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Abstract

In traditional auction theory, bidders in auction mechanisms are assumed to know their ex-

act values for the goods being sold. Under such assumptions, auction theorists have arrived

at the revelation principle, which implies that the English ascending-price auction yields

the equivalent outcome as the Vickrey second-price sealed-bid auction. In reality, however,

a bidder’s private value for a good is often uncertain. In this paper, we apply concepts

of bounded rationality from artificial intelligence to traditional auction theory to arrive

at the conclusion that the revelation principle no longer holds when considering bounded-

rational bidders with uncertainty in their true valuations of goods. We begin by setting up

a mathematical framework for such uninformed bidders and derive the optimal bidding and

information acquisition strategies in three canonical auction formats: the posted-price, the

second-price sealed-bid and the ascending-price. Using these strategies, we find that the

ascending-price auction provides much better incentives for the right bidders to acquire the

right amounts of information and may lead to higher revenues than the second-price sealed-

bid auction. The main achievement of this work is to introduce a consistent mathematical

valuation model of mid-auction multi-stage information acquisition. Most of the previous

work on information acquisition has focused acquiring before auctions begin, while some

more recent work has looked at mid-auction information acquisition but considering only

one stage of information acquisition. We believe that ours is the first to consider multiple

stages of information acquisition in auctions with bounded-rational bidders.
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Chapter 1

Introduction

In traditional auction theory, bidders in auction mechanisms are assumed to know their

exact values for the goods being sold. Under such assumptions, auction theorists have ar-

rived at the revelation principle, which states that for every iterative auction mechanism

with multiple rounds, there exists a corresponding direct or sealed-bid mechanism, in which

bidders state their values for all items at the beginning of the auction, that has the same

outcome. Thus, the equilibrium strategies in such mechanisms are easily computable. Fur-

thermore, it follows that the English ascending-price auction is equivalent to the Vickrey

second-price sealed-bid auction.

In reality, however, a bidder’s private value for a good is often uncertain. In fact,

people can rarely name the exact value an item has for them and instead may only know

an estimate or range of possible values. Moreover, obtaining a more accurate valuation

may require expending significant efforts and resources. This occurs when bidders have

hard valuation problems. The idea of bidders having hard valuation problems arises from

considering the effect of bidders’ bounded rationality in auctions. The idea of bounded

rationality is a central concept in the field of artificial intelligence and describes agents that

are faced with bounded computational resources. In particular, they are computationally

restricted from immediately calculating perfectly rational strategies and must instead decide

how to expend their resources in acquiring additional information. Such agents are closer

in line with reality than perfectly rational agents.

In this paper, we apply concepts of bounded rationality from artificial intelligence to

traditional auction mechanisms in economics. This is only a small facet of the fascinating

interface between computer science and economics that is quickly rising in popularity, and

our paper is intended to emphasize the added benefits to combining insights from both

4



CHAPTER 1. INTRODUCTION 5

fields.

A classic example of an auction setting in which agents are faced with a costly and

difficult valuation problem is that of a corporate takeover auction. In such a mechanism,

the potential acquirors may spend millions of dollars determining the value of the assets

for sale and calculating potential synergies. Another example is that of wireless spectrum

auctions. Telecommunication companies must incur large costs in order to determine not

only on which bands of spectrum they wish to bid but also how much they are willing to

bid. Only significant amounts of costly research on the profitability of different options will

allow these companies to refine the range of their valuations.

In practice, uncertainty about valuations in auctions arises in many ways. In complex

environments such as combinatorial auctions, gathering information and computing valua-

tions for all goods and combinations of goods can be formidable. It makes sense for bidders

to approach such auctions with just a vague estimate of their valuations, and, as the mech-

anism progresses, then to choose to concentrate her computational resources on acquiring

information on the most promising alternatives. It does not make sense for a bidder to

waste her computation resources refining her value when she is not even sure that she has a

decent chance at winning the good. Only when she receives feedback that she is competitive

in the auction will she then invest resources in acquiring information to refine her value.

In this paper, we set up a mathematical framework in which we have bounded-rational

bidders that are uncertain about their true values for a good but have the option of acquiring

information multiple times in order to refine their beliefs about those values. We focus on

private-value settings in which the value to each bidder of the good for sale is independent of

the value to every other bidder. With this framework in mind, we consider several different

auction mechanisms and determine the optimal strategies given the bounded-rationality of

bidders. Armed with those optimal strategies, we can then draw conclusions about the

relative merits of the different auction formats when bidders are bounded-rational. Our

ultimate goal is to strive towards the optimal design of auction mechanisms for bidders

with hard valuation problems.

