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We address online learning in complex auction settings, such as sponsored search auctions, where the value

of the bidder is unknown to her, evolving in an arbitrary manner and observed only if the bidder wins an

allocation. We leverage the structure of the utility of the bidder and the partial feedback that bidders typically

receive in auctions, in order to provide algorithms with regret rates against the best fixed bid in hindsight,

that are exponentially faster in convergence in terms of dependence on the action space, than what would

have been derived by applying a generic bandit algorithm and almost equivalent to what would have been

achieved in the full information setting. Our results are enabled by analyzing a new online learning setting

with outcome-based feedback, which generalizes learning with feedback graphs. We provide an online learning

algorithm for this setting, of independent interest, with regret that grows only logarithmically with the number

of actions and linearly only in the number of potential outcomes (the latter being very small in most auction

settings). Last but not least, we show that our algorithm outperforms the bandit approach experimentally and

that this performance is robust to dropping some of our theoretical assumptions or introducing noise in the

feedback that the bidder receives.

CCS Concepts: • Information systems→ Sponsored search advertising; • Theory of computation→

Online learning algorithms; Algorithmic game theory and mechanism design;

1 INTRODUCTION
A standard assumption in the majority of the literature on auction theory and mechanism design

is that participants that arrive in the market have a clear assessment of their valuation for the

goods at sale. This assumption might seem acceptable in small markets with infrequent auction

occurrences and amplitude of time for participants to do market research on the goods. However, it

is an assumption that is severely violated in the context of the digital economy.

In settings like online advertisement auctions or eBay auctions, bidders participate very frequently

in auctions that they have very little knowledge about the good at sale, e.g. the value produced by

a user clicking on an ad. It is unreasonable, therefore, to believe that the participant has a clear

picture of this value. However, the inability to pre-assess the value of the good before arriving to

the market is alleviated by the fact that due to the large volume of auctions in the digital economy,

participants can employ learning-by-doing approaches.

In this paper we address exactly the question of how would you learn to bid approximately
optimally in a repeated auction setting where you do not know your value for the good at sale and
where that value could potentially be changing over time. The setting of learning in auctions with an

unknown value poses an interesting interplay between exploration and exploitation that is not
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standard in the online learning literature: in order for the bidder to get feedback on her value she

has to bid high enough to win the good with higher probability and hence, receive some information

about that underlying value. However, the latter requires paying a higher price. Thus, there is an

inherent trade-off between value-learning and cost. The main point of this paper is to address the

problem of learning how to bid in such unknown valuation settings with partial win-only feedback,
so as to minimize the regret with respect to the best fixed bid in hindsight.

On one extreme, one can treat the problem as a Multi-Armed Bandit (MAB) problem, where

each possible bid that the bidder could submit (e.g. any multiple of a cent between 0 and some

upper bound on her value) is treated as an arm. Then, standard MAB algorithms (see e.g. [14]) can

achieve regret rates that scale linearly with the number of such discrete bids. The latter can be very

slow and does not leverage the structure of utilities and the form of partial feedback that arises in

online auction markets. Recently, the authors in [42] addressed learning with such type of partial

feedback in the context of repeated single-item second-price auctions. However, their approach

does not address more complex auctions and is tailored to the second-price auction.

Our Contributions. Our first main contribution is to introduce a novel online learning setting

with partial feedback, which we denote learning with outcome-based feedback and which could be of

independent interest. We show that our setting captures online learning in many repeated auction

scenarios including all types of single-item auctions, value-per-click sponsored search auctions,

value-per-impression sponsored search auctions and multi-item auctions.

Our setting generalizes the setting of learning with feedback graphs [4, 35], in a way that is

crucial for applying it to the auction settings of interest. At a high level, the setting is defined as

follows: The learner chooses an action b ∈ B (e.g. a bid in an auction). The adversary chooses an

allocation function xt , that maps an action to a distribution over a set of potential outcomes O (e.g.

the probability of getting a click) and a reward function rt that maps an action-outcome pair to

a reward (utility conditional on getting a click with a bid of b). Then, an outcome ot is chosen
based on distribution xt (b) and a reward rt (b,ot ) is observed. The learner also gets to observe the

function xt and the reward function rt (·,ot ) for the realized outcome ot (i.e. in our auction setting:

she learns the probability of a click, the expected payment as a function of her bid and, if she gets
clicked, her value).
Our second main contribution is an algorithm which we call WIN-EXP, which achieves regret

O
(√

T |O | log( |B |)
)
. The latter is inherently better than the generic multi-armed bandit regret of

O
(√
T |B |

)
, since in most of our applications |O | will be a small constant (e.g. |O | = 2 in sponsored

search) and takes advantage of the particular feedback structure. Our algorithm is a variant of

the EXP3 algorithm [8], with a carefully crafted unbiased estimate of the utility of each action,

which has lower variance than the unbiased estimate used in the standard EXP3 algorithm. This

result could also be of independent interest and applicable beyond learning in auction settings.

Our approach is similar to the importance weighted sampling approach used in EXP3 so as to

construct unbiased estimates of the utility of each possible action. Our main technical insight is

how to incorporate the allocation function feedback that the bidder receives to construct unbiased

estimates with small variance, leading to dependence only in the number of outcomes and not the

number of actions. As we discuss in the related work, despite the several similarities, our setting

has differences with existing partial feedback online learning settings, such as learning with experts

[8], learning with feedback graphs [4, 35] and contextual bandits [2].

This setting engulfs learning in many auctions of interest where bidders learn their value for

a good only when they win the good and where the good which is allocated to the bidder is

determined by some randomized allocation function. For instance, when applied to the case of

single-item first-price, second-price or all-pay auctions, our setting corresponds to the case where



the bidders observe their value for the item auctioned at each iteration only when they win the item.

Moreover, after every iteration, they observe the critical bid they would have needed to submit to

win (for instance, by observing the bids of others or the clearing price). The latter is typically the

case in most government auctions or in auction settings similar to eBay.

Our flagship application is that of value-per-click sponsored search auctions. These are auctions
were bidders repeatedly bid in an auction for a slot in a keyword impression on a search engine.

