on a
range of values for the number of hidden states (K = 1 ∼ 7)
to train different IOHMMs, and the IOHMM with the max-
imized Bayesian information criterion (BIC) score [Schwarz
and others, 1978] is selected to be used in the second phase.
In our experiment, K = 2 for the selected IOHMM.

The second phase of our experiment is the testing phase, in
which we have 6 experimental treatments and each treatment
corresponds to one bonus scheme. In particular, we include
3 dynamic bonus schemes that are designed according to our
algorithmic approach using different heuristics (i.e. 2-step
look-ahead1, MLS-MDP and Q-MDP). When these schemes
are used in treatments, we keep track of a worker’s perfor-
mance in the session and use the learned IOHMM to strate-
gically make a decision on whether to offer an extra bonus to
the worker on the next task. As a comparison, we also con-
sider 3 fixed or random baseline bonus schemes: not placing
bonus in any task (No Bonus), always placing bonuses in all
tasks (All Bonus) and randomly choosing 50% of the tasks to
place bonuses (50% Bonus). The utility parameters we use in

1We set n = 2 to balance between performance and efficiency
based on simulations for workers who indeed behave according to
the learned IOHMM.

Figure 1: The requester’s utility across 6 treatments in the
second phase MTurk experiment.

the experiment are wh = 0.15, wl = 0 and c = 0.052.
To make sure the IOHMM learned from the training phase

is useful for the testing phase, we recruit workers from the
same pool by running our second phase experiment exactly 2
weeks after the first phase experiment around the same time.
Each worker is randomly assigned to one treatment and 50
workers are recruited for each treatment. All workers in a
treatment are paid according to the bonus scheme of that
treatment. We again collect data on the presence of bonus
and work quality for each task and each worker.

Our experiment is limited to U.S. workers and each worker
is allowed to take the HIT only once.

3.3 Results
Figure 1 compares the overall utility a requester derives from
all 50 workers in the working session across the 6 treatments
of our second phase experiment. As we can see in the fig-
ure, among the 3 baseline bonus schemes, the best scheme
is to pay no bonus at all. Yet, following our algorithmic
approach, the 3 dynamic bonus schemes (i.e. 2-step look-
ahead, MLS-MDP and Q-MDP) lead to an increase of 3.11%,
27.22% and 12.89% in the requester’s utility, respectively,
compared to the No Bonus scheme. To see whether the utility
improvement is material, we decompose the overall requester
utility in each treatment into the number of high-quality an-
swers the requester elicits (hence the economic benefits) and
the cost the requester pays to encourage better performance
(see the table in Figure 1). Results suggest that the requester
can elicit more high-quality work with lower cost by apply-
ing our dynamic bonus schemes. For example, compared to
the 50% Bonus scheme, a requester using the 2-step look-
ahead scheme obtains a similar number of high-quality an-
swers with a 77.9% saving in money; while a requester fol-
lowing the MLS-MDP (or Q-MDP) scheme elicits 19.3% (or
11.2%) more high-quality answers with roughly a quarter (or
a half) of the cost.

The statistical significance of the improvement in utility
brought by our algorithmic approach is further examined
through Wilcoxon rank-sum tests. Specifically, we compute
the utility a requester obtains from each worker in every treat-
ment. Thus, in total, we have 6 samples of requester utility
with 50 data points in each sample. We conduct pairwise
comparisons to test whether a pair of samples have the same

2c is set to be 0.05 as the bonus magnitude used in the experiment
is $0.05. We set wh = 0.15 and wl = 0 to ensure that a dynamic
bonus scheme doesn’t become a No Bonus or All Bonus scheme.
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mean value, and the p-values of the tests are reported in Ta-
ble 1. Almost all pairwise comparisons are statistically signif-
icant at the p = 0.05 level, which suggests that our approach
helps the requester to improve his utility.

Table 1: p-values of the Wilcoxon rank-sum tests for pairwise
comparisons.

