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Abstract This position paper anticipatesways inwhich the disruptive developments
in machine learning over the past few years could be leveraged for a new generation
of computational methods that automate the process of designing optimal economic
mechanisms.

1 Introduction

Mechanism design is the problem of designing incentives to achieve an outcome that
satisfies desired objectives in the presence of self-interested participants. Because
the participants are assumed to act rationally, and play an equilibrium, it can also
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be thought about as the problem of inverse game theory. A mechanism designer
creates the rules of a game, by which an outcome will be selected based on messages
sent by participants. Mechanism design has developed into a beautiful theory that
has influenced thinking across a range of problems, including auctions and voting
procedures, but despite more than 40 years of intense research, several fundamental
questions remain open.

Revenue-optimal auction design is the prime example, both for having elegant
theoretical results and also for seemingly simple and important-to-practice cases that
remain unsolved. The central result is the characterization of revenue-optimal single-
item auctions as virtual value maximizers (Myerson 1981). We know, for example,
that second price auctions with a suitably chosen reserve price are optimal when
selling to bidders with i.i.d. values, and how to prioritize one bidder over another in
settings with bidder asymmetry. But Myerson’s theory is as beautiful as it is rare.
Indeed, the design of optimal auctions for multiple items is much more difficult, and
has defied a thorough theoretical understanding.

The contours of the available analytical results bearwitness to the severe analytical
challenges in going beyond single-item auctions. Even the design of the optimal
auction for selling two items to just a single buyer is not fully understood.1 For a
single additive buyer with values on items i.i.d.U (0, 1), Manelli and Vincent (2006)
handle three items, and Giannakopoulos and Koutsoupias (2014) up to six items. Yao
(2017) provides the optimal design for any number of additive bidders and two items,
buy only as long as item values can take on one of two possible values. Decades after
Myerson’s result, we do not have a precise description of optimal auctions with two
or more bidders and more than two items.

Apromising alternative is to use computers to solve problems of optimal economic
design. The framework of automated mechanism design (Conitzer and Sandholm
2002, 2003) suggests to use algorithms for the design of optimal mechanisms. Early
approaches required an explicit representation of all possible type profiles, which is
exponential in the number of agents and does not scale (see also Albert et al. 2017).
Others have proposed more restricted approaches, that search through a parametric
family of mechanisms (Guo and Conitzer 2009, 2010; Sandholm and Likhodedov
2015; Narasimhan et al. 2016).

In recent years, efficient algorithms have been developed for the design of opti-
mal, Bayesian incentive compatible (BIC) auctions in multi-bidder, multi-item set-
tings (Cai and Daskalakis 2015; Alaei et al. 2012, 2013; Cai et al. 2012a, b, 2013a;
Bhalgat et al. 2013; Cai and Huang 2013; Daskalakis et al. 2017). But while there
is a characterization of optimal mechanisms as virtual-value maximizers (Cai et al.

1Results are known for additive i.i.d.U (0, 1) values on items (Manelli and Vincent 2006), additive,
independent and asymmetric distributions on item values (Daskalakis et al. 2017; Giannakopoulos
and Koutsoupias 2015; Thirumulanathan et al. 2016), additive, i.i.d. exponentially distributed item
values (Daskalakis et al. 2017) and extended tomultiple items (Giannakopoulos 2015), additive, i.i.d.
Pareto distributions on item values (Hart and Nisan 2012), unit-demand valuations with item values
i.i.d. U (c, c + 1), c > 0 (Pavlov 2011), and unit-demand, independent, uniform and asymmetric
distributions on item values (Thirumulanathan et al. 2017).

parkes� eecs.harvard.edu



Machine Learning for Optimal Economic Design 497

2012a, 2013b), relatively little is known about the structure of optimal mechanisms;
see Daskalakis (2015) for an overview.

Moreover, these algorithms leverage a reduced-form representation that makes
them unsuitable for the design of dominant-strategy incentive compatible (DSIC)
mechanisms, and similar progress has not been made for this setting. DSIC is of spe-
cial interest because of the robustness it provides, relative toBIC. The recent literature
has focused instead on understanding when simple mechanisms can approximate the
performance of optimal designs.2

Where do we go from here? Thanks to the disruptive developments in machine
learning, we believe that there is a powerful opportunity to use its tools for the design
of optimal economic mechanisms. The essential idea is to repurpose the training
problem from machine learning for the purpose of optimal design. In what follows,
we will highlight some recent results that we have in support of this agenda. The
question we ask is:

Can machine learning be used to design optimal economic mechanisms, including optimal
DSIC mechanisms, and without the need to leverage characterization results?

