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Abstract

New advances in genomic technology make it possible to address some of
the most fundamental questions in biology for the first time. They also
highlight a need for new approaches to analyze and model massive amounts
of complex data. In this thesis, I present six research projects that illustrate
the exciting interaction between high-throughput genomic experiments, new
machine learning algorithms, and mathematical modeling. This interdisci-
plinary approach gives insights into questions ranging from how variations
in the epigenome lead to diseases across human populations to how the
slime mold finds the shortest path. The algorithms and models developed
here are also of interest to the broader machine learning community, and

have applications in other domains such as text modeling.
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Introduction

The genomics era poses exciting opportunities and challenges. We need creative exper-
iments to harness the power of genomic technology, new machine learning algorithms
to extract robust patterns from complex data, and new mathematical models to un-
derstand the fundamental principles behind such patterns. The cross-breeding of ideas
between these disciplines is extremely exciting. My research lies at this intersection of
data modeling, mathematical analysis and biological discovery. In this thesis, I present
six projects that illustrate this fruitful interaction.

A fascinating set of biological relate to the epigenomic regulation of cellular state
and phenotype. To tackle these questions, I worked very closely with biologists to
design experiments, and, in several projects, performed my own experiments with some
successes and failures. By working in a wet lab everyday for many months, I gained a
much better understanding of biology and data, as well as an appreciation for a different
mode of problem solving. I think it’s a very valuable experience for the analyst/theorist
to design and perform some experiments. And some experiments are fun to do.

At the other end of the spectrum, I worked on developing new computational frame-
works and proved theorems about rather abstract mathematical models. New tools
and ideas are needed in computational biology. Currently a few basic tools like clus-
tering, PCA and its variants are probably used in 95% of computational analysis. The
limited toolkit might be sufficient for some problems, but it constrains the analyst’s
imagination in more complex settings. Without richer models, we fail to even ask the
interesting questions. So I developed new algorithms and models based on rather arti-

sanal techniques such as tensor decomposition and determinantal point process. They



1.1 Overview of the thesis

have elegant mathematical properties, which by itself is motivation enough for explo-
ration, but I hope my work is a step towards making these powerful ideas a part of
the compbio lingua. While motivated by biology, many of the algorithmic techniques
that I developed here are broadly applicable and have led to interesting advances in

domains such as text analysis and image classification.

1.1 Overview of the thesis

Chapter 2 is based on the paper (44). In it I present a novel and rigorous statisti-
cal framework to identify epigenomic changes in human populations that are potential
drivers of disease. The DNA inherited by an individual encodes instructions for hun-
dreds of distinct cell types. The cells of our brain and liver, for example, are very dif-
ferent, even though they all have identical DNA sequence. This is possible because the
same 3 billion bases of DNA are packaged differently in brain cells and liver cells. The
packaging of DNA in three-dimensions is regulated by epigenomics. Epigenomics refer
to the chemical modifications to DNA and histones, around which DNA is wrapped.
These modifications specify, in each cell, which subset of DNA sequences can be ac-
cessed and read by molecular machinery inside the cell. This in turn determines which
subset, of genetic instructions are performed by different cells.

Our predisposition to certain diseases can be linked to specific mutations to the
DNA. It is now appreciated that many diseases also have epigenetic contributions.
However it has been very challenging to systematically compare the epigenome across
human population. This is because, unlike DNA, the epigenome is highly variable in
different cells, and cell-type heterogeneity in samples lead to massive false association
signals. To compound the issue, we often do not know what are the relevant cell types
present in a sample, nor do we know what fraction of the sample is composed of each
cell type. I develop a method, EWASher, which uses a linear mixed model to account
for this type of confounders. The method pinpoints changes in the packaging of DNA
that are potentially linked to disease. I apply it to discover regions of the genome that
are abnormally shut-off or accessible in people with rheumatoid arthritis, breast cancer,

or colon cancer. These regions give new insights into the progression of these diseases,
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and can potentially be used as diagnostic biomarkers.

Chapter 3 is based on the paper (69)). Here I explore the changes in the epigenome
during the transformation of T-cell leukemia. Using statistical analysis of epigenomic
changes, I characterize an identity-theft strategy in leukemia whereby certain cancer-
causing agents hijack the normal regulatory network within the cell. I show that a mu-
tated form of a key protein, Notchl, hijack the DNA docking sites of normal proteins to
change how T cells grow and divide. In addition, I find similar patterns in mouse T-cell

leukemia, suggesting that this identity-theft strategy is conserved through evolution.

Chapter 4 is based on the paper (4)). In a follow up to Chapter 3, I show that a similar
identity-theft leads to uncontrolled cell proliferation in a different model systemB cell
lymphoma caused by Epstein-Barr virus (EBV) infection. By analyzing epigenomic
data, I show that in infected B cells, components of the EBV virus hijacked the same
binding sites and regulatory elements that the mutated Notchl co-opted in T cells.
This resulted in immortal B cells that can lead to cancer. By analyzing DNA motifs,
I identify potential proteins that partner with the viral proteins. Moreover, I present
computational and experimental evidence that the viral protein targeted key oncogenes
via 3-D DNA looping.

Chapter 5 is based on the paper (45). In the analysis of cancer above, as in many other
settings, we have multiple data sets and want to understand the differences in statistical
patterns between them. Motivated by this, I formalize a framework of contrastive
learning, and introduce a new and general algorithm based on tensor decomposition
to efficiently learn contrasts between data sets. This method learns a probabilistic,
generative model that explains the difference between the foreground and background
data. The chapter illustrates the applications of this method in contrastive epigenomics

and in contrastive text modeling.

Chapter 6 is based on the paper (89)). Here I introduce the notion of diversity as an
objective in building statistical models. In many settings, we would like to have not
just one good solution to a problem, but a diverse set of solutions that are mutually

dissimilar. For example, think of the time you googled X. Google returns a set of high
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quality links relevant to X, but the links are very similar to each other (they might
all use similar sources). A list of high quality results from diverse sources would be
more informative. I use the determinantal point process as a prior to enforce diversity,
and presented efficient learning methods. I show that diversified probabilistic models
learned more interpretable and robust topics from corpus of texts. It also improves the

performance of image classification.

Chapter 7 is based on the paper (75). It combines mathematical and algorithmic
models to solve a fascinating mystery of the slime mold. Recent experiments observed
that if we place a slime mold at one end of a maze and a food source (e.g. corn flake)
at the other end, the slime grows over time and finds the shortest path through the
maze. How does such a simple organism find the shortest path? I develop a system of
differential equations to model the slime mold growth dynamics. By analyzing these
equations, I prove that under general conditions, the slime mold is guaranteed to find
the shortest path. Moreover, I show that a general family of optimization problems
(linear programs) can be encoded as different slimes, and by growing them, it finds the

optimal solutions. This inspires a new family of optimization solvers.



