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Abstract

We study a data analyst’s problem of acquiring data from self-interested individuals to obtain
an accurate estimation of some statistic of a population, subject to an expected budget constraint.
Each data holder incurs a cost, which is unknown to the data analyst, to acquire and report his
data. The cost can be arbitrarily correlated with the data. The data analyst has an expected
budget that she can use to incentivize individuals to provide their data. The goal is to design a joint
acquisition-estimation mechanism to optimize the performance of the produced estimator, without
any prior information on the underlying distribution of cost and data. We investigate two types of
estimations: unbiased point estimation and confidence interval estimation.

Unbiased estimators: We design a truthful, individually rational, online mechanism to acquire
data from individuals and output an unbiased estimator of the population mean when the
data analyst has no prior information on the cost-data distribution and individuals arrive in a
random order. The performance of this mechanism matches that of the optimal mechanism,
which knows the true cost distribution, within a constant factor. The performance of an
estimator is evaluated by its variance under the worst-case cost-data correlation.

Confidence intervals: We characterize an approximately optimal (within a factor 2) mechanism
for obtaining a confidence interval of the population mean when the data analyst knows the true
cost distribution at the beginning. This mechanism is efficiently computable. We then design
a truthful, individually rational, online algorithm that is only worse than the approximately
optimal mechanism by a constant factor. The performance of an estimator is evaluated by its
expected length under the worst-case cost-data correlation.
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1 Introduction

We study a data analyst’s problem of estimating a population statistic (e.g. mean workout time in
November) when data need to be acquired from self-interested data holders and the analyst has an
expected budget constraint. Each data holder has a heterogeneous private cost to acquire and report his
data (e.g. record duration of each workout in a month and report the total) and needs to be compensated
at least by this cost to reveal his data. Individuals cannot fabric their data if they decide to reveal it.
Moreover, the values of the data and the private costs can be arbitrarily correlated in the population
(e.g. those who work out regularly may use some fitness tracker which automatically records workout
durations) and the correlation is unknown to the analyst a priori. A naive way for the analyst to acquire
data in this setting is to offer a fixed compensation for each individual’s data. But unless the payment
level is higher than everyone’s cost, in which case the analyst may run out of budget quickly and only be
able to obtain a small sample, the collected sample will bias toward a low-cost subpopulation. Thus, the
problem is how to design a joint pricing-estimation mechanism to get accurate estimations when data
holders are strategic.

The problem of purchasing data for unbiased estimation of population mean was first formulated
by Roth and Schoenebeck [2012] and then further studied by Chen et al. [2018a]. Both works however
assume that the cost distribution is known to the analyst and aim at obtaining an optimal unbiased
estimator with minimum worst-case variance for population mean, where the worst-case is over all data-
cost distributions consistent with the known cost distribution, subject to an expected budget constraint.
The mechanism proposed by Roth and Schoenebeck [2012] achieves optimality approximately, while
the mechanism proposed by Chen et al. [2018a] achieves the exact optimality, both under a regularity
assumption on the cost distribution. Chen et al. [2018a] also extends the result to linear regression.
The high-level idea of both mechanisms is to acquire a data point with reported cost ¢; with a positive
probability A(c¢;) (and some payment that is greater than or equal to ¢;), then remove the sampling bias
by re-weighting each collected data by 1/A(c;), and finally average the re-weighted data to obtain an
unbiased estimation (the Horvitz-Thompson Estimator ). The assumption that the cost distribution is
known allows the analyst to turn the mechanism design problem into a constrained optimization problem
for finding an optimal allocation rule A(c;).

This work generalizes the prior works in two directions. First, in our setting, the data analyst has no
prior information on data holders’ costs. We investigate the design of online mechanisms for unbiased
estimation of population mean, with the same goal as in the prior works: minimize the variance of the
unbiased estimator subject to a budget constraint. Data holders arrive in a random order. The challenge
is that, in order to price well, the analyst needs to learn the cost distribution, but the pricing decisions
need to be made for every arriving data holder. Second, we consider the estimation of confidence intervals
of population mean, for both the scenario where the analyst knows the cost distribution and the scenario
where there is no prior information on costs. Our goal is to minimize the length of the confidence
interval given the budget constraint. This necessarily requires us to reason about bias and variance
tradeoffs together with data pricing, an aspect that, to the best of our knowledge, has not been explored
in the literature.

1.1 Summary of Our Results and Techniques
Our work mainly addresses two questions:

1. If the data analyst does not have any prior information on data holders’ private costs (as well
as their private data), is it possible to design an online data acquisition mechanism for unbiased
estimation of population mean that is competitive with the optimal mechanism that knows the
cost distribution a priori? Optimality refers to minimum variance of the estimator.

2. Can we design an optimal joint acquisition-estimation mechanism for estimating confidence in-
tervals of population mean, when cost distribution is known? Optimality here means minimum
length of the confidence interval. When cost distribution is unknown, can we design an online joint
acquisition-estimation mechanism for confidence intervals that is competitive with the optimal
mechanism that knows the cost distribution a priori?

For the first question, we design an online mechanism that is only worse than the optimal mechanism
by a constant factor. The only non-trivial assumption we make in our setting is that the data holders
come in random order, so if there are n data holders in total, the cost-data distribution at each round is
the discrete uniform distribution over the set of cost-data pairs of these n data holders. Our mechanism



satisfies the budget constraint in expectation, with the guarantee that the data holders will always be
willing to participate and truthfully report their costs.

Theorem 1.1 (Informal). For the problem of purchasing data to get an unbiased estimator of population
mean, assuming that the data holders come in random order, our online mechanism (Mechanism 1)
satisfies the following properties: (1) it is truthful and individually rational, (2) it satisfies the expected
budget constraint, and (3) for any cost distribution, the variance of the produced unbiased estimator
approaches that of the benchmark within a constant factor, where the benchmark is the optimal mechanism
that knows the true cost distribution a priori.

In designing our online mechanism (Mechanism 1), we use the optimal mechanism with known costs
as our building blocks. At any round ¢, the reported costs in previous rounds gives us an empirical cost
distribution. We then apply the optimal mechanism for this cost distribution for data holder i. Each
round’s mechanism has a fraction of the total expected budget. Our mechanism allocates more budget
for early rounds in a way so that the variance of the final produced estimator is only worse than the
benchmark by a constant factor.

For the second question, we extend our mechanism to output a confidence interval (using sample mean
and sample variance). The mechanism may introduce some bias to mean estimation in exchange for a
lower variance, so that the length of the confidence interval is approximately optimized. We provide the
characterization of the approximately optimal confidence interval mechanism when the cost distribution
is known. This characterization allows us to efficiently compute the mechanism. We then design an
online mechanism that matches the performance of the optimal mechanism that knows cost distribution
within a constant factor.

Theorem 1.2 (Informal). For the problem of purchasing data to obtain a confidence interval, the ap-
proximately optimal mechanism that knows cost distribution can be computed in polynomial time.

This approximately optimal mechanism with known costs is constructed by analyzing the bias and
variance trade-off for estimators for the mean. At any given bias level, by producing an estimator that
has the lowest variance (for that bias level), we can construct a confidence interval using this biased mean
estimation. We hence can design a mechanism to optimize for the length of the confidence interval. Since
the optimal mechanism is difficult to compute, we approximate it to gain computational efficiency.

Theorem 1.3 (Informal). For the problem of purchasing data to obtain a confidence interval, assuming
that the data holders come in random order, our online mechanism (Mechanism 2) has the following
properties: (1) it is truthful and individually rational, (2) it satisfies the expected budget constraint, and
(3) for any cost distribution, the performance of the produced confidence interval approaches that of the
benchmark within a constant factor, where the benchmark is the optimal mechanism that knows the true
cost distribution a priori.

Similar to the design of the online mechanism for unbiased mean estimation, we use the approximately
optimal mechanism with known cost as our build blocks and design an online mechanism for confidence
interval estimation without knowing the costs. Each round is allocated with a fraction of the total
expected budget and we take the empirical cost distribution and apply the optimal mechanism for that
distribution.

1.2 Other Related Work

There is a growing interest in understanding statistical estimation and learning in environments with
strategic agents. The works can be put in a few categories depending on the sources and types of strategic
considerations.

In this work, as well as Roth and Schoenebeck [2012] and Chen et al. [2018a], agents do not derive
utility or disutility from the estimation outcome, cannot fabricate their data, and have a cost for revealing
their data. The mechanism uses payment to incentivize data revelation. Abernethy et al. [2015] is similar
on these fronts, but the work considers general supervised learning. They do not seek to achieve a notion
of optimality. Instead, they take a learning-theoretic approach and design mechanisms to obtain learning
guarantees (risk bounds). Cai et al. [2015] focuses on incentivizing individuals to exert effort to obtain
high-quality data for the purpose of linear regression.

Another line of research examines data acquisition using differential privacy [Ghosh and Roth, 2011,
Fleischer and Lyu, 2012, Ghosh et al., 2014, Nissim et al., 2014, Cummings et al., 2015]. Agents care
about their privacy and hence may be reluctant to reveal their data. The mechanism designer uses



payments to balance the trade-off between privacy and accuracy. In this work, we implicitly assume that
data holders to not have a privacy cost and hence they don’t worry about potential leaking of their data
by reporting their cost. In Section 6, we discuss the complication when data holders care about their
privacy and their data and costs are correlated.

A third line of research studies settings where data holders may strategically misreport their data,
there is no ground truth to verify the acquired data, and the analyst would like to design payment mecha-
nisms to incentivize truthful data reporting for the purpose of regression or other analyses [Liu and Chen,
2018, 2016, 2017]. Because of the lack of verification, this line of work is closely related to the literature
on peer prediction [Miller et al., 2005, Shnayder et al., 2016].

In a fourth line of research, individuals’ utilities directly depend on the inference or learning out-
come (e.g. they want a regression line to be as close to their own data point as possible) and they
can manipulate their reported data to influence the outcome. In these works, there often is no cost
for reporting one’s data and the data analyst doesn’t use monetary payments. These works attempt to
design or identify mechanisms (inference or learning processes) that are robust to potential data ma-
nipulations [Dekel et al., 2010, Meir et al., 2011, 2012, Perote and Perote-Pena, 2003, 2004, Hardt et al.,
2016, Dong et al., 2017, Chen et al., 2018b).

2 Model

Consider a data analyst who conducts a survey to estimate some statistic of a population (or a random
sample of a population) of n people. In this work we focus on estimating the mean of some parameter of
interest (e.g. alcohol consumption or BMI of an individual), denoted by z, and the confidence interval
of the mean. Each individual incurs a cost ¢;, unknown to the data analyst, to acquire and report his
data z;. The cost and data pair can be correlated (e.g. those who consume more alcohol may have a
higher cost recording their consumption), and follows an unknown distribution D supported on (C, Z).
We assume that the cost is bounded by C, i.e., C C [0,C]. The parameter z is also bounded, and,
without loss of generality, we assume z is between 0 and 1, i.e., Z C [0, 1]. The data analyst has a budget
B = nB that she can use to purchase data from the data holders.

We study an online setting where data holders arrive one by one to the survey, and no prior information
on the distribution D (including the marginal distribution of the cost) is available before the survey. The
analyst can gradually learn the distribution as data holders report their data. We make the following
assumptions about the data sequence: (1) each individual only appears once, and (2) the data holders
arrive in a random order, i.e., each permutation of the n people is equally likely. We use (c,z) =
(c1,21),- .-, (Cn, 2n) to denote a random sequence of costs and data points, and {(c1,21), ..., (¢n, 2n)} to
represent a set of people’s cost and data without the consideration of order.

When data holder ¢ arrives, the analyst asks the data holder to report his cost. We use ¢; to denote
the reported cost of data holder i. Based on the reported cost, the analyst may offer a price to acquire
the data z;. Formally, the analyst uses a survey mechanism, M = (A, P), which consists of an allocation
rule A : C — [0,1] and a payment rule P : C — R. With probability A(¢;), the analyst offers payment
P(¢;) to purchase data z;. If the data holder accepts this payment, he gives his data z; to the analyst.
We assume that data holders do not misreport their data z;. This assumption holds in situations when
data can be verified once collected (e.g. medical records). The data holder walks away without revealing
his data if P(¢;) < ¢;. With probability 1 — A(¢;), the analyst does not attempt to acquire the data.

The analyst can adaptively choose a survey mechanism for each arriving data holder. We use M =
(A,P) = (A, PY),... (A" P") to represent a sequence of survey mechanisms. At round i, the analyst
chooses an allocation rule A? and a payment rule P? based on all observed information before round i,
denoted by H;—1. H;—1 includes the reported costs of the previous i — 1 data holders and data points
that have been acquired. The survey mechanism (A?, P?) applies to the i-th arriving data holder. At the
end of round n, the data analyst outputs an estimator S(M, (c,z)) based on all observed information
Hn.

We want to design survey mechanisms that have the following incentive and budget properties:

Individual rationality: The utility of each data holder is always non-negative, i.e., P'(¢;) > ¢; for all
1 and ¢;.

Truthfulness in expectation: A data holder maximizes his expected utility by reporting his cost
truthfully, i.e., A*(¢;)(P'(¢;) —¢;) > A'(¢;)(P"(¢;) — ¢;) for all ¢ and ¢; # ¢;.



Expected budget feasibility: E [>7" | A’(¢;) - P'(c;)] < B = n - B, where the expectation is taken
over the random arriving order of the data holders and the internal randomness of the mechanism.

In this work we mainly investigate two types of estimation tasks: (1) get an unbiased estimator of
the population mean, with the goal that the variance of the estimator is minimized; (2) find a confidence
interval of the population mean, with the goal that the length of the confidence interval is minimized. As
an estimator uses data obtained via survey mechanisms M, it necessarily depends on M. We now formally
define unbiased estimator and confidence interval of population mean in our setting. The randomness of
an estimator S(M, (c,z)) comes in two parts: (1) the external randomness, which is the random order
of (c,z), and (2) the internal randomness of the mechanisms M. Our definitions require the estimators
to be unbiased or a valid confidence interval for any realization of the external randomness.

Definition 2.1 (Unbiased estimator of population mean). An estimator S(M, (c,z)) is an unbiased

estimator of the population mean E[z] = L 3" | 2; if for any fived sequence (€,%),

E[S(M, (¢,2)] = El[z],
where the expectation in E[S(M, (€,z))] is taken over the internal randomness of the mechanisms M.

Definition 2.2 (Confidence interval of population mean). An estimator S(M, (c,z)) is a confidence
interval for the population mean E[z] = %2?21 z; with confidence level v if it is an interval and for any
fized sequence (€,7),

Pr(E[z] € S(M, (€,2))) > 7,
where the randomness is due to the internal randomness of the mechanisms M.

Our goal is to design joint survey and estimation mechanisms, (M, S(M, (¢, z)), such that the estima-
tor S(M, (c,z)) has good statistical performance on the population. For unbiased estimators, we prefer
estimators with smaller variance. For confidence intervals, we prefer ones with smaller length. However,
the performance of a mechanism on a population depends on the correlation between the population’s
cost and data, i.e. the distribution D.! We hence take a worst-case analysis approach: measure the
performance of a mechanism under worst-case cost-data correlation.

