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ABSTRACT

We study principles and methods for task routing that aim
to harness people’s abilities to jointly contribute to a task
and to route tasks to others who can provide further con-
tributions. In the particular context of prediction tasks, the
goal is to efficiently obtain accurate probability assessments
for an event of interest. We introduce routing scoring rules
for promoting collaborative behavior, that bring truthfully
contributing information and optimally routing tasks into
a Perfect Bayesian Equilibrium under common knowledge
about agents’ abilities. However, for networks where agents
only have local knowledge about other agents’ abilities, opti-
mal routing requires complex reasoning over the history and
future routing decisions of users outside of local neighbor-
hoods. Avoiding this, we introduce a class of local routing
rules that isolate simple routing decisions in equilibrium,
while still promoting effective routing decisions. We present
simulation results that show that following routing decisions
induced by local routing rules lead to efficient information
aggregation.

INTRODUCTION

Organizations rely on a mix of expertise and on means for
identifying and harnessing expertise for completing differ-
ent kinds of tasks. The ability to leverage the expertise and
interests of individuals effectively is crucial for the success
of an organization. Accomplishing a task may require the
expertise of multiple actors, and harnessing that expertise
requires identifying who the experts are, as well as provid-
ing proper incentives (monetary or otherwise) for inducing
contributions.

The ‘burden’ of identifying experts for any given task can
be placed entirely on a centralized policy, or rely on indi-
viduals within the organization, based on their own judg-
ments. Both approaches have flaws. In the former, an or-
ganization or system may not know which individuals have
the required expertise. In the latter, while individuals may
often know their own expertise, they may not know about
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available tasks that match their respective expertise.

In social networks and organizations, an individual’s knowl-
edge extends beyond their own expertise on tasks and topics
to knowledge about the expertise of others. For example, a
manager may know people in their organization who can
best tackle a particular aspect of a project. Members within
the same research group know whom within that group can
best review a paper, or best contribute to answering a re-
search question. Likewise, people using a social network like
Facebook may know who among their friends can best an-
swer a particular question, or otherwise provide valuable
opinions on a topic of discussion. Even in situations where
an individual cannot identify an expert who can contribute
to a task, they may know others who do know of experts
for handling that task (but aren’t necessarily experts them-
selves), or otherwise be able to identify subsets of individuals
among whom the requisite expertise is likely to exist (e.g.,
people who share a particular interest).

We have been exploring principles and methods for task
routing that aim to harness people’s abilities to both con-
tribute to a solution and to route tasks to others, who they
know can also solve and route. Task routing provides an in-
teresting paradigm for problem solving, in which individu-
als become engaged with tasks based on others’ assessments
of their expertise. On the task level, effective task routing
aims to take advantage of agents’ knowledge about solving
problems as well as agents’ knowledge about other agents’
abilities to contribute, and to use both types of knowledge to
contribute to solving a task—and to properly reward partic-
ipating agents for their contributions. On an organizational
level, task routing may provide a means for allocating tasks
to individuals effectively, where routing suggestions and de-
cisions take into account not only an individual’s expertise
on the particular task, but also their ability and availability
to contribute as a solver and/or router on other tasks.

We shall highlight key notions, challenges, and opportu-
nities with task routing by focusing on the problem of effi-
ciently obtaining accurate probability assessments about the
occurrence of an event or truth of a proposition of interest.
With this challenge, a question is passed along individuals
within a network, where each individual in the path can
update the posterior probability based on their information
and also forward the task to a neighbor. We provide a formal
model for this setting, and introduce routing scoring rules
for incentivizing contributions under which truthful report-
ing of posterior probability assessments and optimal routing
to other individuals is a Perfect Bayesian Equilibrium. We
assume in this model that there is common knowledge of



others’ levels of expertise, and show that the incentive and
optimality guarantees hold for general networks. However,
while on cliques the optimal routing decisions are myopic,
they require more generally finding the best chain of indi-
viduals moving forward, which is NP-hard.

