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Abstract. We initiate the study of the capacity constrained facility lo-
cation problem from a mechanism design perspective. In the capacity
constrained setting, the facility can serve only a subset of the popula-
tion, assumed to be the k-closest with respect to agents’ true locations
(this can be justified as the essentially unique equilibrium outcome of a
first-come-first game induced by the facility location). The main result
is a complete characterization of dominant-strategy incentive compati-
ble (DIC) mechanisms via the family of generalized median mechanisms
(GMMs). Thus, the framework we introduce surprisingly provides a new
characterization of GMMs, and is responsive to gaps in the current social
choice literature highlighted by Border and Jordan [1983] and Barbarà,
Massó and Serizawa [1998]. We also provide algorithmic results and study
the performance of DIC mechanisms in optimizing welfare. Adopting a
worst-case approximation measure, we attain tight lower bounds on the
approximation ratio of any DIC mechanism. Interesting, the standard
median mechanism achieves the optimal approximation ratio for smaller
capacity settings.
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1 Introduction

A common economic problem is deciding where a public facility should be located
to serve a population of agents with heterogeneous preferences. For example, a
government needs to decide the location of a public hospital or library. More ab-
stractly, the ‘location’ may represent a type or quality of a service. For example,
a government may have a fixed hospital location but must decide on the type
of service the hospital will provide, perhaps whether the facility’s services are
targeted to those suffering from acute, moderate, or mild severity of a certain
illness. In such problems, agents may benefit by misreporting their preferences,
and this can be problematic for a decision maker trying to find a socially optimal
solution. This leads to the mechanism design problem of providing optimal, or
approximately optimal, solutions while also being dominant-strategy incentive
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compatible (DIC) or strategyproof, i.e., so that no agent can profit from mis-
reporting their preferences regardless of what others report.4 In this paper, we
refer to this problem as the facility location problem.

The facility location problem has been studied extensively, and when it is not
capacity constrained then all agents can benefit from the facility it is modeled
as a public good (non-rivalrous and non-excludable). This problem has been
explored in several classic papers [6, 15, 16, 25, 20, 7], and more recently in the
field of algorithmic mechanism design [24, 21, 14].

To the best of our knowledge, an unexplored setting for the mechanism design
problem is where the public facility is also capacity constrained.5 These kinds
of capacity constraints, which limit the number of agents who can benefit from
a facility’s services, are ubiquitous in practice. Consider a hospital is capacity
constrained by the number of beds and doctors, for example, or a library with
limited seating. Capacity constraints introduce a form of rivalry to the facil-
ity, since once the facility reaches its capacity limit then additional agents are
prevented from using the facility.

A number of new strategic challenges arise for the mechanism designer when
the public facility is capacity constrained but still non-excludable. For example,
when the mechanism designer chooses a location for the facility we cannot stip-
ulate which agents will be served. Instead, we assume that only the subset of
agents with their true location closest to the facility will be served (up to the
capacity constraint). This can be justified as the essentially unique equilibrium
outcome of a first-come-first game induced by the facility location. In this way,
an agent’s utility and whether they are served depends not only on the facility
location but also on the capacity constraint and the true locations of the other
agents. This introduces a new technical challenge, because it results in agents
having interdependent utilities and requires the designer to consider mechanisms
that are strategyproof in this broader game-theoretic context.

In this paper, we initiate the study of the capacity constrained facility loca-
tion problem from the viewpoint of mechanism design. In our model, n agents
are located in the [0, 1] interval, and there is a single facility to be located, this
facility is able to serve at most k agents, where k is some positive integer. When
k ≥ n the problem is equivalent to the classic problem. Agent locations are pri-
vately known, and the mechanism induces a reporting game. Once the facility
location is decided, we assume the k-closest agents with respect to their true lo-
cations are served. We adopt as a design goal of maximizing social welfare, while
also seeking strategyproofness. As with much of the literature since Gibbard-
Satterthwaite [15, 25], we focus on the case where, conditional on being served,
an agent has single-peaked and symmetric preferences over the facility location.
This symmetry assumption is also adopted in [7]. Strategyproofness requires
that an agent never benefits from misreporting their location to the mecha-

4 We focus on the setting where the use of money is not permitted, for example because
it would be unlawful, unethical, or otherwise unfair.

5 The purely algorithmic problem, of locating multiple capacity constrained facilities
when agents are not strategic, has been studied [8, 22, 27].
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nism regardless of what other agents report, and regardless of other agents’ true
locations. Unlike the classic, unconstrained problem, the social welfare optimal
mechanism is not DIC except when the capacity constraint is trivial, i.e., k = 1 or
n.6 As a result, we also follow the approach of [24] and consider the approximate
mechanism design problem. We adopt the worst-case approximation measure,
and ask what is the best approximation achievable with DIC mechanisms, and
how does this vary as a function of the capacity constraint?

The main theoretical contribution is a complete characterization of DIC
mechanisms via the family of generalized median mechanisms (GMMs), which
therefore provides a new characterization of GMMs, and also closes a gap in the
current literature on the facility location problem without capacity constraints.
Border and Jordan [7] has provided a partial characterization of strategyproof
mechanisms for this classical setting via the family of GMMs. Border and Jor-
dan [7] show that a mechanism is strategyproof and unanimity respecting7 if
and only if it is a GMM, and that the family of GMMs is strictly smaller than
the complete family of strategyproof mechanisms.8 This has left a gap in the
literature to characterize the complete family of strategyproof mechanisms, and
understand the difference between strategyproof mechanisms that are GMMs
and those that are not. Figure 2 schematically illustrates this gap.