The illustrative examples will be drawn from optimal auction design, including
optimal designwith private budget constraints, aswell as a problem in social choice—
the multi-facility location problem. We believe the framework is considerably more
general, and will extend to address problems in matching and non-linear pricing, for
example.

2 Adopting the Lens of Machine Learning

To understand the opportunity, we start with optimization-based formulations for
each of the problems of mechanism design and machine learning.

A typical problem in mechanism design is to find a function from inputs (a type
profile) to outputs (say an allocation and payments) that maximizes the expected
value of an objective, defined for a distribution on inputs. Global constraints are also
imposed, for example incentive compatibility (IC).3 Illustrating this for the design
of an allocation rule g and payment rule p (mapping reported types to an allocation
and payments, respectively) of an auction, we would solve:

2Working in increasingly general settings, relevant results on DSIC auction design include Chawla
et al. (2007, 2010), Alaei (2014), Kleinberg and Weinberg (2012), Hart and Nisan (2012), Li and
Yao (2013), Babaioff et al. (2014), Yao (2015), Rubinstein and Weinberg (2015), Cai et al. (2016),
Cai and Zhao (2017), Dütting et al. (2017). These mechanisms are simple, and reveal the structural
ingredients that are important for the design of mechanisms with good revenue properties.
3IC means that no agent can benefit, in equilibrium, by misreporting its type, and can hold in a
dominant-strategy equilibrium (DSIC) or a Bayes-Nash equilibrium (BIC). We will generally be
interested in DSIC.
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max
g,p

Ev∼FV O(v; g, p) (1)

s.t. (g, p) ∈ IC.

This maximizes the expected value of objectiveO(v; g, p), where v=(v1, . . . , vn)

denotes the type profile for n bidders, andFV the distribution fromwhich type profiles
are sampled. For revenueoptimality, the objectivewould beO(v; g, p) = ∑n

i=1 pi(v).
Here, IC denotes the set of IC rules. FollowingMyerson (1981), this kind of problem
can be solved in simple cases through a characterization of allocation rules for which
there exists a payment rule that provides IC, allowing the objective to be expressed in
terms of the allocation rule alone, and then proceeding analytically. But this approach
is very challenging to extend to general, multi-item problems.

A typical problem in machine learning is to find a function from inputs (a vector
of features) to outputs (say an image label) that minimizes the expected value of
an objective. A typical objective is to minimize the expected loss on input-output
pairs sampled from some distribution, where the loss might be defined to be 0 if
the predicted output is correct and 1 if it is incorrect. For parametric models, with
function f w defined through parameters w ∈ Rd (for some d ≥ 1), we would solve

min
w

E(x,y)∼FXY L(x, y; f w). (2)

The objective is to minimize expected loss, for loss function L(x, y; f w), where
(x, y) is an input-output pair sampled i.i.d. from some distribution FXY . The input-
output pair could be feature vector x ∈ Rk for k ≥ 1, and target value y ∈ R, respec-
tively. Here, f w : Rk $→ R is a parameterized function (the target can also be cate-
gorical, in which case f w would map to a finite set). A typical approach to solve (2) is
to use training data sampled from FXY , together with an optimization method such as
stochastic gradient descent to minimize the loss on the training data (perhaps along
with regularization, to prefer simple solutions over complex solutions that might
over-fit to the training data).

Comparing formulations (1) and (2), and considering the particular setting of
revenue-optimal auction design, this suggests the following representation of a prob-
lem of optimal economic design as one of machine learning:

Feature vector x −→ (v1, . . . , vn)

Target value not needed
Hypothesis f w −→ (gw, pw) (parameterized allocation rule and payment rule)
Loss function L(v; gw, pw) = −∑n

i=1 p
w
i (v)

Constraints (new) IC

The loss function becomes the negated revenue, and thus minimizing expected
loss is equivalent to maximizing expected revenue. There is no need for labeled
training data: rather, the required training data is samples of type profiles, and the
loss function is defined to directly capture the economic objective (e.g., negated
revenue). For this reason, there is no object that corresponds to the target value.
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The technical challenge, relative to standard training problems in machine learn-
ing, is to formulate the IC constraint. In some settings, IC can be directly achieved
by constraining the set of functions (the hypothesis class). In other settings, we
have found it useful to work with quantities that capture the degree of violation of
the constraint. Fixing the bids of others, the ex post regret to a bidder is the maxi-
mum increase in the bidder’s utility, considering all possible non-truthful bids. The
expected ex post regret for bidder i, given mechanism parameters w, is defined as

rgti(w) = Ev∼FV

[
max
v′
i∈Vi

ui(v′
i, v−i; vi, gw, pw) − ui(vi, v−i; vi, gw, pw)