Ideally, the optimal auction will result in as little wasted computation as possible. Bid-

ders acquire just enough information to determine their relative competitiveness in the

auction and then stop because such computation is expensive. At the same time, we also

hope that the optimal auction will result in high efficiency and revenues.
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Related Work

Information acquisition during auctions is an issue that has been ignored in auction design

until relatively recently. Previously, most of the literature on information acquisition has

restricted its attention to static or sealed-bid auctions in which information acquisition may

take place only prior to the auction (e.g. [10] and [9]).

There are a few works of which we are aware that do deal with information acquisition

during auctions and the three most relevant include Compte & Jehiel [4], Rezende [14],

and Parkes [11, 12]. The works by Compte & Jehiel and Rezende both propose stylized

equilibrium models for costly information acquisition by bidders in sealed-bid and ascending-

price auctions. Bidders incur the cost of information acquisition during auctions and can

choose to acquire information only once during the auction. While Rezende focuses on a

model in which multiple bidders are uninformed, Compte & Jehiel provide a simpler model

in which only one bidder has an uncertain valuation. These stylized models are interesting

because they allow for tractable equilibrium analysis of optimal strategies. This paper serves

to extend these models by providing a framework in which bidders can acquire information

multiple times during an auction. By doing so, we are able to support the major conclusions

drawn in these papers as well as explain some more subtle effects.

The paper by Parkes [11] is closest in line with the work done in this paper. Parkes

considers a simple valuation model for agents by assuming that their values are uniformly

distributed along some interval and then proposes an algorithm for information acquisition

in this model. Unfortunately, in Parkes’ model, information acquisition is inconsistent

with the valuation model. Nonetheless, he does demonstrate that iterative auctions are

preferred over sealed-bid auctions when bidders’ valuations are uncertain. In particular, he

emphasizes that iterative auctions allow for the right bidders to acquire the right amount

of information.

Two other works relating to mid-auction information acquisition are also worth noting.

First, Engelbrecht-Wiggans [5] has written a paper in which he solves an analytic example

using two stages of information acquisition and suggests that information acquisition is the

main reason for the popularity of multi-stage over single-stage auctions. Secondly, Rasmusen

[13] looks at a simple model where agents can acquire information once in iterative auctions

but his model is quite restrictive in that there are only two bidders, each with a very specific

distribution for the value of the good.

Finally, Sandholm [17] deals with the question of mechanism design with bounded-

rational agents. This analysis shows that an agent can make a better decision about whether

to perform further computation about its own value if it is well-informed about other agents’
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bids. Larson & Sandholm [7] [8] model a full equilibrium where agents must make explicit

decisions about whether to deliberate about their own values or the values of other agents

(counterspeculation) in settings with costly deliberation.

We believe that our paper is the first to introduce a consistent valuation model of multi-

stage information acquisition. Using that model, we arrive at optimal bidding and infor-

mation acquisition strategies for bidders in three canonical auction formats: posted-price,

second-price sealed-bid, and ascending-price. From our analysis, we confirm the findings of

previous work and find that the ascending-price auction provides much better incentives for

the right bidders to acquire the right amount of information than the second-price sealed-

bid auction. The advantage is particularly obvious when bidders have no prior knowledge

about the distribution of the other bidders’ values. We also find that this advantage may

lead to higher revenues in the ascending format when multiple bidders have hard valuation

problems.

Motivational Examples

In order to further motivate our analysis, we describe some basic examples of situations in

which we may find hard valuation problems. By laying out these examples, we can focus

on what exact questions we need to answer in our analysis.

First, imagine a man from Boston trying to purchase a last-minute ticket online to San

Francisco. His favorite discount online airfare finder quotes him a price of $500. But he is

unsure of how much the trip is worth to him, what exact value a ticket to San Francisco

gives him. Should he spend time finding out more details about his trip? Even if he chooses

to find out more details, should he accept the price?

Now imagine a young couple looking for a new home. Assume that to buy a specific

home, the couple, along with any other parties interested in the home, must submit a bid

to the home’s owner specifying the amount they are willing to pay. One day the couple

spots a home that seems to fit their needs almost perfectly, so they decide to submit a

bid. But they do not know all the details and intricacies of the house’s characteristics such

as its design, structure, insulation, school district, location, etc. How much time should

the couple spend researching information about the house? What bid should they finally

submit?

