
The Adaptive Complexity of Maximizing a Submodular Function

Eric Balkanski∗ Yaron Singer†

Abstract

In this paper we study the adaptive complexity of submodular optimization. Informally, the
adaptive complexity of a problem is the minimal number of sequential rounds required to achieve
a constant factor approximation when polynomially-many queries can be executed in parallel at
each round. Adaptivity is a fundamental concept that is heavily studied in computer science,
largely due to the need for parallelizing computation. Somewhat surprisingly, very little is
known about adaptivity in submodular optimization. For the canonical problem of maximizing
a monotone submodular function under a cardinality constraint, to the best of our knowledge,
all that is known to date is that the adaptive complexity is between 1 and Ω(n).

Our main result in this paper is a tight characterization showing that the adaptive complexity
of maximizing a monotone submodular function under a cardinality constraint is Θ̃(log n):

• We describe an algorithm which requires O(log n) sequential rounds and achieves an ap-
proximation that is arbitrarily close to 1/3;

• We show that no algorithm can achieve an approximation better than O(1
logn) with fewer

than O(logn
log logn) rounds.

Thus, when allowing for parallelization, our algorithm achieves a constant factor approximation
exponentially faster than any known existing algorithm for submodular maximization.

Importantly, the approximation algorithm is achieved via adaptive sampling and comple-
ments a recent line of work on optimization of functions learned from data. In many cases
we do not know the functions we optimize and learn them from labeled samples. Recent
results show that no algorithm can obtain a constant factor approximation guarantee using
polynomially-many labeled samples as in the PAC and PMAC models, drawn from any distribu-
tion [BRS17, BS17a]. Since learning with non-adaptive samples over any distribution results
in a sharp impossibility, we consider learning with adaptive samples where the learner obtains
poly(n) samples drawn from a distribution of her choice in every round. Our result implies that
in the realizable case, where there is a true underlying function generating the data, Θ̃(log n)
batches of adaptive samples are necessary and sufficient to approximately “learn to optimize”
a monotone submodular function under a cardinality constraint.

∗School of Engineering and Applied Sciences, Harvard University. ericbalkanski@g.harvard.edu. This research was
supported by a Google PhD Fellowship, by NSF grant CCF-1301976, CAREER CCF-1452961, and by BSF grant
2014389.

†School of Engineering and Applied Sciences, Harvard University. yaron@seas.harvard.edu. This research was
supported by NSF grant CCF-1301976, CAREER CCF-1452961, and by BSF grant 2014389.

1 Introduction

In this paper we study the adaptive complexity of maximizing a submodular function. For the past
several decades submodularity has been heavily studied in theoretical computer science, machine
learning, and operations research. This is largely due to the fact that submodular functions capture
a broad range of applications in diverse domains and are amendable to optimization.

In many cases we do not know the objective function we optimize and instead learn it from
data. In the standard notions of learnability for submodular functions such as PAC [Val84] and its
generalization PMAC [BH11], the input is a collection of sampled sets and their function values, and
the goal is to produce a surrogate that mimics the behavior of the function on samples drawn from
the same distribution (e.g. [BH11, FK14, BDF+12, BCIW12, FV13, FV15, Bal15, NPS15]).

In order to investigate the approximation guarantees achievable when a function is learned
in the PAC and PMAC models, a recent line of work has been devoted to optimization from sam-
ples [BRS17]. In this framework the input is a collection of samples and the goal is to find a
solution that approximates the optimum. The main result shows that for the canonical problem
of maximizing a submodular function under a cardinality constraint, no algorithm can obtain a
constant factor approximation guarantee given access to polynomially-many samples drawn from
any distribution [BRS17]. This result holds even when the functions are coverage functions which
are heavily used in applications and are PMAC-learnable [FK14, BDF+12]. Similar impossibility
results hold for submodular minimization [BS17a] and convex optimization [BS17b], even when
the objective functions are PAC-learnable. Thus, it is generally impossible to obtain reasonable
approximation guarantees for optimization problems that are in P and APX when the objective is
learned with polynomially-many samples, even when it is PMAC or PAC learnable.

1.1 Adaptivity

The inapproximability for optimization from samples is a consequence of non-adaptivity : any al-
gorithm that only has access to samples of function values cannot make adaptive queries and this
restriction inhibits reasonable approximation guarantees. Informally, the adaptivity of an algorithm
can be quantified in terms of the number of sequential rounds of queries it makes, where every round
allows for polynomially-many parallel queries.

Definition. Given an oracle f , an algorithm is r-adaptive if every query q to the oracle f occurs
at a round i ∈ [r] such that q is independent of the answers f(q′) to all other queries q′ at round i.

Adaptivity is a fundamental concept that is studied across a wide spectrum of areas in computer
science (see discussion in Appendix A.1). In the context of submodular optimization, the oracle for
a function f : 2N → R is a value oracle that receives a set S ⊆ N and returns its value f(S). An
algorithm is then r-adaptive if every query S to the oracle occurs at a round i ∈ [r] such that S is in-
dependent of the values f(S′) of all other queries S′ at round i. Somewhat surprisingly, the concept
of adaptivity which quantifies complexity in a parallel computing model has not been explored for
submodular optimization. There is vast literature on submodular optimization in the Map-Reduce
model which addresses the challenges associated with processing data that exceeds memory ca-
pacity (e.g. [CKT10, KMVV15, MKSK13, MZ15, MKBK15, BENW15, BENW16, EMZ17]), but
these algorithms are inherently sequential and Ω(n)-adaptive in the worst case (see discussion in
Appendix A.2), where n is the size of the ground set N .

1

1.2 The adaptivity landscape of submodular optimization

The adaptive complexity of an optimization problem is the minimum number of rounds r such that
there exists an r-adaptive algorithm which achieves a constant factor approximation with poly(n)
queries made in every round. For unconstrained submodular maximization the adaptive complexity
is trivially 0 as a random subset is a 1/4 approximation to the optimal solution [FMV11]. For the
canonical problem of maximizing a monotone submodular function under a cardinality constraint k,
however, very little is known. The adaptive complexity must be strictly larger than 1 since the main
impossibility result for optimization from samples implies that no constant factor approximation is
achievable with non-adaptive queries [BRS17]. On the other hand, the celebrated greedy algorithm
which achieves the optimal 1−1/e approximation guarantee by iteratively adding the element with
largest marginal contribution is trivially k-adaptive. In the worst case, k ∈ Ω(n). All constant
factor approximation algorithms we are aware of for maximizing a submodular function under a
cardinality constraint are at best k-adaptive. So all we know is that the adaptive complexity is
between 1 and Ω(n).

What is the adaptive complexity of maximizing a submodular function?

Adaptivity is not only a fundamental theoretical concept but it also has important practical
consequences. There is a wide variety of applications of submodular maximization where function
evaluations are easily parallelized but each evaluation requires a long time to complete. In crowd-
sourcing for example, function evaluations depend on responses from human agents and highly
sequential algorithms are impractical. Data summarization, experimental design, influence maxi-
mization, marketing, survey design, and biological simulations are all examples where the adaptive
complexity of optimization largely determines the runtime bottleneck of the optimization algorithm
(see Appendix B for a detailed discussion of these applications).

1.3 Main result

Our main result is that the adaptive complexity of submodular maximization is Θ̃(log n). This
provides a characterization that is tight up to low-order terms, and an exponential improvement in
the adaptivity over any known constant factor approximation algorithm for maximizing a monotone
submodular function. Our characterization is composed of two major results. The first is an
algorithm whose adaptivity is O(log n) and obtains an approximation arbitrarily close to 1/3.

Theorem. For the problem of monotone submodular maximization under a cardinality constraint
and any constant ε > 0, there exists an O(log n)-adaptive algorithm which obtains, with probability
1− o(1), a (1/3− ε)-approximation.

We complement the upper bound by showing that the adaptive complexity of submodular
maximization is at least quasi-logarithmic by showing that no Ω̃(log n)-adaptive algorithm can
obtain an approximation strictly better than 1

logn .

Theorem. For the problem of monotone submodular maximization under a cardinality constraint,

there is no
(

logn
12 log logn

)
-adaptive algorithm that obtains, with probability ω

(
1
n

)
, a 1

logn -approximation.

In fact, we show the following more general impossibility result: for any r ≤ log n, there is no

r-adaptive algorithm that obtains, with probability ω
(
1
n

)
, an n− 1

2r+2 · (r+3) log2 n approximation.

2

Best known adaptivity Adaptivity in this paper

upper bound Ω(n) [NWF78] O(log n)

lower bound 1 [BRS17] Ω̃(log n)

Table 1: A comparison of results for the number of rounds required to obtain a constant factor approximation.

1.4 Adaptive sampling: a coupling of learning and optimization

Our motivation is to understand what are the necessary and sufficient conditions from a learnability
model that yield desirable approximation guarantees for optimization. Since sharp impossibility
results arise from learning with non-adaptive samples over any distribution, we turned to an adap-
tive sampling model [Tho90]. In adaptive sampling, the learner obtains poly(n) samples drawn
from a distribution of her choice in every round. Our (1/3− ε)-approximation O(log n)-adaptive
algorithm is achieved by adaptive sampling. Our hardness result holds for queries and hence also
for adaptive sampling. This implies that in the realizable case, where there is a true underlying
function generating the data, Θ̃(log n) batches of adaptive samples are necessary and sufficient to
approximately “learn to optimize” a monotone submodular function under a cardinality constraint.

1.5 Technical overview

The algorithm. The main building block of the adaptive sampling algorithm is the construction,
at every round r, of a meaningful distribution Dr with elements having marginal probabilities of
being drawn p1, . . . , pn. We begin by presenting two simple primitives: down-sampling (Section 2.1)
and up-sampling (Section 2.2). In every round, down-sampling identifies elements ai ∈ N whose
expected marginal contribution to a random set drawn according to Dr is sufficiently low and sets
pi = 0 for all future rounds. This approach achieves logarithmic adaptivity, but its approximation
guarantee is 1/ log n. The second approach, up-sampling, sets pi = 1, for all future rounds, for
all elements in the sample with highest value at that round. It achieves a constant approximation
but at the cost of a linear adaptivity. Our main algorithm, Adaptive-Sampling (Section 2.3)
achieves logarithmic adaptivity and constant factor approximation by shaping Dr via up-sampling
at rounds where a random set has high value and down-sampling otherwise. The analysis then
heavily exploits submodularity in non-trivial ways to bound the marginal contribution of elements
to a random set drawn from Dr, which evolves in every round.

Hardness. To bound the number of rounds necessary to obtain a certain approximation guaran-
tee, we analyze the information that an algorithm can learn in one round that may depend on queries
from previous rounds. Reasoning about these dependencies between rounds is the main challenge.
To do so, we reduce the problem of finding an r-adaptive algorithm to the problem of finding an
r + 1-adaptive algorithm over a family of functions with additional information. This approach is
related to the round elimination technique used in communication complexity (e.g. [MNSW95]).

1.6 Paper organization

We begin by presenting the algorithm and its analysis in Section 2. Section 3 is devoted to the hard-
ness result. Adaptivity in CS is discussed in Appendix A.1 and comparisons with the Map-Reduce
and PRAM models are in Appendix A.2. Finally, applications of adaptivity are in Appendix B.

3

2 The Adaptive Complexity of Submodular Maximization is O(log n)

In this section, we show that the adaptive complexity of maximizing a monotone submodular func-
tion under a cardinality constraint is O(log n) via the Adaptive-Sampling algorithm, which has
logarithmic adaptivity and obtains an approximation arbitrarily close to 1/3. This algorithm uses
two simple, yet powerful, adaptive sampling techniques as primitives. The first is down-sampling
which in each round maintains a uniform distribution over high-valued elements by iteratively
discarding elements with low marginal contribution to a random set. The second primitive is up-
sampling which at every round identifies the elements with highest value and includes them in all
future samples. Neither of these primitives achieves a constant factor approximation in O(log n)
rounds, but an appropriate combination of them does.

2.1 Down-sampling

The down-sampling algorithm is O(log n)-adaptive but its approximation guarantee is Ω(1
logn).