The complexity of the sponsored search ecosystem and the large volume of repeated auctions has

given rise to a plethora of automated bidding tools (see e.g. [43]) and has made sponsored search

an interesting arena for automated learning agents. Our framework captures the fact that in this

setting the bidders observe their value for a click only when they get clicked. Moreover, it assumes

that the bidders also observe the average probability of click and the average cost per click for any

bid they could have submitted. The latter is exactly the type of feedback that the automated bidding

tools can receive via the use of bid simulators offered by both major search engines [24–26, 38]. In

Figure 1 we portray example interfaces from these tools, where we see that the bidders can observe

exactly these allocation and payment curves assumed by our outcome-based-feedback formulation.

Not using this information seems unreasonable and a waste of available information. Our work

shows how one can utilize this partial feedback given by the auction systems to provide improved

learning guarantees over what would have been achieved if one took a fully bandit approach. In

the experimental section, we also show that our approach outperforms that of the bandit one even

if the allocation and payment curves provided by the system have some error that could stem from

errors in the machine learning models used in the calculation of these curves by the search engines.

Hence, even when these curves are not fully reliable, our approach can offer improvements in the

learning rate.

Fig. 1. Example interfaces of bid simulators of two major search engines, Google Adwords (left) and BingAds

(right), that enables learning the allocation and the payment function. (sources [33, 41])

We also extend our results to cases where the space of actions is a continuum (e.g. all bids in

an interval [0, 1]). We show that in many auction settings, under appropriate assumptions on the

utility functions, a regret of O
(√

T log(T )
)
can be achieved by simply discretizing the action space

to a sufficiently small uniform grid and running our WIN-EXP algorithm. This result encompasses

the results of [42] for second price auctions, learning in first-price and all-pay auctions, as well as

learning in sponsored search with smoothness assumptions on the utility function. We also show

how smoothness of the utility can easily arise due to the inherent randomness that exists in the

mechanism run in sponsored search.

Finally, we provide two further extensions: switching regret and feedback-graphs over outcomes.
The former adapts our algorithm to achieve good regret against a sequence of bids rather than

a fixed bid, which has implications on the faster convergence to approximate efficiency of the

outcome (price of anarchy). Feedback graphs address the idea that in many cases the learner could

be receiving information about other items other than the item he won (through correlations

in the values for these items). This essentially corresponds to adding a feedback graph over



outcomes and when outcome ot is chosen, then the learner learns the reward function rt (·,o) for
all neighboring outcomes o in the feedback graph. We provide improved results that mainly depend

on the dependence number of the graph rather than the number of possible outcomes.

Related Work. Our work lies on the intersection of two main areas: No regret learning in Game

Theory and Mechanism Design and Contextual Bandits.

No regret learning in Game Theory and Mechanism Design. No regret learning has received a lot of

attention in the Game Theory and Mechanism Design literature [18]. Most of the existing literature,

however, focuses on the problem from the side of the auctioneer, who tries to maximize revenue

through repeated rounds without knowing a priori the valuations of the bidders [5, 6, 12, 13, 16,

20, 21, 23, 29, 32, 36, 37, 39]. These works are centered around different auction formats like the

sponsored search ad auctions, the pricing of inventory and the single-item auctions. Our work is

mostly related to Weed et al. [42], who adopt the point of view of the bidders in repeated second-

price auctions and who also analyze the case where the true valuation of the item is revealed to the

bidders only when they win the item. Their setting falls into the family of settings for which our

novel and generic WIN-EXP algorithm produces good regret bounds and as a result, we are able to

fully retrieve the regret that their algorithms yield, up to a tiny increase in the constants. Hence,

we give an easier way to recover their results. Closely related to our work are the works of [22]

and [9]. Dikkala and Tardos [22] analyzes a setting where bidders have to experiment in order to

learn their valuations, and show that the seller can increase revenue by offering an initial credit

to them, in order to give them incentives to experiment. Balseiro and Gur [9] introduce a family

of dynamic bidding strategies in repeated second-price auctions, where advertisers adjust their

bids throughout the campaign. They analyze both regret minimization and market stability. There

are two key differences to our setting; first, Balseiro and Gur consider the case where the goal of

the bidders is the expediture rate in a way that guarantees that the available campaign budget

will be spent in an optimal pacing way and second, because of their target being the expenditure

rate at every timestep t , they assume that the bidders get information about the value of the slot

being auctioned and based on this information they decide how to adjust their bid. Moreover,

several works analyze the properties of auctions when bidders adopt a no-regret learning strategy

[11, 15, 40]. None of these works, however, addresses the question of learning more efficiently in

the unknown valuation model and either invokes generic MAB algorithms or develops tailored full

information algorithms when the bidder knows his value. Another line of research takes a Bayesian

approach to learning in repeated auctions and makes large market assumptions, analyzing learning

to bid with an unknown value under a Mean Field Equilibrium condition [1, 10, 28]
1
.

Learning with partial feedback. Our work is also related to the literature in learning with partial
feedback [2, 14]. To establish this connectionwe observe that the policies and the actions in contextual
bandit terminology translate into discrete bids and groups of bids for which we learn the rewards in
our work. The difference between these two is the fact that for each action in contextual bandits

we get a single reward, whereas for our setting we observe a group of rewards; one for each action

in the group. Moreover, the fact that we allow for randomized outcomes adds extra complication,

non existent in contextual bandits. In addition, our work is closely related to the literature in online
learning with feedback graphs [3, 4, 19, 35]. In fact, we propose a new setting in online learning,

namely, learning with outcome-based feedback, which is a generalization of learning with feedback

graphs and is essential when applied to a variety of auctions which include sponsored search,

single-item second-price, single-item first-price and single-item all-pay auctions. Moreover, the fact

1
No-regret learning is complementary and orthogonal to the mean field approach, as it does not impose any stationarity

assumption on the evolution of valuations of the bidder or the behavior of his opponents.



that the learner only learns the probability of each outcome and not the actual realization of the

randomness, is similar in nature to a feedback graph setting, but where the bidder does not observe

the whole graph. Rather, she observes a distribution over feedback graphs and for each bid she

learns with what probability each feedback graph would arise. For concreteness, consider the case

of sponsored search and suppose for now that the bidder gets even more information than what we

assume and also observes the bids of her opponents. She still does not observe whether she would

get a click if she falls on the slot below but only the probability with which she would get a click

in the slot below. If she could observe whether she would still get a click in the slot below, then

we could in principle construct a feedback graph that would say that for all bids were the bidder

gets a slot her reward is revealed, and for every bid that she does not get a click, her reward is not

revealed. However, this is not the structure that we have and essentially this corresponds to the

case where the feedback graph is not revealed, as analyzed in [19] and for which no improvement

over the full bandit feedback is possible. However, we show that this impossibility is amended by

the fact that the learner observes the probability of a click and hence for each possible bid, she

observes the probability with which each feedback graph would have happened. This is enough for

a low variance unbiased estimate.