Common knowledge is unlikely to hold for large social
networks where one’s information about others is limited
to a local neighborhood (e.g., friends, and maybe friends of
friends). To handle such cases, we also consider task routing
where knowledge about others’ abilities may only be locally
shared. Unfortunately, optimal routing under the routing
rules becomes even more computationally challenging, and
require agents to perform complex reasoning over the his-
tory and future routing decisions of agents outside the local
neighborhood. Avoiding this, we introduce a special class
of local routing rules that isolate simple routing decisions
in equilibrium, while still taking advantage of knowledge
about the expertise of others to promote effective routing
decisions. We achieve this by incentivizing agents to make
routing decisions based on short, locally optimal paths, that
can be easily computed using only the shared local knowl-
edge. Thus, we design incentive schemes that explicitly en-
able equilibrium behavior for which the inference required of
agents is tractable. This is analogous to the important role of
strategyproofness in simplifying the strategic problem facing
agents in mechanism design. Simulation results demonstrate
that equilibrium routing strategies based on local routing
rules lead to fast information aggregation.®

Related work

Leveraging individuals’ abilities to both solve and route
is a key component of the strategy of the team that placed
first in the DARPA Red Balloon Challenge [4]. The task
was to find ten balloons in the US, and the winning team
introduced an incentive mechanism that promotes individu-
als to look for balloons and let their friends know about the
task. The proposed mechanism aims to create information
cascades that serve as a broadcast mechanism, but makes
no consideration for identifying expertise or for the cost of
communication. Our work focuses on the complementary
perspective of quickly routing tasks to appropriate experts,
while reducing communication costs by avoiding unneces-
sary broadcasting.

One can view routing scoring rules as an extension of mar-
ket scoring rules [2] used in prediction markets, which pro-
vide proper incentives for individuals to improve probability
estimates by contributing additional information. The ma-
jor difference between task routing and a prediction market
is in the ‘burden’ of identifying expertise: while prediction
markets place the responsibility on individuals to find pre-
diction tasks for which they have useful information, task
routing incentivizes individuals to notify others with appro-
priate expertise who may otherwise be unaware of the task.

The problem of task routing is related to questions of
decentralized search in networks [3], where the goal is to
quickly deliver a message from a source to a target in a
network. Kleinberg shows that for a particular grid-based
model of a small-world network, individuals following local
rules can quickly deliver the message with high probabil-
ity. One can view the target in the model as representing
a ‘knowledge center,” where agents’ knowledge about their

1Some proofs are omitted or condensed in this version of the
paper.

neighbors’ distance to the knowledge center enables effective
routing. We remain interested in how such knowledge about
the presence of knowledge centers and agents’ distance to
them can be incorporated into our model.

MODEL

We consider a task routing problem for which the goal
is to efficiently obtain probability assessments for a ques-
tion of interest from individuals within a social structure
by appropriately rewarding them for (sequentially) refining
the current prediction and routing tasks to other individuals
who can provide further refinements. To formalize the set-
ting, consider a single prediction task 7', for which we would
like to gather accurate probability assessments of the true
state w € . The probability assessment task can be for any
state of the world that will be revealed later in time, e.g.,
“Will it snow next Tuesday in Boston?” or “Will the Celtics
win the NBA championship this year?” We consider discrete
state spaces, and assume without loss of generality a binary
state space, such that Q = {Y, N}.

Consider a game with n players, where each player is
represented by a node on the routing graph G = (V, E).
Edges in the graph may be directed or undirected, and in-
dicate whether a particular player can route the task to an-
other player. The task is initially assigned to a source player
(named player 1, with later players numbered sequentially)
who is either determined exogenously by the system or en-
dogenously as the individual who posed the task. The source
player is asked to update the probability of state Y from the
prior probability p° to some probability p', and in addition,
to route the task to a neighbor on the routing graph. The
selected neighbor is then asked to update the assessment
p' and route to one of its neighbors, and so on, until the
game ends after a pre-specified number of rounds R (player
R does not route). We assume players receiving the task are
provided with a list of participants so far, as well as informa-
tion about the number of rounds that remain, and can thus
use this knowledge in their routing decisions. Our goal is to
design incentive mechanisms that will induce each player to
truthfully update probability assessments, and to route the
task to other players that can best refine the prediction.

