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Abstract

In crowdsourcing when there is a lack of verifi-
cation for contributed answers, output agreement
mechanisms are often used to incentivize partici-
pants to provide truthful answers when the correct
answer is hold by the majority. In this paper, we
focus on using output agreement mechanisms to
elicit effort, in addition to eliciting truthful answers,
from a population of workers. We consider a set-
ting where workers have heterogeneous cost of ef-
fort exertion and examine the data requester’s prob-
lem of deciding the reward level in output agree-
ment for optimal elicitation. In particular, when
the requester knows the cost distribution, we de-
rive the optimal reward level for output agreement
mechanisms. This is achieved by first characteriz-
ing Bayesian Nash equilibria of output agreement
mechanisms for a given reward level. When the
cost distribution is unknown to the requester, we
develop sequential mechanisms that combine learn-
ing the cost distribution with incentivizing effort
exertion to approximately determine the optimal re-
ward level.

1

Our ability to reach an unprecedentedly large number of peo-
ple via the Internet has enabled crowdsourcing as a practical
way for knowledge or information elicitation. For instance,
crowdsourcing has been widely used for getting labels for
training samples in machine learning. One salient character-
istic of crowdsourcing is that a requester often cannot verify
or evaluate the collected answers, because either the ground
truth doesn’t exist or is unavailable or it is too costly to be
practical to verify the answers. This problem is called in-
formation elicitation without verification IEWV) [Waggoner
and Chen, 2014].

In the past decade, researchers have developed a class of
economic mechanisms, collectively called the peer predic-
tion mechanisms [Prelec, 2004; Miller et al., 2005; Jurca and
Faltings, 2006; 2009; Witkowski and Parkes, 2012a; 2012b;
Radanovic and Faltings, 2013; Frongillo et al., 2015], for
IEWV. The goal of most of these mechanisms is to design
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payment rules such that participants truthfully report their in-
formation at a game-theoretic equilibria. Each of these mech-
anisms makes some restriction on the information structure of
the participants. Under the restriction, truthful elicitation is
then achieved by rewarding a participant according to how his
answer compares with those of his peers. Within this class,
output agreement mechanisms are the simplest and they are
often adopted in practice [von Ahn and Dabbish, 2004]. In
a basic output agreement mechanism, a participant receives a
positive payment if his answer is the same as that of a random
peer and zero payment otherwise. When the majority of the
crowd hold the correct answer, output agreement mechanisms
can truthfully elicit answers from the crowd at an equilibrium.

Most of these works on peer prediction mechanisms, with
the exception of Dasgupta and Ghosh [2013] and Witkowski
et al. [2013], assume that answers of participants are exoge-
nously generated, that is, participants are equipped with their
private information. However, in many settings, participants
can exert more effort to improve their information and hence
the quality of their answers is endogenously determined. Re-
cent experiments [Yin and Chen, 2015; Ho er al., 2015] have
also shown that the quality of answers can be influenced by
the magnitude of contingent payment in settings where an-
swers can be verified.

In this paper, we study eliciting efforts as well as truthful
answers in output agreement mechanisms. Taking the per-
spective of a requester, we ask the question of how to opti-
mally set the payment level in output agreement mechanisms
when the requester cares about both the accuracy of elicited
answers and the total payment.

Specifically, we focus on binary-answer questions and bi-
nary effort levels. We allow workers to have heterogeneous
cost of exerting effort. Such a cost is randomly drawn from a
distribution that is common knowledge to all participants. We
consider two scenarios. In the first scenario, a static setting,
the requester is assumed to know the cost distribution of the
participants. Her objective is to set the payment level in out-
put agreement mechanisms such that when a game-theoretic
equilibrium is reached, her expected utility is maximized. In
the second scenario, a dynamic setting, the data requester
doesn’t know the cost distribution of the participants but only
knows an upper bound of the cost. Here, the requester in-
corporates eliciting and learning the cost distribution into in-
centivizing efforts in output agreement mechanisms when she