2 LEARNING IN AUCTIONS WITHOUT KNOWING YOUR VALUE
For simplicity of exposition, we start with a simple single-dimensional mechanism design setting,

but our results extend to multi-dimensional (multi-item) mechanisms, as we will see in Section 4.

Let n be the number of bidders. Each bidder has a value vi ∈ [0, 1] per-unit of a good and submits a

bid bi ∈ B, where B is a discrete set of bids (e.g. a uniform ϵ-grid of [0, 1]). Given the bid profile of all

bidders, the auction allocates a unit of the good to the bidders. The allocation rule for bidder i is given
by Xi (bi ,b−i ). Moreover, the mechanism defines a per-unit payment function Pi (bi ,b−i ) ∈ [0, 1].
The overall utility of the bidder is quasi-linear, i.e. ui (bi ,b−i ) = (vi − Pi (bi ,b−i )) · Xi (bi ,b−i ).

Online Learning with Partial Feedback. The bidders participate in this mechanism repeatedly. At

each iteration, each bidder has some value vit and submits a bid bit . The mechanism has some

time-varying allocation function Xit (·, ·) and payment function Pit (·, ·). We assume that the bidder

does not know her value vit , nor the bids of her opponents b−i,t , nor the allocation and payment

functions, before submitting a bid.

At the end of each iteration, she gets an itemwith probabilityXit (bit ,b−i,t ) and observes her value
vit for the item onlywhen she gets one

2
. Moreover, we assume that she gets to observe her allocation

and payment functions for that iteration, i.e. she gets to observe two functions xit (·) = Xit (·,b−i,t )
and pit (·) = Pit (·,b−i,t ). Finally, she receives utility (vit − pit (bit )) · 1{item is allocated to her} or

in other words expected utility uit (bit ) = (vit − pit (bit )) · xit (bit ). Given that we focus on learning

from the perspective of a single bidder we will drop the index i from all notation and instead write,

xt (·), pt (·), ut (·), vt , etc. The goal of the bidder is to achieve small expected regret with respect to

any fixed bid in hindsight: R (T ) = supb∗∈B E
[∑T

t=1 (ut (b
∗) − ut (bt ))

]
≤ o(T ).

3 ABSTRACTION: LEARNINGWITHWIN-ONLY FEEDBACK
Let us abstract the learner’s problem to a setting that could be of interest beyond auction settings.

Learning with Win-Only Feedback. Every day a learner picks an action bt from a finite set B. The
adversary chooses a reward function rt : B → [−1, 1] and an allocation function xt : B → [0, 1].
The learner wins a reward rt (b) with probability xt (b). Let ut (b) = rt (b)xt (b) be the learner’s

2
E.g. in sponsored search, the good allocated is the probability of getting clicked, and you only observe your value if you

get clicked.



expected utility from action b. After each iteration, if she won the reward then she learns the whole

reward function rt (·), while she always learns the allocation function xt (·).

Can the learner achieve regretO (
√
T log( |B |)) rather than bandit-feedback regretO (

√
T |B |)?

In the case of the auction learning problem, the reward function rt (b) takes the parametric form

rt (b) = vt − pt (b) and the learner needs to learn vt and pt (·) at the end of each iteration, when she

wins the item. This is in line with the feedback structure we described in the previous section.

We consider the following adaptation of the EXP3 algorithmwith unbiased estimates based on the

information received. It is notationally useful throughout the section to denote withAt the event of

winning a reward at time t . Then, we canwrite: Pr[At |bt = b] = xt (b) and Pr[At ] =
∑
b ∈B πt (b)xt (b),

where with πt (·) we denote the multinomial distribution from which bid b is drawn. With this

notation we define our WIN-EXP algorithm in Algorithm 1. We note here that our generic family

of the WIN-EXP algorithms can be parametrized by the step-size η, the estimate of the utility ũt
that the learner gets at each round and the feedback structure that she receives.

Algorithm 1WIN-EXP algorithm for learning with win-only feedback

Let π1 (b) =
1

|B | for all b ∈ B (i.e. the uniform distribution over bids), η =
√

2 log( |B |)
5T

for each iteration t do
Draw a bid bt from the multinomial distribution based on πt (·)
Observe xt (·) and if reward is won also observe rt (·)
Compute estimate of utility:

If reward is won ũt (b) =
(rt (b )−1)Pr[At |bt=b]

Pr[At ]
; otherwise, ũt (b) = −

Pr[¬At |bt=b]
Pr[¬At ]

.

Update πt (·) as in Exponential Weights Update: ∀b ∈ B : πt+1 (b) ∝ πt (b) · exp
{
η · ũt (b)

}
Bounding the Regret. We first bound the first and second moment of the unbiased estimates built

at each iteration in the WIN-EXP algorithm.

Lemma 3.1. At each iteration t , for any action b ∈ B, the random variable ũt (b) is an unbiased
estimate of the true expected utility ut (b), i.e.: ∀b ∈ B : E [ũt (b)] = ut (b) − 1 and has expected second
moment bounded by: ∀b ∈ B : E

[
(ũt (b))

2

]
≤

4Pr[At |bt=b]
Pr[At ]

+
Pr[¬At |bt=b]

Pr[¬At ]
.

Proof. Let At denote the event that the reward was won. We have:

E [ũt (b)] = E

[
(rt (b) − 1) · Pr[At |bt = b]

Pr[At ]
1{At } −

Pr[¬At |bt = b]

Pr[¬At ]
1{¬At }

]

= (rt (b) − 1)Pr[At |bt = b] − Pr[¬At |bt = b]

= rt (b)Pr[At |bt = b] − 1 = ut (b) − 1

Similarly for the second moment:

E
[
ũt (b)

2

]
= E

[
(rt (b) − 1)

2

· Pr[At |bt = b]
2

Pr[At ]2
1{At } +

Pr[¬At |bt = b]
2

Pr[¬At ]2
1{¬At }

]

=
(rt (b) − 1)

2

· Pr[At |bt = b]
2

Pr[At ]
+
Pr[¬At |bt = b]

2

Pr[¬At ]
≤

4Pr[At |bt = b]

Pr[At ]
+
Pr[¬At |bt = b]

Pr[¬At ]

where the last inequality holds since rt (·) ∈ [−1, 1] and xt (·) ∈ [0, 1]. □

We are now ready to prove our main theorem:



Theorem 3.2 (Regret of WIN-EXP). The regret of the WIN-EXP algorithm with the aforemen-

tioned unbiased estimates and step size
√

2 log( |B |)
5T is: 4

√
T log( |B |).