Our Contributions: We introduce a new mechanism problem, the capacity
constrained facility location problem. This problem is a natural variant of the
classic facility problem where the facility also faces a capacity constraint.

Our main theoretical contribution is a complete characterization of DIC
mechanisms for the capacity constrained facility location problem. We show
that a mechanism is DIC if and only if it belongs to the established family of
mechanisms of GMMs, which appear in [20] and [7]. Thus, the framework we
introduce also provides an interesting new characterization of GMMs, contribut-
ing a novel perspective to a “major open question” [5] posed by Border and
Jordan [7] (further discussion is provided in Section 1.1).

We also provide algorithmic results and study the performance of DIC mech-
anisms in optimizing social welfare. We adopt a worst-case approximation mea-
sure, and provide a lower bound on the approximation ratio of any DIC mech-
anism. A lower bound that is greater than 1 can be viewed as an impossbility
result. We show that at best the approximation ratio of a DIC mechanism is
2 k
k+1 when k ≤ d(n − 1)/2e, and max{n−1k+1 , 1} otherwise. Interestingly, this

lower bound is achieved by the standard median mechanism (which is also DIC)

6 For the classical setting, if the objective of the mechanism designer is to maximize
social welfare then the standard median mechanism is both strategyproof and social
welfare optimal [6].

7 Unanimity respecting means that if there is a unanimously most preferred facility
location then the mechanism must locate the facility at this location.

8 We note that in a slightly different setting, where the single-peaked preferences are
possibly asymmetric, GMMs provide a complete characterization of strategyproof
and “peak only” mechanisms that only receive reports of peaks (Proposition 3
of [20]). Example 1 in the present paper provides an example of a mechanism that
is strategyproof in [7] but not in the setting of [20].
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when k ≤ d(n − 1)/2e or k = n, and hence the median mechanism is optimal
among all DIC mechanisms in those ranges. Figure 1 illustrates these results.
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DIC lower bound

median mech. upper bound

Fig. 1: Worst-case approximation ratio as a function of
the capacity constraint, k.

1.1 Related literature

A number of papers have considered related mechanism problems where the use
of money is not permitted [2, 1, 24, 20, 7, 15, 25, 26, 19]. Most closely related to
our paper is the work of [24], where agents with single-peaked preferences are lo-
cated along the real line and the problem of locating a (non-capacity constrained)
public facility is studied with the goal of minimizing two distinct objective func-
tions: the total social cost and the maximum cost across agents. This problem is
often referred to as a single facility location problem, or single facility location
game.9 In this paper, we focus on minimizing the total social cost in the presence
of a capacity constrained facility. In contrast to the setting of [24], agents have
interdependent utilities in our model because of the capacity constraints of the
facility, since their utility for a choice by the mechanism depends on the true
locations of others and whether they will gain access.

Another large body of literature is concerned with characterizing DIC mech-
anisms for the unconstrained facility location problem. In one-dimensional space
and for symmetric and single-peaked preferences, [7] characterize a general class
of DIC mechanisms which have become to be known as generalized median mech-
anisms (GMM), and in addition, show that when the property of unanimity is
enforced every DIC mechanism is a GMM. Border and Jordan [7] also con-
sider the problem in higher dimensions. These results differ slightly from the
characterization results of [20] since the setting studied in [20] does not restrict

9 We do not review the computer science and operations research literature on facility
location problems that assumes complete information and hence does not require
a mechanism design approach (see [8]). Furthermore, this literature, when incorpo-
rating capacity constraints, typically focuses on the problem of locating multiple
capacity constrained facilities that collectively have sufficient capacity to serve all
agents [13, 11, 22, 27].
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the single-peaked preferences to be symmetric. Characterizing DIC mechanisms
that need not satisfy unanimity was posed as an open problem; as stated by [7]
“[the characterization] leaves several open problems. The most obvious question
is: what happens if the unanimity assumption is dropped?” This has become
known as a “major open question” [5], with only partial progress towards a res-
olution [12, 5, 23, 28]. In particular, the results of [7] for facility location in a
one-dimensional space leave two gaps in regard to GMMs. Gap (1): There exist
non-unanimity respecting DIC mechanisms that are not GMM. Gap (2): There
exist DIC mechanisms that are GMMs but do not respect unanimity.

Our characterization of DIC mechanisms via the family of GMM, although
considered in a different setting where the facility is capacity constrained, applies
more generally to mechanisms that are not unanimity respecting. Hence, we
contribute a novel perspective to these gaps in characterization, showing that a
mechanism is DIC for all possible capacity constraints k ≤ n if and only if it is a
GMM. This means that any mechanism in gap (1) is not DIC when the facility
is capacity constrained with k < n. Furthermore, the unanimity property is
sufficient to ensure that a mechanism that is DIC in the non-capacity constrained
setting remains DIC when capacity constraints are present.

