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Abstract

Wagering mechanisms are one-shot betting mechanisms
that elicit agents’ predictions of an event. For determin-
istic wagering mechanisms, an existing impossibility re-
sult has shown incompatibility of some desirable the-
oretical properties. In particular, Pareto optimality (no
profitable side bet before allocation) can not be achieved
together with weak incentive compatibility, weak bud-
get balance and individual rationality. In this paper, we
expand the design space of wagering mechanisms to al-
low randomization and ask whether there are random-
ized wagering mechanisms that can achieve all previ-
ously considered desirable properties, including Pareto
optimality. We answer this question positively with two
classes of randomized wagering mechanisms: i) one
simple randomized lottery-type implementation of exist-
ing deterministic wagering mechanisms, and ii) another
family of randomized wagering mechanisms, named
surrogate wagering mechanisms, which are robust to
noisy ground truth. Surrogate wagering mechanisms are
inspired by an idea of learning with noisy labels (Natara-
jan et al. 2013)) as well as a recent extension of this idea
to the information elicitation without verification setting
(Liu and Chen 2018). We show that a broad set of ran-
domized wagering mechanisms satisfy all desirable the-
oretical properties.

1 Introduction

Wagering mechanisms (Lambert et al. 2008} Lambert
et al. 2015; [Chen et al. 2014; [Freeman, Pennock, and:
Vaughan 2017; [Freeman and Pennock 2018) are one-
shot betting mechanisms that allow a principal to elicit
participating agents’ beliefs about an event of interest
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without paying out of pocket or incurring a risk. Com-
pared with prediction-market type of dynamic elicita-
tion mechanisms, one-shot wagering is possibly pre-
ferred due to its simplicity. It is particularly designed
for agents with immutable beliefs who “agree to dis-
agree” and who do not update their beliefs. In a wa-
gering mechanism, each agent submits a prediction for
the event and specifies a wager, which is the maxi-
mum amount of money that the agent is willing to lose.
Then after the event outcome is revealed, the total wa-
gered money will be redistributed among the partic-
ipants. Researchers have developed wagering mecha-
nisms with various theoretical properties. In particu-
lar, [Lambert et al.| (2008 2015) proposed a class of
weighted score wagering mechanisms (WSWM) that
satisfy a set of desirable properties, including budget
balance, individual rationality, incentive compatibility,
sybilproofness, among others Chen et al.[(2014) later
proposed a no-arbitrage wagering mechanism (NAWM)
that removes opportunities for participating agents to
risklessly profit.

However, in both WSWM and NAWM, it has been
observed that a participant only loses a very small frac-
tion of his total wager even in the worst case. This
seems to be undesirable in practice as it is against
the spirit of betting and a wager effectively loses its
meaning as a budget. [Freeman, Pennock, and Vaughan
(2017) first formalized this observation by indicating
that these mechanisms are not Pareto optimal, where
Pareto optimality requires that there is no profitable
side bet among participants before the allocation of a
wagering mechanism is realized. They also proved an
impossibility result: Pareto optimality cannot be sat-
isfied together with individual rationality, weak bud-
get balance and weak incentive compatibility. A double
clinching auction (DCA) wagering mechanism (Free-
man, Pennock, and Vaughan 2017) was hence proposed
to improve Pareto efficiency. The parimutuel consensus
mechanism (PCM) has been shown to satisfy Pareto op-
timality (Freeman and Pennock 2018)), but violates in-
centive compatibility.

This paper is another quest of wagering mechanisms
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with better theoretical properties. We expand the design
space of wagering mechanisms to allow randomization
on agent payoffs and ask whether we can achieve all
aforementioned desirable properties, including Pareto
optimality. We give a positive answer to this question:
Our randomized wagering mechanisms are the first ones
to achieve Pareto optimality along with other properties.

We first show that a simple randomized lottery-type
implementation of existing wagering mechanisms (Lot-
tery Wagering Mechanisms (LWM)) satisfy all desirable
properties. In LWM, instead of receiving re-allocated
money from a deterministic wagering mechanism, each
agent receives a number of lottery tickets proportional
to his payoff in the deterministic wagering mechanism.
Then, the agent with the winning lottery wins the total
wager (collected from all participants).