EWASher: Epigenome-Wide
Association Studies Without the
Need for Cell-Type Composition

2.1 Overview

Epigenome-wide association studies (EWAS) face many of the same challenges as
genome-wide association studies (GWAS), but face an added challenge in that the
epigenome can vary dramatically across cell types. When cell-type composition differs
between cases and controls, this leads to spurious associations that bury true associ-
ations. While the current approach is to estimate the cell-type composition in each
sample using laboriously assayed reference profiles, we propose to bypass this step al-
together with EWASher. Our method automatically corrects for cell-type composition
without explicit knowledge of it. On rheumatoid arthritis methylation data, EWASher
performs as well as the state-of-art method, which explicitly uses cell-type composi-
tion. We further validate the approach using extensive simulations. Finally, we apply
EWASher to the Cancer Genome Atlas breast and colon cancer methylation data, where
no cell-type composition is available. Our work is a step toward placing EWAS on a

solid statistical footing comparable to that of GWAS.



2.2 Introduction

2.2 Introduction

With the era of next generation sequencing comes high-throughput measurement not
only of the genome, but also of the epigenome, yielding complementary information that
is critical to understanding, and then tackling, disease mechanisms. Epigenetics informs
us about the structure and accessibility of DNA, which in turn yields information
about regulation and transcriptionkey drivers of disease. Thus, epigenetics is a crucial
mediating link between genetics and function. In many diseases, it is now appreciated
that epigenetic changes complement genetic mutations in driving the disease (50, 76
80, [83).

Currently, the measurement and analysis of epigenetic data through epigenome-wide
association studies (EWAS) is a subject of much interest, as such analyses yield insights
into the role of epigenetic regulation in disease (62). The goal of EWAS, analogous to
GWAS, is to identify changes in the epigenome at particular loci that are correlated
with some phenotype of interest, by scanning along the entire epigenome. While such
analysis alone cannot establish causality, epigenetic association studies shed light on
disease pathways and drivers, and also identify candidate biomarkers for diagnostics.
The present work is a step towards placing epigenomic association studies on a more
sound statistical footing, one comparable to that of GWAS. In particular, we seek to
avoid spurious associations that arise due to cell type composition heterogeneity; to use
as much of the data as possible (i.e., to not remove samples unnecessarily); and, to do
so without the need for specialized auxiliary calibration data such as reference profiles
from individual cell types.

EWAS faces many of the same challenges as traditional GWAS in finding the needles
of signal in the haystack that is the genome. The shared challenges include confounding
by batch effects, population structure and family relatedness, the large scale of multiple
hypothesis testing, and the need to group together weak effects to find underpowered
associations (B, 40). Importantly, EWAS faces an additional, major challenge in that
the epigenome can be highly variable across different cell types, and the case and control
samples in a study typically differ in their cell-type compositions. Such heterogeneity
can give rise to spurious associations, which in turn hide the true associations. This
undesirable effect was recently illustrated in a rheumatoid arthritis (RA) methylation

study (67)) (and analyzed in depth in Results). In this study, blood samples from cases
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contained a larger fraction of myeloid cells (granulocytes and monocytes) relative to
lymphocytes (B, T and NK cell) than the controls. A naive EWAS that did not correct
for this systematic cell-type heterogeneity was flooded by spurious associations arising
from loci that were specifically methylated in either lymphocytes or myeloid cells (Fig
1), and the true disease-associated loci were not found. Including covariates for cell type
composition corrected for this heterogeneity, thereby removing spurious associations
((67) and Fig 1). The critical bottleneck of this approach was in accurately measuring
or estimating the cell-type composition of each sample; this would be the bottleneck
for all studies of this nature. We propose to bypass this bottleneck entirely, while
maintaining an accurate analysis, with the introduction of a new statistical approach
for EWAS, called EWASher.

The method of adding cell type covariates, as used in (67)), is the current state of art
for tackling an EWAS in the presence of cell type heterogeneity. This approach requires
knowledge of the reference methylome (measured from purified cells) of each of the main
cell types in the sample. Given this information, it is then possible to estimate the cell
type composition of every sample a statistical deconvolution algorithm. Although this
approach worked well for the RA study, its dependence on purified reference profiles,
which is the basis of all current procedures that correct for cell-type heterogeneity

(33l [65)), is problematic for several reasons:

1. For many diseases (e.g., cancer), complex mixture of many cell types are present
for which it can be extremely difficult, laborious and expensive to obtain a ref-
erence population of cells. Furthermore, there may be cases where the dominant

cell types are not known.

2. Reference cell type profiles generated in one lab or under one condition may
not accurately capture the correct information for samples collected elsewhere or

under different conditions.

3. The process of isolating cells from solid tissue is challenging and may perturb the
cells (32]).

A key insight in obtaining a general, reference free solution in EWAS is to recognize
that the problem of confounding by cell-type heterogeneity is analogous to the prob-

lem of confounding due to population stratification and family relatedness in GWAS.
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However, as we will demonstrate, confounding by cell type in EWAS is much more
severe, because cell compositions can vary dramatically across samplesfar more so than
the extent to which SNPs vary by population or family. Motivated by methods in
GWAS, our solution makes use of the linear mixed model (LMM) (28| 36}, 42), which
we extend to perform a reference-free correction for EWAS in the presence of cell type
heterogeneity.

Specifically, our new method, which we call EWASher, is a hybrid approach of
(1) a feature-selected LMM (28, 29, 40) and (2) a principal components (PC) based
approach (3, 20). As we will demonstrate on real and synthetic data, this method
successfully corrects for confounding by cell-type composition, without any dependence
on purified reference cell types, making it reference-free. Furthermore, the method
is computationally efficient, scaling up to the large data sets produced with current
technologies.

To validate our approach, we applied it to a bronze-standard RA dataset in which
the methylomes of the reference cell types and estimates of the cell-type composition
of each sample in the cohort are known. We found that our reference-free approach
performed just as well as the state-of-the art reference-based approach. Next, we further
validated our method using extensive simulations and mathematical analysis. Finally,
we applied our method to breast and colon cancer methylation data from The Cancer
Genome Atlas (TCGA) to identify candidate biomarkers and biologically significant
genes in the presence of substantial confounding.

In summary, we make the following significant contributions:

1. We show that the standard methods used in GWAS to correct for confounders

are not sufficient to remove spurious signals from EWAS.