We model players’ knowledge about the task as follows:
The true state of the world is drawn with respect to p°, which
is common knowledge to all players. While no player ob-
serves the true state directly, each player may receive addi-
tional information about the true state by privately observ-
ing the outcome of coin flips drawn from the true state. To
capture differences in the level of knowledge between players,
we allow players to observe different numbers of coin flips,
where players observing more coin flips are a priori more
knowledgeable. Formally, we represent player i’s signal c¢; as
a random bit vector of length [;, where bit c¢;x is a random
variable over the outcome of the k-th coin flip observed by
player i. We assume bits of signal are conditionally inde-
pendent (i.e. independent conditioned on the true state) and
drawn from the same distribution (known to all players),
such that Pr(c;; = z|w) = Pr(cpm = z|w) for all players 4, k,
bits j, m, and realizations x. Each bit of signal is assumed
to be informative, that is, Pr(c;; = zjw = Y) # Pr(c;; =
z|w = N) for all i, j. We also assume that bits of signal are
distinct, that is, Pr(w = o|c;; = x) # Pr(w = o|ci; = )
for all i,j,0 and x # y. We assume the realization of each
player’s signal is private, but that players may know about



how many coin flips other players observe.

With conditionally independent signals, each player can
properly update the posterior probability without having to
know the signals of previous players or their length, as long
as previous updates were done truthfully [1]. This is useful
practically in that players do not have to keep track of nor
communicate their signals, and can simply update the poste-
rior probability that sufficiently summarizes all information
collected thus far.

ROUTING SCORING RULES

With rational, self-interested players, with no intrinsic
value for solving or routing a particular task, enabling effec-
tive task routing requires mechanisms that will incentivize
players to both truthfully report posterior probabilities and
to route tasks to individuals who can best refine the predic-
tions of the tasks. In the forecasting literature, proper scor-
ing rules [5] are mechanisms that incentivize a forecaster
to truthfully reveal his subjective probability of an event.
A well-known proper scoring rule is the logarithmic scoring
rule, under which a player reporting probability g for state Y’
is rewarded In(g) when the true state is Y and In(1—¢) when
the true state is N. The logarithmic market scoring rule [2]
extends the logarithmic scoring rule to settings where we
wish to aggregate multiple people’s information. Given a se-
quence of players, player i reporting p° is rewarded s; —s;_1,
where s; denotes the score of player i as computed by the
logarithmic scoring rule. Note that a player’s score is posi-
tive if and only if he improves the prediction by assigning a
higher probability to the true state than the player before
him.

Building on the logarithmic market scoring rule, we intro-
duce routing scoring rules that incentivizes accurate predic-
tions and effective routing decisions. We first consider the
myopic routing scoring rule (MRSR), which rewards player
7 in the routing game with the payment

(1—a)si —si—1 + asit1,

where o € (0, 1) is a constant set by the system. Note that
player i’s payment is based on the incremental value he pro-
vides for refining the prediction, as measured by his report
and the report of the player he routes the task to. For player
1, so denotes the score computed with respect to the prior
p°. The final player R does not route, and is paid sgp —sr_1.

LEMMA 1. The total payment from the system in the rout-
ing game with MRSR is sr — so + a(sr — s1).

The lemma follows from taking telescoping sums, and states
that the center needs to only pay for the difference between
the final assessment and the initial assessment, since each
player is only paid for the additional information they pro-
vide and their routing decision. Intuitively speaking, this
scoring rule aims to reward a player for submitting accurate
probability assessments and myopically routing to the player
who can most accurately refine the probability assessment.

We can extend the MRSR to reward players’ routing deci-
sions based on the accuracy of information after £ > 1 more
players have provided their information. The k-step routing
scoring rule (kRSR) pays player 4

(1—a)si — S$i—1 + asitk.