Proof. Observe that regret with respect to utilities ut (·) is equal to regret with respect to the

translated utilities ut (·) − 1. We use the fact that the exponential weights update with an unbiased

estimate ũt (·) ≤ 0 of the true utilities, achieves expected regret of the form
3
:

R (T ) ≤
η

2

T∑
t=1

∑
b ∈B

πt (b) · E
[
(ũt (b))

2

]
+
1

η
log( |B |)

Invoking the bound on the second moment by Lemma 3.1, we get:

R (T ) ≤
η

2

T∑
t=1

∑
b ∈B

πt (b) ·

(
4Pr[At |bt = b]

Pr[At ]
+
Pr[¬At |bt = b]

Pr[¬At ]

)
+
1

η
log( |B |) ≤

5

2

ηT +
1

η
log( |B |)

Picking η =
√

2 log( |B |)
5T , we get the theorem. □

4 BEYOND BINARY OUTCOMES: OUTCOME-BASED FEEDBACK
In the win-only feedback framework there were two possible outcomes that could happen: either

you win the reward or not. We now consider a more general problem, where there are more than

two outcomes and you learn your reward function for the outcome you won. Moreover, the outcome

that you won is also a probabilistic function of your action. The proofs for the results presented in

this section can be found in Appendix B in the full version
4
.

Learning with Outcome-Based Feedback. Every day a learner picks an action bt from a finite

set B. There is a set of payoff-relevant outcomes O . The adversary chooses a reward function

rt : B ×O → [−1, 1], which maps an action and an outcome to a reward and he also chooses an

allocation function xt : B → ∆(O ), which maps an action to a distribution over the outcomes. Let

xt (b,o) be the probability of outcome o under action b. An outcome ot ∈ O is chosen based on

distribution xt (bt ). The learner wins reward rt (bt ,ot ) and observes the whole outcome-specific

reward function rt (·,ot ). She always learns the allocation function xt (·) after the iteration. Let
ut (b) =

∑
o∈O rt (b,o) · xt (b,o) be the expected utility from action b.

We consider the following adaptation of the EXP3 algorithm with unbiased estimates based

on the information received. It is notationally useful throughout the section to consider ot as
the random variable of the outcome chosen at time t . Then, we can write: Prt [ot |b] = xt (b,ot )
and Prt [ot ] =

∑
b ∈B πt (b)Prt [ot |b] =

∑
b ∈B πt (b) · xt (b,ot ). With this notation and based on the

feedback structure, we define our WIN-EXP algorithm for learning with outcome-based feedback

in Algorithm 2.

Theorem 4.1 (Regret of WIN-EXP with outcome-based feedback). The regret of Algorithm 2

with ũt (b) =
(rt (b,ot )−1)Prt [ot |b]

Prt [ot ]
and step size

√
log( |B |)
2T |O | is: 2

√
2T |O | log( |B |).

3
A detailed proof of this claim can be found in Appendix G.

4
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Algorithm 2WIN-EXP algorithm for learning with outcome-based feedback

Let π1 (b) =
1

|B | for all b ∈ B (i.e. the uniform distribution over bids), η =
√

log( |B |)
2T |O |

for each iteration t do
Draw an action bt from the multinomial distribution based on πt (·)
Observe xt (·), observe chosen outcome ot and associated reward function rt (·,ot )
Compute estimate of utility:

ũt (b) =
(rt (b,ot ) − 1)Prt [ot |b]

Prt [ot ]
(1)

Update πt (·) based on the Exponential Weights Update:

∀b ∈ B : πt+1 (b) ∝ πt (b) · exp
{
η · ũt (b)

}
(2)

Applications to Learning in Auctions. We now present a series of applications of the main result of

this section to several learning in auction settings, even beyond single-item or single-dimensional

ones.

Example 4.2 (Second-price auction). Suppose that the mechanism ran at each iteration is just the

second price auction. Then, we know that the allocation function Xi (bi ,b−i ) is simply of the form:

1{bi ≥ maxj,i bj } and the payment function is simply the second highest bid. In this case, observing

the allocation and payment functions at the end of the auction boils down to observing the highest

other bid. In fact, in this case we have a trivial setting where the bidder gets an allocation of either

0 or 1 and if we let Bt = maxj,i bjt , then the unbiased estimate of the utility takes the simpler

form (assuming the bidder always loses in case of ties) of: if bt > Bt : ũt (b) =
(vit−Bt−1)1{b>Bt }∑

b′>Bt πt (b
′)

and ũt (b) =
1{b≤Bt }∑
b′≤Bt πt (b

′) in any other case. Our main theorem gives regret 4

√
T log( |B |). We note

that this theorem recovers exactly the results of Weed et al. [42], by using as B a uniform 1/∆o

discretization of the bidding space, for an appropriately defined constant ∆o
(see Appendix B.1 for

an exact comparison of the results).

Example 4.3 (Value-per-click auctions). This is a variant of the binary outcome case analyzed

in Section 3, where O = {A,¬A}, i.e. get clicked or not. Hence, |O | = 2, and rt (b,A) = vt − pt (b),

while rt (b,¬A) = 0. Our main theorem gives regret 4

√
T log( |B |).

Example 4.4 (Unit-demand multi-item auctions). Consider the case of K items at an auction where

the bidder has value vk for only one item k . Given a bid b, the mechanism defines a probability

distribution over the items that the bidder will be allocated and also defines a payment function,

which depends on the bid of the bidder and the item allocated. When a bidder gets allocated

an item k she gets to observe her value vkt for that item. Thus, the set of outcomes is equal to

O = {1, . . . ,K + 1}, with outcome K + 1 associated with not getting any item. The rewards are also

of the form: rt (b,k ) = vkt − pt (b,k ) for some payment function pt (b,k ) dependent on the auction

format. Our main theorem then gives regret 2

√
2(K + 1)T log( |B |).