]
, (3)

where Vi is the valuation domain for bidder i, and ui(v′
i, v−i; vi, gw, pw) is the utility

(value minus price) to bidder i with valuation vi when reporting v′
i , when others

report v−i = (v1, . . . , vi−1, vi+1, . . . , vn), and with allocation and payment rule gw

and pw, respectively.
For a suitably expressive, parameterized set of functions gw and pw, the problem

of optimal auction design can be formulated as:

min
w

Ev∼FV L(v; gw, pw) (4)

s.t. rgti(w) = 0, ∀i ∈ N .

This allows for ex post regret only on measure zero events. We will additionally
require individual rationality, a property that every agent has a weak incentive to
participate in a mechanism. This can be ensured by restricting our search space to
a class of parametrized mechanisms (gw, pw) that charge no agent more than its
expected utility for an allocation.

Let us suppose this can be made to work— that machine learning can be used
in this way for optimal economic design. Before continuing, we will discuss some
objections that could be raised about this research agenda:

(1) “As theorists, we care about understanding the structure of optimal designs,
we’re not interested in black-box solutions.” In fact,we expect that amachine learning
framework can provide a useful complement to theory, used for example to support
or refute conjectures on the structure of optimal designs, or to identify parts of the
theory landscape where current designs are far from optimal. Asking that learned
designs are interpretable is also an interesting research agenda in its own right, and
one that should find synergy with a growing attention to interpretability in machine
learning (Doshi-Velez et al. 2015;Wang andRudin 2015;Caruana et al. 2015;Ribeiro
et al. 2016; Smilkov et al. 2016; Raghu et al. 2016; Andrew Slavin Ross 2017).

(2) “Simplicity is important. Participants need to understandmechanisms.”While
this is undoubtedly important in some settings, we believe that participants in many
kinds of economicmechanismswill be increasingly automated (consider, for example
the use of automated bidding for advertising and other problems in marketing, and
automated trading in finance). Mechanisms populated by automated agents do not
need to be simple in the same way as those intended for use by people. Rather, it
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seems to use that robust game-theoretic properties such as DSIC are more important
than descriptive simplicity, and especially if a mechanism is accompanied by a proof
of its economic properties.4

(3) “What if incentive compatibility is only approximately achieved? What good
is this from an equilibrium perspective?”We have some sympathy for this concern,
in that when the expected, ex post regret of a learnedmechanism is small but positive,
some types may still have a large incentive to deviate. But this is only a first step.
Going forward, we can think about other notions of approximate DSIC.5 Moreover,
this concern can be tempered by also imposing additional structural properties that
are necessary for IC, thus tightening the approximation.6

(4) “What if there are computation-theoretic or learning-theoretic barriers to
optimal design?” Any such barrier is intrinsic, and holds whether the design prob-
lem is left to human ingenuity or formulated in a way that is amenable to solution
by an algorithm. Barriers, where they exist, will require the design of second-best
mechanisms, that are optimal given not only incentive constraints but also these com-
putational or learning-theoretic constraints.7 As such, we see this not as an objection
to using machine learning for optimal economic design, but as a broader objection
to the agenda of optimal economic design.

(5) “What if it is the rules of the optimal mechanism entail solving an intractable
computational problem?” We think this presents the most serious complaint, in
that we already know of settings such as those of combinatorial auctions where the
allocation rule requires solving an NP-hard optimization problem (Rothkopf et al.
1998). Still, because we may be interested in solving problems of a fixed size (in
terms of the number of items and bidders), these kinds of complexity barriers do not
immediately bite. Moreover, many complexity barriers are worst-case, and there is
an increasing attention to using neural networks to solve problems of combinatorial
optimization for distributions on inputs (Niepert et al. 2016;Vinyals et al. 2015;Orhan
and Ma 2017), and progress there will also benefit the use of machine learning for
automated economic design.