We then design another family of randomized wager-
ing mechanisms, the Surrogate Wagering Mechanisms
(SWM), by bringing insights from learning with noisy
data (Natarajan et al. 2013 Scott 2015) to wagering
mechanism design. A SWM first generates a “surro-
gate outcome” for each agent according to the true event
outcome. An agent’s reported prediction is then eval-
uated using his surrogate but biased outcome together
with a bias removal procedure such that in expectation
the agent receives a score as if his prediction is evalu-
ated against the true event outcome. Despite being ran-
domized, SWM preserve the incentive properties of a
deterministic wagering mechanism. We show that cer-
tain SWM satisfy all desirable properties of a wager-
ing mechanism. Notably, SWM are robust to situations
where only a noisy copy of the event outcome is avail-
able - this property is due to the fact that we borrow
the machinery from the literature of learning with noisy
data in designing SWM. We believe that this is another
unique contribution to the literature of wagering mech-
anism design.

The rest of this paper is organized as follows. We dis-
cuss related work in the rest of this section. Section 2
introduces some preliminaries. We define randomized
wagering mechanisms as well as desirable theoretical
properties for them in Section [3] Section [4] presents a
family of lottery-based wagering mechanisms. A fam-
ily of surrogate wagering mechanisms are introduced
in Section [5l Extensive simulations are conducted in
Section [6]to demonstrate the advantages of randomized
wagering mechanisms. Section [/] concludes this paper.
Missing definitions and proofs can be found in the full
version of the paper (Chen, Liu, and Wang 2018).

Related work The ability to elicit information, in par-
ticular predictions and forecasts about future events, is
crucial for many application settings and has been stud-
ied extensively in the literature. Proper scoring rules
have been designed (Brier 1950; Jose, Nau, and Win-
kler 2006; Matheson and Winkler 1976; Winkler 1969;
Gneiting and Raftery 2007) for this purpose. Later,
competitive scoring rule (Kilgour and Gerchak 2004)
and a parimutuel Kelly probability scoring rule (John-

stone 2007)) adapt proper scoring rules to group compet-
itive betting. Both mechanisms are budget balanced so
that the principal doesn’t need to pay any participant.
These spur the further development of the previously
discussed wagering mechanisms (Lambert et al. 2008;
Lambert et al. 2015} |Chen et al. 2014; |[Freeman, Pen-
nock, and Vaughan 2017 [Freeman and Pennock 2018])
and the examination of their theoretical properties.

The idea of using randomization in wagering mech-
anism design is not entirely new. It first appeared in
(Lambert et al. 2008)), but not thoroughly studied. They
restricted randomization to randomly selecting scoring
rules to increase the maximum amount of money an
agent can lose in WSWM. |Cummings, Pennock, and
Vaughan| (2016) proposed to apply differential privacy
technology to randomize the payoff of wagering mech-
anisms to preserve the privacy of agents’ beliefs. Our
specific ideas of adding randomness are inspired by re-
cent works on forecasting competition (Witkowski et al.
2018), surrogate scoring rules (Liu and Chen 2018)), and
the literature on learning with noisy labels (Bylander
1994; Natarajan et al. 2013; |Scott 2015)).

2 Preliminaries

In this section, we explain the scenario where a wager-
ing mechanism applies and formally introduce the de-
terministic wagering mechanisms. Consider a scenario
where a principal is interested in eliciting subjective be-
liefs from a set of agents A" = {1, 2, ..., N } about a ran-
dom variable (event) X, which takes a value (outcome)
inset ¥ = {0,1,.... M — 1}, M > 2. The belief of
each agent ¢ is private, denoted as a vector of occurrence
probabilities of each outcome p; = (p])jex € AM~L.
Following the previous work on wagering mechanism,
this paper continues to adopt an immutable belief model
for agents. Unlike in a Bayesian model, agents with
immutable beliefs do not update their beliefs. The im-
mutable belief model and the Bayesian model are two
extremes of agent modeling for information elicitation,
with the reality lies in between and arguably closer to
the immutable belief side as people do “agree to dis-
agree.” Moreover, Lambert et al.| (2015) showed that
while WSWM was designed for agents with immutable
beliefs, it continued to perform well for Bayesian agents
who have some innate utility for trading.

The principal uses a wagering mechanism to elicit
private beliefs of agents. In a wagering mechanism,
each agent reports a probability vector p, € AM~1
capturing his belief, and wagers an amount of money
w,; € R,. Similar to|Lambert et al.| (2008), we assume
that wagers are exogenously determined for each agent
and are not a strategic consideration. We use p and w
to denote the reports and the wagers of all agents re-
spectively, and use p_; and w_; to denote the reports
and wagers of all agents other than agent ¢. In addition,
we use W to denote ), ¢ w; for any set of agents
S C N. After an event outcome = € X is realized, the
wagering mechanism redistributes all the wagers col-



lected from agents according to p, w, x. The net-payoff
of agent ¢ is defined as the payoff or the money that
agent ¢ receives from the redistribution minus his wa-
ger. A wagering mechanism defines a net-payoff func-
tion I1;(P; w; x) for each agent ¢ with wager constraint
IL;(p; w; ) > —w; and constraint II;(p;w;z) = 0
whenever w; = 0. The two constraints ensure that no
agent can lose more than his wager and no agent with
zero wager can gain.