2. We present a principled method that removes spurious associations that arise
due to cell-type heterogeneity, while yielding true associations of interest. The
approach does not require knowledge of cell-type compositions or the reference

methylome of purified cell types.

3. We provide freely-available software for the academic community that implements

our approach and is scalable to large data sets.
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2.3 Results

2.3.1 Overview of the EWASher approach

EWAS confounding by cell-type composition arises because the cell-type composition
is correlated with the phenotype, and also with many methylation loci. As a result,
loci that are indicative of cell type will appear to be associated with the phenotype
even though they are only correlated by way of cell type composition. To alleviate
this problem, we use the data set itself to implicitly estimate and correct for this
confounding. In particular, we use the genome-wide methylation data to construct a
single similarity score between every two individuals. Jointly, these similarity scores are
reflective of the relative cell type composition among individuals. Two individuals with
similar sample cell type compositions will have a high similarity score, while those with
different composition will have a low score. Together, these scores form a similarity
matrix, which is then used within the linear mixed model (LMM) to remove associations
due to cell-type compositions and to reveal true associations.

The core of EWASher is the LMM. However, when confounding by cell-type hetero-
geneity is large, the LMM is not able to fully correct for it . Therefore, we augment the
LMM with principal component (PC)-based covariates computed from genome-wide
methylation values. In particular, EWASher uses an iterative approach that identifies
the best hybrid model by automatically selecting the best loci with which to measure
similarity for the LMM, as well as the optimal number of PCs.

In line with our theoretical findings and simulations, we found that when confound-
ing due to cell type composition was not too severe, as is the case with the RA data,
the LMM alone was sufficient for correction. In solid cancer datasets that suffer from
strong confounding, EWASher found that using the top two or three PCs was advan-
tageous. Additionally, as we show, the use of PCs alone (without the LMM) is, in

general, insufficient.

2.3.2 DNA methylation association with rheumatoid arthritis

First, we investigated in detail a bronze standard rheumatoid arthritis data set that
has reference DNA methylation profiles available for each of the main cell types present
in the samples. Next, we performed simulations with synthetic data based on the real

data, serving as a gold standard. Finally, we applied our approach to two cancer
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Figure 2.1: RA methylation association study analysis. In preprocessing, data were cor-

rected for gender, batch and smoking status. (a) Quantile-quantile (qq) plot of the logl0 P
values for association without additional corrections. It shows severely inflated test statis-
tics leading to many false positives. Green dashed lines show the 95% confidence intervals.
Large deviations from the diagonal are indicative of inflation. (b) qq plot resulting from
use of a bronze standard analysis in which estimated cell type composition was included
as a covariate. (c) qq plot resulting from use of EWASher, which did not use knowledge
of cell type composition. (d) Paired plot of the logl0 P values from (b) and (c). The two
approaches found the exact same five significant loci (with the same rankings), even though
one required explicit knowledge of the cell type composition. (e) Paired plot of the values
from (a) and (c), showing that the correction dramatically altered the rank order of the
hypotheses, and that in the uncorrected method, the bronze standard significant loci were
swamped by spurious associations. (f) Samples from RA patients had a higher proportion
of myeloid cells (granulocytes and monocytes) and fewer lymphocytes (B, T, and NK cells)

compared with control samples.
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methylation data sets from TCGA that do not have reference profiles available, as is
typical.

The models used in this section include: (1) an uncorrected analysis that adjusts
only for standard covariates such as age, gender and batch, but does not correct for
cell-type composition, (2) a reference-based analysis that corrects for known cell type
composition by adding these as covariates to a linear regression, (3) a reference-free
PC-based analysis that corrects for cell-type composition by adding PC covariates to
the linear regression, (4) EWASher, our new reference-free hybrid LMM-PC approach.

Throughout our experiments we use quantile-quantile (qq) plots of the logl0 quan-
tiles to assess inflation of the test statistic in our experiments, as is common in the
GWAS community. In these plots, the quantiles of the theoretical null distribution
are plotted against the observed quantiles. Under the assumption that no methylation
loci in the observed data are differentially expressed, the resulting plot should follow
the diagonal and lie within the 95% confidence error bars. Because we expect some,
but not too many, methylation sites to be differentially expressed, we expect to see
only small deviations from this, and interpret greater deviations as inflation of the test
statistic. We also use the genomic control factor, A, a metric commonly used in GWAS
to quantify how much the test statistics are inflated compared to the null distribution.
A data set corrected for confounders has A around 1, while A significantly greater than
1 indicates confounding and potentially many false positives.

We obtained data from the recent study of DNA methylation association with
rheumatoid arthritis (RA). The study collected blood samples from 354 cases and 312
controls, which were assayed on a 450k Illumina DNA methylation chip. After filtering
out failed probes and probes that were constitutively methylated or unmethylated in
all the samples, we retained 103,638 loci. Effects due to age, gender, smoking status,
and batch were removed by regressing these factors on methylation and then using the
residuals for all further analysis. In (67), the authors estimated the cell-type composi-
tion9 for each sample by using the carefully collected five known reference methylation
profiles (CD14 monocytes, CD19 B cells, CD4 T cells, CD56 NK cells, and granulo-
cytes). We use these estimated cell types for a bronze standard analysis to which we
compare our approach.

First, we performed an uncorrected analysis to look for associations between each

methylation marker and the RA phenotype. We observed severe global inflation of the

11
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test statistic, resulting in far too many low P values (Fig. 2.1a). In the RA data, the
A was 10.97, which is significantly more inflated than the values (A < 1.5) observed in
typical human GWAS with population structure. The blood samples of RA patients
showed significant changes in the relative proportions of lymphocytes and myeloid cells
compared with healthy control subjects (Fig. 2.1f). Therefore, if a marker was differen-
tially methylated between blood cell types, then it also appeared to be correlated with
the phenotype. These associations are biologically uninteresting because they simply
tag known differences in cell type composition; the goal of an EWAS here is to find
changes in methylation above and beyond these cell type composition associations.

Next, we performed a reference-based cell type corrected analysis by using the esti-
mated cell-type composition as covariates in the regression model used for association
analysis. We observed that this approach adequately corrected the genome-wide infla-
tion of test statistics (Fig. 2.1b).

Finally, we applied our new reference-free approach, EWASher to these same data.
Just as adding the reference-based covariates successfully corrected for cell type com-
position, so too did our reference-free approach (Fig. 1c). At the Bonferroni threshold
of 5x1077, the reference-based approach, and the reference-free EWASher both find
the same five significantly associated loci (Fig. 2.1d, Table 2.1). The top associated
site is in the gene body of HLA-DQA2 for which gene expression levels are associated
with RA disease severity. The other two significant loci are in the promoter of NLRC5
which has been shown to regulate inflammatory processes. In the uncorrected model,
these biologically meaningful associations were swamped by spurious associations (Fig.
2.1e). For this data set, EWASher found that no PC covariates were needed with the
LMM.