Lastly consider an avid art collector participating in a Sotheby’s online auction. A

certain painting has caught his interest, and he decides to start bidding for it. He realizes,

however, that he is not sure whether the painting is genuine, what it looks like in reality,
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and how it will fit into his collection. How much of this uncertainty should he try to resolve

before bidding? At what value should he give up?

In each of these examples, the bidder is participating in a different auction format (the

posted-price, second-price sealed-bid, and ascending-price auctions, respectively) but still

faces a common decision problem. Solving that decision problem for each of the different

auction formats is where our interest lies.



Chapter 2

Setup

In this chapter, we lay out the setup for our analysis. First, we formalize the bidder’s decision

problem and establish the analytical frameworks with which we model that problem. Next,

we specify the auction formats that we have chosen to analyze. Finally, we outline some

stylized numerical examples to motivate our analysis.

2.1 The Three-Part Decision Problem

The bidder’s decision problem can be divided into three parts: (i) the valuation problem,

(ii) the bidding problem, and (iii) the information acquisition problem. We describe each

of these parts in detail below.

First, we list a few basic assumptions. We have a set of n bidders, indexed by i ∈
{1, 2, ..., n}. Each bidder i has a private valuation function vi : G → R

+ for goods in a

set G, and a von-Neumann Morgenstern utility function for money Ui : R → R, which for

simplicity is normalized to Ui(0) = 0. So, the utility to a bidder i of buying a good g at

price p is Ui(vi(g) − p) = vi(g) − p. Also, as is standard in auction theory, we assume

risk-neutral bidders with linear-separable and linear-additive utility functions. Each bidder

has an independent private valuation for goods. Since we only consider markets for a single

good g, we represent vi(g) as simply vi. In laying out the basic model for the three-part

decision problem below, we assume that there is only a single good for sale.

9
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2.1.1 Modeling the Valuation Problem

The bidder is faced with the valuation problem when she needs to figure out how much she

values the good for sale. In this paper we want to deal with the oft-occurring instances

in which a bidder’s valuation problem is hard. In such cases, the bidder has uncertainty

about her exact private value for the good being auctioned and must incur costs to acquire

information and thereby to refine her beliefs. In this section, we develop a simple theoretical

model that supports multiple stages of information acquisition. To do so, we employ the

use of the Gaussian, or normal, distribution. This model has been proposed by Chiburis

[3].

Consider bidder i with a hard valuation problem and thus uncertainty about her value.

We call such a bidder uninformed. We model her beliefs about her true value as a Gaussian

distribution, represented by the function fµi,σi , where µi is the mean and σi is the stan-

dard deviation. So, our family of valuation distributions is fµ,σ(·) where f is a Gaussian

distribution with mean µ and standard deviation σ. In our analysis, uninformed bidders

have the option to acquire information. We model one step of information acquisition in

the following way and show that it is consistent with our model for the bidder’s beliefs.1

Proposition 1. Let 0 < α < 1 be a constant factor such that 1 − α represents the compu-

tational effectiveness of one information acquisition step. Suppose a bidder has a Gaussian

valuation distribution fµ,σ about her true value v for some good. It is then consistent with

that belief distribution to perform one step of information acquisition by updating fµ,σ to a

new valuation distribution fµ′,σ′ , where (i) fµ′,σ′ is also Gaussian, (ii) σ′ = ασ, and (iii) µ′

is chosen according to a Gaussian density with mean µ and standard deviation
√

1 − α2σ.

Proof. Consider a bidder with a valuation distribution fµ,σ. Let hµ,ρ be the function that

chooses the mean of the new distribution after acquiring information. In other words, if a

bidder’s valuation distribution before acquiring information is fµ,σ, the new mean y after

acquiring information is chosen according to the distribution hµ,ρ. We assume that the

standard deviation of the new distribution decreases by a factor of α (where 1 − α is a

measure of the computational effectiveness).

For any value x, we want fµ,σ(x), i.e. the ex ante probability distribution of x, to be

equal to the expected ex post distribution of x, which is the integral over all possible new

1It is important that the model for one step of information acquisition be consistent with the valuation
model so that the model can be extended to many steps of information acquisition. As an example, Parkes
[11] models agents with uniform distributions and we find that in such a model information acquisition is
inconsistent with the agents’ beliefs! As a result, the extension of Parkes’ model to many steps of value
refinement is not viable.
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distributions of the probability of x in the new distribution. Symbolically, we have that

fµ,σ(x) =

∫ ∞

−∞
Pr[y is new mean] Pr[x|y is new mean] dy

=

∫ ∞

−∞
hµ,ρ(y)fy,ασ(x) dy.