2.1 Strictly proper scoring rules and weighted
score wagering mechanisms

Strictly proper scoring rules (Gneiting and Raftery
2007) are scoring functions proposed and developed to
truthfully elicit beliefs from risk-neutral agents. They
are building blocks of many incentive compatible wa-
gering mechanisms, such as WSWM and NAWM. A
strictly proper scoring rule rewards a prediction p, by
a score s;(P,), according to the realization = of the
random variable X. The scoring function s,(-) is de-
signed such that the expected payoff of truthful report-
ing is strictly larger than that of any other report, i.e,
Ex~p, [SX (pi)] >Ex~p, [SX (f)z)]v Vb, # Pi-

There is a rich family of strictly proper scoring func-
tions, including Brier scores (for binary outcome event,
s:(P;) = 1 — (p; — x)2, where p; is agent i’s report
of P(X = 1)), logarithmic and spherical scoring func-
tions. Strictly proper scoring rules are closed under pos-
itive affine transformations.

WSWM (Lambert et al. 2008) rewards an agent ac-
cording to his wager and the accuracy of his prediction
relative to that of other agents’ predictions. The net-
payoff of agent : in WSWM, is formally defined as
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where s, (+) is any strictly proper scoring rule bounded
within [0, 1]. WSWM strictly encourages truthful re-
porting of predictions, because the net-payoff of agent ¢
is a strictly proper scoring rule of his prediction. Mean-
while, Y, \/ H}NS is always zero by the form of the net-
payoff formula, no matter what s (-) is. This means that
the budget balance property of Eqn. (1)) doesn’t depend
on the scoring rules. Our proposed surrogate wager-
ing mechanisms use the same general form of the net-
payoff function (but a different scoring rule) to guaran-
tee the ex-post budget balance.

3 Randomized wagering mechanisms

We introduce randomized wagering mechanisms as ex-
tensions of deterministic wagering mechanisms. Sim-
ilar to deterministic wagering mechanisms, the net-
payoff of an agent in randomized wagering mecha-
nisms depends on all agents’ predictions p and wa-
gers w, as well as the realized outcome x. But differ-
ent from deterministic wagering mechanisms, the net-

payoffs are now random variables. For notational sim-
plicity, we now use II;(P; w; ) to represent the ran-
dom variable of agent i’s net-payoff in a randomized
wagering mechanism. We use 7;(P; w; ) to represent
the realization of IT; (p; w; ). We use II; and ; as ab-
breviations when p; w; x are clear in the context. We
denote the maximum/minimum possible value of a ran-
dom variable X by X/X. We denote the joint distri-
bution of IL;(p;w;z),i € N by D(p;w;x) and the
marginal distribution of IT;(p; w; ) by D;(p; w; z).
Definition 1. Given a set N of agents, reports p and
wagers W of agents and the event outcome x, a ran-
domized wagering mechanism defines a joint distri-
bution D(P;w;x), and pays agent i by a net-payoff
IL;(p; w; ), where 1L;(p;w;2),i € N are jointly
drawn from D(P; w; x). Moreover, IL,(p; w; z) > —w;
and I1;(p; w; ) = 0 whenever w; = 0.

A deterministic wagering mechanism is a spe-
cial case of randomized wagering mechanisms when
D;(p;w; ) is a point distribution for all agent i € N.

3.1 Desirable properties

In the literature, several desirable properties of wager-
ing mechanisms have been proposed in the determin-
istic context. [Lambert et al.| (2008)) introduced (a) indi-
vidual rationality, (b) incentive compatibility, (¢) budget
balance, (d) sybilproofness, (e) anonymity,and (f) neu-
trality. |Chen et al.| (2014)) introduced (g) no arbitrage.
Freeman, Pennock, and Vaughan| (2017) introduced (h)
Pareto optimality. We extend these properties to the ran-
domized context. These new properties reduce to the
properties defined in the literature for the special case
of deterministic wagering mechanisms.

(a) Individual rationality requires that each agent
has nothing to lose in expectation by participating.