We describe the algorithm and analyze its properties which will later be used in the analysis of
Adaptive-Sampling. In every round, as long as the expected value of a random subset of size k
of the surviving elements is not an α-approximation of the value of the optimal solution OPT, the
down-sampling algorithm discards all elements whose expected marginal contribution to a random
set is below a fixed threshold Δ. A formal description is included below.

Algorithm 1 Down-Sampling, discards a large number of elements at every round by sampling.

Input: approximation α and threshold parameter Δ
Initialize S ← N , D as the uniform distribution over sets of size k
while |S| > k and ER∼D [f(R)] < αOPT do

S ← S \ {a : ER∼D
[
fR\{a}(a)

]
< Δ

}
Update D to be uniform over subsets of S of size k

return R ∼ D

Algorithm 1 is an idealized description of the down-sampling algorithm. In practice, we cannot
evaluate the exact expected value of a random set and we do not know OPT. Instead, we sample
random sets from D at every round to estimate the expectations and guess OPT. For ease of notation
and presentation, we analyze this idealized version of the algorithm, discuss the extension to the
full algorithm in Section 2.4, and formally describe the full algorithm in Appendix C. This idealized
version also has a nice interpretation via the multi-linear extension of submodular functions as a
search of a continuous point x ∈ [0, 1]n which, at every iteration, is projected to a lower dimension
on the boundary of the polytope of feasible points (see Appendix D.1 for details).

Analysis of down-sampling. The analysis of down-sampling largely relies on Lemma 1 and
Lemma 2, which respectively bound the number of elements discarded at every round and the loss
in the approximation due to these discarded elements. We discuss these lemmas in the following
subsections. Recall that a function f : 2N → R

+ is submodular if for every S ⊆ T ⊆ N and a /∈ T we
have that fS(a) ≥ fT (a), where fA(b) denotes the marginal contribution fA(b) = f(A∪{b})−f(A)
of b ∈ N to A ⊆ N . Such a function is monotone if f(S) ≤ f(T) for all S ⊆ T . Finally, it is
subadditive if f(A∪B) ≤ f(A)+f(B) for all A,B ⊆ N , which is satisfied by submodular functions.

4

2.1.1 The adaptivity of down-sampling

One crucial property of the down-sampling algorithm is that it is O(log n)-adaptive. This is largely
due to the fact that in every round a significant fraction of the remaining elements are discarded.
Throughout the paper we use U(S, t) to denote the uniform distribution over subsets of S of size t.

Lemma 1. Let f : 2N → R be a monotone submodular function. For all S ⊆ N , t ∈ [n], and
Δ > 0, let D = U(S, t) and the discarded elements be S− =

{
a : ER∼D

[
fR\{a}(a)

]
< Δ

}
. Then:

∣∣S \ S−∣∣ ≤ ER∼D[f(R)]

t ·Δ · |S|.

Proof Sketch (full proof in Appendix D.2.2). We first lower bound the expected value of a ran-
dom set ER∼D[f(R)] by the sum of the expected marginal contribution of the remaining elements∑

a∈S\S− Pr[a ∈ R] · ER∼D
[
fR\{a}(a)

]
, using submodularity. Then, we use the fact that the ex-

pected marginal contribution of surviving elements is at least Δ to obtain the desired bound.

Notice that when Δ = c · αOPT
k for some c > 1, the lemma implies that if ER∼D[f(R)] < αOPT,

then the number of elements remaining is reduced by a factor of at least c at every round.

2.1.2 The approximation guarantee of down-sampling

The down-sampling algorithm is an Ω(1
logn) approximation (Corollary 1). To analyze the value of

sets that survive down-sampling, we show that the value f(O ∩ S−) of discarded optimal elements
is small. Thus, the optimal elements that are not discarded conserve a large fraction of OPT.

Lemma 2. Let f : 2N → R be monotone submodular with optimal solution O and D = U(S, t), for
any S ⊆ N and t ∈ [n]. The loss from discarding elements S− :=

{
a ∈ S : ER∼D

[
fR\{a}(a)

]
< Δ

}
is approximately bounded by the value of R ∼ D:

f(O ∩ S−) ≤ |O ∩ S−|Δ+ E
R∼D

[f(R)] .

Proof. The value of O ∩ S− is upper bounded using the threshold Δ for elements to be in S−,

f(O ∩ S−)− E [f(R)] ≤ E
[
fR(O ∩ S−)

] ≤ E

⎡
⎣ ∑
a∈O∩S−

fR(a)

⎤
⎦ ≤

∑
a∈O∩S−

E [fR(a)] ≤ |O ∩ S−| ·Δ

where the first inequality is by monotonicity, the second by submodularity, the third by linearity
of expectation, and the last by submodularity and definition of S−

At this point, we can prove the following corollary about the down-sampling algorithm.

Corollary 1. Down-Sampling with Δ = OPT
4k and α = 1

logn is O(logn
log logn)-adaptive and obtains,

in expectation, a
(

1
logn

)
-approximation.

Proof Sketch (full proof in Appendix D.2.2). The adaptivity follows from the fact that the number
of remaining elements is reduced by a log n factor at every round by Lemma 1. Next, for the approx-
imation guarantee, we first bound the value of remaining elements S by OPT − f

(
O ∩ (∪r

i=1S
−
i

))
,

where S−
i is the set of discarded elements at round i, by monotonicity and subadditivity. Then, we

bound f(O ∩ S−
i) using Lemma 2 and obtain the approximation guarantee.

5

It is important to note that Ω(1
logn) is the best approximation the down-sampling algorithm can

achieve, regardless of the number of rounds. There is a delicate tradeoff between the approximation
obtained when the algorithm terminates due to E[f(R)] ≥ αOPT and the one when |S| ≤ k, s.t. more
rounds do not improve the approximation guarantee. We further discuss this in Appendix D.2.1.

2.2 Up-sampling

A second component of the main algorithm is up-sampling. Instead of discarding elements, the
up-sampling algorithm adds elements which are included in all future samples. At each round, the
sample containing the k/r new elements with highest value is added to the current solution X.

Algorithm 2 Up-Sampling, adds a large number of elements at every round by sampling.

Input: Sample complexity m and number of rounds r
Initialize X ← ∅
for r rounds do

Update D to be uniform over subsets of N \X of size k/r
X ← X ∪ argmaxRi

{f(X ∪Ri) : Ri ∼ D}mi=1

return X

Note that when r = k this method is the celebrated greedy algorithm. In contrast to down-
sampling, which obtains a logarithmic number of rounds and approximation, up-sampling is inher-
ently sequential and only obtains an O(r/k) approximation. The proof is deferred to Appendix D.3.

Proposition 2. For any constant c ≤ k/r, Up-Sampling is an r-adaptive algorithm and obtains,
w.p. 1−o(1), a

(
1− 1

e

)
c·r
k+c approximation, with sample complexity m = cn2+c log n at every round.

2.3 Adaptive-sampling: O(log n)-adaptivity and constant factor approximation

We build upon down and up-sampling to obtain the main algorithm, Adaptive-Sampling. The
algorithm maintains two sets, S for down-sampling and X for up-sampling. If a random subset has
high expected value, then a sample of high value is added to the up-sampling set X. Otherwise,
low-value elements can be discarded from the down-sampling solution S. A crucial subtlety is that
this algorithm samples sets of size k/r not only for up-sampling but also for down-sampling (rather
than k). The description below is an idealized version of the algorithm.

Algorithm 3 Adaptive-Sampling: down-samples or up-samples depending on context.

Input: approximation α, threshold Δ, sample complexity m, bound on up-sampling rounds r
Initialize X ← ∅, S ← N
while |X| < k and |X ∪ S| > k do
Update D to be uniform over subsets of S \X of size k/r
if ER∼D [fX(R)] ≥ (α/r)OPT then

X ← X ∪ argmaxRi
{f(X ∪Ri) : Ri ∼ D}mi=1

else
S ← S \ {a : ER∼D

[
fX∪R\{a}(a)

]
< Δ

}
return X if |X| = k, or X ∪ S otherwise

6

2.3.1 The adaptivity of Adaptive-Sampling is O(log n)

The adaptivity of Adaptive-Sampling is the sum of the number of up-sampling rounds and of
the number of down-sampling rounds, which we denote by ru and rd respectively.

Lemma 3. Adaptive-Sampling is (ru+ rd)-adaptive with ru+ rd ≤ r+logc n when Δ = c · αOPTk .

Proof Sketch (full proof in Appendix D.4). The number of up-sampling rounds ru is bounded by r
since there are k/r elements added to X at every such round. The number of down-sampling rounds
rd is bounded similarly as for the down-sampling algorithm, using Lemma 1 with the function fX(·)
and the fact that ER∼D [fX(R)] has low value at a down-sampling round.

2.3.2 Adaptive-Sampling is a constant factor approximation

We now analyze the approximation guarantee of Adaptive-Sampling.

Lemma 4. Adaptive-Sampling obtains, w.p. 1 − δ, a
(
1
3 − ε

)
-approximation and has sample

complexity m =
(
r
ε

)2
log
(
2r
δ

)
at every round, with α = 1

3 , r = 3
ε · log1+ε/2 n, Δ =

(
1 + ε

2

)
αOPT
k .

Proof. We begin with the case where the algorithm returns S ∪X, which is the main component
of the proof, and then we consider the case where it returns X. At a high level, the first part in
analyzing S∪X consists of bounding f(S∪X) in terms of the loss from optimal elements f(O \S).
Then, we use Lemma 2 to bound the loss from these elements at every round. A main theme of
this proof is that we need to simultaneously deal with the up-sampling solution X while analyzing
the loss from O \ S.

Let O = {o1, . . . , ok} be the optimal solution indexed by an arbitrary order and Xi and S−
i be

the sets X and S− = {a : ER∼D
[
fX∪R\{a}(a)

]
< Δ} at the ith round of down-sampling, i ∈ [rd].

First, by monotonicity, subadditivity, and again monotonicity, we get

f (S ∪X) ≥ f(O)− f(O \ (S ∪X)) ≥ OPT− f(O \ S).
The remaining of the proof bounds the loss f(O \ S) from optimal elements that were discarded
from S. Next, we bound f (O \ S). The elements in O \ S are elements that have been discarded
from S, so O \ S = ∪rd

i=1

(
S−
i ∩O

)
, and we get

f (O \ S)) = f
(∪rd

i=1

(
S−
i ∩O

)) ≤ fX
(∪rd

i=1

(
S−
i ∩O

))
+ f(X) ≤

rd∑
i=1

fX
(
O ∩ S−

i

)
+ f(S ∪X).

where the first inequality is by monotonicity and the second by subadditivity. Next,

fX
(
O ∩ S−

i

) ≤ fXi

(
O ∩ S−

i

) ≤ |O ∩ S−
i | ·Δ+ E [fXi(R)] .

where the first inequality is by submodularity and the second is by Lemma 2 and since fXi(·) is a
submodular function. Thus,

f (O \ S)− f(S ∪X) ≤
rd∑
i=1

(|O ∩ S−
i | ·Δ+ E [fXi(R)]

)
≤ |O ∩ (∪rd

i=1S
−
i)| ·Δ+

(
α · rd

r

)
OPT

≤ k ·Δ+
(
α · rd

r

)
OPT

≤
(
1 +

ε

2

)
αOPT+

(
α · rd

r

)
OPT

7

where E [fXi(R)] ≤ (α/r)OPT at a downsampling round i by the algorithm. By combining the
previous inequalities, we get

f (S ∪X) ≥ OPT−
(
1 +

ε

2

)
αOPT− f(S ∪X)− rd

r
αOPT ≥

(
1

3
− ε

)
OPT

where rd ≤ log1+ε/2 n by Lemma 3 with c = 1 + ε/2 and since r = 3
ε · log1+ε/2 n.

What remains is the case where the algorithm returns X. Let Xi and R+
i be the set X and the

sample R added to X at the ith round of up-sampling, i ∈ [r]. By standard concentration bound
(Lemma 13), with m = (r/ε)2 log (2r/δ), w.p. 1 − δ/r, fXi

(
R+

i

) ≥ ER∼D [fXi(R)] − εOPT/r. By a
union bound this holds for all r rounds of up-sampling with probability 1− δ. We obtain

f(X) =
r∑

i=1

fXi

(
R+

i

) ≥ r∑
i=1

(
E

R∼D
[fXi(R)]− εOPT

r

)
≥

r∑
i=1

αOPT

r
− εOPT =

(
1

3
− ε

)
OPT.