(6) “What if the learned design is brittle, with its incentives or optimality prop-
erties not robust to a small change in the type distribution?” On one hand, DSIC
designs are intrinsically more robust than BIC designs in that incentive compatibil-
ity does not depend on the distribution. On the other hand, empirical observations

4See Parkes and Wellman (2015) for a discussion on the role of AI in the mediation of economic
transactions.
5See Carroll (2013), Mennle and Seuken (2014), Lubin and Parkes (2012), Mennle and Seuken
(2017) for some discussion of approximate notions of incentive compatibility.
6For example, we could also penalize failure of weak-monotonicity (Bikhchandani et al. 2006), or
insist that the implied pricing-function is agent independent (with prices to an agent that are do not
depend on its report, conditioned on an allocation).
7Daskalakis et al. (2014) give a complexity result for optimal mechanism design. There is also
a recent literature on the sample complexity of auctions and mechanisms, including revenue-
optimal auctions (Elkind 2007; Cole and Roughgarden 2014; Dughmi et al. 2014; Morgenstern
and Roughgarden 2015, 2016; Huang et al. 2015; Devanur et al. 2016; Narasimhan and Parkes
2016; Gonczarowski and Nisan 2017; Cai and Daskalakis 2017).
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about the use of highly non-linear models in other settings, such as those of deep
learning (Goodfellow et al. 2016), suggest that robustness to small perturbations in
the inputs can indeed be a concern (Szegedy et al. 2014; Fawzi et al. 2018; Moosavi-
Dezfooli et al. 2016). The robustness of learned models is gaining attention within
machine learning (Chen et al. 2017; Shalev-Shwartz and Wexler 2016; Goodfellow
et al. 2015; Abadi et al. 2016), and progress there will also bring benefits here. At the
same time, it will be important to conduct thorough studies of learned mechanisms
to validate their robustness.

3 Deep Learning for Optimal Auction Design

Wehave initiated the studyofmulti-layer, feed-forwardneural networks for thedesign
ofoptimal auctions (Düttinget al. 2019).8 Thesenetworksprovidedifferentiable, non-
linear function approximations to auction rules, and the training problem—the prob-
lem of optimal design—is solved through stochastic gradient descent.9

We focus here on describing a “fully agnostic” approach, which proceeds without
the use of characterization results and, because of this, holds the most promise in
discovering new economic designs.10 The input layer of theRegretNet architecture
represents bids, and the network has two logically distinct components: the allocation
network and the payment network (see Fig. 1). The networks consist of multiple
“hidden layers” (denoted h(r) and c(t) in the figure) and an output layer. Each unit in a
hidden layer and each unit in an output layer may be a non-linear activation function,
applied to a weighted sum of outputs from the previous layer. These weights form
the parameters of the network.

The allocation rule g is modeled with R fully-connected hidden layers (we have
used R = 2 and 100 units in each layer in our experiments), each with tanh activa-
tions, and a fully-connected output layer. For a given bid profile b, illustrated here
as providing a number for each bidder for each of m items, the network outputs a
vector of allocation probabilities z1j(b), . . . , znj(b), for each item j ∈ [m], through a

8The use of machine learning for mechanism design was earlier pioneered by Dütting et al. (2015),
who use support vector machines to design payment rules for a given allocation rule (which can be
designed to be scalable). But their framework can fail to even closely approximate incentive com-
patibility then the rule is not implementable, and does not support design objectives that are stated
on payments. Earlier, Procaccia et al. (2009) studied the learnability of specific classes of voting
rules, but without considering incentives; see also Xia (2013), who suggests a learning framework
that incorporates specific axiomatic properties.
9Deep learning, which refers typically to the use of multi-layer neural networks, has gained a great
deal of attention in recent years. This is because of the existence of large data sets, the development
of tool chains that make experimentation easy, optimized hardware to speed-up training (GPUs),
as well as massive investment from the private sector. Whether a network is considered ‘deep’ or
not is a matter of taste.
10We have also explored network architectures that leverage characterization results; Myerson
(1981) and Rochet (1987) for optimal auction design, and Moulin (1980) for facility location
problems.
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Fig. 1 RegretNet: The allocation network g and payment network p for a setting with multiple
bidders (1, . . . , n) and multiple items (1, . . . ,m) (Dütting et al. 2019). The rev and rgt are defined
as a function of the parameters of the allocation and payment networks w = (wg, wp)

softmax activation function, with
∑n

i=1 zij(b) ≤ 1 for each item j ∈ [m].11 Bundling
of items is possible because the value on output units corresponding to allocating
each of two different items to the same bidder can be correlated.

The payment rule is modeled using a feed-forward neural network with T fully-
connected hidden layers (we use T = 2 and 100 units in each layer in our experi-
ments), each with tanh activations, and a fully-connected output layer. The output
layer defines the payment for each bidder i given a type profile. To ensure that
the auction satisfies individual rationality (IR), i.e. does not charge a bidder more
than its expected value for the allocation, the network first computes a fractional
payment p̃i ∈ [0, 1] for each bidder i using a sigmoid unit, and outputs a payment
pi = p̃i

∑m
j=1 zij bij, where zij’s are the allocation probabilities output by the alloca-

tion network.12

Altogether, we can adopt w ∈ Rd to denote the vector of parameters, including
parameters in both the payment and allocation parts of the network.