Definition 2. A randomized wagering mechanism is in-
dividually rational (IR) if Vi, p;, w, and p_,, there ex-
ists D; such that

ExX i imD; (b5 siwix) [Li(Bsy Do w; X)] > 0.

(b) Incentive compatibility requires that an agent’s
expected net-payoff is maximized when he reports hon-
estly, regardless of other agents’ reports and wagers.

Definition 3. A randomized wagering mechanism is
weakly incentive compatible (WIC) if Vi, p;,D;, #
Pi; f)—iv W
EXnpi inDi(pip_iwiX) [Hi(pwf)—i%W;X)]
> Exp, 1~D; (piw:x) 1L (D5 w5 X)] .
A randomized wagering mechanism is strictly incentive
compatible (SIC) if the inequality is strict.
(c) Ex-post budget balance ensures that the princi-
pal does not need to subsidize the betting.

Definition 4. A randomized wagering mechanism is
weakly ex-post budget-balanced (WEBB) if Vp,w, x :
Yien Ti(D,w,x) < 0 for any realization (7;)ien



drawn from the joint distribution D(p,w,x). A ran-
domized wagering mechanism is ex-post budget-
balanced (EBB) if the equality always holds.

(d) Sybilproofness requires that no agent can in-
crease its expected net-payoff by creating fake identi-
ties and splitting his wager, regardless of other agents’
reports and wagers.

Definition 5. Suppose agent i, instead of participat-
ing under one account with reported prediction p,; and
wager w;, participates under k > 1 sybil accounts,
with predictions and wagers {f)i, W4, bi=1,... & Such that
N N k

p;, = Dpwi, > 0Vl = 1,...,kand Y, w; =
w;. A randomized wagering mechanism is sybilproof if
Vi, p, w,and z, and for all sybil reports P, , ..., p;, and
wagers w;, , ..., w;,, we have

Erp (piwsa) [ (D; W3 2)]

k
> EH’ND(f)’;w’;w) [Z Hil (15/3 Wl; l‘)} .
1=1
where D, w and 11 are the reports, wagers and net-
payoffs when agent i participates under one account
and D', w' and 11" are the reports, wagers and net-
payoffs when agent i participates using k sybils.

(e) Anonymity requires that the distributions of ran-
dom net-payoffs do not depend on agents’ identities.

(f) Neutrality requires that the distributions of ran-
dom net-payoffs do not depend on the labeling of the
outcomes.

Formal definitions of properties (e) and (f) are pre-
sented in Section 4 of the full version (Chen, Liu, and!
‘Wang 2018)).

(g) No arbitrage requires that no agent can risklessly
make a profit.

Definition 6. A randomized wagering mechanism has
no arbitrage if Vi,p,w(w > 0),3x such that
ﬂz(ﬁv w, 1') <0.

(h) Pareto optimality in economics refers to an effi-
cient situation where no trade can be made to improve
an agent’s payoff without harming any other agent’s
payoff. In an IR wagering mechanism, agents with dif-
ferent beliefs can always form a profitable (in expecta-
tion) wagering game if they all have a positive budget.
Freeman, Pennock, and Vaughan| (2017) defined Pareto
optimality of a wagering mechanism as a property that
agents with different beliefs will each lose all of his
wager under at least one of the event outcomes. This
“worst-case” outcome might be different for different
agents. Thus, before the event outcome is realized, no
agent can commit to secure part of his wager from the
mechanism and no additional profitable wagering game
can be made. We define Pareto optimality for random-
ized wagering mechanisms in a similar spirit: no agents
with different beliefs can commit to secure part of their
wagers before the event outcome is realized.

Definition 7. A randomized wagering mechanism is
Pareto optimal (PO) if Vp,w,Vi,j € N with p, #
p;, 3l € {i,j} and x, such that (P, w, ) = —w;.

Mechanism 1 Lottery Wagering Mechanisms

1: Compute the payoff of each agent ¢ under a DET:
7p < w; + IL(P; w; ).
S Draw

2: Each agent has winning probability

a lottery winner i* € N.
3: Winner ¢* is assigned a net-payoff Zie/\/\{i*} w;
and any agent j # 4" has a net-payoff —w;.

Properties of existing wagering mechanisms We
summarize the properties of existing wagering mecha-
nismsﬂin Table 1 in the full paper (Chen, Liu, and Wang
2018). No existing mechanism satisfies all properties
(a)-(h). Moreover, |[Freeman, Pennock, and Vaughan
(2017) showed an impossibility result that for de-
terministic wagering mechanisms, it is impossible to
achieve properties IR, WIC, WEBB, and PO simultane-
ously. For existing randomized wagering mechanisms,
the randomized WSWM in (Lambert et al. 2008) only
satisfies PO in the limit of large population of partic-
ipants, and the private WSWM (Cummings, Pennock,
and Vaughan 2016) does not satisfy WEBB and PO.