That integral is known as the convolution of hµ,ρ(y) with fy,ασ(x). We need to prove that

hµ,ρ can in fact be a Gaussian density with mean µ and standard deviation
√

1 − α2σ. In

other words, we need to prove that

fµ,σ(x) =

∫ ∞

−∞
fµ,

√
1−α2σ(y)fy,ασ(x) dy (2.1.1)

where 0 < α < 1. By plugging in the explicit function for a Gaussian into the above formula,

Chiburis has shown that the above equation holds true [3] (see Appendix for proof). Thus,

we conclude that our model for one step of information acquisition is consistent.

Because of the consistency of this Gaussian model of information acquisition and belief

updating, we can extend the result to m ≥ 1 consecutive steps of information acquisition.

Proposition 2. Let 0 < α < 1 be a constant factor such that 1 − α represents the compu-

tational effectiveness of one information acquisition step. Suppose a bidder has a Gaussian

valuation distribution fµ,σ about her true value v for some good. Performing m consecu-

tive steps of information acquisition as specified in Proposition 1 is equivalent to updating

fµ,σ to a new valuation distribution fµ′,σ′ , where (i) fµ′,σ′ is also Gaussian, (ii) σ′ = αmσ,

and (iii) µ′ is chosen according to a Gaussian density with mean µ and standard deviation√
1 − α2mσ.

Proof. To prove this result, we need to show that the distribution of values from performing

one step of information acquisition m times is the same as the distribution described above

in Proposition 2. In other words, we want to show that

fµ,σ(x) =

∫ ∞

−∞
fµ,

√
1−α2mσ(y)fy,α2mσ(x) dy (2.1.2)

holds for all m. This follows easily by induction on m, where (2.1.1) is used as the base

case (see Appendix for proof).

Equipped with a valuation model for bidders in which information acquisition is con-

sistent, we can now characterize our representation of bidders in auctions. To start, we

initialize all bidders at the same mean ν and standard deviation ρ. For an uninformed
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bidder i, we have her acquire one piece of information, giving her a new mean µi
0 (chosen

according to fν,
√

1−α2ρ) and standard deviation σ0 = αρ. So an uninformed bidder i enters

an auction with mean µi
0 and standard deviation σ0. When considering a set of unin-

formed bidders we refer to their current means about their true value being distributed

according to fν,
√

1−α2ρ, which denote as γ.

On the other hand, at times we find it becomes necessary to consider bidders who are

completely informed of their values. To keep our analysis consistent, we model an informed

bidder j by having her theoretically acquire an infinite amount of information, i.e. m → ∞.

So an informed bidder j enters the auction with value vj where vj is chosen according to

fν,ρ (since
√

1 − α2m → 1 as m → ∞). Thus, when considering a set of informed bidders,

we refer to their values being distributed according to fν,ρ, which we now denote as ζ.

By representing bidders’ beliefs about their true values with a Gaussian distribution , we

have established a model for a bidder’s valuation problem that can support multiple steps

of information acquisition. From this point forward, we represent an uninformed bidder i’s

current beliefs about her valuation by the ordered pair (µi, σi), where µi is the mean and

σi is the standard deviation of her Gaussian valuation distribution f .

2.1.2 Solving the Bidding Problem

A bidder faces the bidding problem when she must determine her optimal bid given infor-

mation about her true value for the good, other bidders’ bids, and the auction mechanism.

In this paper, we deal with auctions in which the dominant strategy for an informed,

risk-neutral bidder is to bid “truthfully” according to her value v for the good. In particular,

bidding “truthfully” means that (a) in a posted price auction, the bidder’s dominant strategy

is to accept a price p if and only if v > p and to reject otherwise; (b) in a second-price

sealed bid auction, the bidder’s dominant strategy is to submit a bid b∗ = v; and (c) in an

ascending-price auction, the bidder’s dominant strategy is to drop out once the price level

p exceeds v. So, the optimal bid for an informed bidder in these auctions depends only

on her own valuation, and not on the actions of other bidders. This simplifies the bidding

problem because bidders need not model the bidding strategies of other bidders.

In this paper we deal with uninformed bidders that are uncertain about their private

valuations. Our goal is to solve the bidding problem for these uninformed bidders.
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2.1.3 Formulating the Information Acquisition Problem

The information acquisition problem for a bidder is to determine whether to acquire in-

formation in an auction and, if so, when and how much to acquire. On the one hand,

acquiring information reduces a bidder’s uncertainty about her true value for the good and

so increases the accuracy of her bid; on the other hand, acquiring information is costly.