Definition 2.3 (Worst-case variance). Given that the set of data holders’ costs is C = {c1,...,cpn}, the
worst-case variance of a point estimator S(M, (c,z)) is defined as

Var*(S) = max Varp(S(M, (¢, z

( ) D consistent with C D( ( ( )))

where the maximum is taken over all distributions D consistent with the set of costs C. The randomness
is due to the random order of (c1,21),...,(Cn,2n) and the internal randomness of the mechanism M.

Definition 2.4 (Worst-case expected length). Given that the set of data holders’ costs is C = {c1,...,¢n},
the worst-case expected length of a confidence interval S(M, (c,z)) is defined as

L*(S) = a E(|S(M, (c,z

( ) D consiIsItlerﬁ with C (| ( 7( ’ ))D

where |S(M, (c,z))| represents the length of the confidence interval. The maximum is taken over all
distributions D consistent with the set of costs C. The randomness is due to the random order of
(c1,21),- .-, (Cny 2n) and the internal randomness of the mechanisms M.

Roth and Schoenebeck [2012] and Chen et al. [2018a] have also considered the design of joint survey
and estimation mechanism for statistical estimation. The main differences between their model and our
model are: (1) they assume the marginal cost distribution is known to the data analyst, while our data
analyst doesn’t have such information, (2) they have the same survey mechanism for all individuals,
while we consider an online setting where the analyst can adaptively change the survey mechanism, and
(3) they only consider the estimation of mean, while we also investigate the estimation of confidence
intervals.

1 For example, consider a mechanism that purchases each agent’s data z; with a constant probability p = B /> e
and payment c¢;, then outputs 1/(pn) times the sum of all purchased data as an unbiased estimation of population mean.
When z is always equal to 0, the variance will be zero; when z is always equal to 1, the variance will be (1/p — 1)/n.



3 Preliminaries

In this section, we first show that we can easily extend known results on one-shot truthful mechanisms
to achieve truthfulness and individual rationality for a sequence of survey mechanisms M. Then, we
introduce the formulation proposed by Chen et al. [2018a] for obtaining the optimal unbiased estimator
of population mean when the cost distribution is known to the analyst. Later in Section 4 we will use
this known cost case as our benchmark for evaluating the performance of our optimal unbiased estimator
when the cost distribution is unknown.

3.1 Truthful and Individually Rational Survey Mechanisms

Since each data holder appears only once in our setting, requiring a sequence of survey mechanisms to be
truthful and individually rational is equivalent to requiring that each (A?, P?) is truthful and individually
rational, which can be achieved by a straight-forward extension of known results on truthful mechanisms.

The well-known Myerson’s lemma states that monotonicity is the necessary and sufficient condition
for an allocation rule to be truthful with some payment rule.

Lemma 3.1 (Myerson and Satterthwaite [1983]). An allocation rule A(c) is the allocation rule of some
truthful survey mechanism (A(c), P(c)) if and only if A(c) is monotone non-increasing in c.

The following lemma from Chen et al. [2018a] then shows that given a fixed monotone non-increasing
allocation rule A(c) defined on a discrete cost set {ci, ..., ¢}, there exists an optimal payment rule P(c)
that guarantees truthfulness and individual rationality.

Lemma 3.2 (Chen et al. [2018a], Claim 2 in Section B.1.2). Let A(c) be a monotone non-increasing
allocation rule defined for set {ci,...,cm} with ¢1 < -+ < ¢p,. Define payment rule P(c;) = ¢; +
ﬁ doitiv1 Ale)(ej—cj—1). Then (A(c), P(c)) is truthful and individually rational for all ¢ € {c1, ..., cm},
and any payment rule P'(c) that guarantees the truthfulness and individual rationality of (A(c), P’'(c))
must have P’(c) > P(c) for all c € {c1,...,cm}-

Furthermore for any cost distribution supported on {ci,...,cn}, the expected total payment of
(A(c), P(c)), with the optimal payment rule P(c) defined in Lemma 3.2, can be equivalently represented
in a simpler form in terms of virtual costs.

Definition 3.1 (Virtual costs). Let f(c) and F(c) be the PDF and the CDF of a cost distribution F
supported on {c1,...,cm} with ¢; < -+ < ¢p,. Let ¢g = 0. The virtual cost function ¥(c) of this cost

distribution is defined as
Ci — Ci—1

oy Tlam)

Y(ei) = ¢ +
foralll <t <m.

Lemma 3.3 (Chen et al. [2018a], Lemma 10 in Section B.1.2 ). Let A(c) be a monotone non-increasing
allocation rule defined on set {c1,...,cm} with ¢c1 < -+ < ¢p,. Let P(c) be the optimal truthful and
indwidually rational payment rule defined in Lemma 3.2. When cost follows a distribution F sup-
ported on {c1,...,cm}, the expected total payment E.x[A(c)P(c)] is equal to the expected virtual cost
Ecwr[A(c)¥(c)] where (c) is the virtual cost function of F.

The above lemmas assume that costs are from a finite discrete set. Our benchmark mechanism where
the analyst already knows all the costs satisfies this assumption. We’ll use the above result to establish
the performance of our benchmark mechanism. However, our mechanisms developed in this paper for
the unknown cost case do not have any restriction on the set of possible costs. The allocation rules and
the payment rules of our mechanisms are first computed on a discrete set using the above result, and
then extended to all other values of cost. We show below that such extension preserves truthfulness and
individual rationality.

Definition 3.2 (Extended allocation rule and payment rule). Given a survey mechanism (A%, P?) that
is defined on a discrete cost set {ci,...,cm} with ¢ < -+ < ¢,,. The extended allocation rule and
payment rule A, P are defined as follows

Ale) = Ad([d), P(ec) = Pd((c]), for all ¢ € [0, ¢,

where [c] is the minimum cost in {c1,...,cm} that is greater than or equal to c.



Lemma 3.4. Let A%(c) be a monotone non-increasing allocation rule defined on set {ci,...,cm} with
c1 <~ < cm. Let PY(c) be the optimal payment rule defined in Lemma 3.2. Then the extended allocation
rule and payment rule of (A, P9) is still truthful and individually rational.

The lemma is proved in B.1.

3.2 Formulating the Optimal Unbiased Estimator with Known Costs

In this section we restate some results from Chen et al. [2018a] on the optimal survey mechanism for an
unbiased estimator of population mean when the cost distribution is known. The value of statistic z is
assumed to be bounded and without loss of generality 0 < z < 1.

Horvitz-Thompson Estimator: When we use truthful survey mechanisms M = (A, P1),... (A", P")
to purchase the data points, the data of agent i will be collected with probability A?(c;). Define

= _{ = with probability A%(c;)
"1 0, otherwise
to be the observed data point which is set to zero if no purchase is made. Define y; = % To get

unbiased estimation, we use Horvitz-Thompson Estimator, which is the unique unbiased linear estimator
in our setting [Roth and Schoenebeck, 2012],

S(M, (e,2)) = = Yo

Notice that an unbiased estimator always buys the data points with probability greater than 0, i.e.,
At(c;) > 0 for all i and ¢;. If A(c;) = 0, the mechanism will never know the value of z; and thus cannot
be unbiased.

When the cost distribution is known to the analyst, the optimal mechanism that uses the same survey
mechanism for all data holders has been derived by Chen et al. [2018a]. They reduce the mechanism
design problem to a min-max optimization problem. The optimal allocation rule A* that minimizes the
worst-case variance of the Horvitz-Thompson Estimator can be formulated as follows:

1 DL 22 " 9
. 1 Z P Z . 1
e Zén[oz,lﬁ" n? (i_l A(ci) ZZ) W

i=1

s.t. ZA(ci)z/J(ci) <B

A(CZ) > A(Ci+1), Vi<i<n
0<A(c) <1, Ve
Here the objective function is changed from the original formulation in Chen et al. [2018a] so that it

is equal to the worst-case variance of the Horvitz-Thompson Estimator in our setting. According to the
law of total variance,

Var(S(M, (c,z))) = E[Var(S|(c, z))] + Var(E[S|(c, z)])

Since the estimator is always unbiased for any order (c,z), the second term is zero. Furthermore, when
z;

conditioning on a sequence, y; = A become independent when a fixed allocation rule A is used.
Therefore the variance of the Horvitz-Thompson Estimator is equal to

Var(S(M, (¢, ))) =E(e 5 [Var(S] (¢, ))] = E(e.)

= > Var (il z))]

=25 “Ec) [Z Ely?|(c,7)] - E[m(c,z)ﬂ .

=1



For any arriving sequence (c.z), >, Ely?|(c,z)] — Elyi|(c,2)]* stays the same, which is equal to

2
Dy ﬁ — Y%, 22, Therefore by maximizing over z, we get the worst-case variance of the Horvitz-

=1 z
n n
2
max — E E )
z€01]"n2 Acl c %

Thompson estimator
=1

The last constraint 0 < A(c) < 1 makes sure that A is an allocation rule of a survey mechanism. The
second constraint is the sufficient and necessary condition for A to be the allocation rule of a truthful
mechanism. The first constraint guarantees expected budget feasibility according to Lemma 3.3, where
¥(c) is the virtual cost function.

4 Optimal Unbiased Estimator

We first introduce the benchmark to which we compare our online algorithm.

Definition 4.1. Let c(1y < -+ < ¢(,) be the n data holders’ costs ordered from smallest to largest.
Suppose there is one more data holder with cost C. We define the benchmark (A*, P*) to be the mechanism
that purchases data from these n+ 1 data holders, and minimizes the worst case variance when it knows
the set of costs {c(1y,c(), - - - c(n),a} at the beginning.

1 n+1 2 n+1
Var*(A*) = ———— mi 322 P
ar' (A7) (n+1)2 mfinzeouﬂ Z A(e izzlzl )
n+1

where ¢p41 = C.

This additional cost C' can be interpreted as the loss of unknown upper bound of the possible cost.
When the cost distribution is known, the mechanism knows the exact maximum cost ¢(,), and thus the
optimal mechanism will never have a positive probability to buy a data point with cost higher than c(,).
But when c(,, is unknown, the mechanism always has to buy any data point (with cost under ) with
a positive probability.

When the cost distribution is unknown at the beginning, the idea of our mechanism is very simple:
at time 4, use the optimal allocation rule A? as if the cost distribution is the uniform distribution on all
the observed costs ¢y, ..., c;—1 plus {C'}, and the budget per agent is proportional to --. So the average
budget is a decreasing function of ¢, which means we use more budget at the beginning of the mechanism
when the estimation of the cost distribution is not accurate. Instead of solving the exact optimal A’, we
solve an approximation of the optimization problem defined in (2) by replacing the objective function
Var(S) = E[S?] — E[S]? by E[S?] for simple analysis. The payment rule P’ can be computed as in
Lemma 3.2. Our mechanism is described as Mechanism 1.

The optimization problem (3) has a convex objective function and thus can be solved efficiently.
Below we give the exact characterization of the optimal solution, which has a very simple form and will
further be used to derive our optimal confidence interval mechanism: the optimal allocation rule A*(c) is
inversely proportional to the square root of the regularized virtual cost of ¢, which is defined as follows,

Definition 4.2 (Regularized virtual costs). For a discrete uniform distribution supported on{ci,...,cm}
with ¢; < -+ < ¢, and its virtual costs function ¥(c1),...,¥(cm). For every i <k, let Avg(i, k) be the
average of ¥(c;),...,¥(ck). We define regularized virtual cost ¢(c;) as follows

é(ci) = max{¥/(c1),...,¢%' (ci)},
P (c;) = ]?}clélz Avg(i, k).



Mechanism 1: Mechanism for unbiased estimator

Input total number of agents n and expected budget B = nB.

fori=1,... ndo
1) Define set T; = {c1,...,¢i—1,C} for i > 2 and T; = {C} for i = 1. We use (1), - - - C(s) to denote
the elements in T; ordered from smallest to largest.
2) Let A® be the optimal allocation when the set of costs is T}, the budget per agent is 4%, ie.,

A’ =argmin max E
A ze[0,1]°

3
A C(k) ( )

B
n

s.t. Z A C(k) C(k))

A(C(k)) > A(C(kﬂ)),Vk
0<L A(C(k)) <1, Vk

N

where 1(c) is the virtual cost function (Definition 3.1) when the cost distribution is the uniform
distribution over T;. The payment P’ is computed as in Lemma 3.2.
3) Ask agent i to report his cost ¢; and purchase agent i’s data using the extended allocation rule
and payment rule of (A, P?). Let the collected data be ;.

end for

Output estimator § = 257" y; =15 Af?(ici).

Theorem 4.1. The optimal solution of (3) is

( )}, for all 1 <k <1,
C(k)

where ¢'(c) is the regularized virtual cost function when the cost distribution is the uniform distribution
over T;, and X is chosen such that the budget constraint is satisfied with equality

B
ZA oY (e)) = PNy

The value of X can be computed using binary search within time O(log|T;]).

Proof of the theorem can be found in C.1.
We show that this simple mechanism satisfies all three constraints and its worst-case variance is
roughly within a constant times the benchmark.

Theorem 4.2. Mechanism 1 satisfies (1) truthfulness and individually rationality, (2) the expected total
spending is no more than B = nB, and (3) for any cost distribution {c1,...,c,} the worst-case variance
of the final estimator S is mo more than

(1 2) v+ L),

where A* is the benchmark defined in Definition 4.1.

Discussion: We have the factor (1 + %)2 in the first term of our upper bound because the benchmark
mechanism has one more data point. It is no more than 4 when n > 1 and goes to 1 when n gets large.
The second additive term  is due to our estimation of Var(S) by E[S?]. We know that Var*(A*) is
roughly n+r1 E[A%(C)] So when the problem is non-trivial, we should have the average A,}(C) much larger

than 1, and 1 will be small compared to Var*(A*). The last additive term

l : * * < 1
=- It is only comparable to Var®(A4*) when y/n < ear——. (o

n\f m is dominated by



Proof sketch: The key idea of proving the performance and budget feasibility is to compare both
of our online algorithm and the benchmark with an intermediate mechanism (A’, P') at each step .
This intermediate mechanism (A’, P') is basically the same as (A%, P?), but is “one-step-ahead”. Loosely
speaking, (A’, P’) is the optimal mechanism when the same amount of budget is assigned at round ¢, but
knows an additional piece of information, the value of ¢;, beforehand. We first show that the difference of
(A’, P') and (A?, P?) can be bounded by a constant factor, and then prove that the worst-case variance of
(A’, P") is no worse than a constant times the benchmark. The first bound is mainly due to the similarity
of (A’ P") and (A%, P*). For the second bound, informally speaking, we show that the variance occurred

by A’ at data point ¢ is no more that D - % times that of A* (mainly because of the budget allocation

method and the random arriving order), where D is a constant. Then, because %2?21 ‘/7? < 2, we

bound the difference within a constant factor.
The complete proof can be found in Appendix C.3.