4 Lottery wagering mechanisms

In this section we introduce a family of randomized wa-
gering mechanisms, the lottery wagering mechanisms
(LWM), which extends arbitrary deterministic wagering
mechanisms into randomized wagering mechanisms.
We will show that LWM easily preserve (the random-
ized version of) the properties of the underlying deter-
ministic wagering mechanisms, while achieving Pareto
optimality, overcoming the impossibility result.

In lottery wagering mechanisms, each agent receives
a number of lottery tickets in proportion to the payoff
he gets under a deterministic wagering mechanism, and
a winner is drawn from all the lottery tickets to win the
entire pool of wagers. The mechanisms are designed in
a way such that the expected payoff of each agent is
equal to his payoff in the underlying deterministic wa-
gering mechanisms and each agent has a positive prob-
ability to lose all his wager. Hence, no profitable side
bet exists and the mechanisms are Pareto optimal. We
formally present the lottery wagering mechanism that
extends an arbitrary deterministic wagering mechanism
DET in Mechanism [1] To distinguish the payoff from
the net-payoff, we denote the payoff of agent i by 7} .

Lottery wagering mechanisms are powerful in ob-
taining desirable theoretical properties. We show in
Theorem|[I]that the lottery wagering mechanism that ex-
tends WSWM, namely Lottery Weighted Score wager-
ing mechanism (LWS), satisfies all properties (a)-(h).

Theorem 1. LWS satisfies all properties (a) - (h).
2WSWM, NAWM, DCA, PCM, randomized WSWM

(Lambert et al. 2008)), private WSWM (Cummings, Pennock,
and Vaughan 2016)



We notice that although LWS satisfies all desirable
properties, it can be unsatisfying because (1) agents
have high variance in payoff and (2) except the winning
agent, all other agents lose money. To alleviate these
issues, we can mix LWS with WSWM by assigning
each of them a probability to be executed. The resulting
mechanism still satisfies all the properties (a)-(h). The
probabilistic mixture allows us to adjust the variance of
the payoffs as well as agents’ winning probabilities in
the resulting mechanism.

5 Surrogate wagering mechanisms

In this section, we propose the surrogate wagering
mechanisms (SWM). We first introduce the generic
SWM, then a variant of SWM that achieves the desir-
able theoretical properties and at the same time have
moderate variance in payoffs and higher winning proba-
bilities for accurate predictions. We then notice that ran-
domization opens up the possibility of dealing with sit-
uations where only noisy ground truth is available. We
discuss how to extend our results to this noisy setting.

5.1 Generic surrogate wagering mechanisms

A surrogate wagering mechanism consists of three main
steps: (1) SWM generates a surrogate event outcome
for each agent based on the true event outcome and a
randomization device; (2) SWM evaluates each agent’s
prediction according to the surrogate event outcome us-
ing a designed scoring function such that the score is
an unbiased estimate of the score derived by applying
a strictly proper scoring rule to the ground truth out-
come; (3) SWM applies WSWM to the scores based on
the surrogate event outcome to determine the final net-
payoff of each agent. Next, we explain these three steps
in details. For clarity and simplicity of exposition, we
consider only binary events, i.e., X = {0, 1}, in this
section

Step 1. Surrogate event outcomes A SWM gener-
ates a surrogate event outcome X; for each agenti € \.
Denote X = (Xl,f(g, ...,XN). X,’s are drawn inde-
pendently conditional on X, and are specified by SWM.
The conditionally marginal distribution P(X;|X),i €
N can be expressed by two parameters, the error rates
of the surrogate outcome: e} = P(X; = 0]X = 1) and
el = P(X; = 1|X = 0). The conditionally marginal
distribution P(X;|X) can be any distribution satisfying
Vi € N : e} + el # 1F|We use x and i; to denote the
realization of X and X; respectively.

Step 2. Computing unbiased scores Given a strictly
proper scoring rule s, (-) within [0,1], SWM computes

3Extension to multi-outcome events can be found in Sec-
tion 7.2 in the full version (Chen, Liu, and Wang 2018)).

“When e +er =1, X i turns out to be independent with
X, and thus provides no information about X. We thus ex-
clude et + ¢ = 1.

Mechanism 2 Surrogate Wagering Mechanisms

1: Collect the predictions p and wagers w.