repeatedly interacts with the set of participants over multiple
tasks. The ultimate goal of the requester is to learn to set
the optimal payment level in this sequential variant of output
agreement mechanism for each interaction so that when par-
ticipants reach a game-theoretic equilibrium of this dynamic
game, the data requester minimizes her regret on expected
utility over the sequence of tasks.
We summarize our main contributions as follows:

e Since the quality of answers is endogenously determined,
a requester’s utility depends on the behavior of partici-
pants. Optimizing the payment level requires an under-
standing of the participant’s behavior. We characterize
Bayesian Nash equilibria (BNE) for two output agree-
ment mechanisms with any given level of payment and
show that at equilibrium there is a unique threshold strat-
egy for positive effort exertion.

For the static setting where the requester knows the cost
distribution, when the cost distribution satisfies certain
conditions, we show that the optimal payment level in
the two output agreement mechanisms is a solution to a
convex program and hence can be efficiently solved.

For the dynamic setting where the requester doesn’t know
the cost distribution, we design a sequential mechanism
that combines eliciting and learning the cost distribu-
tion with incentivizing effort exertion in a variant of out-
put agreement mechanism. Our mechanism ensures that
participants truthfully report their cost of effort exertion
when asked, in addition to following the same strategy on
effort exertion and answer reporting as that in the static
setting for each task. We further prove performance guar-
antee of this mechanism in terms of the requester’s regret
on expected utility.

All omitted proofs can be found in [Liu and Chen, 2016].

1.1 Related work

The literature on peer prediction mechanisms hasn’t ad-
dressed costly effort until recently. Dasgupta and Ghosh
[2013] and Witkowski et al. [2013] are the two papers that
formally introduce costly effort into models of information
elicitation without verification. Dasgupta and Ghosh [2013]
design a mechanism that incentivizes maximum effort fol-
lowed by truthful reports of answers in an equilibrium that
achieves maximum payoffs for participants. Witkowski et al.
[2013] focuses on simple output agreement mechanisms as
this paper. They study the design of payment rules such that
only participants whose quality is above a threshold partici-
pate and exert effort. Both Dasgupta and Ghosh [2013] and
Witkowski et al. [2013] assume that the cost of effort exer-
tion is fixed for all participants and is known to the mecha-
nism designer. This paper studies effort elicitation in output
agreement mechanisms but allow participants to have hetero-
geneous cost of effort exertion drawn from a common dis-
tribution. Moreover, we consider a setting where the mecha-
nism designer doesn’t know this cost distribution, which leads
to an interesting question of learning to optimally incentivize
effort exertion followed by truthful reports of answers in re-
peated interactions with a group of participants.

Roth and Schoenebeck [2012] and Abernethy et al. [2015]
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consider strategic data acquisition for estimating the mean
and statistical learning in general respectively. Both works do
not consider costly effort but participants may have stochas-
tic and heterogeneous cost for revealing their data and need to
be appropriately compensated. Moreover, these two works all
assume that workers won’t misreport their obtained answers.

2 Problem formulation

2.1 Our mechanisms

A data requester has a set of tasks that she wants to obtain
answers from a crowd C = {1,..., K} of K > 2 candidate
workers. In this paper, we consider binary-answer tasks, for
example, identifying whether a picture of cells contains can-
cer cells, and denote the answer space of each task as {0, 1}.
The requester assigns each task to /N randomly selected work-
ers, with N > 2 being potentially much less than K.' Such
a redundant assignment strategy, when combined with some
aggregation method (e.g. majority voting), has been found
effective in obtaining accurate answers [Sheng et al., 2008;
Liu and Liu, 2015].

The requester cannot verify the correctness of contributed
answers for a task, either because ground truth is not available
or verification is too costly and defies the purpose of crowd-
sourcing. Thus, in addition to a base payment, each worker is
rewarded with a contingent bonus that is determined by how
his answer compares with those of other workers for complet-
ing a task. Specifically:

1. The requester assigns a task to a randomly selected sub-
set U C C of workers, where |U/| = N. She announces
a base payment b > 0 and a bonus B > 0, as well as
the criteria for receiving the bonus. The criteria of re-
ceiving the bonus is specified by an output agreement
mechanism, which we will introduce shortly

Each worker ¢ € U independently submits his answer
L; € {0, 1} to the requester.