No Bonus 50% Bonus All Bonus
2-LA 1 0.007 <0.001

MLS-MDP 0.03 <0.001 <0.001
Q-MDP 0.38 <0.001 <0.001

Finally, to get a qualitative intuition of how our dynamic
bonus schemes work, we pick a few exemplary workers from
the treatment in which the MLS-MDP bonus scheme is used
and take a close look at how they are awarded in the working
session. Figure 2 displays for each of the 4 selected workers,
whether a bonus is provided and whether her submitted an-
swer is of high quality for each task in the working session.
The comparison between worker A and worker B first sug-
gests that our algorithmic approach can effectively differenti-
ate “diligent” workers from “lazy” workers and reward them
differently: For a diligent worker (worker A) who always sub-
mits high-quality answers, there is no need for the requester
to place extra bonuses in the working session; however, for
a lazy worker who can be responsive to financial incentives
(worker B), the requester keeps offering bonuses in hope of
increasing the work quality through providing additional mo-
tivation to the worker3. In fact, the MLS-MDP bonus scheme
strategically focuses on incentivizing lazy workers: On aver-
age, the requester offers a bonus on 6 tasks to a worker who
performs well in at most half of the tasks in the working ses-
sion, while for a worker who performs well in more than half
of the tasks, the requester offers a bonus on only 0.49 tasks.
Furthermore, our algorithmic approach also seems to offer
bonuses at the right timing. On the one hand, for a worker
who starts a session with unsatisfying performance (worker
C), the requester keeps placing bonus on each task to incen-
tivize better performance until the worker stabilizes in sub-
mitting high-quality answers; on the other hand, for a worker
who slacks off from her initial good performance (worker D),
the requester provides extra incentives in time to bring back
hard working from the worker.

4 Simulation
The performance of the dynamic bonus schemes in our
MTurk experiment suggests the promise of algorithmically
controlling the provision of financial incentives in crowd-
sourcing. However, one may wonder that following our al-
gorithmic approach, whether the high requester utility can al-
ways be obtained in various worker populations where work-
ers potentially behave in different ways. To understand the
robustness of our approach, we further run simulations on two
synthesized data sets and each data set is generated according
to a predefined worker behavior model.

3Offering bonus per se is not costly; the cost will only be incurred
when the work quality in a bonus task meets the predefined standard.

Figure 2: Examples for offering bonus to a worker in the
working session based on the MLS-MDP bonus scheme.

Specifically, given a particular worker behavior model, in
the training phase, we generate a data set of 3000 workers,
while each worker completes a session of 50 tasks (20% of
them are randomly selected as bonus tasks) and decides her
performance in each task probabilistically according to the
given model. In the testing phase, we consider the same 6
bonus schemes as those in our MTurk experiment. Six groups
of testing data are thus generated: Each group is assigned to a
unique bonus scheme and is composed of 100 workers; each
worker completes a session of 10 tasks and is paid according
to the bonus scheme of her group, while her performance in
each task is controlled by the same behavior model as that
used for generating the training data set. The requester’s util-
ity under a specific bonus scheme is calculated as the sum of
utilities that the requester derives from all 100 workers of the
corresponding group, with wl and wh set to be 0 and 1, re-
spectively. We repeat the simulation 30 times and report the
mean value of the requester’s utility for each scheme.

4.1 Model 1: Workers with Two Capability Levels
In our first worker behavior model, we assume that when a
performance-contingent bonus is placed (or not placed) in
a task, the probability for worker i to submit a high-quality
answer in a task is acchi (or accli). This model is consis-
tent with previous empirical observations that the existence
of performance-based bonuses can affect the worker perfor-
mance [Harris, 2011; Ho et al., 2015].

(a) Population 1 (Uniform) (b) Population 2 (Beta)

Figure 3: The requester’s utility when workers have two ca-
pability levels in reaction to the placement of bonus. Error
bars are omitted as they are too small.

We construct two different worker populations based on
this worker behavior model. To test the performance of dif-
ferent bonus schemes when a requester’s willingness to re-
ward workers differs, we also vary the economic costs (i.e.
magnitude) of the performance-contingent bonus c from 0.1
to 0.5 in the simulation. Figure 3(a) demonstrates the sim-
ulation results for a population that is composed of 2 types
of workers: For the first type, accli = 0.5 and acchi = 0.9;

while for the second type, accli = 0.8 and acchi = 0.9. Each
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Figure 4: The requester’s average utility increase (in percentage) when following a dynamic bonus scheme rather than the
best-performing baseline scheme; workers are influenced by their reference payment levels in mind. Shaded (Unshaded) bars
indicate that the best-performing baseline scheme is the “No Bonus” (“All Bonus”) scheme in that condition.

worker in the population is drawn uniformly randomly from
the two types. Similarly, Figure 3(b) corresponds to another
population where each worker draws her accuracy from Beta
distributions: accli ∼ Beta(2, 2) and acchi ∼ Beta(6, 2). As
the figures suggest, for both populations, when the magni-
tude of bonus is small (or large) enough such that adding a
bonus is always beneficial (or too costly), the dynamic bonus
schemes lead to similar requester utility as the All Bonus (or
No Bonus) scheme does. However, when the bonus magni-
tude is moderate, the dynamic bonus schemes robustly result
in higher requester utility compared to any single baseline
bonus scheme.