In practice, the loss and regret involved in formulating (4) are estimated from
a sample of value profiles, S = {v(1), . . . , v(L)}, drawn i.i.d. from FV . In place of
expected loss, we adopt the empirical loss, defined as

11The sigmoid activation function is σ(z)= 1/(1+ e−z). The softmax activation function for item
j is softmaxi(s1j, . . . , snj, sn+1,j)= esij/

∑n+1
k=1 e

skj , where sn+1,j is a dummy input that corresponds
to the item not being allocated to any bidder. In another variation, we handle unit-demand valuations
of bidders by using an additional set of softmax activation functions, one per agent, and taking the
minimum of these item-wise and agent-wise softmax components in defining the output layer.
12The output pi that corresponds to bidder i is the amount the bidder should pay in expectation, for
a particular bid profile. This can be converted into an equivalent lottery on payments, such that a
bidder’s payment is no greater than her value for any realized allocation (the property of ex post IR).
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L̂(gw, pw) = −1
L

L∑

ℓ=1

n∑

i=1

pwi (v
(ℓ)). (5)

To estimate the regret, we use additional samples of valuation profiles Sℓ drawn
i.i.d. from FV for each profile v(ℓ) in S, and compute the maximum utility gain over
these alternate profiles. The regret penalty is estimated as:

r̂gti(w) = 1
L

L∑

ℓ=1

max
v′∈Sℓ

( ui(v′
i, v

(ℓ)
−i ; v(ℓ)i , gw, pw) − ui(v(ℓ); v(ℓ)i , gw, pw)). (6)

For large samples S and Sℓ (for each ℓ), a mechanism with very low empirical
regret, will, with high probability, have very low regret.13

The training problem becomes:

min
w

L̂(gw, pw)

s.t. r̂gti(w) = 0, ∀i ∈ N . (7)

We can optimize (7) via the method of augmented Lagrangian optimization. This
uses a sequence of unconstrained optimization problems, where the regret constraints
are enforced through a weighted term in the objective. The solver works with the
Lagrangian function, augmented with a quadratic penalty term for violating the
constraints:

Cρ(w;λrgt) = L̂(gw, pw) +
∑

i∈N
λrgt,i r̂gti(w) + ρ

2

(
∑

i∈N
r̂gti(w)2

)

, (8)

where λrgt ∈ Rn is a vector of Lagrange multipliers, and ρ > 0 is a fixed parameter
that controls the weight on the quadratic penalty. The solver operates across multiple
iterations, and performs the following updates in each iteration t:

wt+1 ∈ argminw Cρ(w; λt
rgt) (9)

λt+1
rgt,i = λt

rgt,i + ρ r̂gti(w
t+1), ∀i ∈ N , (10)

where the inner optimization in (9) is approximated through multiple iterations of
stochastic subgradient descent; in particular, the gradient is pushed through the loss
function as well as the empirical measure of regret. The Lagrange multipliers are
initialized to zero.14

13In more recent work (Dütting et al. 2019) we take an adversarial-style approach, using a gradient-
based approach for estimating regret for a given profile. The gradient-based approach requires that
the valuation space is continuous and the utility function is differentiable, but is more scalable and
stable for larger settings.
14With a suitably large penalty parameter ρ, the method of augmented Lagrangian is guaranteed
to converge to a (locally) optimal solution to the original problem (Wright and Nocedal 1999).
In practice we find that even for small values of ρ and enough iterations, the solver converges to
auction designs that yield near-optimal revenue while closely satisfying the regret constraints.
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3.1 Illustrative Results

Through this approach, almost optimal auctions with almost zero expected ex post
regret can be obtained across a number of different economic environments.

For the results presented here, we set ρ = 0.05 and sample 5000 training and 5000
value profiles i.i.d from a known distribution. We use the TensorFlow deep learning
library, solving the inner optimization in the augmented Lagrangian method using
the ADAM solver (Kingma and Ba 2015) with learning rate 0.001 and mini-batch
size 64. All the experiments are run on a cluster of NVDIA GPU cores.

We first present results for the following two item, single-bidder settings, for
which there exist theoretical results (this provides an optimal benchmark):

• 2 items, single additive bidder, with item values x1, x2 ∼ U [0, 1]. See Fig. 2a. The
optimal DSIC mechanism is due to Manelli and Vincent (2006).