This routing scoring rule rewards a player based on his re-
port, as well as the eventual consequence of his routing deci-
sion k steps into the future. Unlike MRSR, it rewards players
for routing to players who may not have information them-
selves but are able to route to others who do. When player
1 is paid based on player R’s score (that is, i + k = R), we
call kRSR the path-rewarding routing scoring rule (PRSR).
Note that the last player still does not route, and is paid
SR — SR-—1-

The choice of routing rule affects players’ routing decisions
in equilibrium, which in turn affects how much information is
aggregated. To see the connection between a player’s score
and the amount of information aggregated thus far, note
that the expected score is strictly increasing in the total
number of coin flips collected:

LEMMA 2. Let S' and S” denote two possible sequences
of players through the first k rounds of the routing game.
Assume all players truthfully update posterior probabilities,
and let E[s;|S] denote the expected score of the k-th player
in S taken with respect to the signal distribution of players
in S. Elsk|S'] > Elsk|S"] holds if and only if 37, sy li >
> jeusy li where u(S) is the (unique) set of players in S.

The proof relies on KL-divergence. Intuitively speaking,
additional bits of information can only improve the accu-
racy of the prediction in expectation. Since the logarithmic
scoring rule rewards accuracy, collecting more coin flips will
also lead to having higher scores in expectation.

CASE OF COMMON KNOWLEDGE

Having introduced routing scoring rules of interest, we
consider how to use them in the routing game. We first
consider the case where players are equally well-informed
of other players’ expertise. This captures situations where
players know (of) everyone and their expertise, as is typi-
cal in a small firm or a research group. We model this by
assuming that the number of coin flips I; observed by any
player ¢ is common knowledge to all players. While players
know each other’s relative levels of expertise perfectly, the
actual signal realizations are still assumed private.?

Clique topology

We first consider the routing game on a cligue, where each
player can route the task to any other player in the social
graph. Given the common knowledge assumption, the clique
topology implies that myopically routing the task to the
most knowledgeable individual who has yet to be routed
the task will allow us to aggregate as much information as
possible, as quickly as possible. We show that the myopic
routing scoring rule induces this behavior in equilibrium:

THEOREM 1. Assume players’ signal lengths are common
knowledge, and that players are risk neutral. Let Ss; denote
the set of players who have yet to receive the task after i
rounds. Under the myopic routing scoring rule, it is a Per-
fect Bayesian Equilibrium (PBE) for each player i to truth-
fully update the posterior probability, and to route the task
to player i + 1 € argmax,,cg. lm, with the belief that all
other players update the posterior probability truthfully.

2By taking appropriate expectations, our results easily ex-
tend to settings where players are equally well-informed but
are uncertain about the number of coin flips other players
observe.



PRrROOF. (sketch) We show that no player wishes to devi-
ate from the equilibrium strategy, given the belief that all
other players report truthfully. Consider player i. We let r<;
denote the reported information of players before ¢, such that
P(w|r<;) represents the posterior belief immediately before
i submits its information. To prove the theorem, we first
show that player 7 should honestly report its realized signal
r; and update the posterior beliefs to P(w|r;,r<;) by estab-
lishing that (a) truthful reporting maximizes s;, and that
(b) for any player m who may be routed the task, truthful
reporting by player ¢ maximizes the score sn,. For (a), note
that, since s; is based on the logarithmic scoring rule, truth-
ful reporting maximizes the expectation of s;. For (b), we
show that the expected score of sp, (from the perspective of
player i) is strictly greater when player ¢ honestly reports its
signal r; than any alternative signal 7;. The argument relies
on KL-divergence, and is omitted in the interest of space.

It is left to show that player i maximizes s;+1 by routing
to the player in Ss; with the most coin flips. This follows
directly from Lemma 2. [J

General networks

We now turn to consider the routing game on general
networks. Edges in the routing graph define paths through
which the task can be routed, e.g., only managers can route
tasks between teams, only professors can route questions to
other professors, and only friends can route to friends.