4.1 Batch Rewards Per-Iteration and Sponsored Search Auctions
We now consider the case of sponsored search auctions, where the learner participates in multiple

auctions per-iteration. At each of these auctions she has a chance to win and get feedback on

her value. To this end, we abstract the learning with win-only feedback setting to a setting where

multiple rewards are awarded per-iteration. The allocation function remains the same throughout

the iteration but the reward functions can change.
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Outcome-Based Feedback with Batch Rewards. Every iteration t is associated with a set of reward
contests It . The learner picks an action bt , which is used at all reward contests. For each τ ∈ It
the adversary picks an outcome specific reward function rτ : B × O → [−1, 1]. Moreover, the

adversary chooses an allocation function xt : B → ∆(O ), which is not τ -dependent. At each τ , an
outcome oτ is chosen based on distribution xt (bt ) and independently. The learner receives reward

rτ (bt ,oτ ) from that contest. The overall realized utility from that iteration is the average reward:

1

|It |
∑
τ ∈It rτ (bt ,oτ ), while the expected utility from any bid b is: ut (b) =

1

|It |
∑
τ ∈It

∑
o∈O rτ (b,o) ·

xt (b,o). We assume that at the end of each iteration the learner receives as feedback the average

reward function conditional on each realized outcome, i.e. if we let Ito = {τ ∈ It : oτ = o}, then the

learner learns the function: Qt (b,o) =
1

|Ito |
∑
τ ∈Ito rτ (b,o) (with the convention that Qt (b,o) = 0 if

|Ito | = 0) as well as the realized frequencies ft (o) =
|Ito |
|It |

for all outcomes o.

With this at hand we can define the batch-analogue of our unbiased estimates of the previous

section. To avoid any confusion we define: Prt [o |b] = xt (b,o) and Prt [o] =
∑
b ∈B πt (b)Prt [o |b], to

denote that these probabilities only depend on t and not on τ . The estimate of the utility will be:

ũt (b) =
∑
o∈O

Prt [o |b]

Prt [o]
ft (o) (Qt (b,o) − 1) (3)

We show the full algorithm with outcome-based batch-reward feedback in Algorithm 3.

Algorithm 3WIN-EXP algorithm for learning with outcome-based batch-reward feedback

Let π1 (b) =
1

|B | for all b ∈ B (i.e. the uniform distribution over bids), η =
√

log( |B |)
2T |O |

for each iteration t do
Draw an action bt from the multinomial distribution based on πt (·)
Observe xt (·), chosen outcomes oτ ,∀τ ∈ It , average reward function conditional on each

realized outcome Qt (b,o) and the realized frequencies for each outcome ft (o) =
|Ito |
|It |

.

Compute estimate of utility:

ũt (b) =
∑
o∈O

Prt [o |b]

Prt [o]
ft (o) (Qt (b,o) − 1) (4)

Update πt (·) based on the Exponential Weights Update:

∀b ∈ B : πt+1 (b) ∝ πt (b) · exp
{
η · ũt (b)

}
(5)

Corollary 4.5. The WIN-EXP algorithm with the latter unbiased utility estimates and step

size
√

log( |B |)
2T |O | , achieves regret in the outcome-based feedback with batch rewards setting at most:

2

√
2T |O | log( |B |).

It is also interesting to note that the same result holds if instead of using ft (o) in the expected

utility (Equation (10)), we used itsmean value, which is xt (o,bt ) = Prt [o |bt ]. This would not change
any of the derivations above. The nice property of this alternative is that the learner does not need

to learn the realized fraction of each outcome, but only the expected fraction of each outcome.

This is already contained in the function xt (·, ·), which we assumed was given to the learner at

the end of each iteration. Thus, with these new estimates, the learner does not need to observe

ft (o). In Appendix C we also discuss the case where different periods can have different number of

rewards and how to extend our estimate to that case. The batch rewards setting finds an interesting

application in the case of learning in sponsored search, as we describe below.
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Example 4.6 (Sponsored Search). In the case of sponsored search auctions, the latter boils down to

learning the average value v̂ = 1

#clicks
∑
clicks vclick for the clicks that were generated, as well as

the cost-per-click function pt (b), which is assumed to be constant throughout the period t . Given
these quantities, the learner can compute: Q (b,A) = v̂ − pt (b) and Q (b,¬A) = 0. An advertiser can

keep track of the traffic generated by a search engine ad and hence, can keep track of the number

of clicks from the search engine and the value generated by each of these clicks (conversion). Thus,

she can estimate v̂ . Moreover, she can elicit the probability of click (aka click-through-rate or CTR)

curves xt (·) and the cost-per-click (CPC) curves pt (·) over relatively small periods of time of about

a few days. See for instance the Adwords bid simulator tools offered by Google [24–26, 38]
5
. Thus,

with these at hand we can apply our batch reward outcome based feedback algorithm and get

regret that does not grow linearly with |B |, but only as 4

√
T log ( |B |). Our main assumption is

that the expected CTR and CPC curves during this relatively small period of a few days remains

approximately constant. The latter holds if the distribution of click-through-rates does not change

within these days and if the bids of opponent bidders also do not significantly change. This is a

reasonable assumption when feedback can be elicited relatively frequently, which is the case in

practice.

5 CONTINUOUS ACTIONS WITH PIECEWISE-LIPSCHITZ REWARDS
Until now we only considered discrete action spaces. In this section, we extend our discussion to

continuous ones; that is, we allow the action of each bidder to lie in a continuous action space B

(e.g. a uniform interval in [0, 1]). To assist us in our analysis, we are going to use the discretization

result in [31]
6
. For what follows in this section, let R (T ,B) = supb∗∈B E

[∑T
t=1 (ut (b

∗) − ut (bt ))
]

be the regret of the bidder, after T rounds with respect to an action space B. Moreover, for any

pairs of action spaces B and B we let: DE (B,B) = supb ∈B
∑T

t=1 ut (b) − supb′∈B
∑T

t=1 ut (b
′), denote

the discretization error incurred by optimizing over B instead of B. The proofs of this section can

be found in Appendix E.