Finally, capacity constraints, or quotas, have been considered in a number of
related domains where the use of money is not permitted. Such domains include
committee voting [9, 3], apportionment [4], and matching markets [1, 18].

Outline: Section 2 presents our model and formalizes the objective of the
mechanism designer, Section 2.1 then presents our key characterization result of
DIC mechanisms. Section 3 explores the performance, i.e., approximation results,
of DIC mechanisms. Lastly, we conclude with a discussion in Section 4.

2 Model, Basic Properties, and Definitions

Model: Let N = {1, . . . , n} be a finite set of n agents and let X = [0, 1]
be the domain of agent locations. Each agent i ∈ N has a location xi ∈ X,
which is privately known, and the profile of agent locations is denoted by x =
(x1, x2, . . . , xn). The profile of all agents except some agent i ∈ N is denoted
by x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xn). There is a single facility to
be located in X. A mechanism is a function M :

∏
i∈N X → X, mapping a

profile of locations to a single location. We restrict our attention to deterministic
mechanisms. We denote the mechanism’s output, or facility location, by s ∈ X.

The facility faces a capacity constraint k : k ≤ n, which provides a limit
on the number of agents that can be served. Given a facility location s, we
assume that the k-closest agents (with respect to the Euclidean metric and the
agents’ true locations) are served, breaking ties via some deterministic priority
rule when necessary.10 We denote this priority ordering by the binary relation

10 This outcome can also be shown to be the essentially unique equilibrium of a simple
game where agents compete to be served by the facility via a first-come-first-served
protocol. Here essentially unique means that in the degenerate cases where multiple
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., so that i . j means that agent i has a higher priority than agent j. A served
agent attains utility ui = 1 − d(s, xi) ≥ 0, where d(·, ·) denotes the Euclidean
metric. An unserved agent attains zero utility, ui = 0. Notice that an agent’s
utility depends not only on the facility location and their own location but also
on the location of other agents and the capacity constraint of the facility. Thus,
we will denote an agent’s utility by a function ui(s,x, k), where s ∈ X is the
facility location, k is the facility’s capacity constraint, and x is the true location
profile of all agents.

Our approximation results rely on the choice of the utility function. On the
other hand, our characterization results do not rely on this particular form, and
nor do they require that locations be restricted to the closed interval [0, 1]. We
only require that, for any true location, every agent weakly prefers to be served
than not, and conditional on being served an agent’s utility is symmetric and
(strictly) single-peaked (as per [7]).

A useful observation is that, for any profile of other agents’ locations, an
agent has weakly single-peaked preferences over the facility location. This result
is stated in Proposition 1. The proof is straightforward and left to the appendix.
Intuitively, if an agent i is among the k-closest agents for a given facility location
s > xi then moving the facility location closer, to say s′ : s > s′ ≥ xi,
never results in agent i being excluded from the k-closest agents. Thus, agent i’s
utility is guaranteed to weakly increase as the facility location moves closer to
the agent’s true location.

Proposition 1. For any agent i ∈ N , if s < s′ ≤ xi or xi ≤ s′ < s then
ui(s,x) ≤ ui(s′,x).

We are interested in strategyproof or dominant-strategy Incentive Compat-
ible (DIC) mechanisms, so that agents do not have an incentive to misreport
their location. A mechanism M is DIC if for every agent i ∈ N , we have

ui

(
M(xi, x̂−i),x, k

)
≥ ui

(
M(x′i, x̂−i),x, k

)
, for every x′i, for every x̂−i, and

for every x−i. The DIC definition depends on the capacity constraint k, however
we omit this k dependence as this will be clear from the context.

Objective of the mechanism designer: The design goal is to find DIC
mechanisms that perform well with respect to social welfare, i.e., the sum of
agents’ utilities, and rather than make distributional assumptions, we measure
the performance of a DIC mechanism by its worst-case performance over the
domain of preference profiles.

Given a profile of agent locations, x, and a capacity constraint, k, we define
the optimal social welfare by Π∗(x, k) := maxs∈X

∑n
i=1 ui(s,x, k), and given a

mechanism M let ΠM (x, k) denote the social welfare attained by the mechanism,
i.e., ΠM (x, k) :=

∑n
i=1 ui(s,x, k) where s = M(x). The mechanism M is an α-

approximation if maxx∈
∏n

i=1X

{
Π∗(x,k)
ΠM (x,k)

}
≤ α, and the LHS of the inequality

equilibria exist they are all payoff equivalent and hence the multiplicity does not
affect the incentives of agents.
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is the approximation ratio. A mechanism (or family of mechanisms) has a lower

bound, ᾱ, on the approximation ratio if ᾱ ≤ maxx∈
∏n

i=1X

{
Π∗(x,k)
ΠM (x,k)

}
.

When this lower bound is greater than 1 then this can be viewed as an impos-
sibility result. We are also interested in algorithms that match the lower bound.
For a given capacity constraint, k, we refer to a mechanism M that attains the
optimal social welfare for all profiles of agent locations, x, as an optimal mech-
anism. Such a mechanism is a 1-approximation. Again, the optimal mechanism
definition depends on the capacity constraint k but we omit this dependence as
this will be clear from the context. Note that the optimal mechanism need not,
and in general will not be DIC for a given k.