5 Optimal Confidence Interval

In this section, we design purchasing mechanisms to get the best confidence interval of the statistic. We
consider the class of confidence intervals that are defined around the sample mean, and the length of
which is decided by a bias term and the sample variance. In this case, the optimal mechanism needs to
find the optimal trade-off of the bias and the variance in order to minimize the length of the interval. We
first present the optimal mechanism when the cost distribution is known to the analyst at the beginning
of the survey, and then introduce an online mechanism which is only worse by a constant factor.

5.1 Confidence Interval and Bias-variance Tradeoff

In this paper, we use the most classic approach to construct confidence interval based on sample mean
and sample variance. We first show how to convert our unbiased estimator into a confidence interval
using sample mean and sample variance.

Construct confidence interval using unbiased estimator: Consider an unbiased estimator S(M, (c, z))
that uses survey mechanism M = (A,P), and we want to construct a confidence interval for E[z] =
LS | . Again we use '
~ _§ with probability A’(c;)
"1 0, otherwise

to denote the observed data point and define y; = ﬁ Notice that the random variables y1,...,yn
are not independent since the allocation rule A? can depend on cy,...,ci—1. But if we consider a fixed
realization (¢,z), the mechanisms (A!, P),... (A", P") will also be fixed. Then yi,...,y, become
independent, because when the probability of purchasing each data point Al(c),..., A"(c,) is fixed,
whether to purchase each data point or not is independently decided. Therefore given a confidence level

7, we can construct a confidence interval of the expected mean E [Y y;/ n‘ (¢,z)] using the sample mean
n

(2:?:1 y;/n and sample va;mriance 52 =" (yi — 1, wi/n)? /(n—1) according to Bernstein’s inequality
see more details in A.1):

n n
B B . X 5
;yz/n \/ﬁ g, ;yz/n‘i’\/ﬁ o

where o, is a constant that is chosen to achieve confidence level 4v. When the estimator is unbiased,
E [>vi/n|(€,2)] = E[z] for all (¢,z), this interval is just a confidence interval of E[z] with confidence
level 7.

But this confidence interval may not be optimal. We can allow the mechanism to simply ignore some
data points, i.e., to have A%(c;) = 0 for some i and simply set y; = 0. This can probably reduce the
variance of the estimator. But at the same time the estimator becomes biased. We need to increase the
length of the confidence interval to include this bias.

Survey mechanisms that allow bias: We add a new component U = (U%,...,U") into our allo-
cation rule to allow biased estimation, where each U’ is a function of reported cost ¢;. A mechanism
that allows bias consists of (A, U,P). When a data point with cost ¢; comes at time 4, the mechanism
first flips a coin Ul to decide whether to ignore this data point or not, and the probability of Ul being 1

10



(which means ignoring the data) is equal to U?(c;). If the data is ignored, a bias term will be added into

the final estimation to compensate the error. If U; = 0, then the mechanism purchases the data with
probability A%(c;) > 0 and pays P*(c;) if the data is purchased. Then the observed data Z; follows

2;, with probability (1 — U(¢;))A%(c;)
Z; = ¢ 0, with probability (1 — U%(c¢;))(1 — A%(c;))
ignored, with probability U’(c;).

We re-define y; as

0, if U; = 1.

Then for a fixed arriving sequence (€, z), the bias of estimator Y y;/n is equal to

1 n n

err =Bl - = 3" Elyl(€,2)] = %Zzi - %2(1 AT %Zz 7.

i=1 i=1 i=1 i=1

Notice that this bias is not observable because the mechanism does not know the Z; that is not purchased.
But since z; is between 0 and 1 and we use worst-case analysis in this work, we can just assume z; equals
its worst-case value 1. (This can be seen more clearly in our formulation of the optimization problem
in the next section.) Then the confidence interval of E[z] with confidence level « can be constructed as
follows

n n n

oy 1 ~ oy
E Yi/n— —=-0, E yi/”ﬂL—E Uit —=-0
i=1 Vi i=1 nia Vin

where Ul is the indicator of whether the i-th data point is ignored and &2 is the sample variance of
Y1y Yn-

Although a new component is added to the mechanism, the results in Section 3 can nevertheless be
applied to these mechanisms by seeing (1 — U(c))A(c) as the allocation rule.

For convenience, in the rest of the paper, we write U¢ = U?(c) for short, and in cases when the costs
are indexed as c1,...,¢, OF C(1), ..., C(n), WE USE U;f to represent Ui(cj) or Ui(c(j)).

5.2 Benchmark: Known Cost Distribution

Our benchmark for the online mechanism is again the optimal mechanism that knows the cost distribution
at the beginning and uses a single optimal mechanism (A*, U*, P*) throughout the survey. We still add
an additional cost C into the underlying cost set of the benchmark mechanism, in order to make the
comparison possible without knowing the exact maximum cost. This optimal mechanism should find
the optimal trade-off of the bias and variance so as to minimize the worst-case expected length of the
confidence interval defined in the previous section. We formulate a min-max optimization problem that
approximately solves the optimal allocation rule.

The expected length of the interval we construct is 2 - a—\/% - E[o] + Elerr]. Since the expectation of

sample standard deviation E[o] is difficult to compute, we estimate E[g] with \/E) ! | y?/n. When
0 < Ely;] < 1, the difference between E[g] and \/E> ", y?/n is no more than 1+ O(1/n) (see A.2 for
more details).

The approximate expected length of the confidence interval can thus be written into a function of A
and U and z

= I~ (1-U)22 1
E 2 E —9. X |2 RS A T U,

Then we only need to take maximum over all possible z to get the worst-case expected length. Suppose
the underlying cost set of the benchmark mechanism is {c(1),...,¢c(m), C} with ¢y < -+ < ¢y, then

11



the approximately optimal allocation rule can be formulated as follows:

n+1 n+1
o 1 (1 — Uz)z2 Z-, Zi - Ul
A* U* = 2. b . . i i=1 4
a,rg{gn[? zéI[loa’ﬁ /n + 1 n —|— 1 ; A(C(z)) + n + 1 ( )
n+1
st Y (1=Us)- Alee))d(cq) < B
i=1
(1 —=U.)A(c) is monotone non-increasing in ¢
0<A(c)<1, 0<U.<1, Ve

Lemma 5.1. Let L* be the value of the objective function (4) when A* and U* is used. ( L* is an
approzimation of the worst-case expected length of the confidence interval produced by (A*,U*). ) Then
the difference between L* and the worst-case expected length of the actual optimal confidence interval is
no more than 4 - %(1 +O0(1/n)).

The optimal solution of (4) is still difficult to solve. But if we replace the objective function by the
sum of the squares of its two terms

+1 2
4. i L nz (1- Uiz 4 Stz Us
n+1 n+1 pt Aleg) n+1
the optimal solution can be computed efficiently. The optimization problem with the new objective

function will give a 2-approximation of (4) because a? + b? < (a + b)? < 2(a? + b?) (see more details in
the last paragraph of D.3). The characterization of the optimal solution is presented in the next section.

5.3 Mechanism

When the cost distribution is not available, our approach still uses the observed costs to approximate
the underlying cost distribution, and at the same time, spends more money per data point in the earlier
stages of the mechanism. But at each round i, we solve a slightly different optimization problem, whose
objective function is the sum of the squares of the two terms in the objective function of (4). The new
objective function will give a good approximation of the original problem. The mechanism is presented
as Mechanism 2.

The characterization of the optimal solution U? and A is as follows. Note that the mechanism does
not use rule U? but uses 1 (Ui(c) > %) to purchase the i-th data point.

Theorem 5.1. The optimal solution of (5) is as follows:

. 0, Zf (bz(C(])) < H
Ui=4{ p€(0,1], if¢'(cyy) =H
1, if (bZ(C(j)) >H

) . A
Az(c(j)) = min {1, W}

where p is a constant in (0,1], and ¢'(c) is the regularized virtual cost function (Definition 4.2) when
the cost distribution is the uniform distribution over T;, and X\ is chosen such that the budget constraint
is satisfied with equality. The value of A and H can be computed using binary search over set T; within
time O(log |T;|).

By the above theorem, the optimal mechanism ignores all the data points with regularized virtual
costs above a threshold H, and purchases (with probability) all the data points below the threshold,
which is very intuitive. The characterization of the optimal A remains the same as the unbiased case.
We prove that the optimal H can be found by binary search because the objective function is a convex
function of Z;Zl U;, when A is optimized after U is decided. The complete proof is in D.1.

Theorem 5.2. Mechanism 2 (1) is truthful in expectation and individually rational; (2) satisfies the
budget constraint B = nB in expectation; (3) and the for any cost distribution {c1,...,cn}, the worst-
case expected length of the output confidence interval is no more than

8@-L*+%+o(%),
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Mechanism 2: Mechanism for confidence interval

Input confidence level §, total number of agents n and expected budget B = nB.

fori=1,... ndo
1) Define set T; = {c1,...,ci_1,C} for i > 2 and T; = {C} for i = 1. We use c(1), - -+ C(i) to
denote the elements in T; ordered from smallest to largest.
2) Let A? be the optimal solution of

, 2 1 22
[ R ]
Al U 7arg1,}1n(?zg[l(?)1(] e 2 A Z Uj - z; (5)

. B
8., Z (1 - Aley)b' (eq)) < 167\/71_/@

(1 — Uj) - A(c(j)) is monotone non-increasing in j
0< Aley) <1, 0<U; <1, V)

where 1(c) is the virtual cost function (Definition 3.1) when the cost distribution is the uniform
distribution over T;. The payment P’ is computed as in Lemma 3.2.

3) Ask agent 1 to report his cost ¢;. Let 1 (Ul( ) > 2) be the rule that ignores data with cost c if
Ui(e) > 2, and never ignores the data if U'(c) < 5. Then the mechanism purchases agent ¢’s data
z; using the extended allocation and payment rule of

<Ai,11 <Ui(c) > %) ,Pi>.

Let the collected data be ;.
end for
Output confidence interval

lzyz/n ’ Zyz/nJr +ﬁ'A]a

where 52 is the sample variance of y1,. .., yn, and [71- represents whether the ¢-th data point is
ignored or not.

where L* is the approrimate worst-case expected length of the benchmark defined in Lemma 5.1.

Corollary 5.1. The worst-case expected length of our mechanism’s output confidence interval is no more

than
2\/ﬁ+32\/ﬁ.a7+0 1
vn vn)’

where OPT is the worst-case expected length of the optimal confidence interval estimator.

8v10 - OPT +

Discussion: As we show in the previous section, L* is roughly ﬁ : (204,,, /E[%] ++n- IE[UC*]) If

the problem is non-trivial, we should have Ln dominated by L*.

The basic idea of the proof is the same as the unbiased case. We again define an intermediate
mechanism (A’,U’, P"). Tt is more complicated to compare the mechanisms because we have one more
bias term in the objective function. The complete proof can be found in D.3.

6 Discussions

In this work, we restrict our estimators to use only the collected data. When the data are correlated with
the costs, the data analyst may gradually learn the cost-data correlation based on the collected pairs.
This means that if a data holder arrives and reports his cost, the data analyst may form a prediction
for his data based on his reported cost and the learned cost-data correlation, even if the data is not

13



collected. This leads to an interesting open question: Can the final estimation be improved if the data
analyst makes use of such predicted data?

Allowing the data analyst to leverage on the cost-data correlation brings up an additional level of
challenge when the data holders care about the privacy of their data. Such data holders may hesitate to
report their costs, because reporting the cost itself reveals some information about his data. This makes
it more challenging to achieve truthfulness in design an online mechanism.

Another open problem is whether it is possible to do better than the worst-case analysis. The
optimality of our mechanism is based on the worst-case cost-data correlation. When the designer can
gradually learn the cost-data correlation, is it possible to adjust the purchasing mechanism accordingly
so that it achieves optimality with respect to the actual cost-data correlation?

More generally, it would be interesting to develop mechanisms for other more complicated statistical
estimation tasks, such as hypothesis testing.
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A Concentration Bounds

A.1 Empirical Bernstein’s Inequality
We show how to construct confidence interval using sample mean and sample variance of y;’s.

Lemma A.1 (Maurer and Pontil [2009]). Let X1, ..., X, be independent random variables taking their
values in [0, M]. Consider the sample expectation [i and sample variance > defined respectively by
p=>,X;/nand5? =3%" | (X; —[)?/(n—1). Then with probability at least 1 — 7,

i — Eji 21In( 4/7 7M1n 4/7
i —Ef| <

As we proved in the main text, y; = Al(c Joe o Yn = Tn(en become independent when conditioning

on a realization of arriving sequence (€, z), and when the estlmator is unbiased, for any realization (¢, z),
E[> ", vi/n] =", zi/n = E[z]. Therefore by the above lemma, with probability at least 1 — 1,

l<3 /2 1In( 4/7 7M1n 4/7

where M = max; y;. Therefore the following interval is a confidence interval of E[z] with confidence level

Y
S Sm Swi g
where a, = /2In(4/7v) + %7%”. Notice that the second term in «, %}fa/v) is not a constant.

But since we estimate 52 with >~ y?/n (see Section 5.2) when computing the optimal confidence interval

mechanism,
M max; y; max; Y;

\/ﬁ'a:\/ﬁ'\/zz 191 \/Zz 1%

we can just assume that . is a constant in the range of \/21In(4/7v) to \/2In(4/v) + w when
solving the optimization problem.

A.2 Estimation of Sample Standard Deviation

We show that when 0 < Ely;] < 1, the difference between E[g] and /E) ., y?/n is no more than
1+ O(1/n), where 62 is the sample variance of y1, . .., Yn.

We first show that the difference between E[6?] and * - > | E[y?] is no more than 1. Because y;’s
are independent conditioned on cq,...,c,,

E[6%|c1,...,ca] =E Z(yl—z:yz/n> /(n—l)}cl,...,cn

i=1 i=1

:nil-E ny—%ZyzZyan(ZyZ/n) ’cl,..., Cn
=1 i=1 =1

1 [ 1 (< ?
P . 2__ .
= E ;_1 y; - <i§_1yl> ‘cl,...,cn

R S ot

Cly...,C
i=1 j#i
1 n
ZE'ZE[% ZZEyzlcla'--;Cn]E[yj|C1,...,Cn]
=1 i=1 j#i
€ l-zn:ﬂ«:[y?]f1 l.Z]E[yﬂ
[ ' L on i=1 '
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Therefore

i=1

for all ¢q,...,c,. It has been shown (e.g. in Gurland and Tripathi [1971]) that the difference between
E[o|c1, ..., cn] and y/E[62|cy,. .., c,] decreases as sample size grows, dropping off as O(1/n). Therefore

D _Elyf] —1-0(1/n) <Eff] <

The difference between E[G] and v/E Y. ; y?/n is no more than 1+ O(1/n).

%

B Truthfulness and Virtual Cost Function

B.1 Extended Allocation Rule and Payment Rule

We apply the well-known Myerson’s lemma to prove Lemma 3.4.