2.4 The full algorithm

We briefly discuss the two missing pieces, estimating the expectations and the assumption that
we know OPT, both needed to implement the idealized algorithm. To estimate expectations within
arbitrarily fine precision ε > 0 in one round, we query m = poly(n) sets X ∪R1, . . . , X ∪Rm where
R1, . . . , Rm are sampled according to U(S \ X, k/r) (Lemma 11 in Appendix C.1 via standard
concentration arguments). To guess OPT, we pick log1+ε n different values v� as proxies for OPT,
one of which must be an ε multiplicative approximation to OPT (Lemma 12 using submodularity).
We then run the algorithm for each of these proxies in parallel, and return the solution with
highest value. With these two final pieces, we obtain the main result for this section. We describe
the implementable version Adaptive-Sampling-Full formally in Appendix C and analyze it in
Appendix D.5.

Theorem 3. For any ε, δ > 0, Adaptive-Sampling-Full is a
(
log1+ε/3 n · 3

ε + 2
)
-adaptive al-

gorithm that, w.p. 1 − δ, obtains a (13 − ε)-approximation, with sample complexity at every round

m = 64
ε2

(
nk2 log

(
2n
δ

)
+ log21+ε/3 n · log (2δ) · 1

ε

)
, for maximizing a monotone submodular function

under a cardinality constraint, with parameters r = 3
ε · log1+ε/3 n, α = 1

3 , and Δ = (1 + ε) v
�

3k .

3 The Adaptive Complexity of Submodular Maximization is Ω̃(log n)

In this section, we show that the adaptive complexity of maximizing a monotone submodular
function under a cardinality constraint is Ω̃(log n) with a hardness result showing that with strictly
less than Ω̃(log n) rounds, the best approximation possible is 1

logn . With the algorithm from the
previous section, we get that the adaptive complexity of submodular maximization is logn, up to
lower-order terms, to obtain a constant factor approximation. This hardness result uses an approach
related to the round elimination technique used in communication complexity (e.g. [MNSW95]).

3.1 The round elimination lemma

The following simple lemma gives two conditions that, if satisfied by some collections of functions,
imply the desired hardness result. The main condition is that an r-adaptive algorithm for a family

8

of functions Fr can be modified into an (r − 1)-adaptive algorithm for a more restricted family
Fr−1. The base case of this inductive argument is that with no queries, there does not exist any α-
approximation algorithm for F0. A similar round elimination technique is used in communication
complexity to characterize the tradeoff between the number of rounds and the total amount of
communication of a protocol. Here, the tradeoff is different and is between the number of rounds
and the approximation of an algorithm.

Lemma 5. Assume r ∈ poly(n). If there exist families of functions F0, . . . ,Fr such that the
following two conditions hold:

• Round elimination. For all i ∈ {1, . . . , r}, if there exists an i-adaptive algorithm that
obtains, with probability n−ω(1), an α-approximation for Fi, then there exists an i−1 adaptive
algorithm that obtains, with probability n−ω(1), an α-approximation algorithm for Fi−1;

• Last round. There does not exist a 0-adaptive algorithm that obtains, with probability n−ω(1),
an α-approximation for F0;

Then, there is no r-adaptive algorithm that obtains, w.p. o(1), an α-approximation for Fr.

The proof follows immediately by induction on the number of rounds r.

3.2 The onion construction

The main technical challenge is to “fit” r + 1 families of functions F0, . . . ,Fr in the class of sub-
modular functions while also having every family Fi be significantly richer than Fi−1. In our
context, significantly richer means that an i-adaptive algorithm for Fi can be transformed into an
(i − 1)-adaptive algorithm for Fi−1. To do so, at a high level, we want to show that after one
round of querying a function in Fi, functions in Fi−1 are indistinguishable. If functions in Fi−1 are
indistinguishable to an i-adaptive algorithm after one round of querying, then the last i− 1 rounds
of this algorithm form an (i− 1)-adaptive algorithm for Fi−1.

We construct functions that depend on a partition P of the ground setN into layers L0, . . . , Lr, L
�

(illustrated in Figure 1). The main motivation behind this layered construction is to create a hard
instance s.t. an algorithm cannot distinguish layer Li from L� before round i+ 1. The size of the

layers decreases as i grows, with L� being the smallest layer. More precisely, we set |Li| = n1− i
r+1

for i > 0, |L�| = n
1

2r+2 , and L0 consists of the remaining elements. We define �i(S) := |Li ∩ S| and
abuse notation with �i = �i(S) when it is clear from context. The hard function is defined as

fP (S) :=

r∑
i=0

min(�i, log
2 n) + �� +min

(|S|
8n

1
r+1

, 1

)
·
(
2n

1
2r+2 −

(
r∑

i=0

min(�i, log
2 n) + ��

))
.

To gain some intuition about this function, we note the following two simple facts about fP :

• If a query is large, i.e. |S| ≥ 8n
1

r+1 , then fP (S) = 2n
1

2r+2 . Informally, all the layers are
hidden since no information can be learned about the partition from query S;

• On the other hand, if |S ∩ Li| ≤ log2 n, i.e. �i ≤ log2 n, then elements in Li and L� are
indistinguishable to an algorithm that is given the value f(S) since min(�i, log

2 n) = �i.

9

L0 L1 … Lr L*

Figure 1: The partition of the elements into layers L0, . . . , Lr, L
� for the hard functions. An

algorithm cannot learn Li before round i+ 1 and L� is the optimal solution.

Thus, the queries need to be of size smaller than 8n
1

r+1 while also containing at least log2 n elements
in Li for the algorithm to learn some information to distinguish layers Li and L�. Since the size

of layers diminishes at a rate faster than log2 n

8n
1

r+1
, it is hard for the algorithm to distinguish layers

Li+1 and L� if it has not distinguished Li and L� in previous rounds. An interpretation of this
construction is that an algorithm can only learn the outmost remaining layer at any round.

3.3 Round elimination for the construction

In order to argue that functions in Fi−1 are indistinguishable after one round of querying f ∈ Fi, we
begin by reducing the problem of showing indistinguishability from non-adaptive queries to showing
structural properties of a randomized collection of functions FRi (the proof is in Appendix E).

Lemma 6. Let FRi be a randomized collection of functions in some F. Assume that for all S ⊆ N ,
w.p. 1−n−ω(1) over FRi, for all f1, f2 ∈ FRi, we have that f1(S) = f2(S). Then, for any (possibly
randomized) collection of poly(n) non-adaptive queries Q, there exists a deterministic collection of
functions F ∈ F such that with probability 1− n−ω(1) over the randomization of Q, for all queries
S ∈ Q and all f1, f2 ∈ F , f1(S) = f2(S).

The randomized collection of functions FRi. For round r − i, we define the randomized
collection of functions FRi ∈ Fr−i, for some Fr−i, needed for Lemma 6. Informally, the layers
L0, . . . , Li−1 are fixed and the ith layer is a random subset Ri of the remaining elements N \∪i−1

j=0Lj .
The collection FRi is then all functions with layers L0, . . . , Li−1, Ri. Formally, given L0, . . . , Li−1,
the randomized collection of functions FRi is

FRi(L0, . . . , Li−1) :=
{
f (L0,...,Li−1,Ri,Si+1...Sr,S�) : �j∈{i+1,...,r,�}Sj = N \

(
∪i−1
j=0Lj ∪Ri

)}

where Ri ∼ U(N \ ∪i−1
j=0Lj , n

1− i
r+1) is a uniformly random subset of size n1− i

r+1 of the remaining

elements N \ ∪i−1
j=0Lj and � denotes the disjoint union of sets. We define Fr−i to be the collection

of all such FRi(L0, . . . , Li−1) over all subsets Ri of the remaining elements N \ ∪i−1
j=0Lj . Next, we

show the desired property for the randomized collection of functions FRi to apply Lemma 6.

Lemma 7. Assume r ≤ log n. For all S ⊆ N and i ∈ [r], with probability 1 − n−ω(1) over the
randomization of FRi ∈ Fr−i, for all f1, f2 ∈ FRi, f1(S) = f2(S).

10

Proof Sketch (full proof in Appendix E). The proof consists of two cases depending on the size of

S. If S ≥ 8n
1

r+1 , then we immediately conclude that f(S) = 2n
1

2r+2 for all f ∈ FRi . The second

and main case is if S < 8n
1

r+1 . We first give a concentration bound showing that for a fixed set S
and a random set R, if the expected size of their intersection is constant, then their intersection
is of size at most log2 n with high probability (Lemma 18). Using this concentration bound, we
get that for a fixed S, with high probability, for all f ∈ FRi ,

∑r
j=i+1 �j < log2 n. We conclude by

showing that this implies that f1(S) = f2(S) for all f1, f2 ∈ FRi .

Combining the two previous lemmas, we are ready to show the round elimination condition.

Lemma 8. Assume r ≤ log n. For all i ∈ {1, . . . , r} and all collection of functions Fi ∈ Fi, if
there exists an i-adaptive algorithm that obtains, with probability n−ω(1), an α-approximation for
Fi, then there exists a collection of functions Fi−1 ∈ Fi−1 such that there exists an (i− 1)-adaptive
algorithm that obtains, with probability n−ω(1), an α-approximation for Fi−1.

Proof. Assume that for some Fi ∈ Fi, there exists an i-adaptive algorithm A that obtains, w.p.
n−ω(1), an α-approximation . Let L0, . . . , Lr−i be the layers of all fP ∈ Fi and consider the
randomized collection of functions FRr−i+1(L0, . . . , Lr−i) ∈ Fi−1. By combining Lemma 6 and

Lemma 7, there exists a deterministic collection of functions Fi−1 ∈ Fi−1 such that, w.p. 1−n−ω(1)

over the randomization of the algorithm A for the non-adaptive queries Q in the first round, for
all queries S ∈ Q, f1(S) = f2(S) for all f1, f2 ∈ Fi−1. Since Fi−1 ⊆ Fi, algorithm A is also an
i-adaptive algorithm that obtains, with probability n−ω(1), an α-approximation for Fi−1.

For optimizing f ∈ Fi−1, the decisions of the algorithm are, w.p. 1 − n−ω(1), independent of
the queries made in the first round, which is the case when for all queries S, f1(S) = f2(S) for all
f1, f2 ∈ Fi−1 . Consider the algorithm A′ that consists of the last i−1 rounds of algorithm A when
for all queries S by A in the first round, f1(S) = f2(S) for all f1, f2 ∈ Fi−1. We get that A′ is an
i− 1 adaptive algorithm that obtains, w.p. n−ω(1), an α-approximation for Fi−1.

It remains to show the last round condition needed for Lemma 5.

Lemma 9. For all F ∈ F0, there does not exist a 0-adaptive algorithm that obtains, with probability

n−ω(1), an n− 1
2r+2 · ((r + 2) log2 n+ 1

)
approximation.

Proof Sketch (full proof in Appendix E). The proof uses a probabilistic argument and considers f
picked at random from F . The decisions of a 0-adaptive algorithm are then independent of this
randomization since there are no queries. Next, by using the same concentration used previously
(Lemma 18) we show that with high probability, the solution returned by the algorithm contains a
small number of elements in L�, and thus obtains a low value compared to the optimal L�.

Lemma 19 in Appendix E shows that fP is monotone and submodular. By combining lemmas 5,
8, 9, and 19, we obtain the main result for this section.

Theorem 4. For any r ≤ log n, there is no r-adaptive algorithm for maximizing a monotone

submodular function under a cardinality constraint that obtains, with probability o(1), an n− 1
2r+2 ·(

(r + 3) log2 n
)
approximation. In particular, there is no logn

12 log logn -adaptive algorithm that obtains,

with probability ω
(
1
n

)
, a 1

logn -approximation.

11

Acknowledgements

We thank Sergei Vassilvitskii, Avrim Blum, Sepehr Assadi, Vitaly Feldman, and Amin Karbasi for
helpful discussions.

References

[AAAK17] Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, and Sanjeev Khanna. Learning
with limited rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking
from pairwise comparisons. In Conference on Learning Theory, pages 39–75, 2017.

[AM10] Saeed Alaei and Azarakhsh Malekian. Maximizing sequence-submodular functions
and its application to online advertising. arXiv preprint arXiv:1009.4153, 2010.