After collecting the answers, the requester pays base
payment b to every worker who has submitted an answer
and a bonus B to those who met the specified criteria.

The criteria for receiving bonus B is specified by an out-
put agreement mechanism. Output agreement is a term intro-
duced by von Ahn and Dabbish [2008] to capture the idea of
“rewarding agreement” in their image labeling game, the ESP
game [von Ahn and Dabbish, 2004]. We define two variants
of output agreement mechanisms:

Peer output agreement (PA): For each worker ¢ € U, the
data requester randomly selects a reference worker j # i and
Jj €U.If L; = L;, worker ¢ receives bonus B. Note worker
j’s reference worker could be different from .

Group output agreement (GA): For each worker ¢ € U,
the data requester compares L; with the majority answer of

s L
the rest of the workers, Lj;, where Ly, = 1 if % >

"'We assume N is fixed, though how to optimally choose N could
be an interesting future direction.



0.5, Lyy = 0if %

ez L
N—-1

< 0.5 and Ly = {0,1} if

= 0.5. If L; € L);, worker 7 receives bonus B.

2.2 Agent models

A worker can decide how much effort to exert to complete a
task and the quality of his answer stochastically depends on
his chosen effort level. Specifically, a worker can choose to
either exert or not exert effort. If a worker exerts effort, then
with probability Py < 1 his answer is correct. If a worker
does not exerts effort, with probability Pr,, where Pr, < Py,
he will provide the correct answer. We further assume Pr, >
0.5, that is, when no effort is exerted the worker can at least
do as well as random guess. This assumption is also used by
Dasgupta and Ghosh [2013] and Karger et al. [2011, 2013].
For now, we assume P, and Py are the same for all workers.

Since workers can choose their effort level, the quality of
an answer is endogenously determined. Let e; € {0,1}
represents the chosen effort level of worker ¢, with O corre-
sponding to not exerting effort and 1 corresponding to exert-
ing effort. The accuracy of worker ¢ can be represented as
pi(ei) = Pre; + Pr(1 —e;).

Workers have heterogeneous abilities, which are reflected
by their cost of exerting effort. When worker 7 doesn’t exert
effort, he incurs zero cost. A cost of ¢; > 0 is incurred if
agent ¢ chooses to exert effort on a task. ¢; is randomly gen-
erated according to a distribution with pdf f(c) and cdf F(c)
for each pair of (worker, task). We further assume this dis-
tribution stays the same? across all workers and all tasks, and
it has a bounded support [0, ¢max|. Moreover we enforce the
following assumption on F'(¢):

Assumption 2.1. F'(c) is strictly concave on ¢ € [0, Cmax]-

This assumption is stating that the probability of having
a larger cost ¢; is decreasing. Several common distribu-
tions, e.g. exponential and standard normal (positive side),
satisfy this assumption. Throughout this paper, we assume
F(c),c¢ € [0, cmax] is common knowledge among all work-
ers.’ Nevertheless each realized cost ¢; is private information,
that is each worker 7 observes his own realized cost ¢;, but not
the one for others. In Section 3, we assume the requester also
has full knowledge of F'(-), but we relax this assumption in
Section 4.