Lemma B.1 (Myerson and Satterthwaite [1983]). A survey mechanism (A(c), P(c)) defined on c € [0, C)|
is truthful and pays 0 when A(c) = 0 if and only if

e A(c) is a monotone non-increasing function of c.
C
e Plc)=c+ ﬁ [ Av) do.

Let (A9, P%) be a truthful and individually rational survey mechanism defined on a discrete cost set
{c1,...,¢cm} with ¢; < -+ < ¢p,. Then when we use the extended allocation rule and payment rule

Ale) = A%([c]), P(c) = PY([c]), for all ¢ € [0, ¢p].

The allocation rule A(c) must be monotone non-increasing because A% must be monotone non-increasing.
Suppose [¢] = ¢;, then

P(c) = PY(c;) =ci + ﬁ Z Alcj)(ej —¢j-1)
Y j=it1
=e+ o=+ g5 D Ale)es—em)
j=i+1
=c+ (¢; —¢)+ ﬁ Z /Cj A(cj) dv
j=it1 71

1 ém
=c+ m . /c A(v) dv,

which is just the payment rule that satisfies the second condition of the Myerson’s lemma. Therefore
(A(c), P(c)) is truthful. Tt is also individually rational because we always have P(c) > c.

B.2 Virtual Cost Function
The following results on the virtual cost function (Definition 3.1) will be used in our proofs.

Lemma B.2. Let ¢(c) be the virtual cost function of the discrete uniform distribution over set T =
{c1,...,cn}. Let T; be an arbitrary subset of T with length i and let 1*(c) be the virtual cost function of
the discrete uniform distribution over set T;. Then for any non-increasing allocation rule A(c),

Do AlW(e) <Y Al (o).

ceT; ceT
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Proof. Without loss of generality, assume ¢; < --- < ¢, and T; = {cp,, ..., ¢p, }. Then according to the
definition of 9 (c) and 1¢(c), for all 1 < k < i,

Pk Pk
Yool = > Gre—(G-1e¢a
Jj=pr-1+1 J=pr-1+1

:(pk _pk—l) * Cpy, + Dk—1 - (C;Dk - Cpk—l)
Zcpk + (k - 1)(C;Dk - Cpk—l)

:wi (Cpk )

since pr — pr—1 > 1 and pp—1 > k — 1.
For all ¢; € T, define [¢;] to be the smallest cost in T; that is greater than or equal to c;.

Z A(C)W (C) = Z A(Cpk )W (Cpk)
k=1

ceT;
i Pk

<Y Al | DD vley)
k=1 J=pr—1+1

=> " A([e;)v(c))
j=1

<N Ale)v(ey)
j=1

since A is monotone non-increasing, O

C Proofs for Optimal Unbiased Estimator

In this section, we give the proofs for the optimal online unbiased estimator. In Section C.1, we charac-
terize the optimal A’ by the use of the Lagrangian function and the KKT conditions. Since the objective
function of our optimization problem is convex, we prove the optimality by constructing the dual vari-
ables that satisfy the KKT conditions with our primal solution. This is based on some properites of the
regularized virtual cost function ¢, which is presented at the beginning of the section. In Section C.2,
we prove some lemmas that will be used in Section C.3 when we show the budget feasibility and the
performance of our online mechanism.

C.1 Proof of Theorem 4.1

We first prove the following properties of the regularized virtual cost function ¢ when compared with
the non-regularized virtual cost function .

Lemma C.1. For a discrete uniform distribution supported on {c1,...,cm} with ¢
be its virtual cost function and ¢ be the reqularized virtual cost function. For any 1

the set of all the j that has ¢(c;) = ¢(c;i). Then

s < ey Let @

<
< i< m, let I; be

1. ¢(c) is a non-decreasing function of c.
2. Zje[i ¢(Cj) = Z_je]i 7/’(%’)'
3.3y dley) < Y5y w(ey) for all 1< i <m. If ¢lci) # Bleinn) then 35—y dles) = iy ¥lej)

Proof. Define Avg(i, k) as the average of (i), ..., ¥(k), i.e., Avg(i, k) = k+m Zf:l 1(c;j). Recall that
the definition of ¢(c;) is as follows

¢(Cl) = max{z//(cl), s awl(ci)}’ (6)

' (¢;) = Avg(i, R;),
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where R; is the k to the right of i that minimizes Avg(i, k), i.e.,

R; = in Avg(i, k).
arg min vg(i, k)

If there are multiple £’s that achieve the minimum, without loss of generality let R; be the maximum of
them.
We prove the following properties of the intervals [i, R;].

Claim C.1. The intervals [1, R1],[2, Ra), . .., [m, Ry] will not partially intersect, i.e., ifi < j and j < R;
then R; < R;.

Proof. We prove by contradiction. Suppose i < j < R; < R;, then since

Avg(j, R;) < Avg(i, j)
Avg(j, R;) > Avg(j, R;)

it satisfies that
A’Ug(’t', RZ) > A’Ug(l, Rj)a

which contradicts the definition of R;. [l

Claim C.2. For any j that is contained in [i, R;], it always holds that Avg(j, R;) < Avg(i, R;), or
equivalently ¥’ (c;) < ¢'(c;).

Proof. First by Claim C.1, [, R;] C [¢, R;]. Then the claim can also be proved by contradiction. Assume

there exists ¢ < j < R; < R; that has Avg(j, R;) > Avg(i, R;). Then since R; minimizes the average
Avg(j, k) over all k > j, we must also have Avg(j, R;) > Avg(i, R;). But Avg(j, R;) > Avg(i, R;) will
immediately lead to Avg(i,j — 1) < Avg(i, R;), as

Avg(i,j — 1) % (j — i) + Avg(j, Ri) * (Ri —j + 1)
=Avg(i, R;) x (j — i) + Avg(i, R;) * (R; — j + 1),
which is contradictory to the definition of R; that R; minimizes Avg(i, k) over all k > 1. O

Claim C.3. If an interval [i, R;] is not contained in any other intervals. Then for any j < i, it holds
that Avg(j, R;j) < Avg(i, R;), or equivalently '(j) < ¢'(3).

Proof. By Claim C.1, R; < i. We then prove by induction. First for j =14 — 1, by the definition of R;,
we must have Avg(j, R;) = Avg(j, j) < Avg(i, R;), or equivalently ¢’(j) < v'(¢). Now suppose the claim
holds for any j € [k+ 1,7 — 1], then for j = k, it must hold that Avg(j, R;) < ¢'(R; +1) < 4'(i). Again
this is because R; minimizes Avg(j, R;). O

With the three results above, our lemma can be proved as follows:
(1):  According to definition (6), ¢ is non-decreasing.

(2): Consider a fixed i, let L be the minimal j that has R; > 4, in other words let [L, Ry] be the
maximal interval that contains . Then by Claim C.2 and Claim C.3,

¢(c;) = max{y'(c1),..., 9" (ci)} = ' (er) = Avg(L, Ryr).
The same holds for any other i € [L, Ry]. By Claim C.3, for any j < L,
¢(c;) = max{y'(c1), ..., ¥'(¢;)} < ¢'(er).

And similarly for any j > Rp, ¢'(c;) > ¢'(cr). Therefore I; = {L,...,Rr} and > ; ;. é(c;) =
A’Ug(L,RL) * (RL — L+ 1) = Zjeh ’L/J(Cj).
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(3): Consider a fixed i, let I; = {L,..., Ry} as proved in (2). If ¢(c;) # ¢(cit1), then i must be the
right end point of I;. Then by summing over all I; to the left of I;, we get the equality Z;Zl o(cj) =

Z;Zl (c;). Otherwise we have Z;;ll o(cj) = Z;;ll ¥(cj) and Z;":L ¥(cj) = Avg(L,i)* (1 — L+ 1) >
Avg(L,RL)*(ifLJrl):Z;:L o(cj). O

Now we prove the theorem: the solution of

A *argmm max Z

z€|0, 1]1 A C(k)

N

; B
s.t. ZA(C(k))W(C(k)) <3
k=1

- n/
Alewy) = A(C(k+1)) vk
0< A(C(k)) vk

is Ai(c(j)) = min {1, \/ﬁ} for all 1 < j <4, and A is chosen such that the budget constraint is
satisfied with equality

i ' B
Ayt (ee) =
;:1: (e (e() N

where 1¢ and ¢’ are the non-regularized and regularized virtual cost function when the underlying cost
distribution is the uniform distribution over T;. The value of A can be computed using binary search.

Proof. For simplicity, we write Ay = A(c(y)) and A}, = A’(cq,). Notice that the objective function is
an increasing function of z; for all j and thus the maximum is obtained when z; = 1 for all j. Then the

=1 j In the region A; > 0 for all j, the
objective function is convex. Therefore the KKT conditions are necessary and sufficient for optimality
of the primal and dual variables (see Boyd and Vandenberghe [2004]). The Lagrangian function of the

optimization problem is

objective function of our minimization problem becomes Z

‘1
L(Aagaﬂ-anoanl) :Z A_
—1 ‘Y

B

+¢ At(e) — ——=
; ! ! 4+/n/i
i—1

+ > mi(Ajen — Aj)
j=1

+y A+ Y mi(A
j=1 j=1

We prove that the optimal primal variables are A%(c) = min {1, \/%—(C)}, where \ is chosen such that
the budget constraint is satisfied with equality, and the optimal dual variables are

£= 3

T =mi—1+ & (¥ (cy)) — ¢ (c(;))) , (Here we assume mo = 0.)

n; =0 for all j,
ol = { 1—&-¢'(cy), i & 9'(cy)) < L,

J 7] 0, otherwise.
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Primal feasibility: We first prove the primal feasibility.

1. By the definition of A?, the budget constraint is satisfied with equality.

2. By (1) in Lemma C.1, ¢*(c) is a non-decreasing function of c¢. Then A*(c) = min {1, A } is a
non-increasing function.

3. It is easy to verify that 0 < A%(c) < 1.

Dual feasibility: By (3) in Lemma C.1, it is easy to verify that all of the dual variables greater or
equal to 0.

Stationarity: The partial derivative of L(A,&,m,n° n') with respect to each A; is
aL(Aagvnoanl) 1 ) 0 1
———" == — + £ (cy)) + i1 — T 1 0
aAj A? (4) J J J 7
=—max {1, £ ¢'(c(j))} + &Y' (c)) + o1 — 75+
==& ¢'(cy)) + &V (ey)) +mi—1 — 7

By the definition of 7, we have the above quantity equal to 0.

Complementary slackness:
1. The budget constraint in the primal is satisfied with equality.

2. For all A} # A%, |, we must have ¢*(c(;)) # ¢'(c(j+1)). Then by (3) in Lemma C.1, 7; = 0. Thus
mj(A% — A%) =0 for all 5.

3. We have 77]0 = 0 for all j and 77]1 = 0 for all Aé = < 1.

1
VED(ey)

As we have proved, the optimal allocation rule is monotone non-increasing. Since the sum Z;Zl Aéwi (cy)
is an increasing function of A\, we can perform binary search to find the right value of A such that the

sum equals the budget. Moreover, we can reduce the search space to |T;| by searching the critical point
¢* € T; that has —2— > 1 for ¢ < ¢* and —2— < 1 for ¢ > ¢*.

Vo' (e) #'(e)

This completes the proof of Lemma 4.1. O

C.2 Optimal Mechanism for Adjacent Cost Sets

In this section, we show that the optimal solution A will not change a lot if we slightly modify the
optimization problem (7), more specifically, if the set of costs contains one more element.

We first show that if the set of costs contains one more element, the regularized virtual costs function
¢(c) of the uniform distribution over this set will change no more than a factor of 2, which is mainly
because the virtual costs ¥(c¢;) =i -¢; — (i — 1)¢;—1 change at most by a factor of 2.

Lemma C.2. Let Ty and Ty be two costs sets that only differ in one element c,. More specifically,
suppose To = {c1,...,¢cm} with c; < -+ < ¢y and Ty = {c1, ..+, Ch—1,Cht1y---sCm}- Let ¢1(c) be the
regularized virtual cost function (Definition 4.2) of the discrete uniform distribution over Ty and let ¢o(c)

be the reqularized virtual cost function of the discrete uniform distribution over Ts. Then it holds that
for all i # k,

% p1(ci) < pa(ci) <2 ().

Proof. According to Definition 3.1, the (non-regularized) virtual costs are

Yi(er) =c1, ooy Pr(ek—1) = (k= 1)eg—1 — (b — 2)cp—2,
P1(cryr) =k - o1 — (B — 1)cg—1,
Pi(ckra) = (k+ Dewra —k-chpr, oo, 01(C)=i-C = (i —1)es
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and

Pa(cr) =c1, -.oy Ya(cp—1) = (k= 1)cg—1 — (kK — 2)cp—2,
Pa(er) =k-cx — (b —1)cp—1, Ya(cry1) = (K +1) - crp1 — k- cr,
Po(chya) = (k+2)ckpa — (k+1) - crpr, -, ¥2(C) = (i4+1)-C—i-¢

(i) For i,j < k, Avgy(i,j) = Avga(i, J).
(ii) For Avgs(i,7) that has ¢ < k and j = k, we have

Avgy (i, k — 1) — Avga (i, k) = (k—1)- Ck;f_i (1 —1)cia _ k - Ckk—i(i :L 11)Ci—1
_ (’L — 1)(Ck — Ci—l)
(k—d)(k—i+1)
(ifl)(ckfcifl) ) 1
k—i+1 k—1
€10, Avgs (i, k)]

Thus % CAvgi (i, k — 1) < Avga(i, k) < Avgy (i, k — 1).