[ANRW15] Noga Alon, Noam Nisan, Ran Raz, and Omri Weinstein. Welfare maximization with
limited interaction. In Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on, pages 1499–1512. IEEE, 2015.

[AWZ08] Akram Aldroubi, Haichao Wang, and Kourosh Zarringhalam. Sequential adaptive
compressed sampling via huffman codes. arXiv preprint arXiv:0810.4916, 2008.

[Bal15] Maria-Florina Balcan. Learning submodular functions with applications to multi-
agent systems. In Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May 4-8, 2015,
2015.

[BCIW12] Maria-Florina Balcan, Florin Constantin, Satoru Iwata, and Lei Wang. Learning
valuation functions. In COLT 2012 - The 25th Annual Conference on Learning
Theory, June 25-27, 2012, Edinburgh, Scotland, 2012.

[BDF+12] Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam
Nisan, and Tim Roughgarden. Sketching valuation functions. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 1025–
1035. Society for Industrial and Applied Mathematics, 2012.

[BENW15] Rafael Barbosa, Alina Ene, Huy Nguyen, and Justin Ward. The power of random-
ization: Distributed submodular maximization on massive datasets. In International
Conference on Machine Learning, pages 1236–1244, 2015.

[BENW16] Rafael da Ponte Barbosa, Alina Ene, Huy L Nguyen, and Justin Ward. A new
framework for distributed submodular maximization. In Foundations of Computer
Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 645–654. Ieee, 2016.

[BGSMdW12] Harry Buhrman, David Garćıa-Soriano, Arie Matsliah, and Ronald de Wolf. The
non-adaptive query complexity of testing k-parities. arXiv preprint arXiv:1209.3849,
2012.

[BH11] Maria-Florina Balcan and Nicholas JA Harvey. Learning submodular functions.
In Proceedings of the forty-third annual ACM symposium on Theory of computing,
pages 793–802. ACM, 2011.

12

[Ble96] Guy E Blelloch. Programming parallel algorithms. Communications of the ACM,
39(3):85–97, 1996.

[BMW16] Mark Braverman, Jieming Mao, and S Matthew Weinberg. Parallel algorithms
for select and partition with noisy comparisons. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pages 851–862. ACM, 2016.

[BPR+16] Ashwinkumar Badanidiyuru, Christos Papadimitriou, Aviad Rubinstein, Lior See-
man, and Yaron Singer. Locally adaptive optimization: Adaptive seeding for mono-
tone submodular functions. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 414–429. Society for Industrial
and Applied Mathematics, 2016.

[BPT11] Guy E Blelloch, Richard Peng, and Kanat Tangwongsan. Linear-work greedy par-
allel approximate set cover and variants. In Proceedings of the twenty-third annual
ACM symposium on Parallelism in algorithms and architectures, pages 23–32. ACM,
2011.

[BRM98] Guy E Blelloch and Margaret Reid-Miller. Fast set operations using treaps. In
Proceedings of the tenth annual ACM symposium on Parallel algorithms and archi-
tectures, pages 16–26. ACM, 1998.

[BRS89] Bonnie Berger, John Rompel, and Peter W Shor. Efficient nc algorithms for set cover
with applications to learning and geometry. In Foundations of Computer Science,
1989., 30th Annual Symposium on, pages 54–59. IEEE, 1989.

[BRS17] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. The limitations of optimiza-
tion from samples. Proceedings of the Forty-Ninth Annual ACM on Symposium on
Theory of Computing, 2017.

[BS17a] Eric Balkanski and Yaron Singer. Minimizing a submodular function from samples.
2017.

[BS17b] Eric Balkanski and Yaron Singer. The sample complexity of optimizing a convex
function. In Conference on Learning Theory, pages 275–301, 2017.

[BST12] Guy E Blelloch, Harsha Vardhan Simhadri, and Kanat Tangwongsan. Parallel and
i/o efficient set covering algorithms. In Proceedings of the twenty-fourth annual ACM
symposium on Parallelism in algorithms and architectures, pages 82–90. ACM, 2012.

[BVP11] Gregory R Bowman, Vincent A Voelz, and Vijay S Pande. Taming the complexity
of protein folding. Current opinion in structural biology, 21(1):4–11, 2011.

[CG17] Clement Canonne and Tom Gur. An adaptivity hierarchy theorem for property
testing. arXiv preprint arXiv:1702.05678, 2017.

[CKT10] Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. Max-cover in map-reduce.
In Proceedings of the 19th international conference on World wide web, pages 231–
240. ACM, 2010.

13

[Col88] Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785,
1988.

[CST+17] Xi Chen, Rocco A Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie.
Settling the query complexity of non-adaptive junta testing. arXiv preprint
arXiv:1704.06314, 2017.

[CWW10] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for preva-
lent viral marketing in large-scale social networks. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
1029–1038. ACM, 2010.

[CWY09] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social
networks. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 199–208. ACM, 2009.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[DGS84] Pavol Duris, Zvi Galil, and Georg Schnitger. Lower bounds on communication
complexity. In Proceedings of the sixteenth annual ACM symposium on Theory of
computing, pages 81–91. ACM, 1984.

[DHK+16] Nikhil R Devanur, Zhiyi Huang, Nitish Korula, Vahab S Mirrokni, and Qiqi Yan.
Whole-page optimization and submodular welfare maximization with online bidders.
ACM Transactions on Economics and Computation, 4(3):14, 2016.

[DNO14] Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic efficiency requires in-
teraction. In Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, pages 233–242. ACM, 2014.

[DR01] Pedro Domingos and Matt Richardson. Mining the network value of customers. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 57–66. ACM, 2001.

[EMZ17] Alessandro Epasto, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Bicriteria dis-
tributed submodular maximization in a few rounds. In Proceedings of the 29th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA 2017, Washing-
ton DC, USA, July 24-26, 2017, pages 25–33, 2017.

[FJK10] Joseph D Frazier, Peter K Jimack, and Robert M Kirby. On the use of adjoint-
based sensitivity estimates to control local mesh refinement. Commun Comput
Phys, 7:631–8, 2010.

[FK14] Vitaly Feldman and Pravesh Kothari. Learning coverage functions and private re-
lease of marginals. In Conference on Learning Theory, pages 679–702, 2014.

[FMV11] Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. Maximizing non-monotone sub-
modular functions. SIAM Journal on Computing, 40(4):1133–1153, 2011.

14

[FV13] Vitaly Feldman and Jan Vondrák. Optimal bounds on approximation of submodular
and XOS functions by juntas. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, 2013.

[FV15] Vitaly Feldman and Jan Vondrák. Tight bounds on low-degree spectral concentra-
tion of submodular and xos functions. In Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on, pages 923–942. IEEE, 2015.

[GK10] Daniel Golovin and Andreas Krause. Adaptive submodularity: A new approach to
active learning and stochastic optimization. In COLT, pages 333–345, 2010.

[GLL11] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. Celf++: optimizing the greedy
algorithm for influence maximization in social networks. In Proceedings of the 20th
international conference companion on World wide web, pages 47–48. ACM, 2011.

[HBCN09] Jarvis D Haupt, Richard G Baraniuk, Rui M Castro, and Robert D Nowak. Com-
pressive distilled sensing: Sparse recovery using adaptivity in compressive mea-
surements. In Signals, Systems and Computers, 2009 Conference Record of the
Forty-Third Asilomar Conference on, pages 1551–1555. IEEE, 2009.

[HNC09] Jarvis Haupt, Robert Nowak, and Rui Castro. Adaptive sensing for sparse signal
recovery. In Digital Signal Processing Workshop and 5th IEEE Signal Processing
Education Workshop, 2009. DSP/SPE 2009. IEEE 13th, pages 702–707. IEEE, 2009.

[HS15] Thibaut Horel and Yaron Singer. Scalable methods for adaptively seeding a social
network. In Proceedings of the 24th International Conference on World Wide Web,
pages 441–451. International World Wide Web Conferences Steering Committee,
2015.

[IPW11] Piotr Indyk, Eric Price, and David P Woodruff. On the power of adaptivity in sparse
recovery. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 285–294. IEEE, 2011.

[JBS13] Stefanie Jegelka, Francis Bach, and Suvrit Sra. Reflection methods for user-friendly
submodular optimization. In Advances in Neural Information Processing Systems,
pages 1313–1321, 2013.

[JLB11] Stefanie Jegelka, Hui Lin, and Jeff A Bilmes. On fast approximate submodular
minimization. In Advances in Neural Information Processing Systems, pages 460–
468, 2011.

[JXC08] Shihao Ji, Ya Xue, and Lawrence Carin. Bayesian compressive sensing. IEEE
Transactions on Signal Processing, 56(6):2346–2356, 2008.

[KKT03] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 137–146. ACM, 2003.

[KMVV15] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast
greedy algorithms in mapreduce and streaming. ACM Transactions on Parallel
Computing, 2(3):14, 2015.

15

[KSV10] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation
for mapreduce. In Proceedings of the twenty-first annual ACM-SIAM symposium on
Discrete Algorithms, pages 938–948. Society for Industrial and Applied Mathemat-
ics, 2010.

[MKBK15] Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, and Andreas
Krause. Distributed submodular cover: Succinctly summarizing massive data. In
Advances in Neural Information Processing Systems, pages 2881–2889, 2015.

[MKSK13] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Dis-
tributed submodular maximization: Identifying representative elements in massive
data. In Advances in Neural Information Processing Systems, pages 2049–2057,
2013.

[MNSW95] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data
structures and asymmetric communication complexity. In Proceedings of the twenty-
seventh annual ACM symposium on Theory of computing, pages 103–111. ACM,
1995.

[MSW08] Dmitry M Malioutov, Sujay Sanghavi, and Alan S Willsky. Compressed sensing with
sequential observations. In Acoustics, Speech and Signal Processing, 2008. ICASSP
2008. IEEE International Conference on, pages 3357–3360. IEEE, 2008.

[MZ15] Vahab Mirrokni and Morteza Zadimoghaddam. Randomized composable core-sets
for distributed submodular maximization. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 153–162. ACM, 2015.

[NJJ14] Robert Nishihara, Stefanie Jegelka, and Michael I Jordan. On the convergence
rate of decomposable submodular function minimization. In Advances in Neural
Information Processing Systems, pages 640–648, 2014.

[NPS15] Harikrishna Narasimhan, David C. Parkes, and Yaron Singer. Learnability of influ-
ence in networks. In Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 3186–3194, 2015.

[NW91] Noam Nisan and Avi Widgerson. Rounds in communication complexity revisited.
In Proceedings of the twenty-third annual ACM symposium on Theory of computing,
pages 419–429. ACM, 1991.

[NWF78] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of
approximations for maximizing submodular set functionsi. Mathematical Program-
ming, 14(1):265–294, 1978.

[PJG+14] Xinghao Pan, Stefanie Jegelka, Joseph E Gonzalez, Joseph K Bradley, and Michael I
Jordan. Parallel double greedy submodular maximization. In Advances in Neural
Information Processing Systems, pages 118–126, 2014.

[PS84] Christos H Papadimitriou and Michael Sipser. Communication complexity. Journal
of Computer and System Sciences, 28(2):260–269, 1984.

16

[RD02] Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites for viral
marketing. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 61–70. ACM, 2002.

[RS06] Sofya Raskhodnikova and Adam Smith. A note on adaptivity in testing properties
of bounded degree graphs. ECCC, TR06-089, 2006.

[RV98] Sridhar Rajagopalan and Vijay V Vazirani. Primal-dual rnc approximation algo-
rithms for set cover and covering integer programs. SIAM Journal on Computing,
28(2):525–540, 1998.

[SS13] Lior Seeman and Yaron Singer. Adaptive seeding in social networks. In Foundations
of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 459–
468. IEEE, 2013.

[STK16] Adish Singla, Sebastian Tschiatschek, and Andreas Krause. Noisy submodular max-
imization via adaptive sampling with applications to crowdsourced image collection
summarization. In AAAI, pages 2037–2043, 2016.

[STW15] Rocco A Servedio, Li-Yang Tan, and John Wright. Adaptivity helps for testing
juntas. In Proceedings of the 30th Conference on Computational Complexity, pages
264–279. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

[Tho90] Steven K Thompson. Adaptive cluster sampling. Journal of the American Statistical
Association, 85(412):1050–1059, 1990.