• 2 items, single additive bidder, with item values x1 ∼ U [4, 16] and x2 ∼ U [4, 7].
The optimal DSIC mechanism is due to Daskalakis et al. (2017).

• 2 items, single unit-demand bidder, with item values x1, x2 ∼ U [2, 3]. The optimal
DSIC mechanism is due to Pavlov (2011).

• 2 items, single unit-demand bidder, with item values x1, x2 ∼ U [0, 1]. The optimal
DSIC mechanism is due to Pavlov (2011).

Table 1 summarizes the revenue and regret for the learned mechanisms (all mea-
sured on data sampled from FV and distinct from training data, and with regret
normalized to be stated per-agent). The revenue from the learned auctions is very
close to the optimal designs from the theoretical literature. In two cases, the rev-
enue from RegretNet is slightly higher than optimal. This can be explained by
the non-zero regret, which makes these auctions not quite DSIC when training was
terminated.

Figure2a–d provide a visualization of the allocation rules in the learned mecha-
nisms, comparing them with the optimal rules. In each case, we plot the probability
of allocating item 1 and item 2 to the bidder in the learned mechanism, as a func-
tion of the bidder’s value on each item. The design of the optimal allocation rule

Table 1 Revenue and regret for RegretNet, comparing to the expected revenue of the optimal
DSIC auction. We also state the normalized revenue, as a fraction of the revenue from the optimal
auction (Dütting et al. 2019)
Auction environment Optimal RegretNet

rev rev (norm) Regret

2 item, 1 additive bidder, x1, x2 ∼ U [0, 1] 0.550 0.557 (101.3%) <0.001

2 item, 1 additive bidder, x1 ∼ U [4, 16],
x2 ∼ [4, 7]

9.781 9.722 (99.4%) <0.004

2 item, 1 unit-demand bidder, x1, x2 ∼ U [0, 1] 0.384 0.386 (100.5%) <0.001

2 item, 1 unit-demand bidder, uniform,
x1, x2 ∼ U [2, 3]

2.137 2.124 (99.4%) <0.001
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(a) Single bidder, additive, item values x1, x2 ∼ U [0, 1]

(b) Single bidder, additive, item values x1 ∼ U [4, 16], x2 ∼ [4, 7]

(c) Single bidder, unit-demand, item values x1, x2 ∼ U [0, 1]

(d) Single bidder, unit-demand, item values x1, x2 ∼ U [2, 3]

Fig. 2 A comparison of the allocation rules learned by RegretNet to those of optimal auc-
tions (Dütting et al. 2019). These are all single bidder environments. We plot the probability of
allocating item 1 and item 2, as a function of the bidder’s value on each item. The design of the
optimal allocation rule is superimposed, with different allocation regions separated by dashed lines
(the number in a region gives the probability the item is allocated in the optimal solution)
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Fig. 3 The test revenue and regret of RegretNet as a function of solver iterations for the two
items, two additive bidders setting, where item values are i.i.d. uniform on [0, 1]. (Dütting et al.
2019)

is superimposed, with different allocation regions separated by dashed lines (with
the number in a region giving the probability the item is allocated in the optimal
solution). We can confirm visually a very close correspondence between the result
of machine learning and the optimal design.

We have also used this approach to design auctions for economic environments
that are out of reach of theoretical analysis.

These include the single, additive bidder environment with ten items (there is no
analytical solution with more than six items), as well as a setting with two items
and two additive bidders, where item values are i.i.d. uniform on interval [0, 1].
Figure 3 illustrates the effect of additional training iterations on revenue and regret
in this example, where revenue and regret are computed on hold out (test) data.15

This progress of successively lower regret across training iterations is representative
of the experimental results reported in Dütting et al. (2019). In this case, we learn
an auction with effectively zero regret, and expected revenue of 0.895 (compared
with two state-of-art results from the computational literature, namely 0.867 for the
optimal VVCA auction and 0.864 for the optimal symmetric AMA auction (Sandholm
and Likhodedov 2015).

4 Extensions of the Deep Learning Approach
to Other Domains

To illustrate the generality of the framework, we briefly describe two different exten-
sions.

First, we are exploring the use of machine learning for the design of optimal
auctions in the presence of private budget constraints (Feng et al. 2018). This is a
particularly difficult problem, as can be understood from the contours of the few

15A training iteration is one mini-batch gradient updated in the solver that we use for stochastic
gradient descent.
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theoretical results that are available. Even the optimal DSIC single-item, multiple
bidder problem is not fully understood.16

The RegretNet architecture can be extended to handle bidders with budget
constraints, as well as to allow for BIC rather than DSIC where that is of interest.
In regard to private budgets, these are handled by introducing an additional penalty
(a budget penalty) to penalize payments above reported budget, and regret ismodified
to only consider deviations for which the payment is no greater than a bidder’s true
budget. In regard to BIC, a bidder’s interim regret is estimated as the maximum, over
a set of possible misreports, of the average increase in utility from deviation given a
set of possible reports by others.