(iii) ?(ilri < kand j > k + 1, we have Avgi(i,j) = U_l)cj;# and Avgs(i,j) = Mﬁ%
en

(—D(j—cim1) (=D —ci) 1
G-0G—i+t1) = j-i Joitd

1
A’Ugl(iuj) - AUgQ(ZaJ) = € |:0aAUgl(Zaj) ’ §:| :
Thus %Avgl(laj) < Ang(ZaJ) < Avgl(%])

(iv) For i,7 > k + 2, we have Avg;(i,j) = G=dej=li=eimr 4pq Avgs(i,j) = fei=(-beint ey

Jit1 P

.o .o Cj —Ci—1 Cy (]*1)0*(7,*2)01,1 L.
A A =2 J__ < J 0,A .
ng(Zaj) Ugl(lv.]) j_l+1 = j_l+1 = _]-Z—f—l E[ ) ’Ugl('lz,j)]

Thus Avgy(i,7) < Avga(i,j) < 2 Avgy (i, 7).
According to the above four properties of the Avg function and the definition of ¥’'(¢;), we have
5 W) < whler) < 204 (c0), for i <k and i > k42 3)
To compare ] (c;) and ¥4 (c;) for the case i = k + 1, we prove the follows
e max{v;(ck), P5(ckr1)} > %wi (ck+1) : Observe that
Va(cr) + Y2(ck1) = (k+ L)epgr — (b = Dew—1 = k- cppr — (B — 1)ew—1 = Y1(c1)-

Therefore Avgs(k,k + 1) > 2 Avgy(k + 1,k + 1) and at least one of the 13(ci) and t2(c41) must
be no less than 1 (cky1)/2. If ¥a(ck) > ¥1(crpt1)/2, then

Avga(k, k) > %

Avga(k, k+1) >

Avgi(k+1,k+1)

Avgi(k+1,k+1)

N | —

In addition, by (iv) we have Avga(k +2,7) > Avgr(k+ 2,7) for all j > k + 2, so

. 1 )
Avga(k,j) > §Av91(k +1,7)

for all j > k + 2. Then
b(ex) = min Avga(k, /) 2 5 min Avgu(k+1,5) = 504 (cesn)
va(ek) = min Avga(k, j) 2 5 min Avg: 7)) = 5¥1(Crpr)-
Similarly for the other case 12 (ckr1) > 11 (ckr1)/2 we can get ¥h(crt1) > 394 (chr1).
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e max{¥}(ck), P, (ckt1)} < 240) (ck41) : Observe that

Va(cr) + ¥2(ck1) =(k +1) - e — (k= 1)ex—1
=Ck+1 t+ (k ©Ch41 — (k — 1)Ck_1)
<2(k - cpe1 — (B —1)cp—1)
=291 (Ch41)-

Thus both 92 (ck) and 12 (cg41) is no greater than 211 (cx11). Furthermore by (iv), Avga(k+2,7) <
2Avgy(k 4+ 2,7) for all j > k + 2, it holds that

Avga(k,j) < 24Avg1(k+1,5), Avg2(k+1,5) <2Avg1(k+1,7)

for all j > k+ 1. Thus

Yy(cr) = IJHZIE Avga(k,j) < jg}ciiﬂ 2Avg1(k+1,7) = 201 (Cet1)

Yy(che1) = jgggl Avga(k +1,7) < jrglljgl 24vg1(k +1,7) = 24 (cks1)

Combining the above two inequalities with (8),
Pa(ci) = maxiy(c;) < 2-maxihy(e;) = 2¢1 (i), for all i # k
I 1<

$1(ci) = max )y (cj) < 2-maxpy(c;) = 2¢a(c;), for all i # k
J<i J<i

which completes the first part of the proof. O
Based on the above analysis, we further prove the follows.

Lemma C.3. Let Ty and T» be two costs sets that have To = {c1,...,¢m} with ¢; < -+ < ¢y and
Ty ={c1y s Ch—1,Chit1,---sCm}. Let ¢1(c) be the reqularized virtual cost function (Definition 4.2) of
the discrete uniform distribution over Ty and let ¢o(c) be the regularized virtual cost function of the
discrete uniform distribution over Ty. Then it holds that for all number K > 0,

Z min {qﬁl(c),K qﬁl(c)} < Z min{2q§2(c),K 2¢2(c)}

c€ETy cE€Ty
Z min {qﬁg(c),K qbg(c)} < Z min {2¢1(c),2K qbl(c)} .

Proof. By Lemma C.2, for i # k, ¢1(c;) < 2¢2(c;). Thus the first inequality holds as follows,

Z min{d)l(c),K ¢1(C)} < Z min{2¢)2(c),K 2¢2(c)}.

ceTy ceTz

By Lemma C.2, for i # k, ¢2(c;) < 2¢1(c¢;). In addition, we have

Pa(er) +a(cks1) =(k + 1)cpyr — (B — 1)cp—1
=Cp+1+ k- cpp1 — (K —1)cp—
<2(k-cpp1 — (k= 1)eg-1)
=2¢1(Ck+1)-

By our definition of regularized virtual cost function, it always holds that
Z min {qﬁg(c),K qbg(c)} < Z min {2¢1(c),2K qbl(c)} .
ceT> ceTy

The following lemma will be used in our proof of the main theorem.
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Lemma C.4. Let Ty and Ty be two costs sets that have To = {c1,...,Cky...,cm} withcr < -+ < ¢
and Ty = {c1,...,Ch1,Chi1,---,Cm}. Let B be an arbitrary non-negative number. We use MOFT (T, B)
to represent the optimal unbiased estimator mechanism defined in (3), when the cost set is T and the
budget is B. Then define

o (A1, P) = MOPT(Ty, B/2), i.c., (A1, P) is the optimal mechanism when the cost set is T and
the budget is B/2.

o (Ag, Py) = MOPT(Ty, B), i.e., (A, P2) is the optimal mechanism when the cost set is Ty and the
budget is B.

o (A3, P3) = MOPT(Ty B/4), i.e., (A3, P3) is the optimal mechanism when the cost set is Ty and
the budget is B/4.

Then we have

Ai(ci) < As(cy) foralli >k +1,  Ai(cpt1)Pri(crsr) < Ao(crsr)Po(crtr),
Al(Ci) Z Ag(Ci) for all 7 Z k? + 1, A1 (Ck+1)P1 (Ck-i-l) Z A3(Ck+1)P3(Ck+1).

Proof. Let ¢1(c) be the regularized virtual cost function (Definition 4.2) of the discrete uniform distri-
bution over T and let ¢o(c) be the regularized virtual cost function of the discrete uniform distribution
over T5. Then according to Lemma 4.1,

s
A;(c) =min« 1, !
() {1 ¢z‘(0>}

and the value of A1, Ao and A3 should satisfy

Z min{qbl(c),)\“/qﬁl(c)} = B/2,

Z min {qbg(c),AQ\/qﬁg(c)} = B,
> min {6a(0), Aa/32(c) | = B/4,

We first compare A; and As. By the first inequality of Lemma C.3,
> min{61(c), V2 2/61(0)} < D min{262(c), V2 2s/202(0)} <2 B/4 = B/2.
ceTy c€Ty

Because the value of \; is optimal when the cost set is T} and the budget is B/2, it should satisfy that
A1 > V2 - A3, And since ¢1(c;) < 2¢2(c;) for all i > k + 1 according to Lemma C.2, we get

. A3 . /\1/\/§
As(c;)) =min{ 1, —— 5 <min{ 1, ——— 3 = A1(¢;
sted) {1 ¢2(Cz')}< {1 ¢1(Ci)/2} )

for all i > k + 1. Similarly we have

. A1 . /\2/\/5
Ai(¢;) =min{ 1, ———  <min{ 1, ——— 3 = As(¢;
= { mm} : { \/¢2(ci)/2} (e

for all 4 > k + 1.
The expected payment of the two allocation rules can be compared according to the definition in
Lemma 3.2,

C
Av(crt1)Pr(crs1) =A1(Chy1)Cht1 +/ Aq(v)dv

Ck+1

c
<As(Cpt1)Ch1 +/ As(v) dv = As(cpr1)Pa(crt1)-

Ck+41

Here we use integrals to equivalently represent the payment rule as in Lemma B.1. O
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C.3 Proof of Theorem 4.2

We prove that when we use the following allocation rule

i 2

A* =argmin max
& A ze[O,l]ik:1 A(C(k))

t. A Pt < .
s ; (e (ery) NG

Alery) = Alerr)), vk
)

at round i and output Horvitz-Thompson Estimator § = L 3"y = 15" | ﬁ at last, the mech-
anism (1) is truthful and individually rational; (2) the expected total spending is no more than B; (3)
for any cost distribution {cy,...,c,}, the worst-case variance of the final estimator S is no more than
roughly 16 times the benchmark defined in Definition 4.1. The worst case variance of the benchmark
equals

1 n+1 22 n+1
"(A*) = —— mi Lo — 2 1
Var™(47) (n+1)2 H}A}nzg[loé}ﬁn ; A(c;) ;ZZ (10)
n+1

s.t. Z A(Cz)’lﬂ(cl) S B

A(CZ) Z A(Ci+1)7 V1 S ) S n
0<A(e) <1, Ve

where we let ¢,,1 = C for notation simplicity.

To prove budget feasibility and the performance of the mechanism, we construct an intermediate
mechanism (A, P’) at each step i. This intermediate mechanism (A’, P’) is basically the same as (A?, P?),
but is “one-step-ahead”. Loosely speaking, (A’, P’) is the optimal mechanism when the same amount of
budget is assigned at round 4, but knows an additional piece of information, the value of ¢;, beforehand.
We compare (A’, P’) with (A%, P?) based on the results in Section C.2.

Notations: Before the proof, we define some notations. We use E[X|{c1,...,cx}] to represent the
conditional expectation of random variable X conditioning on the event that the set of the first £ data
holders’ costs is {c1,...,cx}. We use E[X|cq,...,ck] to represent the conditional expectation of random
variable X given that the sequence of the first k data holders’ costs is ¢y, ..., cg, i.e., the first data holder
has cost ¢, the second has ¢y and so on so forth. Notations are the same for the conditional variance
Var(X|{c1,...,cx}) and Var(X|eq,...,cx). Unless otherwise stated, the randomness is taken over the
random arriving order and the internal randomness of the mechanism.

C.3.1 Truthfulness and Individual Rationality

It is easy to see that the extended allocation rule and payment rule of a truthful mechanism is still
truthful. The payment rule also guarantees individual rationality as P*(c) is always greater or equal to
¢ by definition.

C.3.2 Expected Budget Feasibility

Suppose the costs of the population is {c1,...,¢,}. The total expected spending of the mechanism is
S E[A%(¢;) - Pi(c;)]. Consider a fixed round 4. Let S; be the set of first i — 1 agents’ costs and define
T; = S; U{C}. Similarly let S;1; be the set of first i agents’ costs and define T;41 = S;+1 U {C}. Then
conditioning on the event that the set of first i — 1 costs is 9;, the allocation rule A’ can be uniquely
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decided, which is the solution of

i . 1
A" =mn > A(c)
ceT;

) B
s.t. Ac)y'(c) < .
(;Ti 4+/n/i

A is monotone non-increasing
0<A(e) <1, VeeT;

Notice that ¢; ¢ T;, so A(c¢;) is not a decision variable of the mathematical program defined above. The
value of A(c;) is decided by Definition 3.2. Let c(yy,...,c(;) be the first ¢ costs in non-decreasing order
and let c41) = C. Suppose ¢; is the k-th smallest cost, i.e., ¢; = ¢(k)- Then according to Definition 3.2,

A'(ci) = Acpy) = A'(cprrn))

where c(;41) belongs to T;. Now consider the following allocation rule A

A is monotone non-increasing
OSA(C)SL VCGE+1

Since T}, T;41 only differ by one element ¢;, and A’ uses twice the budget of A?, according to Lemma C.4,

A'(ci) P (cs) =A (cter)) P (corn)) < A (corr)) P (cor))-

Now assume the set of the first i costs is S;+1. When the data holders come in random order, ¢; is a
random element chosen from S; ;1. Therefore ¢;’s rank k should be uniformly distributed over {1,...,},
and thus

E[A"(¢;) - P*(ci)|Sis1] <E[A'(c(es1)) P (Cies))|Siga]
1 7
7

Al(ciipn) P (cian)

=1

— s

< B.

Wn-i

Therefore the total spending of the mechanism is bounded as

Z]E[Ai(q) - Pi(¢;)] < Z 2\/]% < B,

since Y., % <2y/n.

C.3.3 Competitive Analysis

We first show that the variance of the final estimator S = %2?21 y; can be upper bounded by the sum
of the variances “occur at each round”.

Lemma C.5. For a population with costs {c1,...,c,} and any cost-data distribution D that is consistent
with the costs, the variance of the output estimator of Mechanism 1 can be upper bounded as

1 n
Var(S) < — > E[y7],
i=1
where y; = % 18 the re-weighted data.
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Proof. According to the law of total variance,
Var(S) = E [Var(S|cy, ..., cn)] + Var (E[S|e1, ..., enl),

Since the estimator is always unbiased, conditional mean E[S|c1, ..., ¢,] always equals to the mean of n
data points Y ., z;/n for any order ci,...,¢,. Because the variance of a constant is zero, the second
term Var (E[S|c1, ..., ¢,]) equals 0. Therefore

Var(S) = E [Var(S|c1,...,¢n)] -

Notice that conditioning on the cost sequence cy, . . ., ¢,, the allocation rules used at each round A!, ... A"
will be fixed. Thus y1,...,y, become independent. So we have
Cly. -y Cn>‘|

1 n
E - Var <Zyz
i=1
Cl,y. - -;Cn)

1 n
=3 -EZVar (yl
i=1

E [Var(S|c1,...,cn)] =E

1 n
< — -EZE[yﬂcl,...,cn}
i=1
1 n
=3 > E[y7]
i=1
O
Let y; = % be the re-weighted observed data at round :. The following lemma compares the
expectation E[y?] with the worst-case variance of A*.
Lemma C.6. For any distribution D that is consistent with the cost distribution {ci,...,cn}, when the

data holders come in random order, Mechanism 1 has

B < S (v () + 14 - A%)) .

Proof. We fix a time step 4. Let S; be the set of first i — 1 agents’ costs and define T; = S; U {C}. And
similarly let S;;+1 be the set of first ¢ agents’ costs and define T;11 = S;4+1 U {6} We first consider a
fixed S;4+1 and compare E[y?|S;11] with Var*(A*), where the randomness of E[y?|S;11] is taken over the
random arriving order and the internal randomness of the mechanism. We will define an intermediate
allocation rule A’ and compare it with both A% and A*.

Conditioning on the event that the set of first i — 1 costs is S;, the allocation rule A’ can be uniquely
decided, which is the solution of

i . 1
A" =mn > A(c)
ceT;

. B
s.t. Alc)y'(c) < ,
(;Ti 4/n/i

A is monotone non-increasing

0<A(c) <1, VeeT;

Notice that agent i’s cost ¢; ¢ T;, so A(c;) is not a decision variable of the mathematical program
defined above. The value of A(c;) is decided by Definition 3.2. Let c(1),...,cq) be the first i costs in

non-decreasing order and let c(; 1) = C'. Suppose ¢; is the k-th smallest cost, i.e., ¢; = (k- Then

Al(e;) = A(cry) = A1)
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where ¢(;11) belongs to T;. Now consider the following allocation rule A’

7H11H Z A

c€Tj41
B
A ’L/JH_I
Z < SV

A is monotone non-increasing
OSA(C)SL VCGE+1

Comparing A’ with A*: We first compare A’ with A* by proving that . \’/4*—/. is a feasible solution of
n/t

the mathematical program that defines A’. Let ¢(c) be the virtual cost function when the underlying
cost distribution is the uniform distribution over T' = {¢1, ..., ¢, C'}. Then according to definition, the

benchmark A* satisfies the constraint ) ., A*(c)y(c) < B. Combine this with Lemma B.2,

A* 1 A
E;s n/i v (C)SCGTE; n/fi Z/}(C)st/n/i'

is a feasible solution of the mathematical program that defines A’. Then since A’ is the

A%
84/n/i

optimal solution, we have

Therefore

(11)

Comparing A’ with A’: Now we compare A’(¢;) = A'(¢(r+1)) With A’(¢(r41)). Since T; and Tiyq
only differs in one element ¢; = c(;) and A’ uses half of the budget of A?, according to Lemma C.4,

Al(ewen) = A'(cp))- (12)

for any set of costs S;y1 of first ¢ agents.