The goal remains to aggregate as much information as
possible with R rounds, which, in expectation, is equivalent
to collecting as many coin flips as possible. We can state the
computational problem of finding the optimal route in terms
of collecting coin flips:

PROBLEM 1. Consider the routing graph G = (V,E),
where nodes are assigned non-negative weights w; (coin flips)
that are collected upon visiting node i. Given a starting node
s, find a path of length at most k such that the sum of weights
of the set of nodes on the path is maximized.

Note that players can route to other players who have re-
ceived the task before (e.g., the path need not be simple),
but no additional information is collected in subsequent vis-
its. Immediately, we see that myopic routing will not always
find the optimal solution to this problem, as routing to the
neighbor with the most coin flips does not consider the chain
of coin flips that may come through the path thereafter. In
fact, the problem is NP-hard for variable path length k:

LEMMA 3. Problem 1 is NP-hard.

ProoOF. Consider a reduction from the Hamiltonian Path
problem. Let all nodes have weight 1, and set k = |V/|. The
solution path has total weight |V if and only if all nodes are
visited within & steps, that is, a Hamiltonian Path exists. [

While the problem is NP-hard for a variable path length
k, for small constant k the optimal path may be tractable
to compute via exhaustive search. But even if players can
compute the optimal path, we still need to find incentives
that induce players to honestly report their information and
to route along the optimal path. The path-rewarding routing
scoring rule does just that.

THEOREM 2. Assume players’ signal lengths are common
knowledge, and that players are risk neutral. Let Ss; denote

the set of players who have yet to receive the task after i
rounds. Let QQ; denote the solution to problem 1 for which
k=R—1, s =1, and wym = lm if m € Ss; and 0 other-
wise. Under the path-rewarding routing scoring rule, it is a
PBE for each player i to truthfully update the posterior prob-
ability, and to route the task to the next player in the path
provided by Q;, with the belief that all other players follow
this strategy.

The common knowledge assumption allows players to com-
pute the optimal path moving forward from their point on,
so that the optimal path can be chained together through the
individual routing decisions of each player. Since PRSR re-
wards each agent’s routing decision based on the final score,
it is in each agent’s interest to maximize the number of coin
flips collected along the entire routing path.

CASE OF LOCAL KNOWLEDGE

While people may know one another’s expertise in small
organizations, the common knowledge assumption becomes
unreasonable for larger organizations and social networks.
Any given individual will not necessarily know everyone else,
and may only have summary information about the exper-
tise and connectivity of individuals outside of a locally de-
fined neighborhood. Some individuals may be better informed
than others, e.g., by being connected to more people, having
a better sense of the network topology, etc.

Although it is unreasonable to assume common knowledge
in this setting, it may be reasonable to assume that within a
certain locality (e.g., a group of friends, a particular depart-
ment, or a specific research area), individuals are equally
well-informed of others’ expertise within this locality. For
example, all friends of a particular person are aware of his
expertise, and friends of his friends may also be aware. Sim-
ilarly, it may be reasonable to assume that people know a
local portion of the routing graph, e.g. individuals know not
only their friends but also their friends’ friends.

Formally, we say that a routing graph satisfies the local
knowledge assumption within m-hops if, for all nodes (play-
ers) 4, (a) l; is common knowledge to all players connected
to i via some path of length at most m, and (b) 7 knows
all paths of length at most m connecting i to players j.
For example, 1-hop local knowledge assumes all friends of a
particular person know the person’s level of expertise, and
2-hop local knowledge extends this shared knowledge to his
friends of friends. We make no further assumptions on play-
ers’ knowledge of other players beyond m hops, e.g., some
may know of people that are more hops away, or have a
better sense of the distribution of expertise in the routing
graph.