Remark 1. When k = n our model reduces to the well-known facility location
problem [24, 20, 6]. Accordingly, this case (k = n) is fully resolved: the stan-
dard median mechanism that always locates the facility at the median reported
location is both optimal and DIC.

To illustrate how the case where k < n differs from the standard k = n
setting, consider Example 1. The example considers a mechanism that is DIC
when k = n but for any capacity constraint k < n is not DIC.

Example 1. LetM be the mechanism such thatM(x) = arg mins∈{1/4, 3/4} d(s, xi)
for some i ∈ N , tie-breaking in favor of s = 1/4 if necessary. That is, the mech-
anism locates the facility at either location 1/4 or 3/4 depending on which is
closest to agent i’s report.

First, notice that the mechanism M is DIC when k = n. If k = n then every
agent i is always served by the facility and hence attains utility 1− d(s, xi) for
any facility location s. It is immediate that agent i can never strictly benefit
from misreporting their location.

However, when k < n the mechanism is not DIC. To see this, consider an
instance where agent i is located at 3/8 and all other agents are located at 1/4.
When agent i truthfully reports, the facility is located at 1/4 and is not served
– leading to zero utility. On the other hand, misreporting to x′i ∈ (1/2, 1] leads
to the facility location 3/4 and agent i is the closest agent to the facility. In this
case agent i attains strictly higher utility equal to 1−d(3/4, 3/8) > 0. Thus, the
mechanism is not DIC for any k < n. �

2.1 A complete characterization of DIC mechanisms

We begin by defining the family of generalized median mechanisms (GMMs).
This family was introduced by [20] and [7] for the k = n setting, and provides
a partial characterization of DIC mechanisms. For the k = n setting, the well-
known family of phantom mechanisms [20] is also attained from the family of
GMMs by requiring anonymity and efficiency. The main result of the present
paper shows that GMMs provide a complete characterization of mechanisms
that are (1) DIC for all k ≤ n, and (2) DIC for some k < n.
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DIC

GMM

Fig. 2: Setting where k = n [7].

DIC ≡ GMM

Fig. 3: Setting where k < n.

Definition 1. [Generalized median mechanism (GMM)] A mechanism M is
said to be a generalized median mechanism (GMM) if for each S ⊆ N there
are constants aS : S ⊆ T =⇒ aS ≤ aT , such that for all location profiles x,

M(x) = maxS⊆N

{
mini∈S {xi, aS}

}
.

To build some intuition, we highlight three well-known mechanisms that be-
long to the family of GMMs:

– The median mechanism, which always outputs the median of the reported
location profile, i.e., the b(n+1)/2c-th smallest report, is attained by setting
aS = 0 for all subsets S ⊆ N with |S| < b(n+ 1)/2c and aS = 1 otherwise.

– The agent i dictatorship mechanism, which always outputs the location of
agent i’s report, is attained by setting aS = 1 for all S ⊆ N : i ∈ S, and
aS = 0 for all other subsets.

An example of a mechanism that is not a GMM is the dictatorial-style mech-
anism considered in Example 1.

We now state the main characterization result.

Theorem 1. Let M be a mechanism. The following are equivalent: (1) M is a
GMM, (2) M is DIC for some k < n, and (3) M is DIC for every k ≤ n.

We present the proof via a series of propositions and utilize a characterization
of [7]. First, we illustrate the contribution of Theorem 1, benchmarked against
the results of [7], where GMMs are shown to be a strict subset of DIC mechanisms
when k = n. Figure 2 presents the result of [7] and Figure 3 illustrates our
characterization. When considering the capacity constrained problem, with k <
n, the family of DIC mechanisms coincides precisely with the GMM family.

First, we present a result of [7], characterizing the family of GMMs via a
property of the mechanism that they call uncompromising. Informally speaking,
an uncompromising mechanism means that an agent cannot influence the mech-
anism output in their favor by reporting extreme locations. The most obvious
mechanism satisfying this property is the median mechanism.

Formally, a mechanism M is uncompromising if, for every profile of locations
x, and each agent i ∈ N , if M(x) = s then

xi > s =⇒ M(x′i,x−i) = s for all x′i ≥ s and, (1)

xi < s =⇒ M(x′i,x−i) = s for all x′i ≤ s. (2)
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Lemma 1 ([7]). A mechanism M is uncompromising if and only if it is a GMM.

Note that Lemma 1, although proved in the setting where k = n, does not
rely on any strategic properties of the mechanism and so applies more generally
to our setting with k ≤ n.

We now prove our first proposition towards the characterization result.

Proposition 2. Every GMM is DIC for any k ≤ n.

Proof. Fix k ≤ n and let M be a GMM. For the sake of a contradiction suppose
that M is not DIC. That is, for some agent i with location xi, there exist a
profile of other agent locations x−i, and reports x̂−i such that for some x′i 6= xi

ui(M(x′i, x̂−i),x, k) > ui(M(xi, x̂−i),x, k). (3)

Define s′ = M(x′i, x̂−i) and s = M(xi, x̂−i). It is immediate from (3) that s 6= xi
and s 6= s′. Without loss of generality we assume that xi > s. By assumption, M
is a GMM and, by Lemma 1, satisfies the uncompromising property. It follows
that x′i < s, since otherwise x′i ≥ s and (1) would imply s′ = s contradicting (3).