We obtain positive results for various auction environments, including settings
for which there are no theoretical results for optimal design (Feng et al. 2018). An
illustrative result is shown in Fig. 4. This is for auctioning a single item to two bidders,
each with value uniform on set {1, 2, . . . , 10}, where the first bidder is unconstrained
and the second bidder has a budget of 4. In this case, we only consider the case of
downward misreports of budget (conditional DSIC) and the optimal result is shown
in Malakhov and Vohra (2008). Figure 4a shows the test revenue and ex post regret
for the mechanism learned by RegretNet, as a function of the number of solver
iterations. The trained mechanism yields revenue very close to the optimal revenue,
while yielding negligible regret. Figure4b, c show that the learned allocation rule
closely matches the optimal allocation rule.

Stickingwithin the context of auctions,webelieve theRegretNet architecture (or
related approaches) will allow rapid experimentation in the following of directions:

• Correlated, private values; interdependent values.
• Comparing the revenue properties of DSIC and BIC auctions.
• Various kinds of budgeted settings, including budgets that depend on outcomes,
and settings where there are correlations between budgets and values.

• Auctions that are robust against deviations by groups of bidders (i.e., properties
such as group strategy-proofness and its relaxations).

• Auctions that are envy-free, so that one bidder does not envy the allocation of
another.

• Auctions that satisfy core properties, so that no group of participants can do better
by breaking away from the auction.

• Revenue-optimal, combinatorial auctions.

The RegretNet architecture can also be used for problems of mechanism
design without money. To illustrate this, we have results for the K-facility loca-
tion problem (Golowich et al. 2018). This problem generalizes the single-facility,
1-dimensional location problem under single-peaked preferences (Moulin 1980) to

16Pai and Vohra (2014) design the optimal, single-item BIC auction, while Malakhov and Vohra
(2008) provide the state-of-the-art result for the optimal, single-itemDSIC auction (for two bidders,
and with a weaker “conditional” form of DSIC). These results build on earlier results for more
stylized settings (Che and Gale 1998, 2000; Maskin 2000; Laffont and Robert 1996). There are
also a few approximation results for DSIC and BIC designs (Borgs et al. 2005; Bhattacharya et al.
2012; Chawla et al. 2011).
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(a) Revenue and regret as a function of iteration count

(b) Learned allocation rule

(c) Optimal allocation rule

Fig. 4 RegretNet (extended to handle private budgets) for a single item, two bidder auction,where
bidder values v1, v2 ∼ Unif {1, 2, ..., 10}, bidder 1 is unconstrained, and bidder 2 has a budget of
4. (b) and (c) compare the trained allocation rule and the optimal allocation rule, illustrating the
probability of assigning the item to each bidder for different values (v1, v2). Based on based on
Fig. 4 in Feng et al. (2018)
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consider multiple facilities. An agent’s utility depends on the distance between its
peak and the closest facility. No general characterization result is available for DSIC
mechanisms for facility location with K ≥ 2 facilities.17 Moreover, a series of nega-
tive results show the impossibility of achieving a good, worst-case approximation to
the optimal social cost (Procaccia and Tennenholtz 2013; Fotakis and Tzamos 2014,
2016). Here, social cost is the total, negated distance from each agent to its clos-
est facility.

We assume that each agent has a single-peaked utility function, i.i.d. drawn from
some distribution, and look to minimize the expected social cost, i.e. the sum of the
agents’ costs. The architecture is modified to RegretNet-nm, where the input layer
is defined to include one unit for the position of each agent’s peak and the output layer
includes one unit for each facility, representing its location.18 The training problem
is solved through augmented Lagrangian.