Conditioning on the event that the set of the first ¢ costs is S;y+1, when the data holders come in
random order, ¢; is a random element chosen from S; 1 = {c(l), e c(i)}. Therefore ¢;’s rank k should
be uniformly distributed over {1,...,i}. Together with (12), we have

1 1
E[21S; SE[%& ]gE{i ]:
[y; [Sit] Ai(c(rn)) +1 A(Carn) Z Al( C(k-i—l)
Then by equation (11),
1 1 8~ n/i
R S i N ) e
(k+1) €T;+ ce€T;11

Now we are ready to compute E[y?] by averaging E[yi2|5i+1] over random subset S;; (when the

agents come in random order, S;11 is a random subset of {ci,...,¢,} with length 7).
Ely;] :ESME[yﬂSiH]
/z 1
E51+1 -
c€Tyi41 4 (C)
8-\/nfi 1 1
=———Eg, — + —
¢ o _cESi+1 A (C) A*(C)

(1 &1 1 1
=8 ”/’<E'Zm+?/x*(€)>
<8- \/—(n+1 Var*(A*)—i—l—i—%- = )
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Combining the two lemmas, for any joint distribution of cost and data, the variance of the output
estimator of our mechanism satisfies

Var(s) <= 3 E[y?)

1 8-yn [(n+1)? o ik 1 1
S_Z ( - - Var (A)-f—l“rg'A*(a))

BV ((nt1)? e 1, 8vn 1 1
-2 — -V (A)+1) i:1\/g+ O Zi\/i'
<16 - <(n +21)2Var*(A*)+ L + % : A*%))

since Y1 | % <2ynand >, ﬁ <2
This completes the proof of Theorem 4.2.

D Proofs for Optimal Confidence Interval

We then give the proofs for the optimal online confidence interval estimator. In Section D.1, we give the
characterization of the optimal solution (A% U? P%) and show how to compute it. In Section D.2, we
prove some lemmas that will be used to compare our mechanism with the benchmark in Section D.3.

D.1 Proof of Theorem 5.1
We prove that the optimal solution of

2

a? 1 1-U,; 1
2.z J =S U; 13
n 14 A(C(j)) + 1 Z J ( )

J=1

A, U' =argmin  4-
AU

B
4y/nfi
(1 =Uj) - A(c(j)) is monotone non-increasing in j
OSA(C(j))Sl, 0<U; <1, Vj

st Z(l —Uj) - Alcy)¥' (e()) <

is as follows

' 0, if Qﬁz:(C(j)) <H
U]l-: pE(O,l], lfqﬁZ(C(])):H
1, if QZ/)Z(C(j)) > H

_ . A
Az(c(j)) = min {1, m}
J

A is chosen such that Z;Zl(l —Uj) - A(c(j))¥'(c(j)) = —2= and the optimal value of A and H can be

4y/n/i
found using binary search.
The following lemma proves that the optimal solution should have U’ as described above for some
H, and A should be non-increasing.

Lemma D.1. Let U® and A* be the optimal solution of (13), then U; should be non-decreasing in j and
A(c;)) should be non-increasing in j. In addition, if A'(c(j)) # A'(c(j+1)), then at least one of U} and

U;H should be equal to 0 or 1.

Proof. We first prove the monotonicity of U’ and A?. Let U’ and A’ be a feasible solution. Suppose U’
decreases at some position j, i.e., U J’ >U J’ 4+1- We prove that that U’ cannot be optimal because it is not
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the optimal solution of the following optimization problem (for simplicity we write A; = A(c(;)))-

in (1-Uj) n (1 —Uj41) (14)
Aj, Ajr1,U5,U 4 Aj Ajn
s.t. (1 — Uj)Aj = (1 — UJI)A/(C(]))
(1- Uj+1)Aj+1 =(1- U§+1>AI(C(J‘+1))
(1=Uj)+ A =Ujr1) = (1= Uj) + (1 = Ujyy)
0<Uj,Uj1,45,Aj41 < 1.

It is easy to see that a feasible solution of the above problem is also a feasible solution of (13). And a
strictly better solution than A’, U’ in the above problem will give a strictly better solution of (13). If
we write the right-hand constant of the three equalities as Dy, D2, D3 and let O; = 1 — U}, then the
objective function can be represented as a single variable function of O,

(1-0;) n (1-U) O n (D3 *OJ)Q_

Aj Aj+1 Dy D,
'Its derivative with respect to O; equals QD—Olj — Q(D;ﬁzoj). The value of this derivative at point O; = 1-U]
is
S 0-v) a-um) )
(1 =UNA(cjy)  (L=Uj)A (cijpny)

Since A’, U’ is a feasible solution, it should satisfy the constraint (1 —UZ)A’(c(;j)) > (1 —Uj 1) A (c(jq1))-
Therefore if we have 1 > U]{ > U]{ 41 = 0, this derivative will be negative, which means that the objective
value can be decreased by slightly decrease U; (it will still be feasible because U; > Uj,; > 0). Therefore
the optimal U? must be monotone non-decreasing. The monotonicity of A* can be proved by the same
arguments, that is, to assume that A;- < A;- 1 for some j and show that it cannot be the optimal solution
of the above optimization problem.

The same approach can be used to prove that the second part. Let U’ and A’ be an optimal solution
with A'(c(j)) # A'(c(jy1)) and UZ, U, € (0,1) for some j. We again consider the optimization (14).
Again the value of the derivative at point O; =1 — U7 is

9 ( 1 1 )
Alley)  Alegn) /-
Since an optimal allocation rule must be non-increasing, the value of this derivative is negative. By the
same argument in the first part, U’ cannot be optimal, which is contradictory. |

Therefore the optimal U;f € (0,1) only for j’s that have the same Ai(c(j)). Based on this, we further
prove the following lemma.

Lemma D.2. Let [ be the smallest number that has Uf € (0,1) and let r be the largest number that has
Uy € (0,1). Then ¢'(cqy) = ¢'(cr))-

Proof. Suppose to the contrary, qbi(c(l)) < qﬁi(c(r)). We construct another feasible solution that is strictly
better than A%, U*. Define I; = {k : ¢'(c(x)) = ¢'(cry)} and I, = {k : ¢*(c)) = ¢'(c())}. 11, I should
both contain consecutive numbers. Let R; be the right end point of I; and let L, be the left end point
of I,.. First by definition of regularized virtual costs, ¢(c(,)) = ¢"(¢(z,)) = ming>r, Avg(L,, k), where
Awvg is the average function of ¥*. Then

Avg(Ly,r) > kmin Avg(L,, k) = (bi(c(r)).

:k>L,

Meanwhile according to Claim C.2 in the proof of Lemma C.1, we should have

Avg(l, Ry) < Avg(L)) = ¢'(cy) < ¢*(c(n)-

In addition, if Ry +1 < L, — 1, then ¢'(c(;)) < ¢'(¢(y) for all j € [R; + 1,L, — 1], which means
Avg(Ry + 1, L, — 1) < ¢*(¢(ry). Therefore we should have

Avg(l,L, — 1) < qbi(c(r)) < Avg(L,,r). (15)
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Therefore we can construct a better solution by uniformly decreasing U}, ..., Uzr_l and uniformly in-
creasing UE'T, ..., Ul by a small amount, so that the total increase is equal to the total decrease. The value

2 . i . A 2 ; .
of the objective function 4- 2> - 1 3~ | % + (% St U;) remains the same, because (1) >, _, U}
does not change and (2) the value of A*(c(y)) is the same for all k € [I, 7] according to Lemma D.1. But

the total expected spending Y~ _; (1 — U}) - A*(cq) )0 (c(x)) strictly decreases due to (15), which means
that the objective value can be strictly improved. O

So the lemma shows that U € (0,1) only for j’s that have the same ¢*(c(;)). We then prove the

other direction: for j’s that have the same gbi(c(j)), there exists an optimal solution that has the same
U; for these j’s.

Lemma D.3. There exists an optimal solution (U*, A*) such that for all (j, k) that has ¢ (c(;)) = d)i(c(k)),
U; = U]é and AZ(C(J)) = AZ(C(k))

Proof. Define Py to be the set of j’s that have gbi(c(j)) = H. Then the elements in Py must be
consecutive. Suppose Py = {l,...,r}.

Let U?, A® be an optimal solution. We show that the following solution U’, A’ is also feasible and has
objective value no larger than that of U?, A%

1 N
r_ i .
Uj_rflﬁ»lké_lUk’ forallePH

Yokt (L= U A (eqr))

Y 1-UL
We first prove that U’, A" is feasible. The monotonicity constraint and the range constraint are trivially
satisfied. For the budget constraint on }~5_, (1—=U;)- A(c(;))¥* (¢(5)), first observe that the sum Y7 (1 —
U;)A'(¢(xy) remains the same as Y, (1 — Uj) A (cy),

Aleyy) = for all j € Ppy.

T

Z(l_Uk C(k) = <21_Uk> C(l))

k=l
B B D pe (1= UpA! (C<k>)
- <k 11 Uk) Yr1-U

1 — Uk)A (C(k))
k=l

By definition of regularized virtual costs, Avg(l,r) = (bi(c(l)) = ming.x>; Avg(l, k), where Avg is the
average function of 1*. Thus

Avg(l,r) < Avg(l, k) for all k € [I,r].
And since (1 — U%(c))A?(c) must be non-increasing, by shifting (1 — U?(c))A%(c) to be constant within
Pr, the total expected spending must only decrease,

T

Z(l —Up) - A (o)’ (cry) < Z(l —U}) - A (e )" (cary)-
p

k=l

Then we prove the optimality of U’, A’. Because > ,_, U, = > ,_, U}, the second term of the

objective function remains the same. For the first term, since f(z) = % is a convex function when x > 0,
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by Jensen’s inequality,

S AU (st
= Aew) k=1 A'(cw))
( o Ui> 1
- Tk r 1—U; ;
k=l 2= s Atlew)
T ) T 1 B U 1
<(S1-u 1o
(k_l ) p Yok L= UL Af(cry)
T ) 1
=) (1-Up— -
k=1 ’ Aew)

Therefore U’, A’ is no worse than U?, A%, and is thus optimal.
([l

Combining the above three lemmas, there exists an optimal U? as defined in the theorem. Next, we
characterize the optimal A°®.

Lemma D.4. If we fized an optimal solution of U: Ui, ..., U}, which should have U;-' = U} if qﬁi(c(j)) =
qbi(c(k)) according to Lemma D.3, then the optimal solution of A should be equal to

i o A
A'(c(;)) = min {1, (bi(c(j))} ,

where X\ is chosen such that the budget constraint is satisfied with equality
i

; ; ; B
1-U}) A (e (cry) = ——.
;( J) ( (J))w ( (J)) 4\/n_/i

Proof. When U is fixed as Uj,..., U}, then the optimal A’ should be the solution of

1—Ul
—argmm Z Aley))
J

[

st Y (1=U))- Aleg))d'(eg) < =

j=1 4\/%

(1- Ul) (c(jy) is monotone non-increasing in j

0< A(C(J)) 1, Vj

The Lagrangian function is (for simplicity we write A; = A(c(;y))

1-U:

L(Aagaﬂ-anoanl)zz A_J
J

j=1
7

WA i) B
+¢ ;(1*%)14;1/1 (ci) Y

+ ZWJ J+1)Aj+1 —-(1- U;)Aj)

+ anAj + Zn;(Aj —1).
j=1 j=1

We prove that the optimal primal variables are

A; = min\ 1, 7,)\ ,
o' (i)
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where \ is chosen such that the budget constraint is satisfied with equality Z;Zl(l —Uj) - A (cy)) =

B . .
, and the optimal dual variables are
44/n/i p

1
€ = Fa
mj =mj—1+¢& (1/)i(0(j)) - gbi(c(j))) , (Here we assume 7y = 0.)
n; =0 for all j,
o 0 UD (1 =& ¢'(cy))) s i€ ¢'(ey)) <1,
J 0, otherwise.
Primal feasibility: We first prove the primal feasibility.
1. By our definition of A%, the budget constraint should be satisfied with equality.

2. By (1) in Lemma C.1, ¢*(c) is a non-decreasing function of ¢. Then A%(¢) = min<{ 1, —2— b is a
v () /(0 s nondecrensing A =min {1, 2}
non-increasing function. And since U; is non-decreasing in j, (1- U;-)A;- is non-increasing in j.

3. It is easy to verify that 0 < A’(c) < 1.

Dual feasibility: By (3) in Lemma C.1, it is easy to verify that all of the dual variables greater or
equal to 0.

Stationarity: The partial derivative of L(A,&,m,n° n') with respect to each A; is
aL(A’ 57 7707771)
0A;
1-Uj i 0 1
=— 12 +§'(1*Uj)1/} (C(j))ﬁL(lij)ﬂj,l7(1*Uj)7rj+77j + 1
J
=—(1=Upmax {1, & ¢'(c)} +&- (1= Uj) -4 (cjy) + (1= Upmj1 — (1 = Uj)mj +n;
=LA -Uj) - (W' (cz) — ¢'(cy)) + (1 = Uj)mj—1 — (1 = Uj)m,
=0

By the definition of 7;, we have the above quantity equal to 0.

Complementary slackness:

1. The budget constraint in the primal is satisfied with equality.

2. qu all A; # A§+1’ we must have ¢'(c(j)) # gbi(c(j_ﬂ)). Then by (3) in Lemmg Cl,m = 0 Since
U;f = lﬁﬂ if ¢*(c(j)) = ¢'(c(j4+1)) (which means A = A%, ), m; (1 - Ul )AL, — (1 -U)HAY) =
0 for all j.

3. We have 77j0- =0 for all j and 77j1- = 0 for all A;- = < 1.

I S
VEd (eiy)
O

Therefore there must exists an optimal solution U?, A’ as stated in the theorem.

By Lemma 4.1, the optimal value of A can be found using binary search after U? is decided. Define
M=%,,U 12 Then when M is decided, we can immediately find a rule U? that has the characterization
in the theorem, and the optimal A’ can be computed as well. We now show how to find optimal M that
minimizes _ )

a2 1 1-U; (M
o 'iZA(Cu)ﬁ(i)

j=1

using binary search within time O(log|T;]).
2 .
Let g(M) be the the optimal value of the first term 4 - % . 22:1 Al(_C—(U;) when M is decided. Then
J
the objective function is just g(M)+ (%)2 The second term (%)2 is a convex function of M. We prove

that g(M) is also a convex function of M. Before the main proof, we first prove the following claim.
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Claim D.1. Let U?, A* be an optimal solution as stated in the theorem. Then

1-UY - A%ciny)d (crn) = 1-UY " A'(ciiy) (cin) = ——.
S A =UD - Ale)d' (cy) = Y _(1=U3) - A(e))d' () i

j=1 j=1

Proof. For each j, let I; be the set of all the k that has ¢*(c(x)) = ¢'(c(;)). And let Z be the set of all
different I;, then according to (2) in Lemma C.1 and the definition of A,

%

Z( —UHALg'(c ZZ — U AL (c())

j=1 I€eT jel
=> (1=UNAL> ¢'(c)
IeT jer
=Y (1-UDATY (e
Iez jerI

B
= —UH AW (c(j) = —m=,

where A} is the the same A} for all j € I, Uj is the same U} for all j € I. O
Lemma D.5. The function g(M) is a convex function of M. Furthermore, let A%, be an optimal
allocation rule when Z = M and let c(y be the largest cost that is not ignored with probability 1.
Then
ogM) _ o o5 1 1
oM n ) A§\4 (C(r))

which is an non-decreasing function of M.