Unlike the optimal bidding strategy, which depends only on a bidder’s true value, the opti-

mal information acquisition strategy may be much more complex and may depend on other

bids, which in turn depend on whether other bidders can and do acquire information.

To formulate the problem of information acquisition, we use Russell and Wefald’s general

framework for belief refinement in bounded rational agents [16]. They present a fairly

standard decision-theoretic, statistical approach and the mathematical foundations can be

found in Berger [2]. Russell and Wefald consider an agent in an uncertain world, who takes

both real-world “base-level” actions as well as “computational” actions to refine his beliefs.

The value of a computational action is derived from its effect on the base-level action.

Only if computation changes the base-level action to an action with higher utility does the

computational action add value. If computation does not change the base-level action, even

if it changes the agent’s beliefs, it has no value.

Let S denote a computational action, and let Sm denote a sequence of computational

actions. Also, let a denote the agent’s current best base-level action based on its beliefs,

and let aSm denote the agent’s best base-level action after a sequence of Sm refinements,

where m ≥ 1. Define the net value of a computation action S to to be the change in utility

of the best base-level action based on beliefs before and after the computation, minus the

cost of computation:

V (Sm) = U(aSm) − U(a) − C(Sm)

where U(a) is the utility of the state that follows base-level action a and C(Sm) is the cost

of a sequence of m computation actions.

In our analysis of information acquisition in auctions, we have the following correspon-

dences:

• Agents correspond to bidders.

• Base-level actions correspond to bids.

• Computation actions correspond to information acquisition, and we denote a sequence

of information acquisition steps as IAm (as opposed to Sm).
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• The state that follows a bid is determined by the auction mechanism and the other

bids received. It also eventually defines the outcome of the auction (namely the bidder

that wins the good and the price she pays).

• The utility of a state depends on whether the bidder wins the good, the price of

the good, and the bidder’s value for the good. The utility function corresponds to

our risk-neutral bidders’ von-Neumann Morgenstern utility for money, as introduced

above. Bidder i has utility Ui = vi − p if it wins the good at price p, and 0 otherwise.

• The cost function of a single step of information acquisition is independent of the ac-

tion taken, constant over time, and additive over multiple computations. So C(IA) = c

for some constant c and C(IAm) = mc where m is the number of information acqui-

sition steps.

• The value of m steps of information acquisition (IAm) then becomes

V (IAm) = U(b∗
IA

m) − U(b∗) − mc (2.1.3)

where b∗ is the bidder’s current optimal bid before acquiring information and b∗
IA

m is

the bidder’s optimal bid after m steps of information acquisition.

Notice that the information acquisition problem is difficult because of the uncertainty

associated with the parameters that determine the optimal information acquisition strategy.

There is uncertainty about the bidder’s true value for the good; there is uncertainty about

the outcome of information acquisition; and there is uncertainty about the state that follows

a bid (because we don’t know the bids of other bidders). So, a bidder cannot just apply

(2.1.3) immediately to determine her optimal information acquisition strategy. She is only

able to estimate the utility of her revised bid because it depends on the other bids received.

Because information acquisition necessarily involves uncertainty about its outcome, prob-

ability and decision theory are useful tools to apply when bidders can only estimate values.

Following Russell and Wefald, let Q̂S denote an estimate of the quantity Q obtained through

computation S. We can then rewrite (2.1.3) as a new expression that bidders are able to

compute. In particular, we determine an estimate of the value of m steps of information

acquisition, V̂ IA(IAm), as the estimated change in utility caused by the information acqui-

sition minus the cost of acquiring information:

V̂ IA(IAm) = Û IA(b∗IAm) − Û IA(b∗) − mC. (2.1.4)

A bidder can now use this equation to decide whether m steps of information acquisition

is worthwhile by using information about the other bidders, the auction mechanism, and a

model for her true private value for the good.
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We use the above framework to formulate and solve the information acquisition problem

for bidders in several auction mechanisms, which we describe in the next section.

2.2 Auction Formats

In this paper, we analyze and compare the optimal strategies for uninformed bidders in

three different auction mechanisms, each with a single object for sale.

1. Posted Price Sequential Auction

The auctioneer chooses a fixed price p and offers the price to each bidder in a random

order as a take-it-or-leave-it offer. The good is sold to the first bidder (if any) that

accepts the price. To achieve reasonable performance, we assume the seller is knowl-

edgeable about the bidders in the market. Specifically, the seller chooses a competitive

price p that maximizes revenue given bidders’ hard valuation problems and his beliefs

about the distribution of bidder values. When offered the good, bidders are given

time to acquire information.