Given that the cost of not exerting effort is zero, the pos-
itive base payment b ensures that every worker will provide
an answer for a task assigned to him. We focus on under-
standing how to determine the bonus B in output agreement
mechanisms to better incentivize effort in this paper. The base
payment b doesn’t enter our analysis directly but it allows
us to not worry about workers’ decisions on participation.
When reporting their answer to the data requester, workers
can choose to report truthfully, or to mis-report. Denote this
decision variable for each worker i as r; € {0,1}, where
r; = 1 represents worker ¢ truthfully reporting his answer,
and r; = 0 represents worker ¢ mis-reporting (reverting the

2Realization for each (worker, task) pair can be very different.
3In practice each worker can estimate such distribution based on
their past experiences.
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answer in our case). Then the accuracy of each worker i’s
report is a function of (e;, r;):

pi(eisri) = pi(ei)ri + (1 — pi(e:))(1

When each worker j € U takes actions (ej,7;), we de-
note the probability that worker ¢ € U receives bonus B as
P; 5({(ej,7;)};). In the PA mechanism, this quantity is

2z P(Li = Lj)
Pip({(ejiri)}i) = =Fx—

In the GA mechanism, it is P; g({(e;,7;)};) = P(L; =

Lyy). Then, the utility for worker ¢ is:

ui({(ej,75)};) =b—eici+ B- Py p({(ej,7)};) -

2.3 Requester model

The data requester has utility function Up, which in theory
can be of various forms balancing accuracy of elicited an-
swers and total budget spent. In this paper, we assume that
the requester uses majority voting to aggregate elicited an-
swers and has utility function

Up(B) = P*(N,B) —b N — B N.(B),

—’l"i).

where P¢(N, B) is the probability that the majority answer is
correct, and N, (B) is the number of workers who receive the
bonus. Data requester’s goal is to find a B* s.t.

B* € argmaxgcg+ P°(N,B) —b N — B E[N.(B)]. (1)

P¢(N, B) and E[N.(B)] depend on workers’ strategy to-
wards effort exertion and answer reporting. The equilibrium
analysis in the next section will help us define these quanti-
ties. The data requester is then hoping to choose a reward
level that maximizes the expected utility at an equilibrium.

3 Optimal bonus strategy with known cost
distribution

In this section we set out to find the optimal bonus strategy
when the data requester knows workers’ cost distribution. Be-
cause the requester’s utility depends on the behavior of work-
ers, we first characterize symmetric Bayesian Nash Equilib-
ria (BNE) for the two output agreement mechanisms for an
arbitrary bonus level B. Then based on workers’ equilibrium
strategies, we show the optimal B* can be calculated effi-
ciently for certain cost distributions. Note that due to the in-
dependence of tasks, this is a static setting and we only need
to perform the analysis for a single task.

3.1 Equilibrium characterization

For any given task, we have a Bayesian game among work-
ers in U. A worker’s strategy in this game is a tuple
(ei(ci),ri(e;)) where e;(c;) : [0, cmax] — {0,1} specifies
the effort level for worker ¢ when his realized cost is ¢; and
ri(e;) : {0,1} — {0,1} gives the reporting strategy for the
chosen effort level, with 7;(e;) = 1 representing reporting
truthfully and r;(e;) = O representing misreporting.

We first argue that at any Bayesian Nash equilibrium
(BNE) of the game, e;(c;) must be a threshold function. That
is, there is a threshold ¢} such that e;(¢;) = 1 for all ¢; < ¢



and e;(c;) = 0 for all ¢; > ¢} at any BNE. The reason is as
follows: suppose at a BNE worker ¢ exerts effort with cost
¢;. Since the other workers’ outputs do not depend on ¢; (due
to the independence of reporting across workers), worker ¢’s
chance of getting a bonus will not change when he has a cost
¢; < ¢; and only obtains a higher expected utility by exerting
effort. This allow us to focus on threshold strategies for effort
exertion. We restrict our analysis to symmetric BNE where
every worker has the same threshold for effort exertion, i.e.

et c*. In the rest of the paper, we often use (c*,-) to

K2
denote that a worker playing an effort exertion strategy with
threshold ¢*. In addition, we use r; = 1 to denote the re-
porting strategy that r;(1) = r;(0) = 1, i.e. always reporting
truthfully for either effort level.

Before we present our main results, we note we have a set
of zero-effort exertion equilibriums (¢* = 0). One set of such
equilibriums is no one exerting effort combined with truthful
or non-truthful reporting, or a mix of the two. Nonetheless
these equilibriums return strictly less expected utility for each
worker. Another one is when workers collude to always re-
port the same uninformative signal.* In this paper we mainly
focus on positive effort exertion equilibriums, that is ¢* > 0.