Proof. To simplify the notation, in the proof of this lemma, we use c1,...,¢; instead of ¢(q),...,¢() to
represent the costs in T; ordered from smallest to largest. To better illustrate how our objective value
changes as M increases, we consider an equivalent optimization problem that is defined as follows:

o o2 1 iMoo M 2
M = i Lz =
A" M = argmin 4 - z,/0 e dx+< ; ) (16)

st [ Alw) o) dn < =
0 4+/n/i

A is monotone non-increasing

0<A(x) <1, V0O<z<i

where
Cx =C[p), VO< <,

and thus ¢*(c;) = ¢*(c[,1). This optimization problem is equivalent to (13) because

1. For any feasible solution (A(z), M) of the above optimization problem, we can find a feasible
solution of (13) (A(c;),U;) with better objective value by setting A(c;) equal to the mean of A(z)
forv € {y 1y <i— M and ¢'(cy) = ¢'(c;)}, and setting U; to be the mean of indicator function
L(z >i— M) for z € {y: ¢'(cy) = ¢'(c;)}. It can be verified that the budget constraint of (13) is
still satisfied according to (2) in Lemma C.1. And the objective function only gets smaller because
the mean of the reciprocals is no smaller than the reciprocal of the mean, as the reciprocal function
is convex.

2. For any optimal solution A(c;),U; of (13) that has the characterization as stated in the theorem,
we can find a feasible solution A(z), M of the above optimization problem with the same objective
value by setting M =3, U;, A(z) = A(cra).
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Therefore by the characterization in Lemma D.4, if we fix a threshold M, there exists an optimal
allocation rule, denoted by A‘,(x), which is equal to

. A
Aly(r) =min{ 1, ——=2L—
) { ¢Z(Cz)}

for 0 < z <i— M, and Ny, is chosen such that the budget constraint is satisfied with equality. By
Claim D.1, the value of \}, satisfies

7 A

1*UZA16 ern) = 1*UZAZC iC‘:—,
;( 1) Alle)) e (e) j;( B Al (e)¥ (c)) e

or equivalently using A%, (z) and M,

B

4y/nfi

/Oil\/[ A )6 e)do /iM in {d)z'(cx), Ny (bi(cx)} dr =

(=)

Recall that

a2 1 [itM
g(M):4~—7~—,/ . dz.
tJo

n Ay (@)
Take derivative of the above function?, by the Leibniz’s rule for differentiation under the integral,
M o2 1 M
99( ):i 4._7.7/ i dz (17)
oM 0 n o iJ, AL ()

4 of 1( 1 _/iM 1 8A§\4(z)d
i\ ALG-M) ), A @2 aMm )

We denote the quantity inside the brackets by @, then the derivative equals 4 - C:l—” . % - Q. Let t be the
maximum of z that has A, () = 1. Then for all z € [0,], we should have % = 0, because A}, can
only increase as M increase, which means A’,(z) can only increase for x € [0,¢], but they have already
reached the upper bound 1, which means that A%, (z) will stay the same as M increase for all z € [0, ¢].
i—M 1 04y (=)

Then we can remove the part 0 <z <tof [ — @ oM
M

dz because it integrates to zero. So
the term inside the brackets is equal to

i—M )
PPN R o S S
A]M(Z - M) t AM (z) oM
i—M
:i/ .
oM t A?v[(w)

()

%
)\I\/[

To further simplify the derivative, we represent X}, as a function of ¢*(c,). Since N, is chosen such that
the budget constraint is satisfied with equality, i.e.,

B

And since t is defined such that for x € [0,t], A%, (x) = 1; for z € (¢t,i— M], A%, (z) = A , the above

Vei(cx)

[ A e ar = -

equality is equivalent to

/Ot ¢i(cm)+/t UV (cr) da = \/7

2The function g(M) may not be differentiable at integer points, but is semi-differentiable, WLOG we use right derivatives
at those points.
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Therefore the value of A%, should satisfy

A 4\/7 o () do
M = z M - .
t VP (ey) dx

Plug the above expression of XY, into (18), we get

0 (Z_M o))
oM

4\/7 fo ¢ (cy) dx
1
_ \/—d> T
4\/7 fo () ( / ( )
= (- Vo)

i
)‘]\/I

by definition of \y,. Plug it into (17),

dg(M) a1 2
o~y (HVAee)).

Recall that M represents the amount of data that is ignored. When M increases, A}, will increase, and

/& (ci— ) will decrease as the regularized virtual cost function is an increasing function. Therefore this
partial derivative

2 1 1 | 1
8. .. _ (_ : ,):_8._7._.
noi Ay #* (i) i AL (i— M)
is an increasing function of M. O

Then the optimal threshold

. M2
M= in g(M)+ [ —) .
arg min g( )+<i)

should have the derivative greater than zero on its right, i.e., for M > M?,

Thus the optimal M? can be found by binary search.

D.2 Optimal Mechanism for Adjacent Cost Sets

The following lemmas will be used in the proof of the main theorem.

Lemma D.6. Let Ty and Ty be two adjacent costs sets that have Ty = {c1,...,Ck, ..., Cit1} with 1 <

- < ¢ip1 and Th = {c1, .., Ck—1,Chky1s- -, Cix1}- Let B be an arbitrary non-negative number. We use
OPT(T, B) to represent the optimal confidence interval mechanism (at round i) defined in (5) when the
cost set is T and the budget is B. Then define

e (A,U,P) = OPT(T1,B/2), i.e., (A,U,P) is the optimal mechanism when the cost set is Ty and
the budget is B/2.

o (AU, P")=OPT(Ts,B), i.e., (A, U, P") is the optimal mechanism when the cost set is To and
the budget is B.
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Then we have

(1 = Upg1)Alens1)Plers1) < 2 (1= Uppy) A (err1) P (crir)-

Proof. The proof of this lemma is based on the proof of Lemma D.5.

We use ¢, € T} to represent the largest cost that has U, < 1, and use ¢,» € T5 to represent the largest
cost that has U/, < 1. And define M = 3’ . U. and M' = 3, U.. To better illustrate the idea
of our proof, we assume that the minimum point of our objective function is always achieved when its
derivative with respect to M is equal to 0, which means that

1
A(CT)
a - 1 —
A(er)

=M

!

where a = 402 -i/n is a constant (see the proof of Lemma D.5 for more details). The following analysis
can be extended to the case when the derivative does not exists at the optimal point, but is greater than
zero on the right and smaller than zero on the left.

First of all if k& > ', which means mechanism (A’,U’, P’) never purchase ¢, as well as cx41. Then
we can remove ¢ from T5 to get a new optimal mechanism OPT(T1, B). Then the new 7’ should only
move to the left,> which means we still have k > 7’ and the new mechanism never purchase c,. Because
the budget of (A, U, P) = OPT (T}, B/2) is even smaller, it will not purchase ¢j or cx41 either. Therefore
the inequality holds with both sides equal to zero.

Now suppose k < r’. To compare the two mechanisms, we define (A”,U"”, P") to be the optimal
mechanism when (1) the cost set is 77 and the budget is B/2 (which is the same as those of (A, U, P))
and (2) the total probability of ignoring the data points equals that of U’, i.e., > .o UJ =3 cp UL
Then we can apply Lemma C.4 to compare the non-zero parts of the two mechanisms. By the first line

of the results in Lemma C.4,
A(epr) < Aller),

and thus
1 S 1
. a .
A”(CT/) - A/(CT/)
According to the proof of Lemma D.5, the optimal mechanism (A, U, P) must have r < ¢/ and M > M’.
Then

:M/

a

Aley)=a/M < a/M' = A'(¢;r) < A'(cp).

According to Lemma C.2, ¢a(c,) > %gbl (cr), together with the characterization of the optimal allocation
rule in Theorem 5.1, (for the mechanism to be non-trivial, we assume A(c,) < 1)

A= A(Cr) V ¢1 (CT) < A/(Cr) V 2¢2(CT) < \/ﬁA/

Again by Lemma C.2, ¢2(c;) < 2¢1(c;) for all j > k + 1. Thus for all j > &k + 1,

Alcj) = min{l, #} < min{l, &} < 2min{1, /\7/} =2A'(¢;).
¢1(c;) P2(c;)/2 P2(c;)

In addition, it should hold that U7 > U J’ for all j > k + 1.* According to the definition in Lemma 3.2
(see (1 =U(c))A(c) as an allocation rule here), the expected payment can be equivalently represented as
an integral as in Lemma B.1,

C
(1 = Ug1)A(cr+1) Plert1) =(1 — Upgr) A(Cr1)Cr1 +/ (1—Uy)A(v)dv

Ck+1
e}
1= U lersdan +2 [ (1= U)A @) do
Ck+1
=2(1 = Upy1) A (k1) P’ (crs1),
which completes our proof. [l

3This is because (1) M’ decreases and (2) Avg(r’ + 1,5) will only increase for all j > r/ + 1.
4This is because (1) M > M’ and (2) Avg(l,r) will only increase for all I < k + 1,7 > k + 1 and Avg(l,r) will only
decrease for all I, > k + 1, so Ij41 will only extend to the right.
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Lemma D.7. Let Ty and Ty be two adjacent costs sets that have To = {c1,... ¢k, ...,Cit1} with ¢; <
o< cipq and Th = {c1, ..., Ck—1,Ckt1,- -+, Cix1}- Let B be an arbitrary non-negative number. We use
OPT(T, B) to represent the optimal confidence interval mechanism (at round i) defined in (5) when the
cost set is T and the budget is B. Then define

e (A,U,P)=0OPT(T1,B), i.e., (AU, P) is the optimal mechanism when the cost set is Ty and the
budget is B.

o (AU P) = OPT(1Ts,B/2), i.e., (AU, P’) is the optimal mechanism when the cost set is T
and the budget is B/2.

Define M = ZceTl U, and M' = ZCeT2 Ul and Wiy =1 (Uk+1 > %) Then we have
o M < M'.

2 2 /
«@ 1-W «@ 1-U, 4
o 4. LIS = ktl M

. ——k+l 4 ! .
Alek+1) — A(cry1) k+1 4 -

Proof. The proof of this lemma is based on the proof of Lemma D.5.

Again we use ¢, € 11 to represent the largest cost that has U, < 1, and use ¢,» € T5 to represent the
largest cost that has U/, < 1. To better illustrate the idea of our proof, we assume that the minimum
point of our objective function is achieved when its derivative with respect to M is equal to 0, which
means that

1

a- A M (19)
1 /

a- (e =M (20)

where a = 402 -i/n is a constant (see the proof of Lemma D.5 for more details). The following analysis
can be extended to the case when the derivative does not exists at the optimal point, but is greater than
zero on the right and smaller than zero on the left.

First consider the case k+ 1 > 7/, which means U;_ | = 1 and mechanism (A’, U’, P') never purchase
ckt1. If k+ 1 is also greater than r, which means that Wi1 = 1 and (A, U, P) never purchases cj1,
then the inequality trivially holds with both sides equal to zero. If k£ 4 1 < r, then since U; ,, = 1,

a 1—Wip ng 1

i Alcrer) i Aley)
_M
S
a 1 U]QJrl M
=— +Ujq - —
A'(cpt1) R
a 1-— Ulchrl M’
<= —= 4 U —.
i A(cps1) LSRR

Now suppose k + 1 < 7’. To compare the two mechanisms, we define (A”,U”, P"”) to be the optimal
mechanism when (1) the cost set is 77 and the budget is B (which is the same as those of (A4, U, P)) and
(2) the total probability of ignoring the data points equals that of U, i.e., 3 .cp U/ = > cp Ul Then
we can apply Lemma C.4 to compare the non-zero parts of the two mechanisms. By the second line of

the results in Lemma C.4,
A(epr) > Al(ep),

and thus
1 1
a . .
A(err) Al(err)
According to the proof of Lemma D.5, the optimal mechanism (A, U, P) must have M < M’ and r > /.
Then by (19) and (20),

=M.

<a

Alep) > Aley) = a/M > a/M' = A'(c).

According to Lemma C.2, ¢a(c,r) < 2¢1(c,), together with the characterization of the optimal allocation
rule in Theorem 5.1, (for the mechanism to be non-trivial, we assume A’(c,/) < 1)

A= Aler )V or(er) = Aler )V da(er) /2 = \/m)‘/-
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Again by Lemma C.2, ¢2(c;j) > %gb (¢j) for all 5 > k+ 1. Thus for all j > k+1,

Alej) = min{l,#} > min{l \/_X } > 1mln{l,)\il} = lA’(cj).
$1(c)) 2 $a(cy) 2 P2(cy) 2

In addition, 1 < L. =M {due to the monotonicity constraint. Therefore
Ack+1) A(er) a
a 1-Wipr a 1-Up +Up
) A(Ck+1) ) A(CkJrl)
a 1-Ui, M
<-- + U1 —
i Alcks1) R
2a 1-Uj M
<. u.,.,. =
i A(crs1) R R
2a 1-U; M’
-, U
i A(crs1) T
which completes our proof. [l
D.3 Proof of Theorem 5.2
We now prove the main theorem for the online confidence interval mechanism. Define set T; = {c1,...,¢;_1,C}.
We use c(1), ..., ¢(;) to denote the elements in T; ordered from smallest to largest. Let

) B
8.t. Z (1 - Ale)¥'(eyy) < lﬁm

(1 —Uj) - A(c(j)) is monotone non-increasing in j
OSA(C(]-))SL 0<U; <1, Vj

We prove that when we use the extended allocation rule of (Az( ), 1 (U ‘() > %)) at round %, and output

~

confidence interval [2?21 yi/m— j—% o, i yi/n+E4 f : 0} at the end, where U = Y7, U,
our mechanism (1) is truthful in expectation and individually rational (2) satisfies the budget constraint
B in expectation; (3) and the for any cost distribution {¢1,...,c,}, the worst-case expected length of
the output confidence interval is no more than

psvio 1+ 200 o)

where L* is the approximate worst-case expected length of the benchmark A* U* defined in Lemma 5.1,

n+1 2 n+1
1 1— U, U
L* =min max 2. —2_. Z A =U)zf | 2z U (21)
A zelo,1]n vn+1 n+l = Alcy) n+1
n+1
st > (1=Ui)- Alc))d(cq) < B
i=1
(1 —U.)A(c) is monotone non-increasing in ¢
0<A() <1, 0<U.<1, Ve
For convenience we define )
@ 11 -U*(c)
V¥i=4.2._
n o n g A*(¢;)

so that L* > 25V V* + %, where Y1 | Ur is the expected total number of data ignored by A*.