Case 1: Suppose s < s′. Then x′i < s′ and the uncompromising property (2)
implies that M(x′′i , x̂−i) = s′for all x′′i ≤ s′. If x′′i ∈ [s, s′] the uncompromising
property implies that M(x′′i , x̂−i) = M(xi, x̂−i), i.e., s′ = s, which contradicts
(3). Thus, we conclude that x′′i < s.

Now consider a new instance where agent i has true location yi = ε ∈ (0, s),
all other agents have true location yj = 0 but collectively report x̂−i. If agent i
reports yi = ε, then the facility location is s′ and i attains utility 1− d(s′, ε). If
agent i reports y′i = xi then the facility location is s < s′ and i attains strictly
higher utility 1− d(s, ε). Thus, the mechanism is not DIC – a contradiction.

Case 2: Suppose s > s′. Since xi > s > s′, it follows from the single-peaked
property (Proposition 1) that ui(s,x, k) ≥ ui(s′,x, k). This contradicts (3).

We now prove our second proposition towards the characterization result.
Proposition 3 shows that the DIC requirement is more restrictive for k < n than
for k = n— meaning that the capacity constraints induce new strategic concerns
for the mechanism designer.

Proposition 3. If a mechanism M is DIC, for some k < n, then it is DIC for
k = n. The converse is not true.

Proof. We prove the contrapositive. Suppose that M is not DIC for k = n.
That is, for some agent i with location xi there exists a report x′i, a profile
of other agent reports x̂−i, and a profile of other agent locations x−i such
that ui(M(x′i, x̂−i),x, n) > ui(M(xi, x̂−i),x, n). Let s′ = M(x′i, x̂−i) and s =
M(xi, x̂−i). When k = n, the previous inequality simplifies to

1− d(s′, xi) > 1− d(s, xi). (4)

Now we consider the same profile of reports but for an arbitrary k < n.
Further, suppose all agents have location equal to xi and agent i has the highest
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priority (.), i.e., after tie-breaking. The mechanism output is independent of
agent true locations and so we still attain M(x′i, x̂−i) = s′ and M(xi, x̂−i) = s.
Furthermore, since i has the highest priority (recall that the priority is distance-
based but in this instance all agents are equidistant for every facility location)
they are always served for every facility location. In particular, the utility from
reporting truthfully is 1 − d(s, xi) and misreporting is 1 − d(s′, xi) – the latter
provides strictly higher utility, as per (4). We conclude that the mechanism is
not DIC, and since k < n was chosen arbitrarily it holds for all k < n.

The final statement in the proposition was shown in Example 1.

We now prove our final proposition, which completes the main theorem.

Proposition 4. If a mechanism M is DIC, for some k < n, then it is a GMM.

Proof. Let M be a mechanism that is DIC for some k < n.
First, consider an instance where an arbitrary agent i has location xi, and

the other agents report x̂−i. If i reports truthfully the mechanism outputs some
location that we denote as s, i.e.,

s := M(xi, x̂−i). (5)

If s = xi then consider an alternate location and profile of other agents’ reports so
that the equality does not hold. If no such location and report profile exists then
the mechanism always coincides with agent i’s report; that is, the mechanism is
the agent i dictatorship mechanism, which is a GMM.

Now suppose s 6= xi, and without loss of generality assume s < xi. By
assumption, M is DIC, for some k < n, and so it must be that for all x′i

ui(s,x, k) ≥ ui(M(x′i, x̂−i),x, k), (6)

where x denotes the true location profile of all agents.
Recall that a mechanism is a GMM if and only if it is uncompromising

(Lemma 1). We now show that deviation by agent i will satisfy the uncom-
promising property, i.e., for any x′i ≥ s M(x′i, x̂−i) = s. To do so, we analyze
different cases and sequential refine the possible values of M(x′i, x̂−i), we then
derive a contradiction and conclude that M(x′i, x̂−i) = s.

Case 1: Suppose all other agents have true location s. When agent i truthfully
reports xi the facility location is s and agent i attains zero utility. Now consider
some report x′i ≥ s, leading to facility location sx′i := M(x′i, x̂−i). If sx′i ∈
( s+xi

2 , 1] for any x′i ≥ s we attain a contradiction, since this means that agent
i would be served from this report and attain strictly more utility than being
truthful. We conclude that sx′i ∈ [0, s) ∪ {s} ∪ (s, s+xi

2 ) for all x′i ≥ s.
Case 2: Suppose all other agents have true location 1, noting that s < xi ≤ 1.