PA: We have the following results for the PA mechanism.

Lemma 3.1. The strategy profile {(c*,r; = 1) }icy is a sym-
metric BNE for the PA game if

*

" c
Denote Bpy := MW, the minimum bonus

level needed to induce full effort exertion. With above lemma,
we have the following equilibrium characterization.

Theorem 3.2. When P, > 0.5, there exists a unique thresh-
old ¢* > 0s.t. (¢*, 1) is a symmetric BNE for the PA game:

o When B Z BPA, ct = Cmax-

o O.w. c* is the unique solution to Eqn. (2).

When Py, 0.5, we can prove similar results for the
uniqueness of ¢* > 0 such that (¢*, 1) is a symmetric BNE:
but under certain condition non-effort exertion is the only
equilibrium. We would like to note that always mis-reporting
(r; = 0) combined with the same threshold c¢* for effort
exertion as in Theorem 3.2 is also a symmetric BNE when
Pr, > 0.5. This equilibrium gives workers the same utility
as the equilibrium in Theorem 3.2. This phenomenal has also
been observed by Dasgupta and Ghosh [2013] and Witkowski
et al. [2013]. Dasgupta and Ghosh [2013] argue that always
mis-reporting is risky, and workers may prefer breaking the
tie towards always truthful reporting.

GA: For GA, directly calculating the probability term for
matching a majority voting is not easy; but if we adopt a

*Interested readers can find more discussions and solutions for
the colluding scenario in [Dasgupta and Ghosh, 2013].
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Chernoff type approximation for it, and suppose such approx-

imation is common knowledge’, we can prove similar results.
Similar to Lemma 3.1, we can show that the strategy profile

{(c¢*,7; = 1) }icy is a symmetric BNE for the GA game if

1—2[(a—1)F(e)+N"t =¢*/(B(Py — Pr)). ()
where o := e 2(Pr— L)2.
Denote Bga := we have:

(= SaN— (P —Pr)
Theorem 3.3. When Pr, > 0.5, there always exists a unique
threshold ¢* > 0 such that {(c*,r; = 1) }icy is a symmetric
BNE for the GA game:

o When B > Bga, ¢* = Cmax.
o O.w., c* is the unique solution to Eqn. (3).

We note the reward level and the total expected payment is
lower in GA than in PA for eliciting the same level of efforts:

Lemma 3.4. Denote the smallest bonus level corresponding
to an arbitrary equilibrium threshold c* > 0 for PA and
GA as Bpa(c*) and Bga(c*) respectively. Then Bpa(c*) >

Bga(c*), when N > 2(1013‘%(%1))*’ + 1 (sufficiently large).
Furthermore, the total payment in GA is lower than that in

PA, i.e., GA leads to a higher requester utility.

Heterogeneity of Py, and Py. So far we have assumed that Py,
and Py are the same for all workers. If workers have hetero-
geneous accuracy { P}, Py, }; that are generated from some
distribution with mean Pr,, Py, we can show that the above
results hold in a similar way, with more involved arguments.

3.2 Optimal solution for data requester

Now consider the optimization problem stated in Eqn. (1)
for the requester’s perspective. For each B > 0, denote
{(c,7; = 1) };c as the corresponding strategy profile at equi-
librium. P¢(N, B) can then be calculated based on ¢, F(c)
(controlling how much effort can be induced), and P, Py.
Same can be done for E[N.(B)]. Denote the optimization
problem in (1) with above calculation as (PB). Directly in-
vestigating the two objective functions may be hard. We seek
to relax the objectives. First of for PA, we will be omitting
the 2P, — 1 term as when P;, is only slightly larger than
0.5, this quantity is close to 0. Also for both PA and GA, we
again use the Chernoff type of approximation for calculating
P§,. We further introduce three conditions: (i) f(c) is twice
differentiable and 92 f(c)/8%c > 0. (ii) cF(c) is convex on
¢ € [0,cmax). (i) G(c) == 1 — [(a — 1)F(c*) + 1JN-!
satisfies that 93G/(c)/c exists and being non-negative.
Lemma 3.5. [f (i) and (ii) hold, the objective function of (PB)
is concave if we adopt PA. When (ii) and (iii) hold, the objec-
tive function of (PB) is concave if we adopt GA.