Lemma 5.1. ([30, 31]) Let B be a continuous action space and B a discretization of B. Then:

R (T ,B) ≤ R (T ,B) + DE (B,B)

Observe now that in the setting of Weed et al. [42] the discretization error was: DE (B,B) = 0 if

ϵ < ∆o
, as we discussed in Section 4 and that was the key that allowed us to recover this result,

without adding an extra ϵT in the regret of the bidder. To achieve that, we construct the following

general class of utility functions:

Definition 5.2 (∆o-Piecewise Lipschitz Average Utilities). A learning setting with action space

B = [0, 1]d , is said to have ∆o
-Piecewise Lipschitz Cumulative Utilities if the average utility

function
1

T
∑T

t=1 ut (b) satisfies the following conditions: the bidding space [0, 1]
d
is divided into

d-dimensional cubes with edge length at least ∆o
and within each cube the utility is L-Lipschitz with

respect to the ℓ∞ norm. Moreover, for any boundary point there exists a sequence of non-boundary

points whose limit cumulative utility is at least as large as the cumulative utility of the boundary

point.

Lemma 5.3 (Discretization Error for Piecewise Lipschitz). Let B = [0, 1]d be a continuous
action space and B a uniform ϵ-grid of [0, 1]d , such that ϵ < ∆o (i.e. B consists of all the points
5
One could argue that the CTRs that the bidder gets in this case are not accurate enough. Nevertheless, even if they have

random perturbations, we show in our experimental results that for reasonable noise assumptions, WIN-EXP is preferrable

compared to EXP3.

6
Kleinberg [31] discuss the uniform discretization of continuum-armed bandits and Kleinberg et al. [30] extend the results

for the case of Lipschitz-armed bandits.
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whose coordinates are multiples of a given ϵ). Assume that the average utility function is ∆o-Piecewise
L-Lipschitz. Then, the discretization error of B is bounded as: DE (B,B) ≤ ϵLT .

If we know the Lipschitzness constant L mentioned above, the time horizon T and ∆o
, then our

WIN-EXP algorithm for Outcome-Based Feedback with Batch Rewards yields regret as defined by

the following theorem. In Appendix E, we also show how to deal with unknown parameters L, T
and ∆o

by applying a standard doubling trick.

Theorem 5.4. Let B = [0, 1]d be the action space as defined in our model and let B be a uniform ϵ-
grid ofB. TheWIN-EXP algorithmwith unbiased estimates given by ũt (b) =

∑
o∈O

Prt [o |b]
Prt [o]

ft (o) (Qt (b,o) − 1) (6)

onB withη =
√

log( |B |)
2T |O | , ϵ = min

{
1

LT ,∆
o
}
achieves expected regret atmost 2

√
2T |O |d log

(
max

{
1

∆o ,LT
})
+

1 in the outcome-based feedback with batch rewards and ∆o-Piecewise L−Lipschitz average utilities 7.

Example 5.5 (First Price and All-Pay Auctions). Consider the case of learning in first price or

all-pay auctions. In the former, the highest bidder wins and pays her bid, while in the latter the

highest bidder wins and every bidder pays her bid whether she wins or loses. Let Bt be the highest
other bid at time t . Then the average hindsight utility of the bidder in each auction is

8
:

1

T
∑T

t=1 ut (b) =
1

T
∑T

t=1vt · 1{b > Bt } − b ·
1

T
∑T

t=1 1{b > Bt } (first price)

1

T
∑T

t=1 ut (b) =
1

T
∑T

t=1vt · 1{b > Bt } − b (all-pay)

Let ∆o
be the smallest difference between the highest other bid at any two iterations t and t ′ 9. Then

observe that the average utilities in this setting are ∆o
-Piecewise 1-Lipschitz: Between any two

highest other bids, the average allocation,
1

T
∑T

t=1vt ·1{b > Bt }, of the bidder remains constant and

the only thing that changes is his payment which grows linearly. Hence, the derivative at any bid

between any two such highest other bids is upper bounded by 1. Hence, by applying Theorem 5.4,

our WIN-EXP algorithm with a uniform discretization on a ϵ-grid, for ϵ = min

{
∆o , 1T

}
, achieves

regret 4

√
T log

(
max

{
1

∆o ,T
})
) + 1, where we used that |O | = 2 and d = 1 for any of these auctions.

5.1 Sponsored Search with Lipschitz Utilities
In this subsection, we extend our analysis of learning in the sponsored search auction model

(Example 4.6) to the continuous bid space case, i.e., each bidder can submit a bid b ∈ [0, 1]. As a
reminder, the utility function is:ut (b) = xt (b) (v̂t −pt (b)), where b ∈ [0, 1], v̂t ∈ [0, 1] is the average
value for the clicks at iteration t , xt (·) is the CTR curve and pt (·) is the CPC curve. These curves

are implicitly formed by running some form of a Generalized Second Price auction (GSP) at each

iteration to determine the allocation and payment rules. As we show in this subsection, the form of

the GSP ran in reality gives rise to Lipschitz utilities, under some minimal assumptions. Therefore,

we can apply the results in Section 5 to get regret bounds even with respect to the continuous bid

space B = [0, 1] 10
. We begin by providing a brief description of the type of Generalized Second

Price auction ran in practice.

7
Interestingly, the above regret bound can help to retrieve two familiar expressions for the regret. First, when L = 0 (i.e.

when the function is constant within each cube), in is the case for the second price auction analyzed in [42], R (T ) =

2

√
2dT |O | log

(
1

∆o

)
+ 1. Hence, we recover the bounds from the prior sections up to a tiny increase. Second, when

∆o → ∞, then we have functions that are L-Lipschitz in the whole space B and the regret bound that we retrieve is:

R (T ) = 2

√
2dT |O | log (LT ) + 1, which is of the type achieved in continuous lipschitz bandit settings.

8
For simplicity, we assume the bidder loses in case of ties, though we can handle arbitrary random tie-breaking rules.

9
This is an analogue of the ∆o used by [42] in second price auctions.

10
The aforementioned Lipschitzness is also reinforced by real world data sets from Microsoft’s sponsored search auction

system.
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Definition 5.6 (Weighted-GSP). Each bidder i is assigned a quality score si ∈ [0, 1]. Bidders are
ranked according to their score-weighted bid si · bi , typically called the rank-score. Every bidder

whose rank-score does not pass a reserve r is discarded. Bidders are allocated slots in decreasing

order of rank-score. Each bidder is charged per-click the lowest bid she could have submitted and

maintained the same slot. Hence, if a bidder i is allocated a slot k and ρk+1 is the rank-score of the
bidder in slot k + 1, then she is charged ρk+1/si per-click. We denote withUi (b, s, r ), the utility of

bidder i under a bid profile b and score profile s.