In the event that xi = 1 (in which case all agents are equidistant from every
facility location), assume agent i has the highest priority in the tie-breaking rule
(.). When agent i truthfully reports their location, they are served and attain
utility 1−d(s, xi). To avoid a contradiction of (6), it must be that sx′i ≤ s. Thus,
we conclude sx′i ∈ [0, s) ∪ {s} for all x′i ≥ s.
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For the sake of a contradiction suppose there exists some x′′i ≥ s such that

sx′′i ∈ [0, s). (7)

Consider a new instance where agent i’s location is yi = x′′i (note that x′′i ≥ s),
all other agents have location 1, and the other agents report x̂−i (the same
profile of reports as per (6)). In the event that yi = x′′i = 1 (in which case
all agents are equidistant from every facility location), assume agent i has the
highest priority in the tie-breaking rule (.). If agent i reports their location
yi the facility location is syi = sx′′i < s, as per (7), and they attain utility
1−d(syi , yi). But now misreporting to y′i = xi then as per (5) the facility location
is s where syi < s ≤ yi, leading to utility 1− d(s, yi). This is a contradiction of
the mechanism being DIC, since d(s, yi) < d(syi , yi); that is, agent i by reporting
y′i instead of their true location yi attains strictly higher utility. We conclude
that sx′i = s for all x′i ≥ s. Thus, the mechanism is uncompromising and a GMM.

3 Approximation of DIC mechanisms

Given the characterization result (Theorem 1) of the previous section, there is
no distinction between the family of mechanisms that are DIC for some k < n,
and the family of mechanisms that are DIC for all k ≤ n: both families are equal
to the GMM family. We will now simply refer to a mechanism as being DIC.

3.1 The optimal mechanism is not DIC

We first show that in general for k < n, the optimal mechanism is not DIC. Note
that this result contrasts with the k = n setting where the median mechanism
is both optimal and DIC (Remark 1). See the appendix for the proof.

Theorem 2. The optimal mechanism is DIC if and only if k ∈ {1, n}.

Despite Theorem 2 stating a stark impossibility result, we note that absent
strategic manipulations by the agents the optimal mechanism (e.g., the optimal
facility location and welfare) can be computed in polynomial time for any k ≤ n.
We sketch an informal argument. Order the agents i ∈ N such that xi ≤ xj if
and only if i ≤ j. An optimal solution has two features: (1) the facility serves a
contiguous set of k agents, i.e., if agent i and i + 2 are served then agent i + 1
is served, and (2) the facility is located at the median of these k served agents.
Given this, a polynomial-time procedure exists by simply comparing the welfare
produced by, the at most n, sets of k contiguous agents.

3.2 A lower bound on DIC approximation

Utilizing the characterization result of DIC mechanisms via the family of GMMs,
we provide a lower bound on the approximation ratio for all DIC mechanisms.

Figure 1 illustrates the lower bound of the approximation ratio (Theorem 3).
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Theorem 3. Let n ≥ 2. A DIC mechanism is at best an α-approximation with
α = 2 k

k+1 when 1 ≤ k ≤ d(n− 1)/2e, and α = max{n−1k+1 , 1} otherwise.

Proof. Let M be a DIC mechanism, and consider a scenario where all n agents
have distinct (true) locations contained in the interval I = (1/2 − 1/2ε, 1/2 +
1/2ε) for some sufficiently small ε > 0. Denote the profile of agent locations by
x, and the mechanism’s output by s = M(x). We consider two cases.

Case 1: Suppose s /∈ I and without loss of generality assume s < 1/2− 1/2ε.
Now suppose that agents i = 1, 2, . . . , n sequentially have their true (and re-
ported) locations changed to xi = 1, and consider the sequence of facility loca-
tions produced by the mechanism s1, s2, . . . , sn. By the uncompromising prop-
erty (satisfied by M since it is a GMM) the location of the facility never changes
from s. That is, sn = s despite every agent having location at 1. The optimal so-
cial welfare in this scenario is clearly k, however, the mechanism provides welfare
of k(1−d(s, 1)) = k s < k(1/2− 1/2ε)→ k/2as ε→ 0. Thus, the approximation
ratio is at best k/(k/2) = 2.

Case 2: Suppose s ∈ I and without loss of generality assume s ≤ 1/2. Let
λ1, λ2 be the number of agents with true location strictly less than s, and strictly
above s, respectively. Note that λ1 + λ2 ∈ {n − 1, n}, since all agents have
distinct locations. Similar to Case 1, suppose the λ1 agents instead had their true
(and reported) locations shifted to 0 and the λ2 agents had true (and reported)
locations shifted to 1 – by the uncompromising property the facility location is
unchanged. To attain the bound on the approximation ratio we consider two
subcases where k ≤ d(n− 1)/2e and k > d(n− 1)/2e.

In the first subcase (k ≤ d(n − 1)/2e): the optimal welfare is k, since either
λ1 or λ2 exceeds k meaning that k agents can be served at either 0 or 1. The
mechanism’s welfare is at most 1+(k−1)(1−d(s, 0)) < 1+(k−1)(1/2+1/2ε)→
1/2 + k/2as ε→ 0. Thus, the ratio is at best k/(1/2 + k/2) = 2 k/(k + 1).

In the second subcase (k > d(n−1)/2e): the optimal welfare is at worst d(n−
1)/2e, i.e., when the facility serves either λ1 or λ2 agents (whichever is larger)
from location 0 or 1. The mechanism’s welfare is at most 1+(k−1)(1−d(0, s)) <
k − (k − 1)(1/2 + 1/2ε)→ k/2 + 1/2as ε→ 0. Thus, the approximation ratio is

at best d(n− 1)/2e/(k/2 + 1/2), but d(n− 1)/2e/(k/2 + 1/2) ≥ (n−1)/2
(k+1)/2 = n−1

k+1 .