2: Select error rate ef), e} € [0,1] and e} + €& # 1, Vi.

3: Generate surrogate outcome X;,Vi such that
P(X; =1|X =0) =¢), P(X; =0|X =1) = ¢l.

4: Score each agent i € N according to Eqn. (2).

5: Pay each agent ¢ € NV a net-payoff using Eqn. (3).

the score of agent ¢ as ¢ o sz, (p;), where

. (1—€l_z,)ss, (Pi) — €5, 51—z, (p:)
o sz,(pi) = e — )
—eh —ef

Z; is the realized surrogate event outcome for agent 4.
Lemma [T shows that ¢ is an unbiased operator on the score
sz;(p;) in the sense that E | [p 0 s, (§i)] = s2(pi)-
Lemma 1 (Lemma 3.4 of (Liu and Chen 2018)). Vx €
{0,1},Vpi,ep,ei € [0,1] and ey + €1 # 1, we have
Ex,zlp 08z, (Bi)] = s=(pi).

LemmalI|implies that if s, (p;) is a strictly proper scoring
rule, then ¢ o sz, (p;) is also a strictly proper scoring rule.

Step 3. Computing net-payoffs In the final step, SWM
computes the net-payoff of agent ¢ using WSWM and the un-
biased score of agent i, i.e., replacing score s, (p;) in Eqn.
by score ¢ o sz, (p;). Formally, we have

wiWan (i}

o (o s (5)

P

%)
Wrr s
jengiy MM

where x and %;,7 € N are the event outcome and the surro-
gate event outcome for each agent ¢ respectively.

We formally present SWM in Mechanism Accord-

ing to Lemma [I] (applying to each score terms), we
S SWM A

have Vi,z,p,w : EH§WMND(13;W;%)[H1‘ (B;wiz)] =

IS (p; w; ). Because the deterministic WSWM satisfies
properties ((a)-(f)) (Lambert et al. 2008), SWM also satisfies
these properties. A realization of the score ¢ o s (p;) can
be larger than 1, implying that agent ¢ can lose (or win) more
than what he can lose (or win) in the deterministic WSWM.
However, we also notice that for some extreme values of error
rates, the constraint IT, (p; w; x) > —w; can be violated’| i.e.,
an agent may lose more than his wager, which makes SWM
invalid. In the next section, we show that by selecting error
rates in a subtle way, we can obtain all the properties (a)-(h)
without violating the wager constraint IL, (p; w; z) > —w;.

5.2 SWM with Error rate selection (SWME)
and random partition SWME (RP-SWME)
We notice that according to Lemma [T} no matter which
error rates ep, e; are chosen, the unbiasedness prop-
erty of SWM holds, i.e., Err,wp(piw:a) (I (s W; )] =

S! ~
HiWM(p7 w, ZC) =

o sz, (ﬁj)) 3)

SFor example, in a wagering game, two agents both wager
1 and report 1 and 0, respectively. Let s, (p;) = 1 — (z —
Pi)?, e§ =04,i =1,2,7 = 0, 1. In the worst case of agent
1, the surrogate outcomes are realized as 21 = 0,22 = 1.
Then, 71 = —5 < —1.



Algorithm 3 Error Rate Selection Algorithm

Mechanism 4 Random Partition SWME (RP-SWME)

1: Collect the predictions p and wagers w.
2: Vi: s¥ ¢+ mingex 5,(p;), 8¢ maxex 5, (p;).
3: For each agent i € N, compute 7;: 7; < % +
(1- JL)(SE"*S?)JijGN,\w{;} Wiz (sy —=s%)
2(2+s§”+s?72j€‘,\[ ﬁ(s;"jtsg))
4 If minjep{r;} = 0.5, sete] = e = 0, Vi, else set
el = el = minjea{r;}, vi.

H\Z-NSWM (P; w; ). In other words, we can choose the error
rates in an arbitrary way (even depending on P, w) without
changing the expected net-payoff/’|of each agent under any re-
alized event outcome. This gives us the flexibility to tune the
maximum amount of money each agent can win or lose in the
game, while preserving the properties ((a)-(f)) inherited from
WSWM.

Given reports p and wagers w but not the event outcome
x, the error rate pair that guarantees no wager violation under
any outcome z € X and any realization of the randomness in-
duced by SWM may not be unique. We propose Algorithm 3]
to select a pair of error rates eg, ey after the reports and wa-
gers are collected, such that at least one agent loses all his
wager in the worst case w.r.t. the outcome and the random-
ness of SWM. We name the mechanism as SWME when we
use Algorithm[3]to select the error rates for SWM.