[TIWB14] Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes. Learning
mixtures of submodular functions for image collection summarization. In Advances
in neural information processing systems, pages 1413–1421, 2014.

[Val75] Leslie G Valiant. Parallelism in comparison problems. SIAM Journal on Computing,
4(3):348–355, 1975.

[Val84] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

[WIB14] Kai Wei, Rishabh Iyer, and Jeff Bilmes. Fast multi-stage submodular maximization.
In International Conference on Machine Learning, pages 1494–1502, 2014.

17

Appendix

A Additional Discussion of Related Work

A.1 Adaptivity

Adaptivity has been heavily studied across a wide spectrum of areas in computer science. These
areas include classical problems in theoretical computer science such as sorting and selection (e.g.
[Val75, Col88, BMW16]), where adaptivity is known under the term of parallel algorithms, and
communication complexity (e.g. [PS84, DGS84, NW91, MNSW95, DNO14, ANRW15]), where the
number of rounds measures how much interaction is needed for a communication protocol.

For the multi-armed bandits problem, the relationship of interest is between adaptivity and
query complexity, instead of adaptivity and approximation guarantee. Recent work showed that
Θ(log� n) adaptive rounds are necessary and sufficient to obtain the optimal worst case query
complexity [AAAK17]. In the bandits setting, adaptivity is necessary to obtain non-trivial query
complexity due to the noisy outcomes of the queries. In contrast, queries in submodular optimiza-
tion are deterministic and adaptivity is necessary to obtain a non trivial approximation since there
are at most polynomially many queries per round and the function is of exponential size.

Adaptivity is also well-studied for the problems of sparse recovery (e.g. [HNC09, IPW11,
HBCN09, JXC08, MSW08, AWZ08]) and property testing (e.g. [CG17, BGSMdW12, CST+17,
RS06, STW15]). In these areas, it has been shown that adaptivity allows significant improvements
compared to the non-adaptive setting, which is similar to the results shown in this paper for sub-
modular optimization. However, in contrast to all these areas, adaptivity has not been previously
studied in the context of submodular optimization.

We note that the term adaptive submodular maximization has been previously used, but in an
unrelated setting where the goal is to compute a policy which iteratively picks elements one by one,
which, when picked, reveal stochastic feedback about the environment [GK10].

A.2 Related models

In this section, we discuss two related models, the Map-Reduce model for distributed computation
and the PRAM model. These models are compared to the notion of adaptivity in the context of
submodular optimization.

A.2.1 Map-Reduce

The problem of distributed submodular optimization has been extensively studied in the Map-
Reduce model in the past decade. This framework is primarily motivated by large scale problems
over massive data sets. At a high level, in the Map-Reduce framework [DG08], an algorithm
proceeds in multiple Map-Reduce rounds, where each round consists of a first step where the input
to the algorithm is partitioned to be independently processed on different machines and of a second
step where the outputs of this processing are merged. Notice that the notion of rounds in Map-
Reduce is different than for adaptivity, where one round of Map-Reduce usually consists of multiple
adaptive rounds. The formal model of [KSV10] for Map-Reduce requires the number of machines
and their memory to be sublinear.

This framework for distributing the input to multiple machines with sublinear memory is de-
signed to tackle issues related to massive data sets. Such data sets are too large to either fit or

18

be processed by a single machine and the Map-Reduce framework formally models this need to
distribute such inputs to multiple machines.

Instead of addressing distributed challenges, adaptivity addresses the issue of sequentiality,
where each query evaluation requires a long time to complete and where these evaluations can
be parallelized (see Section B for applications). In other words, while Map-Reduce addresses the
horizontal challenge of large scale problems, adaptivity addresses an orthogonal vertical challenge
where long query-evaluation time is causing the main runtime bottleneck.

A long line of work has studied problems related to submodular maximization in Map-Reduce
achieving different improvements on parameters such as the number of Map-Reduce rounds, the
communication complexity, the approximation ratio, the family of functions, and the family of
constraints (e.g. [KMVV15, MKSK13, MZ15, MKBK15, BENW15, BENW16, EMZ17]). To the
best of our knowledge, all the existing Map-Reduce algorithms for submodular optimization have
adaptivity that is linear in n in the worst-case, which is exponentially larger than the adaptivity
of our algorithm. This high adaptivity is caused by the distributed algorithms which are run on
each machine. These algorithms are variants of the greedy algorithm and thus have adaptivity at
least linear in k. We also note that our algorithm does not (at least trivially) carry over to the
Map-Reduce setting.

A.2.2 PRAM

In the PRAM model, the notion of depth is closely related to the concept of adaptivity studied in
this paper. Our positive result extends to the PRAM model, showing that there is a Õ(log2 n · df)
depth algorithm with Õ(nk2) work whose approximation is arbitrarily close to 1/3 for maximizing
any monotone submodular function under a cardinality constraint, where df is the depth required
to evaluate the function on a set.

The PRAM model is a generalization of the RAM model with parallelization, it is an idealized
model of a shared memory machine with any number of processors which can execute instructions
in parallel. The depth of a PRAM algorithm is the number of parallel steps of this algorithm
on the PRAM, in other words, it is the longest chain of dependencies of the algorithm, including
operations which are not necessarily queries. The problem of designing low-depth algorithms has
been heavily studied (e.g. [Ble96, BPT11, BRS89, RV98, BRM98, BST12]).

Thus, in addition to the number of adaptive rounds of querying, depth also measures the
number of adaptive steps of the algorithms which are not queries. However, for the applications we
consider, the runtime of the algorithmic computations which are not queries are usually insignificant
compared to the time to evaluate a query. In addition, the PRAM model assumes that the input
is loaded in memory while we consider the value query model where the algorithm is given oracle
access to a function of potentially exponential size. In crowdsourcing applications, for example,
where the value of a set can be queried on a crowdsourcing platform, there does not necessarily
exist a succinct representation of the underlying function.

Our positive results extend with an additional df · Õ(log n) factor in the depth compared to
the number of adaptive rounds, where df is the depth required to evaluate the function on a set in
the PRAM model. The operations that our algorithms performed at every round, which are maxi-
mum, summation, set union, and set difference over an input of size at most quasilinear, can all be
executed by algorithms with logarithmic depth. A simple divide-and-conquer approach suffices for
maximum and summation, while logarithmic depth for set union and set difference can be achieved
with treaps [BRM98].

19

More broadly, there has been a recent interest in machine learning to scale submodular opti-
mization algorithms for applications over large datasets [JLB11, JBS13, WIB14, NJJ14, PJG+14].

B Applications

Beyond being a fundamental concept, adaptivity is important for applications where sequentiality
is the main runtime bottleneck.

Crowdsourcing and data summarization. One class of such problems where adaptivity plays
an important role are human-in-the-loop problems. At a high level, these algorithms involve sub-
tasks performed by the crowd. The intervention of humans in the evaluation of queries causes
algorithms with a large number of adaptive rounds impractical. A crowdsourcing platform consists
of posted tasks and crowdworkers who are remunerated for performing these posted tasks. For the
submodular problem of data summarization, where the objective is to select a small representative
subset of a dataset, the quality of subsets as representatives can be evaluated on a crowdsourc-
ing platform [TIWB14, STK16, BMW16]. The algorithm must wait to obtain the feedback from
the crowdworkers, however an algorithm can send out a large number of tasks to be performed
simultaneously by different crowdworkers.

Biological simulations. Adaptivity is also studied in molecular biology to simulate protein
folding. Adaptive sampling techniques are used to obtain significant improvements in execution of
simulations and discovery of low energy states [BVP11].

Experimental Design. In experimental design, the goal is to pick a collection of entities (e.g.
subjects, chemical elements, data points) which obtains the best outcome when combined for an
experiment. Experiments can be run in parallel and have a waiting time to observe the outcome
[FJK10].

Influence Maximization. The submodular problem of influence maximization, initiated studied
by [DR01, RD02, KKT03] has since then received considerable attention (e.g. [CWY09, CWW10,
GLL11, SS13, HS15, BPR+16]). Influence maximization consists of finding the most influential
nodes in a social network to maximize the spread of information in this network. Information does
not spread instantly and a waiting time occurs when observing the total number of nodes influenced
by some seed set of nodes.

Advertising. In advertising, the goal is to select the optimal subset of advertisement slots to ob-
jectives such as the click-through-rate or the number of products purchased by customers, which are
objectives exhibiting diminishing returns [AM10, DHK+16]. Naturally, a waiting time is incurred
to observe the behavior of customers.

20

C The Full Algorithm

C.1 Estimates of expectations in one round via sampling

We show that the expected value of a random set and the expected marginal contribution of elements
to a random set can be estimated arbitrarily well in one round, which is needed for the Down-
Sampling and Adaptive-Sampling algorithms. Recall that U(S, t) denotes the uniform distri-
bution over subsets of S of size t. The values we are interested in estimating are ER∼U(S,t) [fX(R)]
and ER∼U(S,t)

[
fX∪R\{a}(a)

]
. We denote the corresponding estimates by vX(S, t) and vX(S, t, a),

which are computed in Algorithms 4 and 5. These algorithms first sample m sets from U(S, t),
where m is the sample complexity, then query the desired sets to obtain a random realization of
fX(R) and fX∪R\{a}(a), and finally averages the m random realizations of these values.

Algorithm 4 Estimate: computes estimate vX(S, t) of ER∼U(S,t) [fX(R)].

Input: set S ⊆ N , size t ∈ [n], sample complexity m.

Sample R1, . . . , Rm
i.i.d.∼ U(S, t)

Query {X,X ∪R1, . . . , X ∪Rm}
vX(S, t) ← 1

m

∑m
i=1 f(X ∪Ri)− f(X)

return vX(S, t)

Algorithm 5 Estimate2: Computes estimate vX(S, t, a) of ER∼U(S,t)

[
fX∪R\{a}(a)

]
.

Input: set S ⊆ N , size t ∈ [n], sample complexity m, element a ∈ N .

Sample R1, . . . , Rm
i.i.d.∼ U(S, t)

Query {X ∪R1 ∪ {a}, X ∪R1 \ {a}, . . . , X ∪Rm ∪ {a}, X ∪Rm \ {a}}
vX(S, t, a) ← 1

m

∑m
i=1 f(X ∪Ri ∪ {a})− f(X ∪Ri \ {a})

return vX(S, t, a)

Using standard concentration bounds, the estimates computed by these algorithms are arbitrar-
ily good for a sufficiently large sample complexity m. We state the version of Hoeffding’s inequality
which is used to bound the error of these estimates.

Lemma 10 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables with values
in [0, b]. Let X = 1

m

∑m
i=1Xi. Then for any ε > 0,

Pr [|X − E[X]| ≥ ε] ≤ 2e−2mε2/b2 .

We are now ready to show that these estimates are arbitrarily good.

Lemma 11. Let m = 1
2

(
OPT
ε

)2
log
(
2
δ

)
, then for all X,S ⊆ N and t ∈ [n] such that |X| + t ≤ k,

with probability at least 1− δ over the samples R1, . . . , Rm,∣∣∣∣vX(S, t)− E
R∼U(S,t)

[fX(R)]

∣∣∣∣ ≤ ε

21

Similarly, let m = 1
2

(
OPT
ε

)2
log
(
2
δ

)
, then for all X,S ⊆ N , t ∈ [n], and a ∈ N such that |X|+ t ≤ k,

with probability at least 1− δ over the samples R1, . . . , Rm,∣∣∣∣vX(S, t, a)− E
R∼U(S,t)

[
fX∪R\{a}|a∈R(a)

]∣∣∣∣ ≤ ε.

Thus, with m = n
(
OPT
ε

)2
log
(
2n
δ

)
total samples in one round, with probability 1 − δ, it holds that

vX(S, t) and vX(S, t, a), for all a ∈ N , are ε-estimates.