It is instructive to examine which loci were selected by the uncorrected association
analysis and to understand why they lose significance in the corrected analysis. We
selected the most significant loci from the uncorrected linear regression and plotted their
methylation level in each of the five reference cell types. These sites were all highly
methylated in B, T, and NK cells (lymphocytes) and barely methylated in monocytes
and granulocytes (myeloid cells). Given that B, T, and NK cells make up a significantly
smaller fraction of the cells in RA cases than in controls, it is not surprising that
these loci were strongly associated with the phenotype. In contrast, EWASher did

not pick up these lymphocyte-specific loci because it automatically controls for these
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systematic biases, without the need for explicit knowledge of lymphocytes and myeloid
cells. EWASher can thus be used to identify loci that are associated with the phenotype
of interest above and beyond the cell-type specific relationshipsknowledge of far greater
interest.

A possible alternative approach to our hybrid EWASher approach would be to use
only the top principal components (PCs) to adjust for confounding due to cell type
distributions, similar to the manner in which EIGENSTRAT uses PCs to correct for
population structure in GWAS, and Surrogate Variable Analysis uses PCs to correct for
expression heterogeneity in gene expression. We applied such a model, PC covariates
with linear regression, to the RA dataset, systematically varying the number of top
PC covariates used. Even when a large number of PCs were used, the test statistics
were still inflated. This result is consistent with the observation in GWAS that when
samples exhibit complex relatedness, linear corrections using PCs cannot fully capture
the confounders. In the RA data, complex structure amongst samples was caused by
heterogeneous cell-type composition, which is a structure that EWASher accounted for

by explicitly modeling the similarity between every pair of samples.

2.3.3 Simulation results

In this section, we used the real RA data as a basis for generating synthetic data sets
that could then be used as a gold standard. Briefly: using the empirical distribution of
cell types for the cases and controls in the RA dataset, in conjunction with the reference
profiles themselves, we generated methylation profiles for a set of cases and controls
that had no true associations with the case-controls status (that is, no associations
above and beyond those due to cell type composition). On this null-only simulated
data, EWASher was well-calibrated (yielded non-inflated P values) and did not pro-
duce any false positive markers (Fig. 2.2). Next, in order to examine power, we added
in methylation site-specific signals to create true associations with some sites (roughly
the same number as we believed to be present in the real data, as judged by using the
reference-based analysis). In this setting, EWASher did not produce any false posi-
tives above the Bonferroni threshold among loci generated from the null distribution.
Moreover, it was able to recover true signals just as well as a model that cheated by

using the known (generative) reference cell type composition as covariates (Fig. 2.2f).
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Figure 2.2: We generated synthetic data with cell type composition characteristics based
on the actual RA data. EWASher yielded calibrated P values (no inflation) and did not
produce any false positives. (a) qq plot of the logl0 P values for association from the
uncorrected model. Green dashed lines show the 95% confidence intervals. Large deviations
from the diagonal are indicative of inflation. The test statistics were severely inflated similar
to Fig. 2.1(a). (b) qq plot resulting from the inclusion of the cell type composition used
to generate these data as covariates (with linear regression); the P values were calibrated.
(¢) qq plot resulting from the use of EWASher, which does not use cell type composition.
(d) Paired plot of the values from (b) and (c¢). EWASher had good agreement with the
gold standard. (e) Paired plot of the values from (a) and (c). A naive analysis has no
agreement with the gold standard. (f) ROC curve demonstrating that EWASher recovered

true associations as well as the gold standard method which used the cell-type composition.
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Unsurprisingly, both our approach and the reference-based approach, significantly out-
performed the uncorrected model. Note that, if the true association signal is present
only in a relatively rare cell type, then both EWASher and the reference-based method
lose power (as compared to a less rare cell type-based association). In all of these
experiments, EWASher did not find the need for any PC covariates.

To test the model in settings with a larger number of cell types (above we used
five, as in the original RA paper), we simulated additional datasets with up to 50 cell
types. Across all these simulations, EWASher did not find any false positive associations
(those passing the Bonferroni threshold). When the confounding effects are large, our
mathematical analysis predicts that the LMM alone will be underpowered to correct for
them completely. Indeed, in simulations we found that when there are large systematic
differences in cell-type composition between cases and controls, P values were no longer
adequately calibrated by the LMM alone (i.e., large inflation of the test statistic was
observed). However, by adding top principal components to the LMM, EWASher did

correct for all the spurious associations even when the confounding effects were large.

2.3.4 TCGA breast and colon cancer methylation analysis

DNA methylation and other epigenetic marks define cellular identity through their reg-
ulation of gene expression programs, and are known to change during normal tissue
development and differentiation. Dysregulated DNA methylation is associated with
disruptions in developmental processes and can lead to unchecked cell proliferation and
oncogenesis. This is thought to occur through gains and losses of methylation that are
associated with aberrant silencing of tumor suppressor genes and activation of onco-
genes. Thus, investigation of epigenetic associations in cancers is of great importance
toward understanding these diseases.

Solid tumors are particularly likely to contain a heterogeneous mixture of many cell
types, most of which do not have reliable reference methylation profiles. Therefore,
analyses of solid tumors methylation profiles are among those analyses most likely
to benefit from application of EWASher. This difficulty with solid tumors has likely
contributed to the dearth of clinically available DNA methylation biomarkers for the
associated diseases, despite thousands of publications reporting methylation changes in

hundreds of genes.
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Figure 2.3: DNA methylation association with breast and colon cancer. Quantile-quantile
(qq) plot of the logl0 P values for association for various methods, with dashed green lines
showing the 95% confidence intervals. Large deviations from the diagonal are indicative of
inflation. The top row (a-c) are from breast cancer, while the bottom row (d-f) are from

colon cancer. In pre-processing, breast cancer data were corrected for batch and breast

cancer subtypes; colon cancer data were corrected for age, gender, and anatomic position
of the sample. First column (a and d) shows the uncorrected model that did not account
for cell type composition. The second column (b and e) shows the PC-only model (with
the top 10 PCs as covariates). The test statistics were still inflated. The third column (c
and f) shows EWASher, which used the top two (breast cancer) and three (colon cancer)

PCs with the LMM.
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We analyzed the TCGA breast cancer methylation data set, comprised of 816 cases
and 124 controls. First, we performed an uncorrected EWAS analysis on this methy-
lation data. We used the case-control status for the phenotype, and controlled only
for batch and breast cancer subtypes (luminal A, luminal B, basal, and Her2). We ob-
served severe inflation of the test statistic, yielding largely useless P values (Fig. 2.3a).
Next, we investigated whether adding top PCs as covariates to a linear regression could
fully control the inflation, finding that they could not (Fig. 2.3b). Finally, we applied
EWASher, our hybrid method, which used two PCs with the LMM. This model suit-
ably corrected the inflation (Fig. 2.3c), and yielded relevant associations as discussed
below.