2. Second-Price Sealed-Bid (Vickrey) Auction

Each bidder submits a sealed bid, and the item is sold to the highest bidder for

the second-highest bid price. Bidders are given time to acquire information before

submitting their bids.

3. Asynchronous Ascending-Price (English) Auction

The auction maintains an ask price p, and bidders can always choose to bid at the

current ask price. The auction also maintains a provisional allocation, indicating the

current highest bidder, and increases p by some bid increment, ε > 0, whenever a bid

is received at the current price. The auction also maintains a list of “active” bidders

who have not yet dropped out. All bidders are initially active. Whenever the auction

enters a period of quiescence, with no bids received for a fixed period of time, the

auctioneer picks, at random, one of the bidders not winning and tells her she must

either submit a bid or leave the auction. When a bidder leaves, she is marked as

not active and can never submit another bid. The auction terminates when there is

only one active bidder remaining. This bidder wins the item at her final bid price.

Bidders are able to acquire information at any time but are restricted by how much

information they can acquire at any given time.

It is worth briefly explaining why we have chosen an asynchronous ascending-price auc-

tion over a synchronous one and why we have chosen to have the auctioneer intervene after a
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period of quiescence. We prefer the ascyhronous auction over the synchronous one because

the former grants bidders a larger set of actions. In particular, while the synchronous auc-

tion requires each bidder to bid implicitly at every price level so long as she doesn’t drop

out, in the asynchronous auction a bidder can choose to remain active instead of either

bidding or dropping out. This option to remain uncommitted allows the bidder to make

better decisions about acquiring information. Furthermore, the motivation for having the

auctioneer intervene is to restrict the need to introduce mixed-strategy equilibria into the

bidders’ optimal strategies. During a period of quiescence, each bidder prefers to remain

active and wait for another bidder to take the risk, acquire information and bid the price

up. Since all the bidders feel the same way, if the auctioneer does not interfere, the optimal

strategy involves a mixed strategy between sitting tight and breaking the silence.

Following Parkes’ terminology [11], we characterize the ascending-price and second-price

sealed-bid auctions as dynamic since the price is determined after the bids are received,

while the posted-price sequential auction is considered static. Furthermore, we describe

the ascending-price and posted-price auctions as progressive since bidders receive feedback

from the auction as they bid, while the second-price sealed-bid auction is single-shot. The

posted-price is the only mechanism without dynamic price discovery and so the auctioneer

needs to have knowledge about the distribution of bidders’ values in the auction in order to

achieve reasonable efficiency and revenue. Also, the ascending-price is the only mechanism

that gives feedback about the actions of bidders to other bidders.

Given any auction mechanism, there are a few points of interest to consider and to

determine whether they qualitatively affect our analysis. We list three of them here:

1. Does every bidder know the number of other bidders participating in the auction?

Although this knowledge may not affect strategies in posted-price mechanisms, it can

have a significant effect in any of the dynamic auctions.

2. In the ascending-price auction situation, do all bidders observe when another bidder

drops out? This is referred to as overt versus secret dropout. Rezende [14] presents

an analysis of the Japanese-style auction with secret dropout and claims that making

dropout points visible does not qualitatively affect the analysis. Compte and Jehiel [4]

on the other hand analyze the Japanese-style ascending-price auction where dropout

points are overt and claim that this observability of dropout points is the single driving

factor behind the preference of iterative auctions over sealed-bid auctions and thus that

an ascending-price auction with secret dropout fails to achieve a better outcome than

a sealed-bid auction. We come back to this question when we draw our conclusions

about the different auctions.
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3. When approaching his decision problem, does a bidder consider the bounded rational-

ity of other bidders? Or does it assume that all the other bidders know their exact true

valuations? We choose to focus on this point throughout the paper, as it is influential

in determining optimal strategies in the dynamic auctions.

All these points consider the knowledge provided to bidders by the auction mechanism

about the competition. As we will see, differences in the amount of knowledge provided is

the main basis that generates different outcomes for different auction mechanisms.

2.3 Numerical Examples to Consider

It is helpful to describe realistic numerical examples to motivate the theory that follows

in this paper. We outline a few here to keep in mind as the paper progresses. Recall the

example described in the Introduction of the couple wanting to buy a new home. Having

seen the home for the first time, the couple believes their value for the house is normally

distributed with mean around $10 (assume all figures in thousands), and standard deviation

$2.5. They also know that they can acquire additional information about the house for a

cost. For example, they can consult an expert, buy some instructive guides to real estate,

find out who has lived in the house previously, determine the quality of its construction,

etc. Suppose that the couple knows that for each piece of information they acquire, they

incur a fixed cost c = $0.01 and reduce the standard deviation, i.e. their uncertainty about

their true value, by the fraction α = 0.7. So if they acquire m pieces of information, they

incur a cost $0.01m and reduce their standard deviation by 0.7m.