Lemma 2. SWME has no wager violation and when there
exists at least one report p; # 0.5, at least one of the agents
loses all his wager in the worst case w.r.t. the event outcome
and the randomness of SWME.

Note Lemma2]does not imply PO for SWME - if there ex-
ist two agents who have different predictions and have wager
left even in their own worst cases, they can form a profitable
bet against each other. We propose a variant of SWME to fix
this caveat as follows.

Random partition SWME (RP-SWME) Lemma
implies that when agents are partitioned into groups of two,
there will not exist side bets. Meanwhile, a smaller number
of agents imposes less restrictions in selecting the error rates,
and thus each agent’s wager can be fully leveraged in the ran-
domization step. We would like to note that this is a very
unique property of SWME: as both shown in |Freeman, Pen-
nock, and Vaughan|(2017) and our experimental results, when
the number of agents is small, existing wagering mechanisms
(including DCA) all have low risk, i.e., have only a small por-
tion of wager to lose in the worst case. This not only implies
that SWME is particularly suitable for small group wagering
but also points out a way to further improve the risk property
of SWME, i.e. via randomly partitioning agents into smaller
groups. We formally present the random partition SWME
in Mechanism @l We show in next section that RP-SWME
achieves all properties (a)-(h).

5.3 Properties of SWME and RP-SWME
Theorem 2. Both SWME and RP-SWME satisfy properties
(a)-(g). In addition, RP-SWME satisfies (h).

The expectation is taken over the randomness of the
mechanism conditioned on the event outcome.

1: Partition agents into groups of two. If N is odd,
leave one group with three agents.
2: Run SWME for each group.

Proof. We provide full proofs in Section 6.3 of our full ver-
sion (Chen, Liu, and Wang 2018)), but we give the arguments
for establishing surrogate wager’s ex-post budget balance (de-
spite of the randomness), incentive compatibility, and Pareto
optimality.

Budget balance This can be shown via writing down the
sum of net-payoffs defined in Eqn. (3). Our note below Eqn.
(T) also states that the budget balance property doesn’t depend
on the specific forms of the scoring functions used.

Strict incentive compatibility First consider SWME.
For an arbitrary profile of reports p and wagers w, Algo-
rithm [3| outputs a profile £ of error rates of all agents. Denote
by ¢ (-) the corresponding surrogate function specified using
the error rate profile £ for agent i. For each i and j € N

Exp, %, [P 0 8%, (05)] = PiBx, | x_1[0F © 55, (95)]
+(1 = pi)Eg, x—ol% © 5%, (9)]
=pi - sx=1(p;) + (1 = pi) - sx=0(p;) = Ex~p;[sx (P;)],

using Lemma [I] Then, using the linearity of expectation, we
have (here X encodes the randomness in HfWME)

EXNPI-,X [H§WME(I37 w, X)]

wiWN i i ~
P (g, 5,16k 0 55, (5]

W i
wj ~J ~
- > Wij_Ex%,Xstosxj(pj)])
jenngiy MM

w Wan\ (i . wj .
TH}(SX(I%) - Z ﬁsx(pj))]
N jengy N

=Ex~p, I (B, w, X)] .

=Ex~p, I:

Note the above holds for any possible reports (VE). Thus
the incentive properties of WSWM will preserve, i.e., truth-
fully reporting agent ¢’s private belief returns a higher payoff.
The proof for RP-SWME is similar, with the only difference
in that each agent’s net-payoff is further averaged over the
random partitions (but SIC under each possible partition).

Pareto optimality In RP-SWME, any pair of agents with
different beliefs have a positive probability to be partitioned
into a sub-group. Applying Lemma 2] at least one of them
loses all his wager in the worst case. Thus, by Definition
RP-SWME is PO. O

5.4 Wager with noisy ground truth

The above method also points out a way to implement a wa-
gering mechanism with a noisy ground truth, as SWM is able
to remove the noise in outcomes in expectation. This makes
wagering possible even when only a noisy copy of outcome is
available. Due to space limitation, we present the key idea be-
low, while not re-defining all properties w.r.t. the noisy ground
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Figure 1: Average individual risks varying wagering mecha-
nisms, prediction and wager distributions and # of agents N

truth X rather than X. The necessarcy changes are rather
straight-forward.