The quality scores are typically highly random, dependent on the features of the ad and the user

that is currently viewing the page. Hence, a reasonable modeling assumption is that the scores si at
each auction are drawn i.i.d. from some distribution with CDF Fi . We now show that if the CDF Fi
is Lipschitz (i.e. admits a bounded density), then the utilities of the bidders are also Lipschitz.

Theorem 5.7 (Lipschitzness of the utility of Weighted GSP). Suppose that the score si of
each bidder i in a weighted GSP is drawn independently from a distribution with an L−Lipschitz CDF
Fi . Then, the expected utility ui (bi , b−i , r ) = Es [Ui (bi , b−i , s, r )] is 2nL

r −Lipschitz wrt bi .

Thus, we see that when the quality scores in sponsored search are drawn from L-Lipschitz CDFs
Fi ,∀i ∈ n and the reserve is lower bounded by δ > 0, then the utilities are

2nL
δ -Lipschitz and we

can achieve good regret bounds by using the WIN-EXP algorithm with batch rewards, with action

space B being a uniform ϵ-grid, ϵ = δ
2nLT and unbiased estimates given by Equation (6) or Equation

(3). In the case of sponsored search the second unbiased estimate takes the following simple form:

ũt (b) =
xt (b ) ·xt (bt )∑

b′∈B πt (b′)xt (b′)
(v̂t − pt (b) − 1) −

(1−xt (b )) ·(1−xt (bt ))∑
b′∈B πt (b′) (1−xt (b′))

(7)

where v̂t is the average value from the clicks that happened during iteration t , xt (·) is the CTR curve,

bt is the realized bid that the bidder submitted and πt (·) is the distribution over discretized bids of

the algorithm at that iteration. We can then apply Theorem 5.4 to get the following guarantee:

Corollary 5.8. TheWIN-EXP algorithm run on a uniform ϵ-grid with ϵ = δ
2nLT , step size

√
log(1/ϵ )

4T
and unbiased estimates given by Equation (6) or Equation (3), when applied to the sponsored search
auction setting with quality scores drawn independently from distributions with L-Lipschitz CDFs,

achieves regret at most: 4
√
T log

(
2nLT
δ

)
+ 1.

6 FURTHER EXTENSIONS
In this section, we discuss an extension to switching regret and the implications on Price of Anarchy

and one to the feedback graphs setting.

6.1 Switching Regret and Implications for Price of Anarchy
We show below that our results can be extended to capture the case where, instead of having just

one optimal bid b∗, there is a sequence of C ≥ 1 switches in the optimal bids. Using the results

presented in [27] and adapting them for our setting we get the following corollary (with proof in

Appendix F).

Corollary 6.1. LetC ≥ 0 be the number of times that the optimal bid b∗ ∈ B switches in a horizon
of T rounds. Then, using Algorithm 2 in [27] with A ≡ WIN-EXP and any α ∈ (0, 1) we can achieve

expected switching regret at most: O
(√

(C + 1)2
(
2 + 1

α

)
2d |O |T log

(
max

{
LT , 1

∆o

}))
This result has implications on the price of anarchy (PoA) of auctions. In the case of sponsored

search where bidders’ valuations are changing over time adversarially but non-adaptively, our
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result shows that if the valuation does not change more than C times, we can compete with any

bid that is a function of the value of the bidder at each iteration, with regret rate given by the

latter theorem. Therefore, by standard PoA arguments [34], this would imply convergence to an

approximately efficient outcome at a faster rate than bandit regret rates.

6.2 Feedback Graphs over Outcomes
We now extend Section 5, by assuming that there is a directed feedback graph G = (O,E) over the
outcomes. When outcome ot is chosen, the bidder observes not only the outcome specific reward

function rt (·,ot ), for that outcome, but also for any outcome o in the out-neighborhood of ot in
the feedback graph, which we denote with N out (ot ). Correspondingly, we denote with N in (o) the
incoming neighborhood of o in G . Both neighborhoods include self-loops. Let Gϵ = (Oϵ ,Eϵ ) be the
sub-graph of G that contains only outcomes for which Prt [ot ] ≥ ϵ and subsequently, let N in

ϵ and

N out
ϵ be the in and out neighborhoods of this sub-graph.

Based on this feedback graphwe construct aWIN-EXP algorithmwith step-sizeη =
√

log( |B |)

8Tα ln

(
16|O |2T

α

) ,
utility estimate ũt (b) = 1{ot ∈ Oϵ }

∑
o∈N out

ϵ (ot )
(rt (b,o)−1)Prt [o |b]∑

o′∈Nin
ϵ (o ) Prt [o

′
]
and feedback structure as described

in the previous paragraph. With these changes we can show that the regret grows as a function of

the independence number of the feedback graph, denoted with α , rather than the number of outcomes.
The full Algorithm can be found in Appendix A.

Theorem 6.2 (Regret of WIN-EXP-G). The regret of the WIN-EXP-G algorithm with step size

η =
√

log( |B |)

8Tα ln

(
16|O |2T

α

) is bounded by: R (T ) ≤ 2

√
8αT log( |B |) ln

(
16 |O |2T

α

)
+ 1.

In the case of learning in auctions, the feedback graph over outcomes can encode the possibility that

winning an item can help you uncover your value for other items. For instance, in a combinatorial

auction form items, the reader should think of each node in the feedback graph as a bundle of items.

Then the graph encodes the fact that winning bundle o can teach you the value for all bundles

o′ ∈ N out (o). If the feedback graph has small dependence number then a much better regret

is achieved than the dependence on

√
2
m
, that would have been derived by our outcome-based

feedback results of prior sections, if we treated each bundle of items separately as an outcome.