We compare the social costwith that of the best percentile, dictatorial, and constant
rules, as well as the optimal (non DSIC) rule.19 We vary the number of facilities and
number of agents. In each case, agent peaks are i.i.d. sampled, uniform on [0, 1].
In one variation, weighted social cost is also considered, where the designer may
associate a different weight with each agent. Table 2 summarizes the results for
the case of K = 4, n = 5, as well as K = 3, n = 9 for a weighted objective. The
expected, per-agent ex post regret is low, and the performance of RegretNet-nm
is competitive with the best percentile rule for the unweighted case and better than
the best percentile rule for the weighted case. Figure 5 illustrates the social choice
rule that is learned in each of these two environments. This shows the histogram on
percentiles of reports for each of the facilities.20

ForK = 4 and n = 5, the concentration around i/4 for i ∈ {0, 1, 2, 3, 4} in Fig. 5a
indicates that the behavior of the learned rule is close to that of a percentile rule,
almost always choosing the min and the max peaks, but making different choices
about which reports to use for the other two facilities. ForK = 3 and n = 9, and with
aweighted objective that places a highweight on agents 1 and 2, we see in Fig.5b that

17Ehlers and Gordon (2011) and Heo (2013) provide characterizations for the special case ofK = 2
under additional assumptions.Heo (2013) assumes anonymity and an additional property,users only,
which means that agents cannot influence the locations of facilities they will not use. Ehlers and
Gordon (2011) assume that agents have lexmax preferences over facilities, and thus do not only
care about the peak closest to them.
18For the single facility location problem, it is w.l.o.g. to consider mechanisms that operate on agent
peaks (Border and Jordan 1983). This extends also to a more general “voting under constraints”
setting (Barberà et al. 1997). For multiple facilities there are DSIC mechanisms that do not depend
only on agent peaks. For example, one can consider the example of K = 2 facilities and n = 2,
where one facility is placed at the peak of agent 1 and the other at some location that depends on
the shape of agent 1’s report. Still, we retain this simple representation in our current work.
19In a multi-facility, dictatorial rule, each facility is determined by a separate dictatorial rule. This
is equivalent to having a serial-dictatorial rule for all K facilities. In a multi-facility, percentile rule,
each facility is determined by a separate percentile rule (Sui et al. 2013). A constant rule places
each facility in the same location all the time.
20If p1, . . . , pn are the agent peaks in sorted order, then a facility at location x has percentile 0 if
x ≤ p1, has percentile 1 if x ≥ pn, and has percentile i−1

n−1 + x−pi
(n−1)(pi+1−pi)

if pi ≤ x < pi+1.
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Table 2 (Weighted) social cost and regret for RegretNet-nm, comparing to the best percentile,
best dictatorial, best constant, and optimal (non-DSIC) rules. K is the number of facilities, n the
number of agents (Golowich et al. 2018)
Environment Percentile Dictatorial Constant Optimal RegretNet

Social cost Social cost Social
cost

Social
cost

Social
cost

Regret

K = 4, n = 5 0.017 0.024 0.064 0.0083 0.018 0.0024

K = 3, n = 9, weighted 0.056 0.053 0.085 0.032 0.041 0.0005

(a) K = 4 facilities, n = 5 agents (b) K = 3 facilities, n = 9 agents

Fig. 5 Histograms of facility percentiles chosen by RegretNet-nm. For each instance, the loca-
tions selected by the network are sorted and shown in different colors. Blue is the percentile of the
left-most facility, then orange, then green, then red (for K = 4). Figure5a is from Golowich et al.
(2018)

the learned rule frequently places each facility at a location that corresponds to one of
the reported peaks. In fact, we can confirm that the network learns to approximately
treat agents 1 and 2 as dictators.

More generally, we anticipate that this framework can be successfully applied to
the following variations on facility location, as well as more general problems of
mechanism design without money:

• Facility location problems in multiple dimensions, as well as problems with mul-
tiple capacitated facilities (see Aziz et al. 2018 for a single facility version).

• Matching problems, for example optimizing expected welfare in one-sided and
two-sided matching problems (including considerations of incentive alignment or
stability).

• Voting problems, for example to maximize expected welfare subject to various
axiomatic properties.

5 Looking Forward

We believe that computational methods, and machine learning in particular, can
power a new generation of optimal economic design. We look to learn optimal
designs from data that we generate that represents the distribution on agent types,
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and capture economic constraints such as incentive compatibility within the training
problem, and an objective such as revenue via an appropriate loss function. There
are many fundamental research questions to pursue, including questions that are
responsive to the earlier discussion— robustness, interpretability, and understanding
computation-theoretic and learning-theoretic barriers. The approach is not limited to
auction design, but can extend to other problems of economic design such as those of
optimal contract theory as well as to problems without money. Success will enable
bespoke, optimal designs to be deployed in all corners of the rapidly emerging dig-
ital economy. Indeed, automated design looks like a necessary response to a future
in which we should expect the increasing adoption of algorithmic and AI meth-
ods for economic decision making. Advances in the use of computational methods
for design will also provide tools with which to validate and advance the theory of
optimal economic design.
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