Two markers passed the Bonferroni threshold. The top marker, cg05127924, is in
the gene body of FBXW10, an F-box protein. The second marker, cg21504624, is in
the promoter of IL11RA, which has recently been suggested as a prognostic biomarker
in human breast cancer. In the same TCGA samples, IL11RA had significantly lower
expression in the cases, consistent with the increased methylation at its promoter. The
next most significant markers, just below the Bonferroni threshold, were in the promoter
or gene body of genes RUNX1, TAGLN, TNS1, OPRMI1, and RUNX3. RUNXI1 has
been recently identified as a candidate breast cancer tumor suppressor, while multiple
loss of function DNA mutations we observed in RUNX1 in the TCGA survey. OPRM1
is suggested to promote tumor growth and acts as a breast cancer tumor suppressor by
targeting estrogen receptor alpha. RUNX3 acts as a tumor suppressor in breast cancer
by targeting estrogen receptor alpha. In contrast, a similar literature search for the top
ten associated genes in the uncorrected association analysis did not reveal any obvious
connections to cancer. Note that global hypo-methylation can affect up to 50% of the
genome of certain cancer cells, and such large-scale changes can mask the associations
of biologically significant loci. EWASher was able to identify known biomarkers and
drivers of breast cancer, above these global effects. We expect that as sample size
increases in future EWAS, more loci will be associated above the Bonferroni threshold.

Finally, we used a gene ontology (GO) enrichment analysis to further validate our
method. First we identified the nearest genes associated with the top 100 markers
from both our method and the uncorrected method, and then analyzed the respective
gene sets for enriched categories. The four most enriched GO categories (each with

p < 0.002) for genes identified through EWASher were: immune response, defense
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response, induction of apoptosis, and cell proliferation. These findings are consistent
with our understanding of the role of immune response in breast cancer, as well as
with the general model of cancer-driven proliferating cells. In contrast, the four most
enriched GO categories for genes from the uncorrected analysis were not particularly
specific to cancer: disulfide bond, signal peptide, secreted, and signaling cascade.

One of the core ingredients of EWASher is the similarity matrix computed from
selected loci (and used in the LMM component). This matrix, which contains the
pairwise similarity between all individuals in a cohort, can be used to visualize the
relationship amongst samples. In a heatmap of the clustered similarity matrix of the
breast cancer data, the control samples clustered closely together, while there were
three clusters among the cases. Upon closer examination, cluster 1 was enriched for
samples diagnosed as Luminal B; cluster 2, for those diagnosed as Basal; and cluster 3,
for those diagnosed with Luminal A and B. Visualization of the similarity matrix can
thus reveal interesting biological subtypes among samples. It is interesting to note that
we still observe cancer subtypes in the similarity matrix even though we had explicitly
used the subtypes as covariates in correcting the data. This suggests breast cancer
subtypes correlate with nonlinear changes in the methylome and cell-type composition,
and cannot be fully accounted by linear covariates.

Next we analyzed the TCGA colon cancer methylation data set comprising 270
cases and 38 controls. After correcting for age, gender, and the anatomy of the sample,
we observed severe inflation of the test statistic (Fig. 3.3d). As with breast cancer,
adding PCs as covariates to a linear regression did not control all of the inflation (Fig.
3.3e). In contrast EWASher (which used the top three PCs with the LMM) was able
to fully control inflation of the test statistic (Fig. 3.3f).

The EWASher methylation analysis yielded three markers that passed the Bon-
ferroni significance threshold. These were in the gene bodies of MYBPC3, C9orf50,
and SND1. SND1 is recognized as an oncogene in many cancers, and increase in its
expression is correlated to colon cancer progression. Markers just below the Bonferroni
threshold of 3.9210~7 were in the promoter of SALL3 and the gene bodies of ZMIZ1,
LRRC4, and NCOR2. SALL3 was recently discovered to be aberrantly methylated
and down-regulated in human hepatocellular carcinoma. ZMIZ1 is an androgen re-
ceptor and is aberrantly expressed in a large fraction of human breast, ovarian and

colon cancers. LRRC4 is a putative tumor suppressor gene, with potential to decrease
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growth rates. NCOR2 down regulates target genes by recruiting histone deacetylases,
and aberrant expression of this gene is observed in several cancers. GO analysis of
the top 100 markers did not reveal any particularly interesting categories for either
EWASher or an uncorrected analysis, perhaps owing to the smaller sample size and
consequently loss in power relative to the breast cancer data set, or to differences in
disease architecture.

As in the breast cancer analysis, we again clustered and visualized the similarity
matrix, which yielded two distinct clusters among the cases, and one cluster for the
controls). Compared with cluster 1, cluster 2 was significantly enriched for tumor
samples extracted from the right colon. This finding is consistent with previous reports
that gene methylation varies between the two sides of the colon. We also found that
cluster 2 was correlated with a higher incidence of lymphatic invasion (p < 0.01), which
is supported by the observation that cancer in the right colon correlates with poorer

prognosis.

2.4 Discussion

We have demonstrated the utility of our method on a bronze standard RA data set
annotated with cell type composition. We showed that our reference-free EWAS ap-
proach works just as well as a reference-based approach, both in controlling for false
positives and in finding associations of interest. We further validated our approach on
gold standard synthetic data sets, demonstrating that EWASher successfully removes
false positives, while maintaining just as much power as a reference-based approach.
Finally, we applied our approach to TCGA breast cancer and colon cancer data sets,
revealing relevant biological associations not obtainable by currently available analysis
methods.

The core strength and uniqueness of our method is that it does not require knowl-
edge of cell type compositions and reference cell methylation profiles, information that
is both difficult and expensive to obtain, yet performs as well as methods that use
such reference information. We believe this method can significantly expand the scope
of EWAS, making it possible to conduct EWAS on samples for which it is extremely

difficult to measure cell compositions. Additionally, the approach allows users to detect
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clusters amongst the samples and to visualize their relationships, possibly leading to
further insights about the data.