Let us consider the problem of computing the optimal
routing path under the local knowledge assumption. While
players can compute routing decisions based on local infor-
mation, routing optimally would require players to consider
the expertise and routing abilities of players down the chain
that are outside of their local neighborhood. For example,
a player may need to use the history of routing decisions to
infer why certain people were not routed the task (but could
have been), based on which to update its beliefs of how in-
formation is distributed over the network. This is necessary
because optimal routing requires players to consider in their
routing decisions the uncertainty over the value generated
by the routing decisions of subsequent players whom are be-



Figure 1: Illustration of the 2-1-2-1 and 2-step rout-
ing rules. Arrows depict dependencies in routing
payments.

yond their locality. Not only is such reasoning complex and
impractical, any equilibrium to induce optimal routing is
likely to be fragile as it requires players to form intricate
beliefs about other players’ beliefs.

An attempt to avoid such issues may suggest incentivizing
players based on a m-step routing rule whenever the local
knowledge assumption holds for m-hops. The problem with
this suggestion is that a player still has to consider routing
decisions of players outside its locality because maximizing
its payoff requires considering the routing decisions of the
chain of players within its locality. For example, consider
the two-step routing rule as illustrated in Figure 1 (bot-
tom). Note that for any player, the score two steps forward
will depend in part on the routing decision of the next player.
But since the next player is also paid by the two-step routing
rule, it’s routing decision will depend not only on the knowl-
edge of the next player, but also their routing decision. Since
each player has to consider the routing decision of the next
player, each player has to reason about the potential routing
decisions of all players down the chain—just to compute the
expected score after two steps.

To avoid such impracticality, we present a class of local
routing rules under which players’ strategies in equilibrium
rely only on computations based on local information, but
nevertheless take advantage of the available local knowledge.
Let us first consider the case of two-hop local knowledge, for
which we have the following local routing rule:

DEFINITION 1. The 2-1-2-1 routing rule pays odd players
based on the two-step routing scoring rule, and even players
based on the myopic (one-step) routing scoring rule.

The 2-1-2-1 routing rule incentivizes players to compute
locally optimal paths of length two (see top of Figure 1),
where by paying each pair of players in the routing sequence
by the same amount for their routing decisions allows the
odd player to be forward-looking and the even player to fin-
ish the path (of length two). Since even players are paid
based on the MRSR, they will route to the available player
with the most number of coin flips. Under two-hop local
knowledge, an odd player knows the number of coin flips
that can be collected from the next even player and also
from the odd player that is then routed the task, and can
thus compute the best local path without regard to routing
decisions beyond its locality. Note that players still need to
take into account which other players have already partici-
pated, but no other inference based on history is necessary.

Expanding on the idea, we construct a class of such local
routing rules (MRSR, 2-1-2-1, 3-2-1-3-2-1, ...) that incen-
tivizes players to compute locally optimal paths for m-hop
local knowledge:

DEFINITION 2. The m-hop local routing rule pays player
i based on the [m — (i — 1) mod m]-step routing scoring rule.

We can characterize the equilibrium behavior as follows:

THEOREM 3. Assume that players are risk neutral and m-
hop local knowledge holds. Let Ss; denote the set of players
who have yet to receive the task after i rounds. Let QQ; denote
the solution to problem 1 for which k =m — (i — 1) mod m,
s =1, and w; = 1lj if j € S>; and 0 otherwise. Under the
m-hop local routing rule, it is a PBE for each player i to
truthfully update the posterior probability, and to route the
task to the next player in the path provided by Q:, with the
belief that all other players follow this strategy.

PROOF. (sketch) Using similar arguments as the proof
sketch for Theorem 1, we can show that players should truth-
fully update the posterior based on their signals. To show
player i should route based on Q;, we first note that Q; is
directly computable given m-hop local knowledge. Since Q;
maximizes the number of coin flips collected in the next k
steps, applying Lemma 2 proves the point, and the theo-
rem. [J

SIMULATION

The equilibrium strategies induced by local routing rules
can be viewed as approximations to computing the optimal
route. As we do not have closed-form analyses about the
performance of routing decisions based on the local routing
rules, we can explore their performance empirically. In this
section, we demonstrate via simulations that routing deci-
sions based on local rules can quickly aggregate information
as a task is routed through the network.