Proof. Note that

E [vX(S, t)] = E
R∼U(S,t)

[fX(R)] and E [vX(S, t, a)] = E
R∼U(S,t)

[
fX∪R\{a}(a)

]
Since all queries are of size at most k, their values are all bounded by OPT. Thus, by Hoeffding’s
inequality with m = 1

2

(
OPT
ε

)2
log
(
2
δ

)
, we get

Pr

[∣∣∣∣vX(S, t)− E
R∼U(S,t)

[fX(R)]

∣∣∣∣ ≥ ε

]
≤ 2e−

2mε2

OPT2 ≤ δ

for ε > 0. Similarly, we get

Pr

[∣∣∣∣vX(S, t, a)− E
R∼U(S,t)

[
fX∪R\{a}(a)

]∣∣∣∣ ≥ ε

]
≤ δ.

Thus, with m = n
(
OPT
ε

)2
log
(
2n
δ

)
total samples in one round, by a union bound over each of

the estimates holding with probability 1 − δ/n individually, we get that all the estimates hold
simultaneously with probability 1− δ.

We can now describe the (almost) full version of the main algorithm which uses these estimates.
One additional small difference with Adaptive-Sampling is that we force the algorithm to stop
after r+ rounds to obtain the adaptive complexity with probability 1. The loss from the event,
happening with low probability, that the algorithm is forced to stop is accounted for in the δ
probability of failure of the approximation guarantee of the algorithm.

Algorithm 6 Adaptive-Sampling-Proxy, simultaneously downsamples and upsamples.

Input: bounds on up-sampling rounds r and on total rounds r+, approximation α, threshold
parameter Δ, sample complexity m, and proxy v�

Initialize X ← ∅, S ← N, t ← k
r , c ← 1

while |X| < k, |S ∪X| > k, and c < r+ do Adaptive loop

vX (S, t) ← Estimate (S, t,m)
if vX (S, t) ≥ α

r · v� then
X ← X ∪ argmax{f(X ∪Ri) : Ri ∼ U(S, t)}mi=1

S ← S \X
else

for a ∈ S do Non-adaptive loop

vX (S, t, a) ← Estimate2 (S \X, t,m, a)
S ← S \ {a : vX (S, t, a) ≤ Δ}

c ← c+ 1
return X if |X| = k, or S ∪X otherwise

22

C.2 Estimating OPT

The main idea to estimate OPT is to have O(log n) values vi such that one of them is guaranteed to
be a (1− ε)-approximation to OPT. To obtain such values, we use the simple observation that the
singleton a� with largest value is at least a 1/n approximation to OPT.

Lemma 12. Let a� = argmaxa∈N f({a}) be the optimal singleton, and

vi = (1 + ε)i · f ({a�}) .

Then, there exists some i ∈
[

logn
log(1+ε)

]
such that

OPT ≤ vi ≤ (1 + ε) · OPT.

Proof. By submodularity, we get f({a�}) ≥ 1
kOPT ≥ 1

nOPT. By monotonicity, we have f({a�}) ≤
OPT. Combining these two inequalities, we get v0 ≤ OPT ≤ v logn

log(1+ε)
. By the definition of vi, we then

conclude that there must exists some i ∈
[

logn
log(1+ε)

]
such that OPT ≤ vi ≤ (1 + ε) · OPT.

Since the solution obtained for the unknown vi which approximates OPT well is guaranteed to
be a good solution, we run the algorithm in parallel for each of these values and return the solution
with largest value. We obtain the full algorithm Adaptive-Sampling-Full which we describe
next.

Algorithm 7 Adaptive-Sampling-Full, simultaneously downsamples and upsamples.

Input: bounds on up-sampling rounds r and on total rounds r+, approximation α, threshold
parameter Δ, sample complexity m, and precision ε
Initialize L ← ∅
Query {{a1}, . . . , {an}}
a� ← argmaxai f({ai})
for i ∈

{
0, . . . , log1+ε/3 n

}
do Non-adaptive loop

v� ← (1 + ε)i · f ({a�})
Add solution from Adaptive-Sampling-Proxy(v�) to L

return argmaxS∈L f(S)

D Missing Discussion and Analysis from Section 2

D.1 Continuous interpretation of algorithm via the multilinear extension

The Down-Sampling algorithm also has a simple description using the multilinear extension F
of f .

23

Algorithm 8 DownSamplingContinuous, a continuous description of Down-Sampling.

Input: approximation α and precision ε
x ← (kn , . . . ,

k
n),

while F (x) < αOPT do

M ←
{
v : ‖v‖0 ≤ (1− ε)‖x‖0, ‖v‖1 = k,v ≤ 1

1−εx
}

x ← argmaxv∈M〈v,∇F (x)〉
return x

The multilinear extension F : [0, 1]n → R of a submodular function f is a popular tool for
continuous approaches to submodular optimization, where F (x) is the expected value E[f(R)] of a
random set R containing each element ai independently with probability xi. An interpretation of
this algorithm is a continuous point x which, at every iteration, is projected to a lower dimension
(‖v‖0 ≤ (1−ε)‖x‖0) among the remaining dimensions (v ≤ 1

1−εx) on the boundary of the polytope
of feasible points (‖v‖1 = k).

D.2 Missing analysis from Section 2.1

D.2.1 Tradeoff with down-sampling

We first discuss the tradeoff between the approximation obtained when the algorithm terminates
due to E[f(R)] ≥ αOPT and the one when |S| ≤ k. We argue that this tradeoff implies that more
rounds do not improve the approximation guarantee for down-sampling.

Notice that when the threshold αOPT to return R increases, then the threshold Δ = cΔ · αOPT
k

needed to remove elements also increases. If this threshold to remove elements increase, then
the algorithm potentially discards optimal elements with higher value. Thus, the apporoximation
guarantee obtained by the solution S worsens. This tradeoff is independent of the number of rounds
and adding more rounds thus does not improve the approximation guarantee.

D.2.2 Analysis of down-sampling

We bound the number of elements removed from S in each round.

Lemma 1. Let f : 2N → R be a monotone submodular function. For all S ⊆ N , t ∈ [n], and
Δ > 0, let D = U(S, t) and the discarded elements be S− =

{
a : ER∼D

[
fR\{a}(a)

]
< Δ

}
. Then:

∣∣S \ S−∣∣ ≤ ER∼D[f(R)]

t ·Δ · |S|.

Proof. At a high level, we first lower bound the value of a random set R ∼ D by the marginal
contributions of the remaining elements S\S−. Then, we lower bound these marginal contributions
with the threshold Δ since these elements must have large enough marginal contributions to not

24

be removed. The first lower bound is the following:

E [f(R)] ≥ E
[
f(R ∩ (S \ S−))

]
monotonicity

≥ E

⎡
⎣ ∑
a∈R∩(S\S−)

fR∩(S\S−)\{a}(a)

⎤
⎦ Submodularity

≥ E

⎡
⎣ ∑
a∈S\S−

1a∈R · fR\{a}(a)

⎤
⎦ Submodularity

=
∑

a∈S\S−
E
[
1a∈R · fR\{a}(a)

]
.

By bounding the marginal contribution of remaining elements with the threshold Δ, we obtain∑
a∈S\S−

E
[
1a∈R · fR\{a}(a)

]
=

∑
a∈S\S−

Pr [a ∈ R] · E [fR\{a}(a)|a ∈ R
]

≥
∑

a∈S\S−
Pr [a ∈ R] · E [fR\{a}(a)

]
Submodularity

≥
∑

a∈S\S−
Pr [a ∈ R] ·Δ definition of Δ

= |S \ S−| · t

|S| ·Δ definition of R

Corollary 1. Down-Sampling with Δ = OPT
4k and α = 1

logn is O(logn
log logn)-adaptive and obtains,

in expectation, a
(

1
logn

)
-approximation.

Proof. Let t = k, Δ = OPT
4k , α = 1

logn , and ε = 1/2 for Lemma 2. We first show the adaptive com-
plexity and then the approximation guarantee. Recall that D = U(S, t) is the uniform distribution
over subsets of S of size t.

The adaptive complexity. We bound the number of rounds r where elements are removed from
S. Notice that if Down-Sampling removes elements from S at some round, then ER∼D [f(R)] <
αOPT. We get

|S \ S−| ≤ ER∼D [f(R)]

t ·Δ · |S| Lemma 1

=
ER∼D [f(R)]

OPT
· |S|

≤ 4

log n
· |S| Algorithm

Thus, after r rounds, there are |S| ≤ (4/ log n)r · n elements remaining. With

r =
log(n/k)

log
(
logn
4

) ≤ log n

log
(
logn
4

) ,
we obtain that |S| ≤ k and the algorithm terminates.

25

The approximation guarantee. There are two cases. If the algorithm terminates because
E [f(R)] ≥ αOPT, then returning a random setR is immediately (in expectation) a 1

logn -approximation

with α = 1
logn .

Otherwise, the algorithm returns S and we assume this is the case for the remaining of this
proof. Let Si and S−

i be the sets S and S− :=
{
a ∈ S : ER∼D

[
fR\{a}(a)

]
< Δ

}
at round i ∈ [r]

of Down-Sampling where the notation S and S− is by default these sets when the algorithm
terminates. First, by monotonicity and subadditivity, we have

f (S) ≥ f(O)− f(O \ S) = OPT− f
((∪r

i=1S
−
i

) ∩O
)

since O \ S are the discarded optimal elements. If Down-Sampling removes elements from Si at
some round i, then ER∼U(Si,k) [f(R)] < αOPT and we get

f
((∪r

i=1S
−
i

) ∩O
)
= f

(∪r
i=1

(
S−
i ∩O

))
≤

r∑
i=1

f
(
O ∩ S−

i

)
Subadditivity

≤
r∑

i=1

(
|O ∩ S−

i |Δ+ E
R∼D

[f(R)]

)
Lemma 2

≤ |O ∩ (∪S−
i)|Δ+

r∑
i=1

E
R∼D

[f(R)]

≤ kΔ+ r · E
R∼D

[f(R)]

≤ OPT

2
+ rαOPT Algorithm

By combining the above inequalities, we conclude that

f (S) ≥ OPT− OPT

2
+ rαOPT

≥ 1

2
OPT− 1

log
(
logn
4

)OPT

D.3 Missing analysis from Section 2.2

Proposition 2. For any constant c ≤ k/r, Up-Sampling is an r-adaptive algorithm and obtains,
w.p. 1−o(1), a

(
1− 1

e

)
c·r
k+c approximation, with sample complexity m = cn2+c log n at every round.

Proof. Let Si be the set S at round i of the upsampling algorithm (Algorithm 2). We first argue
that for all subsets T of N \ Si of size c, T is contained in at least one sample drawn at round
i+1. First, assume c = k/r. Then this is the coupon collector problem and with n2 · (nc) · log ((nc))
samples, all subsets T of size c are observed at least once with probability at least 1 − 1/n2. If
c < k/r, then observing sets of size k/r increases the probability that it contains set T of size c,
so it is still the case that all subsets T of size c are observed at least once with probability at least
1− 1/n2. By a union bound, this is the case for all rounds with probability at least 1− 1/n.

26

Let SO
i−1 be a collection of at most �k/c� sets of size c partitioning elements in O \ Si−1. Then,

OPT ≤ f(Si−1) +
∑

T∈SO
i−1

fSi−1(T)

≤ f(Si−1) +
∑

T∈SO
i−1

(f(Si)− f(Si−1))

≤ f(Si−1) + (k/c+ 1)(f(Si)− f(Si−1)

where the first inequality is by submodularity and the second is by monotonicity and since at least
one sample contains the c elements with largest marginal contribution to Si−1. Thus, by a similar
induction as in the analysis for the classical greedy algorithm,

f(Si) ≥
(
1−
(
1− 1

k/c+ 1

)i
)
OPT.

Thus, with i = r, the set S returned by the upsampling algorithm obtains the following approxi-
mation:

1−
(
1− 1

k/c+ 1

)r

= 1−
((

1− 1

k/c+ 1

)k/c+1
)r/(k/c+1)

≥ 1− e−r/(k/c+1) ≥
(
1− 1

e

)
cr

k + c
.

D.4 Missing Analysis from Section 2.3

Lemma 13. For any X,S ⊆ N such that |X∪R| ≤ k, let D = U (S, kr) and R+ = argmaxi∈[m] f(X∪
Ri). Then, with probability 1− δ over the samples drawn from D,

fX(R+) ≥ E
R∼D

[fX(R)]− ε

with sample complexity m = 1
2

(
OPT
ε

)2
log
(
2
δ

)
.