Furthermore since k > (n− 1)/2 it follows that n−1
k+1 < 2. Of course, this bound

is only meaningful when n− 1/k + 1 > 1.

We conclude that when k ≤ d(n − 1)/2e the approximation ratio is at best
2 k
k+1 and otherwise is at best max{n−1k+1 , 1}.

3.3 An optimized approximation ratio for DIC Mechanism

We now analyze the performance of the median mechanism for general k ≤ n. In
instances where k ∈ {1, n}, the median mechanism is both optimal mechanism
and DIC (Theorem 2). Furthermore, this mechanism is DIC for all k ≤ n since
the median mechanism is a GMM (Theorem 1).
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By Theorem 4, the median mechanism is optimal among all DIC mechanisms
for k ≤ d(n−1)/2e since the approximation-ratio matches the lower bound found
in Theorem 3. These approximation results are also illustrated in Figure 1.

Theorem 4. The median mechanism is an α-approximation with α = 2 k
k+1 for

k ≤ 2
3 (n+ 1), and α = min{2 k

k+1 , 1 + 2 n−k+1
3k−2n−2} otherwise.

Proof. Throughout the proof let im denote the agent with median location
(choose the agent arbitrarily if multiple such agents exist), and let sm de-
note the median location. The median mechanism provides welfare ΠM (x, k) =
maxN ′∈Nk

∑
i∈Nk

(1−d(sm, xi)) = 1+maxN ′∈Nk−1,im

∑
i∈Nk−1,im

(1−d(sm, xi)),

where Nk is the set of all k-sized subsets of N and Nk−1,im is the set of all (k−1)-
sized subsets of N\{im}. This follows since the subset of agents served are always
the k-closest to the facility location. Hence, given a facility location, the served
subset is welfare maximizing. Furthermore, the median location coincides with
at least one agent’s location, i.e., agent im.

First, we provide an upper bound on the approximation-ratio for all k. The
median mechanism locates the facility at the b(n+ 1)/2c-th location and hence
there are b(n+1)/2c−1 agents with locations (weakly) below and d(n+1)/2e−1
with locations (strictly) above. A lower bound on the median mechanism’s wel-
fare is attained when the agents below and above the median location at located
at 0 and 1, respectively. Thus, ΠM (x, k) ≥ 1 + (k − 1) max{1 − d(sm, 0), 1 −
d(sm, 1)}, and since either d(sm, 0) ≤ 1/2 or d(sm, 1) ≤ 1/2 it follows that
ΠM (x, k) ≥ (k+1)/2. This leads to an upper bound on the approximation-ratio
of k/((k + 1)/2) = 2 k

k+1 for all k, since the optimal welfare is bounded by k.
Now we attain a tighter upper bound for certain values of k. To do so, we

bound the median welfare using the optimal welfare. Let s∗ be the location of
the facility under the optimal mechanism. Let N∗m denote the set of k agents
served under the median mechanism, and let N∗ denote the set of k agents served
under the optimal mechanism. We have ΠM (x, k) =

∑
i∈N∗m

(
1 − d(sm, xi)

)
≥∑

i∈N∗

(
1− d(sm, xi)− d(s∗, xi) + d(s∗, xi)

)
= Π∗(x, k)−

∑
i∈N∗

(
d(sm, xi)−

d(s∗, xi)
)

. Clearly, the lower bound is smallest when sm 6= s∗, without loss of

generality assume that sm < s∗. Let N∗1 , N
∗
2 be a partition of N∗ such that

|N∗1 |, |N∗2 | ≤ b(n+ 1)/2c and all agents in N∗1 have their location in [0, sm] and
agents in N∗2 have their location in [sm, 1]. Such a partition of N∗ exists since the
location sm coincides with the b(n+ 1)/2c highest location. Using this partition
we further bound the median mechanism’s welfare:

ΠM (x, k) ≥ Π∗(x, k)−
∑
i∈N∗1

(d(sm, xi)− d(s∗, xi))−
∑
i∈N∗2

(d(sm, xi)− d(s∗, xi))

≥ Π∗(x, k)− |N∗1 | max
x∈[0,sm]

(
sm − s∗ − 2x

)
− |N∗2 | max

x∈[sm,1]

(
xi − sm − |s∗ − x|

)
≥ Π∗(x, k)− |N∗1 |(sm − s∗)− |N∗2 |(s∗ − sm) ≥ Π∗(x, k)− (|N∗2 | − |N∗1 |).

We now attain our lower bound by considering the maximum value of |N∗2 |−|N∗1 |.
For k ≤ b(n+ 1)/2c, the value can only be guaranteed to be no larger than k –
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leading to a trivial zero lower bound for ΠM (x, k). However, for k > b(n+ 1)/2c
we attain a more useful bound by noting that (|N∗2 |− |N∗1 |) ≤ b(n+1)/2c− (k−
b(n+ 1)/2c) = 2b(n+ 1)/2c−k ≤ n+ 1−k. This lead to an approximation-ratio

upper bound of maxx∈
∏n

i=1X

{
Π∗(x,k)

Π∗(x,k)−n−1+k

}
whenever the denominator can

be guaranteed to be positive. Noting that Π∗(x, k) ≥ k/2 , since at least as
much welfare is attained by locating the facility at s = 1/2, we conclude that
the denominator is positive whenever k > 2

3 (n + 1). Thus, for k > 2
3 (n + 1) an

upper bound for the approximation-ratio is maxx∈
∏n

i=1X

{
Π∗(x,k)

Π∗(x,k)−n−1+k

}
=

maxx∈
∏n

i=1X

{
1 + n+1−k

Π∗(x,k)−n−1+k

}
≤ 1 + n+1−k

k/2−n−1+k = 1 + 2 n+1−k
3k−2n−2 .