One limitation of our approach is that we cannot analyze each cell type individually,
as we do not explicitly decompose each sample into its constituent cell types. Investi-
gating how to adapt our approach for such analyses is of interest. It should be possible
to combine our method with a reference-based approach, for cases where not all (or a
sufficient number) of the references are known. For example, if one had some reference
profiles available, one could include them as covariates, and then use our approach to
model the residual confounding. Thus, our model should allow for the use of available
prior knowledge.

All experiments herein were univariate tests of one methylation site. However,
it could be useful to jointly test multiple sites at once. All of our methods directly
generalize to such a setting. Although we have applied a linear model to a binary
phenotype, these types of models have previously been applied to case-control data
with great success. Additionally, others have provided theoretical arguments for the
use of linear models with case control data.

Finally, we note that although our experiments focused on methylation data, we
believe that our method, or generalizations thereof, are likely to prove useful for other
types of data as well, such as gene expression and DNA hypersensitivity. This is an

interesting direction for future investigation.

Table 2.1: Methylation loci significantly associated with RA. - The same five loci
passed the Bonferroni threshold in both EWASher and the bronze standard method which
used cell type composition as a covariate. The two methods also gave the same estimates
of effect sizes.

ID Chr Gene Effect (EWASher) Effect (bronze standard)
cg05428452 6 HLA-DQA2 -0.11 -0.11
cg07839457 16 NLRC5 -0.11 -0.11
cgl6411857 16 NLRC5 -0.10 -0.10
cg25372449 6 HLA-DRB5 -0.09 -0.09
ce20821042 6  HLA-DQA2 -0.09 -0.09
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2.5 Supplemental methods

RA data was obtained directly from the authors of (67)), but is all publically available
as indicated in their paper. The TCGA breast and colon cancer DNA methylation data
was downloaded from the TCGA data portal: https://tcga-data.nci.nih.gov/tcga/. Our
suite of tools includes functionalities to cluster and visualize the similarity matrix as a
heatmap, in addition to performing the EWASher association analysis.

We deemed a site to be constitutively methylated if its average probe value across all
samples (cases and controls) is above 0.8; and we call a site constitutively unmethylated
if its average probe value across samples is below 0.2. Because we look for markers
correlated with the phenotype, we remove such constitutive loci from our association
analysis.

For GO enrichment analysis, we first had to assign markers to genes using the hg19
UCSC annotations. If a marker was in the promoter or gene-body, we assigned it to
that gene. Intergenic markers were not assigned to genes. For the GO analysis, we
collect genes associated with the top 100 markers from each method (EWASher and
the uncorrected analysis). We then performed gene set enrichment analysis on these
two sets of genes using DAVID, and report the most significantly enriched categories
based on P values.

EWASher is computationally efficient. Each of the datasets analyzed (RA, breast
and colon cancer) were analyzed by EWASher on a single laptop (Lenovo X1 Carbon
with 8Gb of RAM) in 1-5 minutes. Furthermore, the linear mixed model backbone of
EWASher has been successfully scaled to large GWAS datasets1416, and the EWASher
running time is just a constant times the LMM running time. The constant is the
number of PCs scanned (typically 1-5). Therefore as the size of EWAS approaches that
of GWAS, EWASher will be a fast and memory efficient tool performing genome-wide

analyses.

2.5.1 Simulations

To simulate null-only data in such a way as to most closely mimic the actual RA
data, we obtained the previously inferred cell type composition for each sample in
RA, as well as the reference DNA methylation maps for each of the five blood cell

types. To simulate a sample, we took the weighted average of the five reference cell
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types, with weights given by the previously inferred cell type composition from the
real data. We then we added independent and identically distributed Gaussian noise
to each marker. The relative performance of EWASher and the method which used
the reference-based cell type composition was robust to the amount of noise added (we
tried noise standard deviation in the range 0.05 to 0.3). To add synthetic locus-specific
signal, we selected a cell type (or a set of cell types) as being differentially expressed
between case and control, and then created a case reference methylation profile from the
null-only reference methylation profile by making the causal loci systematically higher
(or lower) compared to the control reference profile. The samples were then simulated
as before, only now using a weighted sum of either case, or control reference profiles,
as appropriate.

For the simulations with additional cell types and individuals:

1. We generated synthetic reference cell-types by first breaking the five blood refer-
ence methylomes (from the RA dataset) into megabase blocks and then taking random
combinations of these blocks to create a new cell type.

2. For simulation with N cell types, we set one N-dimensional Dirichlet distribution
for cases and another for the controls.

3. For each case sample, we drew a set of mixture weights from the case Dirichlet,
and then took the weighted average of the N reference cells. A similar procedure was
conducted for the control samples.

4. We next added identically and independently distributed Gaussian noise to each
marker, with a noise standard deviation of 0.1, as this matched the empirical noise
distribution. We tried varying the standard deviation from 0.05 to 0.3 and EWASher
continued to robustly control inflation of the test statistics.

The description of EWASher uses the concept of the genomic control factor, A, which
is defined as the ratio of the median observed to median theoretical test statistic. When
there is no signal in the data, a calibrated result corresponds to A = 1, and values of
A substantially greater than 1.0 are indicative of inflation. Methylation values were
normalized to be between 0 and 1, and then, within the LMM, further normalized to

have mean zero and unit variance.
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2.5.2 The EWASher model

EWASher seeks to find the simplest combination of PCs and LMM that control for
inflation of the test statistics. It works as follows:

1. Filter out markers that are constitutively high or low.

2. Run the uncorrected association analysis, and rank all the methylation loci by
their significance. As in FaST-LMM-Select, we select the top K loci to construct the
methylation similarity matrix, where K is automatically determined by maximizing
cross-validation likelihood.

3. Using the similarity matrix determined from step 2 with the LMM, compute an
association P value for each site. If the genomic control factor, A, is still inflated (see
note below), compute the PCs across all samples. Include the top PC as a covariate,
and then rerun the linear regression model to rank all the loci by significance (now
conditioned on the first PC). As in step 2, use the selected loci to construct the similarity
matrix. This gives the EWASher model comprising the LMM and one PC, which is
then used to compute association significance for each site. If X is still inflated, use the
top 2 PCs as fixed covariates, and iterate until the inflation is controlled.