Proof. By Lemma 11, with m = 1
2

(
OPT
ε

)2
log
(
2
δ

)
, with probability 1− δ,∣∣∣∣vX(S, t)− E

R∼D
[fX(R)]

∣∣∣∣ ≤ ε.

Since vX(S, t) = 1
m

∑m
i=1 fX(Ri), it must be the case that for at least one sample R used to compute

vX(S, t),
fX(R) ≥ E

R∼D
[fX(R)]− ε.

We conclude by observing that the sample with largest marginal contribution fX(R) = f(X ∪R)−
f(X) is returned.

Lemma 3. Adaptive-Sampling is (ru+ rd)-adaptive with ru+ rd ≤ r+logc n when Δ = c · αOPTk .

27

Proof. We first bound the number of rounds rd where Adaptive-Sampling downsamples. If
|S| ≤ k

r , then |S ∪X| ≤ k and the algorithm terminates since |X| ≤ k− k
r if the algorithm has not

(yet) returned X. Notice that if Adaptive-Sampling removes elements from S at some round,
then ER∼D [fX(R)] < α

r OPT. Thus, the number of elements remaining in S after one round of
removing elements from S is

|S \ S−| ≤ ER∼D [fX(R)]

t ·Δ · |S| Lemma 1 with

submodular function fX(·)
≤ αOPT/r

t ·Δ · |S| Algorithm

≤ 1

cΔ
· |S| Δ = cΔ

αOPT

k
and t =

k

r

Thus, after rd rounds of removing elements, there are |S| ≤ (1/cΔ)
rd · n elements remaining.

With

rd =
log
(

n
k/r

)
log cΔ

≤ log n

log cΔ
,

|S| ≤ k/r and the algorithm terminates.
For the second part of the lemma, after r rounds of upsampling, r disjoint samples of size k

r
have been added to X. Thus |X| = k and the algorithm terminates with ru = r.

D.5 Missing Analysis from Section 2.4

D.5.1 Main lemmas with estimates

We bound the number of elements removed from S in each round.

Lemma 14. Let ε1, δ > 0. For all X,S ⊆ N , t ∈ [n], and Δ ∈ R, let D = U(S, t) and the removed
elements be S− = {a : vX(S, t, a) < Δ}. Then, with probability 1− δ,

∣∣S \ S−∣∣ ≤ vX(S, t)

t · (Δ− 2ε1)
· |S|.

with sample complexity m = n
(
OPT
ε1

)2
log
(
2n
δ

)
at each round

Proof. At a high level, we first lower bound the value of a random set R ∼ D by the marginal
contributions of the remaining elements S\S−. Then, we lower bound these marginal contributions
with the threshold Δ since these elements must have large enough marginal contributions to not

28

be removed. The first lower bound is the following:

vX(S, t) + ε1 ≥ E [fX(R)] Lemma 11 with ε = ε1

≥ E
[
fX(R ∩ (S \ S−))

]
monotonicity

≥ E

⎡
⎣ ∑
a∈R∩(S\S−)

fX∪(R∩(S\S−))\{a}(a)

⎤
⎦ Submodularity

≥ E

⎡
⎣ ∑
a∈S\S−

1a∈R · fX∪R\{a}(a)

⎤
⎦ Submodularity

=
∑

a∈S\S−
E
[
1a∈R · fX∪R\{a}(a)

]
.

By bounding the marginal contribution of remaining elements with the threshold Δ, we obtain∑
a∈S\S−

E
[
1a∈R · fX∪R\{a}(a)

]
=

∑
a∈S\S−

Pr [a ∈ R] · E [fX∪R\{a}(a)|a ∈ R
]

≥
∑

a∈S\S−
Pr [a ∈ R] · E [fX∪R\{a}(a)

]
Submodularity

≥
∑

a∈S\S−
Pr [a ∈ R] · (vX(S, t, a)− ε1) Lemma 11 with ε = ε1

≥
∑

a∈S\S−
Pr [a ∈ R] · (Δ− ε1) definition of Δ

= |S \ S−| · t

|S| · (Δ− ε1) definition of R

where, with probability 1− δ, all the estimates hold with sample complexity m = n
(
OPT
ε1

)2
log
(
2n
δ

)
per round by Lemma 11.

We bound the value of elements that survive the downsampling rounds.

Lemma 15. For any ε, δ > 0, S ⊆ N . and t ∈ [n], let D = U(S, t) and Δ ∈ R+. Then, with
probability 1− δ, the loss from removing elements S− := {a ∈ S : vX(S, t, a) < Δ} is approximately
bounded by the value of R ∼ D:

fX(O ∩ S−) ≤ (1 + ε)|O ∩ S−|Δ+ E
R∼D

[f(R)]

with sample complexity m = n
(
2OPT
εΔ

)2
log
(
2n
δ

)
per round.

29

Proof. The value of O ∩ S− is upper bounded using the threshold Δ for elements to be in S−,

fX(O ∩ S−) ≤ E
[
fX((O ∩ S−) ∪R)− fX(R)

]
+ E [fX(R)] monotonicity

≤ E

⎡
⎣ ∑
a∈O∩S−

fX∪R(a)

⎤
⎦+ E [fX(R)] Submodularity

=
∑

a∈O∩S−
E [fX∪R(a)] + E [fX(R)]

≤
∑

a∈O∩S−
E
[
fX∪R\{a}(a)

]
+ E [fX(R)] Monotonicity

≤
∑

a∈O∩S−
(vX(S, t, a) + εΔ) + E [fX(R)] Lemma 11 with ε = εΔ

≤ |O ∩ S−| · (Δ + εΔ) + E [fX(R)] definition of S−

= |O ∩ S−| · (1 + ε) ·Δ+ E [fX(R)] .

where, with probability 1− δ, all the estimates hold with sample complexity m = n
(
2OPT
εΔ

)2
log
(
2n
δ

)
per round by Lemma 11.

D.5.2 The adaptive complexity

In the full algorithm, we force the algorithm to stop after r+ rounds to obtain the adaptive com-
plexity with probability 1. The loss from the event, happening with low probability, that the
algorithm is forced to stop is accounted for in the δ probability of failure of the approximation of
the algorithm.

Lemma 16. For any cΔ > 1 and ε1, δ > 0, assume Δ = cΔ
αv�

k +2ε1, r
+ = r+logcΔ n. Then, with

probability 1− δ, Adaptive-Sampling-Full terminates either due |X| = k or |X ∪ S| ≤ k, with

sample complexity m = n
(
OPT
ε1

)2
log
(
2n
δ

)
at each round. In addition, Adaptive-Sampling-Full

is an r+-adaptive algorithm.

Proof. Adaptive-Sampling-Full is trivially an r+-adaptive algorithm since the algorithm is
forced to terminate after r+ rounds. Next, we bound the number of rounds rd where Adaptive-
Sampling-Full downsamples. If |S| ≤ k

r , then |S ∪ X| ≤ k and the algorithm terminates since

|X| ≤ k− k
r if the algorithm has not (yet) returned X. Notice that if Adaptive-Sampling-Full

downsamples and removes elements from S, then vX(S, t) ≥ (α/r)·v� Thus, the number of elements
remaining in S after one round of removing elements from S is

∣∣S \ S−∣∣ ≤ vX(S, t)

t · (Δ− 2ε1)
· |S| Lemma 1

≤ αv�/r

t · (Δ− 2ε1)
· |S| Algorithm

≤ 1

cΔ
· |S| Δ = cΔ

αv�

k
+ 2ε1 and t =

k

r

30

Thus, after rd rounds of removing elements, there are |S| ≤ (1/cΔ)
rd · n elements remaining.

With

rd =
log
(

n
k/r

)
log cΔ

≤ log n

log cΔ
,

|S| ≤ k/r and the algorithm terminates. The sample complexity for Lemma 1 ism = n
(
OPT
ε1

)2
log
(
2n
δ

)
at each round.

Next, after r rounds of upsampling, r disjoint samples of size k
r have been added to X. Thus

|X| = k and the algorithm terminates with ru = r.

D.5.3 The approximation guarantee

Lemma 17. Assume OPT ≤ v� ≤ (1 + ε/3)OPT, that either |X| = k or |X ∪ S| ≤ k. Then,
Adaptive-Sampling-Proxy is a 1

3−ε-approximation with probability 1−δ and sample complexity

m = 64
ε2

(
nk2 log

(
2n
δ

)
+ log21+ε/3 n · log (2δ) · 1

ε

)
per round, with α = 1/3, r = 3

ε · log1+ε/3 n, Δ =(
1 + ε

3

)
αv�

k + 2ε1, and ε1 = εv�/9k.

Proof. There are two cases depending on if X or X ∪ S is the solution.

Algorithm returns X. Let Xi and R+
i be the set X and the sample R added to X at the ith

round of upsampling, i ∈ [r]. First note that since the sample with largest marginal contribution
must have contribution larger than the average marginal contribution of the samples and since this
is an upsampling round:

fXi

(
R+

i

) ≥ vX(S, t) ≥ α · v
�

r

Thus,

f(X) =

r∑
i=1

fXi

(
R+

i

) ≥ r∑
i=1

α · v
�

r
= α · v� ≤ 1

3
· OPT.

Algorithm returns X ∪ S. We introduce some notation. Let O = {o1, . . . , ok} be the op-
timal solution indexed by an arbitrary order and Xi and S−

i be the sets X and S− = {a :
ER∼D

[
fX∪R\{a}(a)

]
< Δ} at the ith round of down-sampling, i ∈ [rd]. First, by monotonicity,

subadditivity, and again monotonicity, we get

f (S ∪X) ≥ f(O)− f(O \ (S ∪X)) ≥ OPT− f(O \ S)

The remaining of the proof bounds the loss f(O\(S∪X)) from optimal elements that were discarded
from S. Next, we bound f (O \ S). The elements in O \ S are elements that have been discarded
from S, so O \ S = ∪rd

i=1

(
S−
i ∩O

)
, and we get

f (O \ S)) = f
(∪rd

i=1

(
S−
i ∩O

)) ≤ fX
(∪rd

i=1

(
S−
i ∩O

))
+ f(X) ≤

rd∑
i=1

fX
(
O ∩ S−

i

)
+ f(S ∪X).

31

where the first inequality is by monotonicity and the second by subadditivity and monotonicity.
We obtain

fX
(
O ∩ S−

i

) ≤ fXi

(
O ∩ S−

i

)
submodularity

≤ (1 + ε)|O ∩ S−
i | ·Δ+ E [fXi(R)] Lemma 15

≤ (1 + ε)|O ∩ S−
i | ·Δ+ vX(S, t) +

2v�

3r
Lemma 11 with ε =

2v�

3r

≤ (1 + ε)|O ∩ S−
i | ·Δ+ α · v

�

r
+

2v�

3r
Algorithm

≤ (1 + ε)|O ∩ S−
i | ·Δ+

v�

r

with sample complexitym = n
(
2OPT
εΔ

)2
log
(
2n
δ

)
for Lemma 15 andm = 5

(
rOPT
v�

)2
log
(
2
δ

) ≤ 5r2 log
(
2
δ

)
for Lemma 11, per round. Thus,

f (O \ S) ≤
rd∑
i=1

(
(1 + ε)|O ∩ S−

i | ·Δ+
v�

r

)
+ f(S ∪X)

≤ (1 + ε)|O ∩ (∪rd
i=1S

−
i)| ·Δ+

rdv
�

r
+ f(S ∪X)

≤ (1 + ε)k ·Δ+
rdv

�

r
+ f(S ∪X)

≤ (1 + ε)2
v�

3
+

rd
r
OPT+ f(S ∪X).

By combining the previous inequalities, we get

f (S ∪X) ≥ OPT− (1 + ε)2
1

3
v� +

rd
r
OPT+ f(S ∪X).

Thus,

f (S ∪X) ≥ 1

2

(
OPT− (1 + ε)2

1

3
v� − rd

r
OPT

)

≥ 1

2

(
OPT− (1 + ε)2 (1 + ε/3)

1

3
OPT− ε

3
OPT

)

≥
(
1

3
− ε

)
OPT

where v� ≤ (1 + ε/3)OPT by assumption of the Lemma, rd ≤ log1+ε/3 n by Lemma 16 with cΔ =

1 + ε/3, and with Δ = cΔ
αv�

k + 2ε1 = cΔ
αv�

k + εv�

2k = (1 + ε) v
�

3k , ε1 = εv�/9k, and r = 3
ε · log1+ε/2 n.