7 EXPERIMENTAL RESULTS
In this section, we present our results from our comparative analysis between EXP3 and WIN-EXP

on a simulated sponsored search system that we built and which is a close proxy of the actual

sponsored search algorithms deployed in the industry. We implemented the weighted GSP auction

as described in definition 5.6. The auctioneer draws i.i.d rank scores that are bidder and timestep

specific; as is the case throughout our paper, here we have assumed a stochastic auctioneer with

respect to the rank scores. After bidding, the bidder will always be able to observe the allocation

function. Now, if the bidder gets allocated to a slot and she gets clicked, then, she is able observe the

value and the payment curve. Values are assumed to lie in [0, 1] and they are obliviously adversarial.
Finally, the bidders choose bids from some ϵ-discretized grid of [0, 1] (in all experiments, apart

from the ones comparing the regrets for different discretizations, we use ϵ = 0.01) and update the

probabilities of choosing each discrete bid according to EXP3 or WIN-EXP. Regret is measured

with respect to the best fixed discretized bid in hindsight.

We distinguish three cases of the bidding behavior of the rest of the bidders (apart from our

learner): i) all of them are stochastic adversaries drawing bids at random from some distribution, ii)

there is a subset of them that are bidding adaptively, by using an EXP3 online learning algorithm
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and iii) there is a subset of them that are bidding adaptively but using a WINEXP online learning

algorithm (self play). Validating our theoretical claims, in all three cases, WIN-EXP outperforms

EXP3 in terms of regret. We generate the event of whether a bidder gets clicked or not as follows:

we draw a timestep specific threshold value in [0, 1] and the learner gets a click in case the CTR of

the slot she got allocated (if any) is greater than this threshold value. Note here that the choice

of a timestep specific threshold imposes monotonicity, i.e. if the learner did not get a click when

allocated to a slot with CTR xt (b), she should not be able to get a click from slots with lower CTRs.

We ran simulations with 3 different distributions of generating CTRs, so as to understand what is

the effect of different levels of click-through-rates on the variance of our regret: i) xt (b) ∼ U [0.1, 1],
ii) xt (b) ∼ U [0.3, 1] and iii) xt (b) ∼ U [0.5, 1]. Finally, we address robustness of our results to errors
in CTR estimation. For this, we add random noise to the CTRs of each slot and we report to the

learners the allocation and payment functions that correspond to the erroneous CTRs. The noise

was generated according to a normal distributionN (0, 1m ), wherem could be viewed as the number

of training samples on which a machine learning algorithm was ran in order to output the CTR

estimate (m = 100, 1000, 10000).
For each of the following simulations, there are N = 20 bidders, k = 3 slots and we ran the

experiment for each round for a total of 30 times. For the simulations that correspond to adaptive

adversaries we used a = 4 adversaries. Our results for the cumulative regret are presented below.

We measured ex-post regret with respect to the realized thresholds that determine whether a bidder

gets clicked or not. Note that the solid plots correspond to the emprical mean of the regret, whereas

the opaque bands correspond to the 10-th and 90-th percentile.

Different discretizations. In Figure 2 we present the comparative analysis of the estimated average

regret of WIN-EXP vs EXP3 for different discretizations, ϵ , of the bidding space when the learner

faces adversaries that are stochastic, adaptive using EXP3 and adaptive using WINEXP. As it was

expected from the theoretical analysis, the regret of WIN-EXP, as the disretized space (|B |) increases
exponentially, remains almost unchanged compared to the regret of EXP3. In summary, finer
discretization of the bid space helps our WIN-EXP algorithm’s performance, but hurts the performance
of EXP3.

Fig. 2. Regret of WIN-EXP vs EXP3 for different discretizations ϵ (CTR ∼ U [0.5, 1]).

Different CTR Distributions. In Figures 3, 4 and 5 we present the results of the regret performance

of WIN-EXP compared to EXP3, when the learner discretizes the bidding space with ϵ = 0.01
and when she faces stochastic, adaptive adversaries using EXP3 and adaptive adversaries using

WINEXP, respectively. For all three cases, the estimated average regret of WIN-EXP is less than

the estimated average regret that EXP3 yields.



Fig. 3. Regret of WIN-EXP vs EXP3 for different CTR distributions and stochastic adversaries, ϵ = 0.01.

Fig. 4. Regret of WIN-EXP vs EXP3 for different CTR distributions and adaptive EXP3 adversaries, ϵ = 0.01.

Fig. 5. Regret ofWIN-EXP vs EXP3 for different CTR distributions and adaptiveWINEXP adversaries, ϵ = 0.01.

Robustness to Noisy CTR Estimates. In Figures 6, 7, 8 we empirically tested the robustness of

our algorithm to random perturbations of the allocation function that the auctioneer presents to

the learner, for perturbations of the form N
(
0, 1m

)
, wherem could be viewed as the number of

training examples used from the auctioneer in order to derive an approximation of the allocation

curve. When the number of training samples is relatively small (m = 100) the empirical mean of

WINEXP outperforms EXP3 in terms of regret, i.e., it is more robust to such perturbations. As the

number of training samples increases, WINEXP clearly outperforms EXP3. The latter validates one

of our claims throughout the paper; namely, that even though the learner might not see the exact

allocation curve, but a randomly perturbed proxy, WIN-EXP still performs better than the EXP3.



Fig. 6. Regret of WIN-EXP vs EXP3 with noise ∼ N
(
0, 1m

)
for stochastic adversaries, ϵ = 0.01.

Fig. 7. Regret of WIN-EXP vs EXP3 with noise ∼ N
(
0, 1m

)
for adaptive EXP3 adversaries, ϵ = 0.01.

Fig. 8. Regret of WIN-EXP vs EXP3 with noise ∼ N
(
0, 1m

)
for adaptive WINEXP adversaries, ϵ = 0.01.

8 CONCLUSION
We addressed learning in repeated auction scenarios were bidders do not know their valuation for

the items at sale. We formulated an online learning framework with partial feedback which captures

the information available to bidders in typical auction settings like sponsored search and provided

an algorithm which achieves almost full information regret rates. Hence, we portrayed that not

knowing your valuation is a benign form of incomplete information for learning in auctions. Our

experimental evaluation also showed that the improved learning rates are robust to violations

of our assumptions and are valid even when the information assumed is corrupted. We believe

that exploring further avenues of relaxing the informational assumptions (e.g., what if the value is

only later revealed to a bidder or is contigent upon the competitiveness of the auction) or being



more robust to erroneous information given by the auction system is an interesting future research

direction. We believe that our outcome-based learning framework can facilitate such future work.
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