On the colon cancer data set, EWASher with 1 or 2 PCs cannot correct for inflation
of test statistics (A = 2.1, and 1.1, respectively). With 3 PCs, EWASher sufficiently
controls the inflation. For our datasets we set the inflation threshold to be A = 1. Note
that in GWAS studies with polygenic effects, it has been observed that A can appear
slightly inflated due to signal in the data; thus, setting the threshold of A = 1 might
be too conservative. In these cases A values up to say 1.1 can be tolerated. Similarly
in EWAS, if practitioners have prior belief that many loci might be truly associated
with the phenotype beyond cell composition confounding, then they can experiment
by setting the EWASher A threshold to be above 1(i.e., the algorithm stops after A
falls below this threshold). In studies where controlling for all spurious associations is
absolutely crucial, we suggest using the more conservative A = 1 threshold.

As in the GWAS applications of the LMM, it is important to select methylation sites
when constructing the similarity matrix. If we use all the methylation loci to construct
the similarity matrix, then we are likely to introduce additional noise since many loci
in the genome do not correlate with cell-type composition. When we used all loci to

compute similarity for the RA data, the resulting LMM could not sufficiently correct
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for inflation of test statistics. Similarly, it is important to re-select markers after adding
in an additional PC covariate. Combining PCs with LMM have been suggested in the
GWAS context, although, to our knowledge, it has not fully been explored. The idea of
performing feature selection for features in the LMM similarity matrix, iteratively, as
we condition on increasingly more PCs covariates, is a novel contribution of this paper,

and it significantly improves the performance of EWASher.

2.6 Mathematics of EWASher

2.6.1 Overview

EWASher uses a combination of a linear mixed model (LMM) and principal component
covariates. LMMs tackle confounders by modeling the similarity between every pair
of individuals. We first describe the LMM in Section 2. Then we discuss cell type
composition in Section 3, which is a key confounder in EWAS. In this section we
also show how our similarity score captures the similarity in cell composition between
samples. In Section 4, we discuss the limitations of the LMM, and show mathematically
that when the confounder is strong, the LMM alone does not adequately model the
confounder. This failing motivates our development of the hybrid LMM + PC model.
In Section 5, we discuss the connection between the LMM and PCA, while in Section
6, we describe EWASher.

2.6.2 Linear mixed models

In a linear mixed model (LMM), the phenotype y is expressed as a sum of fixed effects
3, Bs and random effects u

1
VM

o If there are N samples, then y is a N-by-1 vector. In this paper, y is a binary

y =XB+ Xsfs + Gu+e. (2.1)

phenotype corresponding to case/control status (see main paper for discussion of

application of a linear model to binary phenotypes).
e X is a matrix of known covariates, such as age, sex, batch, etc.

e X is a N-by-1 vector of the methylation values at site s across all samples. Site

s is being tested for its univariate association with y.
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e G is a N-by-M matrix whose (i, j) entry is the methylation value of marker j in
sample i. In practice, we assume that the markers are normalized so that the

columns of G have zero mean and unit variance.

e u is a M-by-1 vector whose entries are identically and independently distributed
(iid) samples from a Gaussian: u ~ N(0; agIM), where Ing is the M-by-M identity

martrix.
e € ~ N(0;0%Iy) is iid random noise.

We would like to estimate s for every methylation site in the data, and compute
the P value for its significance. The null model is that 8; = 0 and

y :X,B+\/1MGu+e. (2.2)

The p value is computed by comparing the ratio of the alternative and the null likeli-
hoods to the x? distribution.

Two equivalent views of LMM. One way to think of the LMM is, as in Eqn.
2.1, a Bayesian regression that integrates over the random effect u. Equivalently, we
can also think of it as a multivariate Gaussian. The likelihood of y after integrating

over u is

1
/N(y|X/3+XSBS + ﬁGu; JEIN)N(UIO; USIM)du = N(y|X‘B+XSIBS; U§K+031N)

where K = ﬁGGT is the similarity matrix. The entry (i, 7) of K captures how similar

the methylome of sample i is to that of sample j.

2.6.3 How the LMM captures cell type composition

Suppose there are T reference cell types for the EWAS problem on hand. Let R be the
M-by-T matrix of methylation values for each reference type. That is, R(s,t) is the
methylation of site s in cell type t. Each sample ¢ can, in principle, be characterized by
a cell-type composition vector Wi = (w1, ..., w;r)? (which may be known or unknown).
The fraction of sample i that is cell type t is w;; and Zt w; = 1. The methylation profile
of sample i is then G; = RWj. The similarity between samples i and j is K(i,7) =
ﬁGiGF = ﬁWiTRTRWj. We can decompose RTR using a spectral decomposition,

RTR = UAUT, where A is diagonal and contains the eigenvectors, while U contains
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the eigenvectors. What’s important to observe is that if the cell types are equally
dissimilar to one another, then all the diagonal entries (eigenvalues) are approximately
equal. In this case, K (i, j) o« WFW; (because UUT = I), and therefore it can directly
be seen that computation of the kernel K directly models the cell type composition. In
practice, even with small deviations from this assumption, we expect the LMM to do
well in modeling cell type heterogeneity (indeed, this bears out in our experiments in
the main paper).

Note that on real and simulated data, we find that the LMM best removes spurious
signals if, instead of using all the methylation sites to compute K, we select for loci
that are highly correlated with the phenotype as columns of . This selection tends

to pick out loci that are tagging cell-type composition.

2.6.4 Limits of the LMM

We analyze a simple example below to illustrate that the LMM alone does not ade-
quately capture strong confounders when the sample size is large. The main idea here
will be to (1) assume a particular methylation site that is strongly predictive of the
phenotype, due to confounding, (2) use the LMM to condition on just this site, while
testing this site, and (3) show that such conditioning does not entirely remove the sig-
nal, and therefore that this site would appear as significant. The consequence of this
conclusion is that conditioning on a variable by using it as a random effect (i.e. in the
similarity matrix of the LMM), does not always always fully control for that variable.
We now formally go through this argument.

Assume that we have a N-by-1 binary phenotype y, and one marker that we want
to test, x = y + &, where, where § ~ N(0;0?In). It turns out to be more convenient
to work in a different coordinate system, so we now rotate the data in such a way
that x = [||x][,0,...,0]T. (The intuition here is that x is a vector that points to one
particular direction in N-dimensional space, and therefore we can pick out this direction
as our first coordinate, so that the now rotated x becomes nothing more than a vector
with some magnitude in this one coordinate, and no magnitude in any other direction.)
When N is large, |[x||?> ~ Nease + No?. Because § is sampled from a spherically
symmetric Gaussian, its rotation, &', is also a sample from N(0;02Ix). Thus, we now
have y = [||x]],0,...,0T — &".
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Suppose x is correlated with y due to very strong confounding. In this case, we
would like the LMM to learn that it is not significant. An extreme scenario is to use the
same x to construct the similarity matrix: K = xxT. The null model likelihood (assum-

ing no covariates for simplicity but without loss of generality) is N(y|0; agK + 02In).