For example, exponential distribution (exp(})) for cpax <
2/ X satisfies (1)&(ii) for PA; and exp()) for cpax = log"‘
satisfies (i1)&(iii) for GA. It is worth to note above results

hold for a wide range of other Up(-)s: for instance the ones
with a linear combination of P°(N, B) and E[N.(B)].

SThis is not entirely unreasonable as in practice this Chernoff
type bounds are often used to estimate such majority voting proba-
bility term, when the number of variables (population) is large.



4 Learning the optimal bonus strategy

In this section we propose a sequential mechanism for learn-
ing the optimal bonus strategy, when the requester has no
prior knowledge of the cost distribution but only knows ¢ ax.
This assumption can be further relaxed by assuming know-
ing an upper bound of cp,,x instead of knowing cp.x pre-
cisely. Also similar as last section, Pr,, Py are known. In
reality these two quantities can be estimated through a learn-
ing procedure by repeated sampling and output matching as
shown in [Liu and Liu, 2015], via setting bonus level B := 0
and B := BPA(GA)G respectively (to induce effort level cor-
responding to Pr, Pr). In this work we focus on learning
the cost functions, which is a more challenging task when the
workers are strategic. We are in a dynamic setting where the
requester sequentially ask workers to complete a set of task.
(P1): We start our discussions with a simpler case. When
asked to report their cost, workers maximize their collected
utility from a set of data elicitation tasks and are not aware of
the potential influence of their reports on calculating optimal
bonus levels for any future tasks. The data requester’s goal is
to elicit cost data to estimate cost distribution and then the op-
timal bonus level B*, such that when B* is applied to a newly
arrived task we can bound |Up(B*) — Up(B*)|. where B*
is the optimal bonus level if the cost distribution is known.
(P2): We then consider the case when workers are forward
looking and are aware of that their reported cost on a task
will be utilized to calculate optimal bonus strategy for future
tasks. We form a sequential learning setting, where we sepa-
rate the stages for task assignment into two types: one for data
elicitation, which we also refer as exploration, and the other
for utility maximization, which we refer as exploitation. The
data requester’s objective in this case is to minimize the regret
defined as follows:

T
R(T) =Y E|Up({Bi(t)}icu) — Up(Bia)l, (4

where B, is the optimal bonus level for GA when cost dis-
tribution is know,” and {B;(#)};cy is the bonus bundle of-
fered at time ¢t. Note Up(+) is mechanism dependent: both
P¢(N, B) and N.(B) depends on not only the bonus level,
but also the equilibrium behavior in a particular mechanism.

For simplicity of presentation, throughout this section we
consider P, > 0.5: this is to remove the ambiguity intro-
duced in by the trivial equilibrium ¢* = 0. Also we assume
with the same expected utility, workers will favor truthful re-
porting r; = 1.

4.1 (M Crowd) for (P1)

Suppose the data requester allocates 7" tasks to elicit the cost
data sequentially, and exactly one of them is assigned to the
workers at each time step t = 1,2,--- ,T. For simplicity
of analysis we fix the set of N workers we will be assigning
tasks to. Denote worker ¢’s realized cost for the ¢-th task as
¢i(t). We propose mechanism (M_Crowd):

SCalculating Beaa) only requires knowing cmax, not F(-).
"Since GA is more cost efficient, we define the regret w.r.t. the
optimal utility that can be obtained via GA.
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Mechanism 1 (M_Crowd)
For each step t:

1. Assign the task, and workers then report costs. Denote
the reports as (¢1(t),...,én(t)). This is a voluntary
procedure. A worker ¢ can choose to not report his
cost, in which case, the requester sets &;(t) := cmax-

. Data requester randomly selects a threshold ¢*(¢) uni-
Sormly from the support [0, ¢iyax], such that only the
workers who reported ¢;(t) < ¢*(t) will be consid-
ered for bonus following PA; others will be given a
bonus according to a probability that is independent
of workers’ report (see Remarks for details).