4.2 Model 2: Workers Influenced by Reference
Payment Levels

Previous literature suggests another possible worker behav-
ior in reaction to financial incentives in a working session.
That is, a worker maintains and updates a reference point of
“appropriate” payment level when she completes tasks in a
working session and decides her performance in each task
by comparing the provided payment with the reference of
that time [Yin et al., 2013a; 2013b; Popescu and Wu, 2007;
Akerlof and Yellen, 1990]. To see how our algorithmic ap-
proach performs when workers indeed behave in this way,
we define the second worker behavior model. In particu-
lar, we assume that each worker behaves according to an
IOHMM, with the hidden state zt corresponding to the ref-
erence payment level rzt in the worker’s mind in the t-th
task4. Each worker i is further characterized by her skill
level αi and her responsiveness to financial incentives βi,
and the emission probability in task t is parameterized as
Pe(1|zt, at) = 1

1+e−αi−βi(at−rzt ) . Obviously, the larger αi

or βi is, the worker is more skilled or more responsive to re-
wards hence more likely to produce high-quality answers.

For manageability, we assume in the simulation that each
worker has K = 3 hidden states (i.e. 3 discrete reference pay-
ment levels), that is, r = (r1, r2, r3) = (0.2, 0.6, 1.2). Each
worker updates her reference payment level in the working
session according the transition probability matrices:

T 0 =

(
0.8 0.15 0.05
0.3 0.6 0.1
0.2 0.4 0.4

)
, T 1 =

(
0.4 0.4 0.2
0.1 0.5 0.4
0.05 0.1 0.85

)

4The reference payment level is defined relative to the magni-
tude of the bonus, e.g. rk = 0.5 means that in state k, the worker
considers a half of the current bonus as an appropriate payment.

where the (i, j)-th element of matrix T a represents the proba-
bility for a worker to update her reference payment level from
ri to rj given the current input level a, i.e. Ptr(j|i, a).

Furthermore, we assume that there are 3 possible skill lev-
els for a worker, i.e. αi ∈ {0, 1, 3}, and each worker i
draws her skill level according to the categorical distribu-
tion pα = (p1α, p

2
α, p

3
α), where p1α + p2α + p3α = 1 and

p1α (or p2α, p3α) represents the probability that αi = 0 (or
1, 3). Similarly, we also consider 3 levels of responsive-
ness to financial incentives, that is, βi ∈ {0, 1, 3}, and each
worker draws her βi according to another categorical distri-
bution pβ = (p1β , p

2
β , p

3
β). Varying pα and pβ thus pro-

vides us the flexibility to construct a number of populations
in which various types of workers are mixed in different pro-
portions. For each population and 4 selected bonus magni-
tude (i.e. c = 0.05, 0.1, 0.15, 0.2), Figure 4 displays the
utility difference (in percentage) a requester obtains by fol-
lowing a dynamic bonus scheme (averaged over the 3 dy-
namic schemes) over following the best-performing baseline
scheme to control bonuses in the session: On the one hand,
the best-performing baseline scheme differs across various
populations and magnitude of bonus, suggesting that follow-
ing a single baseline bonus scheme can’t guarantee a high
requester utility in all conditions; on the other hand, follow-
ing our dynamic bonus schemes, the requester can consis-
tently obtain similar or higher utility than what he could have
obtained by following the best-performing baseline scheme,
which again implies that the improved performance of our
approach is robust.

5 Conclusions and Future Work
In this paper, we take an algorithmic approach to dynamically
control whether and when to place a bonus in a crowdsourc-
ing working session. Our MTurk experiment and simulation
results suggest that our approach can robustly lead to signif-
icant improvement in requester utility than fixed and random
bonus schemes do. There are many interesting future direc-
tions for this work. For example, our current approach leads
to a policy that provides more bonus opportunities for work-
ers with lower accuracy. This may drive high accuracy work-
ers away in the long term. It will be interesting to understand
the long-term impact of our algorithmic approach.
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