2 2]'

The covariance matrix of the Gaussian is nicely diagonal diag[og|x||*> + 02,02, ..., 07

2 o).
2. So to keep the exposition

simple, we can approximate the covariance matrix by diag[a§\|x||2,a§, ..., 02]. The

When N is large, it will turn out that o§||x|\2 >> o

log-likelihood under the null model can be expressed in the factored form

1 22 IXIP N Ll
Solving for o2 and 03 that maximizes LL,,; and plugging it in yields
1 N
LL,uy ~ —5 log 27 ||x||*> — 5 log 27||6']|* — 1. (2.4)

The alternative model likelihood is N (y|x; 03K+0§IN). Using the fact that x = y+

2
g

can set o7 = 0 and obtain a lower bound on the alternative likelihood of N (6]0; 02IN).
The log-likelihood is

4, this can be rewritten as N (6]0; USK—FG?IN). Because we optimize over o2 and o2, we

N 1011
LLay > = log 202 — 907 (2.5)
After optimizing o2, we have
N 2
LLyy > —?log 27||8]]* — 0.5. (2.6)
Since [|8]|? = ||6’]|? due to rotational invariance, the difference between the alternative
and null log-likelihood is
1
LLy; — LLyuy > 5 log 2”‘ ’X‘ ’2 (27)

Therefore as the number of samples increases, the difference between the alternative
and null model likelihoods increases approximately as log(Neqse + No?), at some point
yielding a significant likelihood ratio test statistic (twice the difference in likelihoods).
So even when we condition on x by way of including it as a random effect, we find
that testing x as a fixed effect can be significant (the larger the sample size, the more
significant). In other words, x remains a significant predictor of y even when condi-

tioning on x itself by way of the LMM (i.e., use it to build the similarity matrix in
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the LMM). While very simple, this example sheds light on the limitations of the LMM
in correcting for strong confounders when the sample size is large, and motivates our
proposed hybrid PC + LMM approach. The setting of this example can arise when
the cases all contain a significant fraction of one cell type, which is present only in low
amount in the controls. Then if x is a site that is specifically methylated in this cell

type, x will be strongly correlated with the phenotype, y, as in our example above.

2.6.5 The connection between PCs and LMM.

In this section we show that using PCs as fixed effect covariates is equivalent to using
the maximum likelihood approximation to the Bayesian LMM regression.

Recall from Eqn. 1 that the linear mixed model can be written as y = X8+ Xg8; +
ﬁGu—i—e, where u are the random effects that correct for confounding structure in G.
After integration of u, we're left with the marginal form, N (y|X8+Xs/fs; (TgK—l-O'gIN),
where K = ﬁGGT is the similarity matrix. Also recall that when using PC covariates
to correct for confounding, we would add the leading principal components from GG7T
to a linear regression.

Now consider the singular value decomposition of ﬁG given by ﬁG = AAB,
where A is the N-by-N left singular matrix, B is the M-by-M right singular matrix, and
A is a diagonal matrix. The columns of A are the eigenvectors of GGT or, equivalently,
the principle components of G. Then we can rewrite ——Gu with u ~ N(0; O'EIM) as

VM
—L_Gu = AAv with v ~ N(0; O'éBBT). A low rank approximation is then —-=Gu ~

VM VM

Zle A;\v;, where {A;}L | are the top L principal components. If we were to take only
take the top few PCs, we could estimate v; explicitly without overfitting, and therefore
we could treat v; not as random variables to be integrated out, but instead estimate
them by way of maximum likelihood. Therefore the low-rank maximum likelihood

approximation to the linear mixed model is given by

L
y =XB+XBs+ Y Aihivi + ¢, (2.8)

i=1
which is precisely the PC-based correction that is used in GWAS and similar studies.
Note that this PC approximation is only good if G is actually low-rank. When there
are many latent cell types and when there are other hidden confounders, G is no longer

low rank. In real data sets that contain such effects, such as rheumatoid arthritis,
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breast cancer and colon cancer, we find that the top PCs do not sufficiently model the

confounders, resulting in inflated test statistics.

2.6.6 EWASher

EWASher augments the linear mixed model with top PCs as covariates so that it can

correct for confounding even when it is strong. The model is

L

1
y=XB+XsBs + Y Aidivy + —=

Gu-+e 2.9
2 i (2.9)

where 3, 85 and {vi}iLzl are fixed effects and u is the random effect. L is the number of
top PCs used. We use an iterative procedure to find the minimum L that corrects for
test statistic inflation as captured by the genomic control factor A. This corresponds to
finding the simplest model, i.e. one with the fewest number of parameters, that controls
the inflation. The algorithm is initialized with L = 0 which is just the standard LMM
of Eqn. 2.1. If this model has inflated test statistics (A > 1), we then add the top one
PC to the model. If this model is still insufficient, we set L = 2 and iterate. Note that
because the LMM portion of the model does feature selection to build the similarity
matrix, K, one could choose to redo this feature selection upon addition of each new
PC. In practice, we find that such redoing of the feature selection is essential.

To compute the PCs in EWASher, we represent each sample as an M-by-1 vector,
where M is the total number of measured methylation loci, and perform the standard
PCA. As an alternative approach, we have investigated performing feature selection
for the PCA, whereby each sample is represented by a subset of loci. These loci can
be selected through univariate regression against the phenotype, as with the LMM.
Such an approach is similar to discriminative PCA. On real and simulated data, we
did not observe significant differences in results from using the standard PCA or the
feature selection PCA in EWASher, and therefore chose to go with PCA without feature

selection.
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3

Genome-wide Analysis Reveals
Conserved and Divergent
Features of Notchl/RBPJ
Binding in Human and Murine T

Lymphoblastic Leukemia Cells

3.1 Overview

Notchl regulates gene expression by forming transcription activation complexes with
the DNA-binding factor RBPJ and is oncogenic in murine and human T cell progenitors.
We used ChIP-Seq to identify Notchl and RBPJ binding sites in human and murine
T-LL genomes. In both species, Notchl binds preferentially to promoters, to RBPJ
binding sites, and near imputed ZNF143, Ets and Runx sites. ChIP-Seq confirmed
that ZNF143 binds to 40% of Notchl sites. Notchl/ZNF143 sites are characterized by
high Notchl and ZNF143 signals, frequent co-binding of RBPJ (generally through sites
embedded within ZNF143 motifs), strong promoter bias, and lower levels of activating
chromatin marks than other classes of Notchl-binding sites. K-means clustering of
Notchl bindi