. The requester estimates a bonus level Bz(t) for each
worker 4 that corresponds to the threshold level ¢*(t)
under PA, using only the data collected from user
J # i, and from all previous stages. This is done via
estimating F'(-) first and then plugging it into Eqn.(2).
Then the requester adds a positive perturbation 6(t)
that is time dependent to B;(t): B;(t) := B;(t)+4d(t).

. The data requester will then announce the bonus bun-
dle [B1(t), ..., Bn(t)].

Remarks: 1. When a worker, say worker ¢, reports higher
than the selected threshold, his probability of receiving a
bonus will be calculated using the following experiment,
which is independent of his output: suppose out of N work-
ers, there are N (¢) of them reported lower than ¢*(t). Then
we will “simulate” N workers’ reports with the following
coin-toss procedure: toss N(t) Pg-coin and N — N(t) Pp-
coin. Assign a Pr-coin toss to worker ¢, and select a reference
answer from the rest of the tosses, and compare their results.
If there is a match, worker ¢ will receive a bonus. Simply
put, the probability for receiving a bonus can be calculated as
the matching probability in the above experiment. 2. Since
we have characterized the equilibrium equation for PA with
a clean and simple form, this set of equilibriums is good for
eliciting workers’ data. 3. After estimating the bonus level
for each worker B;(t), the data requester will add a positive
perturbation term J(t) to each of them. This is mainly to
remove the bias introduced by (i) imperfect estimation due
to finite number of collected samples, and (ii) the (possible)
mis-reports from workers. Such term will become clear later
in the stated results. 4. The fact that we can use collected cost
data to estimate B depends crucially on the assumption that
the cost distribution is the same for all tasks.

4.2 Equilibrium analysis for (M_Crowd)

We present the main results for characterizing how work-
ers report their cost at an equilibrium. Even though we are
in a dynamic game setting, we use BNE rather than Perfect
Bayesian equilibrium (PBE) as our general solution concept
as they do not have material differences in our setting. Due
to the independence of tasks, workers make decisions on ef-
fort exertion at each stage just as they are in a static game
with corresponding reward level. Because a worker’s deci-
sion on effort exertion can not be directly observable, a de-
viation from an equilibrium effort exertion strategy cannot



be detected by others, making the notion of “off-equilibrium
path” not meaningful in this setting. This suggests that every
BNE of the game is also a PBE. We will adopt e-approximate
BNE as our exact solution concept, defined as follows:

Definition 4.1. A set of reporting strategy {&;
{€(t)}1=1,... 7 }iec is e-BNE if for any i, V€} # €; we have

T
> (E[maxu}(&,& ;)] — Emaxul(&,&)])/T > e

€iyTi €i,T%
t=1

We explicitly denote the expected utility for each worker
as a function of {€; };ec. This is a short-hand notation, as u!s
also depend on the effort exertion and reporting strategies.
The max,, ,, term allows worker ¢ to optimize his effort ex-
ertion and reporting procedure based on their cost reporting.

Theorem 4.2. With (M_Crowd), set 6(t) := O(y/ loft), let

v > 0 being arbitrarily small, there exists a O(%)-BNE
Sor each worker i with reporting ¢;(t) at time t such that

max{c;(t) — €1(¢),0} < ¢&;(t) < min{c;(t) + €2(t), Cmax}s

where 0 < €1(t) = o(y/logt/t), 0 < ea(t) = o(1/t*77).