We consider connected random graphs with 100 nodes
and average degree d € {4,10}, generated using the Watts-
Strogatz model [6]. By varying the re-wiring probability 3,
the model allows us to generate graphs that interpolate be-
tween a regular lattice (8 = 0) and a G(n, p) random graph
(8 = 1), with small-world networks emerging at intermedi-
ate values of 3. We associate each node with a number of coin
flips, which is drawn independently either discretely from
UJ[1,10], or from a skewed distribution where the value is 1
with probability 0.9 and 46 with probability 0.1. Note that
the distributions have equal mean (5.5), but that the skewed
distribution more closely resembles a setting in which there
are few experts. For graphs generated in this manner, we
simulate player strategies under local routing rules (MRSR,
and m-hop with m = 2, m = 3) by computing local paths
in the manner noted in Theorem 3, where revisited nodes
are treated as having no value. As a baseline, we consider a
random routing rule that routes to a random neighbor, and
whenever possible, to a random neighbor who has yet to be
assigned the task. Note that the expected performance of
the baseline is bounded by 5.5 coin flips per round, as we
would expect from randomly picking unvisited nodes in the
graph.

Table 1 shows the average number of coin flips collected
after 10 steps by players following local routing rules on
graphs with varying 3, average degree, and coin flip distri-
bution over 100 trials (standard errors are small and hence



d=4 d=10

p#  Dist. MRSR m=2 m=3 MRSR m=2 m=3
.03 U 69 71 72 83 84 85
0.1 U 71 72 75 85 86 87
1.0 U 76 78 80 89 89 90
.03 S 80 87 104 150 183 227
0.1 S 88 109 146 181 226 259
1.0 S 120 155 183 227 258 278

Table 1: Comparison of routing performance after 10
steps on connected Watts-Strogatz graphs based on
uniform (U) and skewed (S) coin flip distributions
with fixed mean (5.5).

not reported). We see that routing rules are particularly ef-
fective in cases where there are few experts (S), and when the
graph has a sufficiently high connectivity (higher d and ()
that there exist paths through which experts can be routed
the task. But even in cases with uniformly distributed coin
flips (U) and low average degree (d = 4), we see that local
routing rules collect significantly more coin flips than the
upper bound of 55 we would expect from randomly choos-
ing nodes, and despite connectivity constraints include many
high valued nodes in its path (recall the max per node is 10).
The difference in routing performance among local routing
rules is rather small for uniformly distributed values, but is
more significant when the distribution is skewed. In this case,
effective routing may require finding short paths to experts
who are not neighbors. That said, this difference shrinks for
graphs with higher degree, as high value nodes become more
easily reachable (recall that as graphs approach cliques, my-
opic is optimal). Figure 2 shows the average number of coin
flips collected by local routing rules as we progress through
the routing game on graphs with 8 = 0.1, d = 10, and
skewed coin flip distributions. We see that for m > 2 the per-
formance under the routing rules are essentially the same,
suggesting that we can sometimes achieve near-optimal per-
formance globally with just two-hop local knowledge. Note
that for all local routing rules the rate of information ag-
gregation eventually slows down, which denotes the point at
which virtually all experts have been routed the task.

CONCLUSION

Our analysis of task routing for prediction tasks intro-
duces routing scoring rules, which in equilibrium bring agents
to truthfully contribute information, and to route tasks based
on simple computations that nevertheless lead to effective in-
formation aggregation. Future work on task routing for pre-
diction tasks should consider other information structures
and specialized network topologies, and may also incorpo-
rate intrinsic values for solving or routing, as well as costs
for acquiring additional bits of signal. More generally, future
work on task routing should continue to consider specific
task level issues, but also organizational issues relating to
distributing streams of tasks in a way that takes into ac-
count people’s solving and routing abilities over the space of
tasks, as well as their general availability and the need for
‘load-balancing.” The numerous potential applications in the
task routing space point to a continued need to strike a bal-
ance between adopting a principled approach and appealing
to practicality.
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Figure 2: Comparison of routing performance among
local routing rules for graphs with g = 0.1, d = 10,
and skewed coin flip distributions. Values are aver-
aged over 100 trials.
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