40



The basic idea of the proof is the same as the unbiased case. We will again use an intermediate
mechanism (A’,U’, P’) to compare (A%, U, P*) with the benchmark at each round i. The difference of
(A", U, P') and (A%, U?, P?) is bounded using the results in the preceding section.

We use the same notations as in the proofs of the unbiased case C.3. The proofs of (1) in C.3 can be
directly applied here, so we only prove (2) and (3).

D.3.1 Expected budget feasibility

The proof of budget feasibility is similar to the unbiased case. To bound }_; | E[(1 — U;)Ai(¢;) Pi(cy)),
we again define A’ conditioning on a fixed T;11 = S;+1 U {C'}.

A/ U/:argmin 40[_,2}/1 g L _ g U
’ AU noi & Ac) i
c i+1

c€Ti41

) B
s.t. —U,) - Ale)y'(c) <
b Y 00 AN <

(1 = U,) - A(c) is monotone non-increasing in ¢
0<A(e)<1, 0<U.<1, Ve

Since Tj, Tj41 only differ by one element c;, and A’ uses twice the budget of A*, according to Lemma D.6,

(1= U'e)) A% (ei) P(ei) =(1 = U (cry)) A" (e(rer) P (¢rs))
<2(1-U (C(kJrl)))A/(C(kJrl))Pl(c(kJrl))-

And thus

(1 -1 (Ui(C(k+1)) > 1/2)) Ai(C(k+1))Pi(C(k+1) §2(1 — Ui(C(k+1)))Ai(C(k+1))Pi(C(k+1))
<41 = U' (e DA (crn)) P (Crgr))-
Now assume the set of the first ¢ costs is S;+1. When the data holders come in random order, ¢; is a

random element chosen from S;;1. Therefore ¢;’s rank k should be uniformly distributed over {1,..., i},
and thus

%

E[(1 - T))A¥(ci) - P*(c)| Sl :% Y (=1 (Ulegan) = 1/2)) Aleg) Plegn)

j—l
<= 241— (e A (c(i+1)) P (ciz)
<f. (- U()A()P(c)
=73

c€Ti41
<L B

n n

> E[(1 - T)A¥(e;) - P(ci)]

since Y1, \[ <2y/n.

D.3.2 Competitive analysis

The expected length of the output confidence interval is equal to

L= 2-% -E[5] + E[0]/n.

To compare it with L*, we first upper bound the expectation of the sample variance E[6?] with E[y?].
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Lemma D.8. For any underlying distribution D, our mechanism has
n

is the sample variance of the re-weighted data vy, =

3I>—‘

~2 _ Ty
where Un = Tn(ey

Zy
Al

Proof. Because y;’s are independent conditioned on cq, ..., ¢y,

n n 2
E[6%|c1,. .., ca] = Z(yz—Zyz/n> /(”_1)‘01,---7071
= i=1
:nil-E ;yf—%;yz;yan(Zyz/n) ’cl,...,n
:n . )
1 s 1
:n—l E ;%E(;yz) Cly...,Cn
- il]E nyilzyzi_zzyzijh...,
" =1 ni:1 i=1 j#i
:%.ZE[% ZZEZMQ,---,cn]E[yj|cl,...,cn]
i=1 o1 i
<= Y B[

O

We then prove that the sum of the squares of the two terms in L can be bounded using V* and
(U*/n)?. We first prove the following lemma:

Lemma D.9. Let S;11 be the set of first i agents’ costs. When the agents come in random order, S;41
is a random subset of {c1,...,cn} with length i. Then it satisfies that

2 1 <
< = Eg, 4 -
)< |

a? - a2 ~
4- =L -E[6) + (E[0)/n L E[y?|Si1] + EITi[Sie)?

Proof. First by Jensen’s inequality,

4+ 22 E[5] + (B[D) n)* <4

s If’w

E[U;] /n)

As we prove in Lemma D.8, E[g%] < 137" |

1=1

E[y?], so we further have

1% E[5]? + (E[ﬁ]/n)2 <L zn:E[y-Q] +1 zn:E[@]Q
n B noni3 ' ni4
<4. a_% L zn:ESv E[y2|Si+1] + 1 zn:Es- E[U;|Si41]?
— n n Pt i+1 3 2 n Pt i+1 K3 K3
1 n 042 .
= > Es., [4' % E[y?|Sit1] + E[Ui] Siy1]?
=1

Then the sum of the squares of the two terms in L can be bounded as follows:
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Lemma D.10. For any underlying distribution D, our mechanism has

19 E[5]? + (E[ﬁ]/n)2

n

n 2 2 2 *
t U 1+1 2 af 1-U%
§320-V*+20(h) +10( +n") +—(640 1. §+1o( i)2>.
n

n n

2

where % is the sample variance of the re-weighted data y; = %, ey Yn = %, and U is the

number of data points ignored by the mechanism, i.e., U= Z?Zl ﬁz

Proof. Let S;+1 be the set of first i agents’ costs. When the agents come in random order, S;y1 is a
random subset of {cy,..., ¢, } with length ¢. We first consider a fixed S;;1 and bound 4 - C:l—i E[y?|Sis1] +
E[Ui|8’i+1]2. Let S; C Si41 be the set of first i — 1 costs is S;, the allocation rule A is uniquely decided
as in (13) where T; = S; U {C}. Again if ¢; = ¢, we will have A*(¢;) = A (c(k41))-

Let T;41 = Si+1 U{C}. We define the following intermediate allocation rule A’, U’

2
2
U —aremin 4.7 L -U) (1L
AU —argrﬁlg 4 3 Z A0 + Z Z U (22)
c€Tita c€Tiq1
st 3 (1-U) - A (e) € —o—
Ty 32¢/n/i

(1 = U,) - A(c) is monotone non-increasing in ¢

0<A(e)<1, 0<U.<1, Ve

Claim D.2 (Compare (A, 1 (U" > 3)) with (A", U")). Define M' =3 . Uy, then

« «

2 / I\ 2
E EIT 1 1-U, M
218, + E[U;|S; 2 < L § c
1S (GilSi] 514 n 1 A’(c) + ( . )

1
c€Ti41

2
.
n

4 .

Proof. When the data holders come in random order, the set of first ¢ — 1 costs 5; is a random subset of
Sit1. Therefore ¢;’s rank k is uniformly distributed over {1,...,i}. Let A%* U%* be the optimal solution
in round 4 when the i-th cost ¢; has rank k, i.e., ¢; = c¢(3). Then

2
Q. ~
4- ;7 -E[y7|Si+1] + E[Us]Siga]?
. i,k 1 . 2
a2 (1< (Uk+1 z 5) 1 1
=4. 2= : +(=Y"1 (U”“ > ) .
oAt kz:; A (egeen)) =N

Denote 1 (U,ifl > %) by W,z;rl, the above equality becomes

.
= | R

=N 2 7 vak .
E[y?|Si11] + E[T;]Si1]? = 4 -;”( Z MC(’““) ( ZWkiﬂ) SN CE)

k+1))
To compare it with (A’,U"), we first claim the follows

Claim D.3. Let M' =3 .1, U, then

7 7

1 ik 1 ik o 1 ,
Wit =131 (g 2 5) <o

k=1 k=1

Proof. Define , .
U U UL e U

By Lemma D.7, M“* < M’ for every k € [i], which means

UluC Ulzc kl + UlZchl +- Uzzk <M,
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so each U%* has at most 2M’ entries that are no less than % And since U%* is monotone non-decreasing,
e, Uk <...<UM* < U,if:l < ... < UP* only the last 2M entries can be no less than 1. Therefore

there are at most 2M' non-zero 1 (U,if:l > ), thus

—Z (U,m_ )<2M/z

Meanwhile, according to Lemma D.7,
ik
4._%. 1-Wp .O‘_%.l*UI/cH / %’
n Az’k(c(kJrl)) - n A/(C(kJrl)) k+1 7

for all k. Then (23) can be bounded as

2
(8% ~
4- ﬁ -E[y?[Si+1] + E[Us] Sis1]?
ag Wzk
o y k+1 i,k
CE(IS Y ()
a2 1 U’ 1< )
<g. 2. = Z A/ + = ZUk+1 — + (2M'/i)?
n i i
c€Ti41
| 1— U’ M’ M’
<8 . > T T + (2M' /i)?
c€Ti41
a2 1 1-U M'\?
=8. 2. Cr5 —
n o i Z A'(c) * ( i )
c€Ti41

which completes the proof of Claim D.2.
Claim D.4 (Compare A* with A’).

2

a2 1 , n a2 1 1
*WJEZ%T— >y Smﬁ;‘zziﬂ—

c€Tj41 c€T1+1 c€T;41

AP

c€T1+1

Proof. By the same reasoning as the proof of unbiased case (see Section C.3.3), it can be proved that

A*

,U* is a feasible solution of (22).

n/i
Combine Claim D.2 and Claim D.4,
O"Qy 2 - 2
4- W E[y;Si+1] + E[U;]Si41]
<5 (4 % 1 17UC/+(M’)2
- n i Al(c)
c€Tj41
, 2
n ay 1 (1-
<5 | 128, /2. =2 . = ASlihd 72 U
sl 2y LB (L y
c€Tita 66T1+1

2
Now we compute Eg 2

random subset, the first term of the right-hand side is just

1 Ux

C

2 * 2 *
n o> 1 1-U* 1-Ux n 1—U

128, /= - 2 .= < _C | =198 "
\[ ni A(e) T A(©) f ZA* ©)

2
32\/7 V*+128\/ﬁ X .2

cE€Siy1
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A+(C)

1 - U~

C

©)

O

i [4~ - E[y?]Sis1] +E[ﬁi|5i+1]2} by averaging over S;y; Since S;11 is a



2
Next, we upper bound the second term Eg, [(% D ceSiin U:) ] . Since S;4+1 = {c1,...,¢;} is a random

subset,
i 2
1 *
ES¢+1 ; e; Uc
c i+1
r 2
1 o1
S\ 2 vt
c i+1
: 2
<E E Sour| +2 Lo i
s (e i e
cESit1
2 *\2 * * 2 )2
== Esip, SNownr+ Y, UrUs + 5 (Ug)
_cESiJrl c,c’€S;y1:c#c!
2 2
=5 Esoy | Y Le€Su)UD*+ Y ed €Si)Us U | + 5 (Uz)
| ¢ c,c’:c#£c!
2 i~ 2 (i —1) & .
:F'EZ(U”QJFF Y Z Soourup+ (U )
=1 J L k€[n],k#j
2 . ol e~y o 2 w2
<= —ZU +2. H—ZZU]-~U,€+Z,—2(U5)
=1 k=1
Sz . > U 19 (Zi—l Ui ) % (U*)
i n n
Therefore

2
n a2 1 1-Ux (1
<5-Eg,,, |128/— —2 .= el | = U:
=0 ESih \/: i Z A T z;: ¢
celit

a2 1 1-UL 2 noo L 5 AN ))
<5<32\/7 V*+128\/E-—7-—,- +—.'h+2(@) +.—2(U%)2
T n C) 7 n n 7

S 1U) \[ L, 10 YR Ur 640 of 1-Ugz 10 o
=10 ( ==L ) 1160 1% sl iy X —(U2).
( n i n ivi n  A*(C) 12( C)

U 2 . n 2 1— U . 2
Define D; = 10 (L) LDy =160 V¥, Dy = XL Dy = 640+ 22 - S27E Dy = 10 (Uf) ,
then the above expectation becomes D; + % + DS + “ﬂ + D5 . Finally, by Lemma D.9, we get

E + (ED)/n)
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since Y 1, % <2ymand Y} + <l+Innand } !, \/121 < 2. We can further replace Dy + 322 . Dy

noen 2 9
with a sum-of-square term 20 (ZzilU) +10 (M) , which will make it easier to compare the quantity
n n

with the benchmark (details in the last paragraph of the proof).

Claim D.5. 5 )
141 noUr 1+1

D+ +nn.D3§20(@) +10( —|—nn) .
n n n

Proof. By defintioin,

n 2 n
141 » Uy l1+Inn 1007, Ur
Di + +n”.D3:1o(LZ—1 ) Lt 103, U
n n

n n

We prove the inequality by cases. First, if Z?:l U; <1+ Inn then the second term on the right-hand
side Ltnn 10X, U7 qg(+inn)?® S U >1+Inn then 1o . 103500 < 9 (ZLI U:)Q In
n n — n? : i=1"1i = n n — n .

any cases, we get
n 2 2
141 U 1+1
D, + Jrnn.DggQ()(@) +10< +nn).
n n

n
O
Finally by plugging in all the numbers,
a? ~ 2
4. RG24 (E[U] /n)
n
n 2 2
- Ur 1+1 2
<920 <L> +10 ( +nn”> +2D; + =(Dy + Ds)
n 2 2 2 *
Z._lU-*) (1+lnn) 2 a 1-Ug 5
<20 ==~ 410 +320-V*+—|640- —= - —= + 10 (U=
- ( n n Vo A*(C) ( C)
SrLup\° 1+n\* 2 a2 1-U )
=320-V* 420 ==—~1 10 — (640 - —= - = 10 (U% .
+ ( n * n * n Vvno A*(C) * ( C)
This completes the proof of the Lemma D.10. |

Finally we compare the worst-case expected length of our confidence interval with the benchmark

o~

L*. Our output confidence interval {2?21 yi/n — % o, > yi/n+ % + 2 8} has expected length

Ay

L=E[]2- 7 o+ %] Then for any underlying cost-data distribution D, L? can be bounded as follows
using Lemma D.10 and the inequalities (a + b)? < 2(a? + b%), a® +b> < (a + b)? for all a,b > 0.

L2 = (2-%-&2[&]—#%&])

<2 4.0‘—3-E[a]2+ <@>

n n

i} SLUR\ 1+Inn\> 2 a2 1-UZ )
<2(320-V*+20( ==L 10 Z{640. — . —=C 410 (U=
< ( + ( ” + ~ +~ T A*(C’)+ (U%)

SrLUs\? 1+lnn\> 2560 o 1-UL 40, >
=640 V* 440 [ ==L 20 LS4 2 (U
+ ( n + n + n n A*(C)+n( C)
n 2 2 2 *
" Ur 1+1 2560 o2 1-UZL 40
§64o<\/v*+%) +20< n“”) += ~—;~A*(C§+z( )’
1 2 1+Inn\> 2 2 1-Us 4
640~<”Z ~L*) +20< +n") 4 2500 & C no )?.

n Vi &)
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Since /> a; < 325 \/aj,

: 1-Ux
L§8\/ﬁ-n+1~L*+2\/g (1+lnn)+16\/m. a, e Nﬁ'
n n vno nt/4 A*(C) Vn

This completes the proof of Theorem 5.2.
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