Finally, the sample complexity per round is m = 64
ε2

(
nk2 log

(
2n
δ

)
+ log21+ε/3 n · log (2δ) · 1

ε

)
.

D.5.4 The main result for Adaptive-Sampling-Full

Theorem 3. For any ε, δ > 0, Adaptive-Sampling-Full is a
(
log1+ε/3 n · 3

ε + 2
)
-adaptive al-

gorithm that, w.p. 1 − δ, obtains a (13 − ε)-approximation, with sample complexity at every round

m = 64
ε2

(
nk2 log

(
2n
δ

)
+ log21+ε/3 n · log (2δ) · 1

ε

)
, for maximizing a monotone submodular function

under a cardinality constraint, with parameters r = 3
ε · log1+ε/3 n, α = 1

3 , and Δ = (1 + ε) v
�

3k .

32

Proof. By Lemma 12, there is at least one v� in Adaptive-Sampling-Full that is such that
OPT ≤ v� ≤ (1 + ε/3)OPT. The solution to Adaptive-Sampling-Proxy(v�) is then either X
or X ∪ S with probability 1 − δ/2 by Lemma 16 with cΔ = 1 + ε/3 and sample complexity m =(
r
ε

)2
log
(
4
δ · log1+ε/3 n

)
. Then, again with probability 1−δ/2, this solution is a 1

3−ε approximation

by Lemma 17 with sample complexity m = 64
ε2

(
nk2 log

(
2n
δ

)
+ log21+ε/3 n · log (2δ) · 1

ε

)
at every

round. Since Adaptive-Sampling-Full returns the best set among a collection containing this
solution, it is a 1

3 − ε approximation.
Since log1+ε/3 n non-adaptive instances of Adaptive-Sampling-Proxy, each with adaptivity

r+ = r+rd ≤ 3
ε ·log1+ε/3 n, are run, the adaptivity of Adaptive-Sampling-Full is 3

ε ·log1+ε/3 n+2
since there are two additional rounds to find the optimal singleton and the best solution in L.

E Missing Analysis from Section 3

We begin with the round elimination lemma.

Lemma 5. Assume r ∈ poly(n). If there exist families of functions F0, . . . ,Fr such that the
following two conditions hold:

• Round elimination. For all i ∈ {1, . . . , r}, if there exists an i-adaptive algorithm that
obtains, with probability n−ω(1), an α-approximation for Fi, then there exists an i−1 adaptive
algorithm that obtains, with probability n−ω(1), an α-approximation algorithm for Fi−1;

• Last round. There does not exist a 0-adaptive algorithm that obtains, with probability n−ω(1),
an α-approximation for F0;

Then, there is no r-adaptive algorithm that obtains, w.p. o(1), an α-approximation for Fr.

Proof. The proof is by induction on the number of rounds r. If r = 0, then by the last round
condition, F0 is not α optimizable in 0 adaptive rounds. If r > 0, then assume by contradiction
that there exists an α-approximation r-adaptive algorithm for FR. By the round elimination
condition, this implies that there exists an α-approximation r − 1 adaptive algorithm for Fr−1.
This is a contradiction with the induction hypothesis for r − 1.

Next, we focus on the lemmas needed for the round elimination condition (Lemma 8). These
lemmas are Lemma 6 and Lemma 7.

Lemma 6. Let FRi be a randomized collection of functions in some F. Assume that for all S ⊆ N ,
w.p. 1−n−ω(1) over FRi, for all f1, f2 ∈ FRi, we have that f1(S) = f2(S). Then, for any (possibly
randomized) collection of poly(n) non-adaptive queries Q, there exists a deterministic collection of
functions F ∈ F such that with probability 1− n−ω(1) over the randomization of Q, for all queries
S ∈ Q and all f1, f2 ∈ F , f1(S) = f2(S).

Proof. We denote by I(F ,S) the event that f1(S) = f2(S) for all functions f1, f2 in a collection of
functions F and all sets S in a collection of sets S. Let Q be a randomized collection of poly(n)
non-adaptive queries and let FR be a collection of functions s.t. for all S ⊆ N , w.p. 1 − n−ω(1)

over the randomization of FR, for all f1, f2 ∈ F , we have that f1(S) = f2(S).

33

Let S be any realization of the randomized collection of queries Q. By a union bound over the
poly(n) queries S ∈ S, PrFR

[I(FR,S)] ≥ 1− n−ω(1). Since FR ∈ F, we obtain

max
F∈F

Pr
Q

[I(Fi,Q)] ≥ Pr
FR

Pr
Q

[I(FR,Q)] ≥ 1− n−ω(1)

and there exists some F ∈ F such that w.p. 1− n−ω(1) over the randomization of Q, for all queries
S ∈ Q, f1(S) = f2(S) for all f1, f2 ∈ F .

To show the indistinguishability property (Lemma 7) for Lemma 6, we need the following
concentration bound, which shows that, a small set S has small intersection with small random
sets with high probability.

Lemma 18. Let R be a uniformly random subset of a set T . Consider a subset S ⊆ T that is
independent of the randomization of R and such that |S| · |R|/|T | ≤ e−1, then

Pr
[|S ∩R| ≥ log2 n

] ≤ n−ω(1).

Proof. We start by considering a subset L of S of size log2 n. We first bound the probability that
L is a subset of R,

Pr [L ⊆ R] ≤
∏
a∈L

Pr [a ∈ R] ≤
∏
a∈L

|R|
|T | =

(|R|
|T |
)log2 n

.

We then bound the probability that |S ∩R| ≥ log2 n with a union bound over the events that a set
L is a subset of R, for all subsets L of S of size log2 n:

Pr
[|S ∩R| ≥ log2 n

] ≤ ∑
L⊆S : |L|=log2 n

Pr [L ⊆ R]

≤
(|S|
log2 n

)
·
(|R|
|T |
)log2 n

≤
(|S| · |R|

|T |
)log2 n

≤ (e−1
)log2 n

= n− logn

where the last inequality follows from the assumption that |S| · |R|/|T | ≤ e−1.

Corollary 1. Assume r ≤ log n. For all i ∈ [r], let L1, . . . , Li−1 be fixed layers and S be a set of

size |S| ≤ 1
8n

1
r+1 that is independent of the randomization of Ri, then

Pr
Si

[∣∣S ∩ (∪r
j=i+1Lj

)∣∣ ≤ log2 n
] ≥ 1− n−ω(1).

Proof. Since r ≤ log n, we get |Lj+1| ≤ 1
2 |Lj | for all j, which implies that

∑r
j=i |Lj | < 2|Li|.

34

Without loss, assume S ⊆ Ri∪
(
∪r
j=i+1Lj

)
. The claim then immediately follows from Lemma 18

with T = N \
(
∪i−1
j=1Sj

)
= Ri ∪

(
∪r
j=i+1Lj

)
and R = N \

(
∪i−1
j=1Li ∪Ri

)
= ∪r

j=i+1Lj , since

|S| ·
∣∣∣∪r

j=i+1Lj

∣∣∣∣∣∣Ri ∪
(
∪r
j=i+1Lj

)∣∣∣ ≤
1
8n

1
r+1 · 2n1− i+1

r+1

2n1− i
r+1

≤ 1

8
≤ e−1.

Lemma 7. Assume r ≤ log n. For all S ⊆ N and i ∈ [r], with probability 1 − n−ω(1) over the
randomization of FRi ∈ Fr−i, for all f1, f2 ∈ FRi, f1(S) = f2(S).

Proof. If |S| ≥ 8n
1

r+1 , then

fP (S) = 2n
1

2r+2

for all fP ∈ FR with probability 1.

If |S| < 8n
1

r+1 , then by Corollary 1, PrRi

[
|S ∩

(
∪r
j=i+1Lj

)
| ≤ log2 n

]
≥ 1−n−ω(1). Thus, with

probability 1− n−ω(1) over the randomization of FR, for all f
P ∈ FR,

fP (S) :=

i∑
j=1

min(�i, log
2 n) +

∣∣S ∩ (∪r
j=i+1Lj

)∣∣+ ��

+min

(|S|
8n

1
r+1

, 1

)
·
⎛
⎝2n

1
2r+2 −

⎛
⎝ i∑

j=1

min(�i, log
2 n) +

∣∣S ∩ (∪r
j=i+1Lj

)∣∣+ ��

⎞
⎠
⎞
⎠

The size of S ∩
(
∪r
j=i+1Lj

)
= S ∩

(
N \

(
∪i−1
j=1Lj ∪Ri

))
is the same for all f ∈ FR. Thus,

we conclude that with probability 1 − n−ω(1) over the randomization of FR, for all f1, f2 ∈ FR,
f1(S) = f2(S).

Lemma 9. For all F ∈ F0, there does not exist a 0-adaptive algorithm that obtains, with probability

n−ω(1), an n− 1
2r+2 · ((r + 2) log2 n+ 1

)
approximation.

Proof. Let F ∈ F0 and L0, . . . Lr−1 be the fixed layers for all functions in F . Let S be the solution
returned by the algorithm. Consider fR� ∼ F . Note that since the algorithm is 0-adaptive, S is
independent of the randomization of R� as a uniformly random subset of Lr ∪ L�. Since

|S| · |L�|
|Lr ∪ L�| ≤

1
3n

1
2r+2n

1
2r+2

n1− r
r+1

≤ e−1,

we get that
|S ∩ L�| ≤ log2 n

with probability 1 − n−ω(1) by Lemma 18 and we assume this is the case for the remaining of
the proof. Since |S| ≤ log4 n, we then obtain that

fR�(S) ≤ (r + 1) log2 n+ log2 n+
1
3n

1
2r+2

8n
1

r+1

· 2n 1
2r+2 ≤ (r + 2) log2 n+ 1.

35

Then, for all S ⊆ N such that |S| ≤ 1
3n

1
2r+2 ,

E
fR�∼U(F)

[
fR�(R�)

fR�(S)

]
≤ n

1
2r+2

(r + 2) log2 n+ 1
.

Thus there exists at least one function f ∈ F such that the algorithm does not obtain, with

probability 1− n−ω(1), a n− 1
2r+2 · ((r + 2) log2 n+ 1

)
-approximation.

Lemma 19. For all partitions P , the function fP is monotone submodular.

Proof. Let f be a function defined by a partition P = (L0, . . . , Lr, L
�). The marginal contribution

fS(aj) = f(S ∪ {aj})− f(S) of an element aj ∈ Lj , to a set S is

fS(aj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− 1

8n
1

r+1

+
1

8n
1

r+1

(
2n

1
2r+2 −

r+1∑
i=1

min(�i, log
2 n)− ��

)
− |S|

8n
1

r+1

case A

1

8n
1

r+1

(
2n

1
2r+2 −

r+1∑
i=1

min(�i, log
2 n)− ��

)
case B

1−min

(|S|
8n

1
r+1

, 1

)
case C

0 case D

where the cases are:

• case A if |S| < 8n
1

r+1 , j �= r + 2, and �j < log2 n,

• case B if |S| < 8n
1

r+1 , j �= r + 2, and �j ≥ log2 n,

• case C if |S| ≥ 8n
1

r+1 , j �= r + 2, and �j < log2 n,

• and case D if |S| ≥ 8n
1

r+1 , j �= r + 2, and �j ≥ log2 n.

Monotone. In case A, we have − 1

8n
1

r+1
− |S|

8n
1

r+1
≥ −1 and fS(aj) ≥ 0. It is easy to see that for

all other cases, fS(aj) ≥ 0 as well. Thus, f is monotone.

Submodular. Within each case, the marginal contributions are decreasing, as �i increases, for
all i, and as |S| increases. It remains to show that the marginal contributions are decreasing from
one case to another when �i and |S| increase.

• Since − 1

8n
1

r+1
− |S|

8n
1

r+1
≥ −1 in A, marginal contributions are decreasing from A to B.

• Since 2n
1

2r+2 −∑r+1
i=1 min(�i, log

2 n)− �� ≥ 1 in A, they are decreasing from A to C.

• Since the marginal contributions are non-negative, they are decreasing from B and C to D.

36