The effort exertion game at each step looks alike the static
game introduced in Section 3 with the following difference:
instead of workers who have cost ¢;(t) < ¢* will exert ef-
fort, now it is the workers who reported ¢;(¢t) < ¢* will exert
effort. This is mainly due to the addition of the perturbation
term to the estimated bonus level. Meanwhile the mecha-
nism excludes workers who reported higher than the thresh-
old from exerting effort by offering bonus with a probability
that is independent of worker’s output. Nevertheless, we can
bound the fraction of workers whose actions are different for
the above two games.

4.3 Performance of (M_Crowd)

With this set of collected data, we bound the performance loss
in offering optimal bonus level B for an incoming task (or
task T' 4 1). Suppose we adopt GA, where the optimal bonus
level with known cost distribution is given by Bg,, and the

estimated optimal solution is given by Bg A- We will have the
following lemma: (similar results hold for PA)

Lemma 4.3. With probability being at least 1 — 1,

-/

When we chose n = O(1/T?), the above regret term is
roughly on the order of \/logT/T .

4.4 (RM Crowd) for (P2)
We propose a (RM_Crowd) for (P2):

logT
T

log 2/n
2NT

Up(Bga) = Up(Bga)| = 0(\/ ) -

Remarks: 1. The dependence on T is to simplify the pre-
sentation and our algorithm design. This can be easily ex-
tended to a 7T-independent one. 2. At exploitation phases
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Mechanism 2 (RM_Crowd)
Specify a constant 0 < z < 1, and initialize ¢ = 1. Define
p(t) := min{1, ltolg,:f}
At time ¢, assign the task; workers then report costs.
Toss a p(t)-coin.
When HEAD, algorithm enters exploration phase:
e Follow same steps as in (M_Crowd).
When TAIL, algorithm enters exploitation phase,

1. estimate the optimal B;(¢) and its corresponding
threshold ¢ (¢) for each worker i with GA, using the
cost data collected only from the exploration phases.
Only workers who reported ¢;(t) < c¢f(t) will be
given bonus according to GA; others receive bonus
with a probability that is independent of her report.

2. Follow rest steps in (M_Crowd).

we assume there exists a solver that can find the optimal so-
lution with a noisy estimation of F(-). In practice search
heuristics can help achieve the goal. 3. We adopted different
bonus mechanisms for different phases. When we calculate
the bonus level according to a particular mechanism (PA or
GA), we will also adopt it for evaluating workers’ answers.
4. When using GA, the independent probability for giving
out bonus when a report is higher than the threshold will be
adjusted to a probability of matching a majority voting of the
experiment we presented for (M_Crowd).

Theorem 4.4. With (RM_Crowd), set §(t) := O(zt=%/?), let
z > 1/3 and v > 0 being arbitrarily small, there exists a

O(%)—BNE for worker i reporting ¢;(t) at time t that:
max{c;(t) — e1(t),0} < ¢&;(¢t) < min{c;(t) + €2(¢), Cmax }

where 0 < €1 (t) = O(z/tz/Q), 0 < ex(t) = o(1/t3271-7).

We have similar observations for the effort exertion game
in (RM_Crowd) as we made for (M_Crowd). Further we prove
the following regret results:

Lemmad.5. R(T) < O(T?logT + T /2.

Order-wise, the best z is when 1 — 2/2 = z = z = %,
which leads to a bound on the order of O(T%/3 log T).

5 Conclusion

In this paper we focus on using output agreement mechanisms
to elicit effort, in addition to eliciting truthful answers, from
crowd-workers when there is no verification of their outputs.
Workers’ cost for exerting efforts are stochastic and heteroge-
neous. We characterize the symmetric BNE for workers’ ef-
fort exertion and reporting strategies for a given bonus level,
and show data requester’s optimal bonus strategy at equilib-
rium is a solution to a convex program for certain cost distri-
bution. Then a learning procedure is introduced to help the
requester learn the optimal bonus level via eliciting cost data
from strategic workers. We bound the mechanism’s perfor-
mance loss w.r.t. offering the best bonus bundle, compared to
the case when workers’ cost distribution is known a priori.
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