Now we will consider three scenarios, each of which involves the couple in a different

auction mechanism:

1. Posted Price. The homeowner has heard the couple is interested in her home and

offers them the opportunity to buy the home for p = 8. Although it is a take-it-or-

leave-it offer, she kindly gives them a bit of time to make their decision. Should the

couple use the time to acquire more information and gain certainty in their true value

for the home? If so, how much information? After acquiring information, does the

couple accept or reject the offer? We work this problem out in Chapter 3.

2. Second-Price Sealed-Bid. The home is being sold using a second-price sealed-bid

auction format. Interested parties submit bids specifying the amounts they are willing

to pay for the home, and the party with the highest bid pays a value equal to the

second-highest bid. The couple has a few days to decide what bid to submit. Again,
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how much more information should the couple acquire to gain certainty in their true

value? Some? None? What bid should the couple ultimately submit? We work this

problem out in Chapter 4.

3. Ascending-Price Auction. Now the home is being sold using an asynchronous ascending-

price auction format, like that described above. The couple enters the auction as

uninformed bidders with an initial distribution over their value for the home. Over

the course of the auction, they have opportunities to take time and acquire pieces of

information. When should they acquire information? How much information should

they acquire? When should they bid? When should they drop out? We work through

this problem in Chapter 5.

2.4 Outline

In the following three chapters, we analyze the equilibrium bidding and information ac-

quisition strategies for uninformed bidders in each of the auction mechanisms. Although

mechanism design cannot simplify the valuation problem, it can affect the efficiency of

bidding and information acquisition.

We begin by looking at the posted-price auction and derive the optimal information

acquisition strategy for an uninformed bidder. We then apply this result when looking at

both second-price sealed-bid and ascending-price auctions. In our analyses, we first assume

a basic model in which an uninformed bidder assumes all the other bidders are informed of

their true values. We then extend our model to one in which the uninformed bidder assumes

all the other bidders are uninformed as well. The advantage of the basic model is that it

allows for an easy characterization of equilibrium behaviors. When a bidder considers that

several buyers may also acquire information, however, the decision to acquire information

becomes more complicated and is affected by others’ decisions to acquire information as

well.



Chapter 3

Posted-Price Sequential Auction

In this chapter, we formulate and solve the equilibrium bidding and information acquisition

strategies for a bidder in a posted-price sequential auction. We then use this analysis of

the posted-price auction as a foundation upon which to build our later analyses of dynamic

auctions because the posted-price auction is an analytically simpler situation. Notice that

we need only consider the scenario with one uninformed bidder because she is given a

take-it-or-leave-it offer and so her decision problem does not depend at all on other bidders.

In a posted-price auction, when a bidder is offered the good, she is facing a fixed price

and knows that if she accepts the price, she will receive the good for sure. There is no

uncertainty about other bids or whether she will win. Thus, the posted-price auction

isolates the uncertainty of information acquisition.

There are two problems to compute when a bidder i is offered the good: her optimal

bidding strategy and her optimal information acquisition strategy. We assume that bidder

i has a belief distribution (µi, σi) about her value vi. In the analysis, we drop the i’s for

simplicity since we are dealing with a single bidder.

3.1 Optimal Bidding Strategy

A bidder that is no longer acquiring information has two options, either to accept the price

or to reject the price. Given a fixed price p, her expected utility for accepting the price is

Û(accept) = E[v] − p

= µ − p,

19
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while her expected utility for rejecting the price is

Û(reject) = 0. (3.1.1)

Therefore, the bidder’s optimal bidding strategy is to accept whenever Û(accept) ≥
Û(reject) or µ − p ≥ 0, and to reject otherwise. The expected utility of this optimal

bidding strategy is Û(b∗((µ, σ), p)) = max[0, µ − p].

3.2 Optimal Information Acquisition Strategy

When faced with a fixed price p, a bidder may choose to exercise his ability to acquire

information. Recall that there is a fixed cost c per step of information acquisition. We

begin by considering the case where µ ≥ p.