Suppose we know a noisy estimate X on X, and denote the
error rates of X as é1, o (which we know, and agents trust us
in knowing these two numbers), we will be able to reproduce
our surrogate wagering mechanism by plugging X , €1, €o into
Eqn. (), if we ignore the PO property for now. Similarly,
we will have the wager violation issue pointed out earlier -
we, however, do not have the control of the error rates di-
rectly. An easy fix is via the following affine transformation
of the net-payoffs: given the error rates, suppose, over all pos-
sible predictions, wagers and the randomness of the mech-
anism, the largest wager-lose factor of an agent that can be
achieved is scale, i.e., an agent may lose at most —scale - w;
with scale > 0. We can then re-scale every agent’s net-
payoff by 1/scale. As this affine transformation is predeter-
mined according to the worst case of all possible inputs, it
does not affect the incentive and other properties of the orig-
inal surrogate wagering mechanism, as E[p o HZVS())}

L E[ILY(-)] To achieve PO, we can further flip on X.

scale

To see this, denote the flipping error rates of X|X as e1, eg.
Then the error rates of X| X is given by (the deduction is given
in Section 6.4 of the full version (Chen, Liu, and Wang 2018)))

P(X; =1/X =0)=ef- (1 —é&)+(1—el)-é
Pr(l—é)+(1—ep) é

It’s easy to see that when é; 4+ ég # 1, we can tune the error

rates of X via tuning e!, e}. This step corresponds to the error
selection step in SWME.

6 Evaluation

In this section, we conduct simulations to evaluate the
average-case performance of wagering mechanisms. We show
that LWS and RP-SWME are more efficient than exist-
ing deterministic (weakly) incentive compatible mechanisms

"We didn’t apply the scaling in SWME, as the scaling will
effectively decrease the expected payoff of each agent.
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Figure 2: Average money exchange rate w.r.t. mechanisms,
distributions of predictions and wagers, and # of agents NV

WSWM, NAWM and DCA. Meanwhile, we show that RP-
SWME has smaller payoff variance and higher probability of
winning money than LWS.

In the simulations, we generate the predictions of agents
using two models: 1). the logit model (Satopid et al. 2014)),
ii). the synthetic model (Ranjan and Gneiting 2010; [Allard,
Comunian, and Renard 2012; |Satopdi et al. 2014). The de-
tails of these models can be found in Section 8.1 of the full
version (Chen, Liu, and Wang 2018)). We generate the wagers
of agents by two distributions: i). a uniform distribution over
[0,1], ii). a Pareto distribution with shape parameter 1.16 and
scale parameter 1, characterizing the “20% of the population
has 80% of the wealth” (Freeman, Pennock, and Vaughan
2017). We use Brier score as the scoring rule used in the wa-
gering mechanisms that we evaluate.

Individual risk and money exchange rate. Individual risk
and money exchange rate are two indicators of efficiency of
wagering mechanisms.

Individual risk is the percent of wager that an individual
agent can lose in the worst case w.r.t. the event outcome and
the randomness of the mechanisms. The average individual
risk is an indicator of Pareto optimality, because the average
individual risk equaling to 1 (i.e., no one can commit to se-
cure a positive wager before the wagering game) is a suffi-
cient condition of Pareto optimality. Money exchange rate is
the total amount of money exchanged in the game after the
outcome of a wagering mechanism is realized, divided by the
total amount of wagers. Average money exchange rate mea-
sures the efficiency of an average wagering game.

The simulations on binary events show that for both indi-
vidual risk (Fig. [[) and money exchange rate (Fig. [2), RP-
SWME and LWS outperform the incentive-compatible deter-
ministic wagering mechanisms WSWM and NAWM. More-
over, LWS beats DCA, which was designed to increase the
risk but is only weakly incentive compatible. The evaluations
on multiple events show similar results.

Variance of payoff and probability of winning money.
We evaluate these two metrics by considering an average
agent with a prediction at different level of accuracy. The ac-
curacy is measured by 1 — |z — p;|. The predictions are gen-
erated according to a uniform distribution. Our simulations
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(Fig. [3) show that RP-SWME has smaller payoff variance
and higher probability of winning money than LWS at each
accuracy level.

More detailed evaluations can be found in Section 8 of the
full version (Chen, Liu, and Wang 2018).

7 Conclusion

We extend the design of wagering mechanism to its random-
ized space. We propose two of them: Lottery Wagering Mech-
anisms (LWM) and Surrogate Wagering Mechanisms (SWM).
We demonstrate the power of randomness by theoretically
proving that they both satisfy a set of desirable properties, in-
cluding Pareto optimality. SWM is also robust to noisy out-
comes. We then carried out extensive experiments to support
our theoretical findings.
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