4 Discussion and Conclusion

In this paper, we initiated the study of the capacity constrained facility lo-
cation problem from a mechanism design perspective. Our main contribution
is a complete characterization of all DIC mechanisms via the family of GMM
mechanisms. This characterization also provides a novel perspective to an open
problem in regard to GMM mechanisms, posed in [7]. Our second contribution is
an analysis of the performance of DIC mechanisms with respect to social welfare
– where we also show that the well-known median mechanism is optimal among
all DIC mechanisms for certain parameter ranges. We conclude by providing a
brief discussion of future research directions below.

Extensions to multiple facilities: In this paper we focused on the case of a
single facility problem. Extending the capacity constrained to multiple facilities
presents a number of challenges. Firstly, the assumption of the k-closest agents
being served by the facility can no longer be justified as the unique equilib-
rium outcome of a first-come-first game since issues of multiple equilibria arise.
Furthermore, and even ignoring this issue, the mechanism design problem is
drastically more complicated due to the interdependence of agent utilities and
the possibility that an agent’s report could simultaneously affect the location of
multiple facilities. Similarly, the algorithmic problem of finding optimal facility
locations is more complicated (see [10]). A recent contribution by [17] explores
the problem for multiple facilities without capacity constraints via deep learning.

Weakening DIC: A natural direction is to weaken the DIC requirement, which
requires that agents must attain maximal utility from reporting their location no
matter what other agents report, and no matter other agents’ true locations. A
weaker, ex post notion of incentive compatibility may be interesting to explore,
requiring instead that agents attain maximal utility from reporting their location
no matter the other agents’ true locations, but conditional on the other agents
reporting truthfully. It is straightforward to construct ex post IC mechanisms
that out-perform the median mechanism for certain parameter ranges. Providing
a complete characterization of such mechanisms is an open problem.
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A Appendix: Omitted Proof

Proof (Proof of Proposition 1). Fix k ≤ n, fix a profile of agent locations x, and
let s, s′ be two distinct facility locations. Suppose there exists some agent i such
that s < s′ ≤ xi, the case where xi ≤ s′ < s is dealt with similarly. For the
sake of a contradiction suppose that ui(x, s, k) > ui(x, s

′, k). Since ui(x, s
′, k)

equals either 1 − d(s′, xi) or 0 and 1 − d(s′, xi) > 1 − d(s, xi), it is immediate
that ui(x, s, k) = 1− d(s, xi) and ui(x, s

′, k) = 0. That is, agent i is served (and
hence among the k-closest agents) when the facility is located at s and is not
served when the facility is located at the closer location of s′. But for any agent
j such that agent i is closer to location s, i.e., d(xi, s) ≤ d(xj , s), it must also
be true that agent i is closer to s′, i.e., d(xi, s

′) ≤ d(xj , s
′). This is immediate

for any xj ≥ xi. Now suppose that xj < xi, then it must be that xj < s, since
d(xi, s) ≤ d(xj , s), but then it follows that

d(s′, xj) > d(s, xj) ≥ d(xi, s) > d(xi, s
′).

This is a contradiction. We conclude that ui(x, s, k) ≤ ui(x, s′, k).

Proof (Proof of Theorem 2). The backward direction of the theorem statement
is straightforward: If k = 1 then for any i ∈ N the agent i dictator mechanism,
where the mechanism output always coincides with agent i’s report, is both
optimal and DIC. This is trivial and we do not provide further details. If k = n
then the median mechanism is both optimal and DIC. This result has long been
known and can be found in [6, 20, 24].
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We now prove the forward direction using the contrapositive. Let k /∈ {1, n}
and partition the agents into bn/kc groups of size k, denoted by Nt for t =
1, 2, . . . , bn/kc, and one group of size n− bn/kc, denoted by Nbn/kc+1. We now
identify bn/kc+ 1 locations in [0, 1], let yt = t

bn/kc+1 for t = 1, 2, . . . , bn/kc+ 1.

Consider a scenario such that for each t = 1, 2, . . . , bn/kc + 1, all but one
agent in Nt is located at yt and a single agent is located at yt − t ε for some
sufficiently small ε > 0. In each instance denote the single agent located at yt−t ε
by it ∈ Nt.

In this scenario it is immediate that the optimal welfare is attained by locat-
ing the facility at location y1, leading to a social welfare of k − ε and agent i1
attains utility 1− ε.

Now in a new scenario where agent i1 has true location at y1−3ε the optimal
mechanism must locate the facility at y2. In this case agent i1 attains utility zero.
However, if agent i1 misreports their location to y1 − ε then (as shown above)
the facility location will be y1 and they will attain strictly higher utility 1− 3ε.
That is, the optimal mechanism is not DIC for k /∈ {1, n}.