Let m consecutive steps of information acquisition be represented by IAm. Before ac-

quiring information, since µ ≥ p, the best action is to accept. The expected utility of

accepting is always µ− p. After acquiring information, let the new mean be µm. If µm ≥ p,

the revised best action is to accept. If µm < p, the revised best action is to reject. Then

the expected utility of the revised best action after information acquisition is µm − p when

µm ≥ p and 0 when µm < p . Following the intuition of Russell and Wefald, we expect the

information acquisition to have value only if it changes the best action. In our case, the

best action changes when µm < p.

Let the bidder’s expected gain from IAm when the price is p (remember that µ ≥ p) be

denoted by the function Hµ≥p(m, p), where m > 0. Mathematically, using 2.1.4, Hµ≥p(m, p)

is the integral over the possible new mean µm of the difference between the utility of the

revised best action after acquiring information and the utility of the best action before

acquiring information given that the new mean is µm, all minus the cost mc of acquiring

information:

Hµ≥p(m, p) =

(
∫ p

−∞
fµ,

√
1−α2mσ(µm)(0 − (µm − p)) dµm

)

+

(∫ ∞

p
fµ,

√
1−α2mσ(µm)((µm − p) − (µm − p)) dµm

)

− mc

=

(∫ p

−∞
fµ,

√
1−α2mσ(µm)(p − µm) dµm

)

− mc. (3.2.1)

We know that the Gaussian density f of mean µ and standard deviation σ is given by

fµ,σ(x) =
1√
2πσ

e−(x−µ)2/2σ2
.
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To simplify our notation, we introduce s(m,σ) = (1 − α2m)σ2. Plugging those last two

equations into 3.2.1, we can simplify our expression to the following:

Hµ≥p(m, p) =

(

∫ p

−∞
(p − µm)

1
√

2πs(m,σ)
e

−(µm−µ)2

2s(m,σ) dµm

)

− mc

=
1

√

2πs(m,σ)

∫ p

−∞
(p − µm)e

−(µm−µ)2

2s(m,σ) dµm − mc

=
s(m,σ)e

−(p−µ)2

2s(m,σ) + 1
2

√

2πs(m,σ)(p − µ)(1 + Ψ( p−µ√
2s(m,σ)

))
√

2πs(m,σ)
− mc

where Ψ(x) = 2√
π

∫ x
0 e−t2 dt = 2Φ(

√
2x)−1 and where Φ(x) = 1√

2π

∫ x
−∞ e−t2/2 dt is the stan-

dard normal cumulative distribution function, whose values have been widely documented

in tables.

Now consider the case where µ ≤ p. Proceeding in an identical manner, we obtain a

similar result:

Hµ≤p(m, p) =
s(m,σ)e

−(µ−p)2

2s(m,σ) + 1
2

√

2πs(m,σ)(µ − p)(1 + Ψ( µ−p√
2s(m,σ)

))
√

2πs(m,σ)
− mc

And hence for all p, we have the following result:

H(m, p) =
s(m,σ)e

−(p−µ)2

2s(m,σ) − 1
2

√

2πs(m,σ)|p − µ|(1 − Ψ( |p−µ|√
2s(m,σ)

))
√

2πs(m,σ)
− mc. (3.2.2)

Notice that H(m, p) is symmetric around µ given a fixed m.

Consequently, a necessary condition for a bidder to acquire information m times when

faced with price p is if H(m, p) > 0. However, the strategy of acquiring information m

consecutive times is dominated by the strategy of acquiring information once and then

using that information in deciding whether to acquire additional information, because it is

possible that the new information makes future information acquisition unprofitable. Thus,

we have the following proposition.

Proposition 3. In a posted-price sequential auction, when a bidder is offered a good at

price p, the optimal information acquisition strategy is to acquire information as long as

there is some m ≥ 1 number of information acquisition steps such that H(m, p) > 0. After

each step of information acquisition, however, the bidder re-confirms that there still exists

m ≥ 1 such that H(m, p) > 0. Otherwise, she stops acquiring information.
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With that result in mind, it is natural to consider whether there exists an optimal

m∗(p) = m∗ that maximizes H(m, p) for a given p. If there is such an m, then the bidder

need only check whether H(m∗, p) > 0 in determining whether to acquire information. To

answer such questions, we look at the function H(m, p).

3.2.1 What is the shape of H(m, p) for a fixed p ?

To begin, we look at the shape of H(m, p) for a fixed p, which we denote as H(m). Recall

that H(m) is defined for m > 0. In particular, we want to answer the following questions:

• Is there a scenario in which H(m) is always decreasing (in which case we need only

check if IA1 is worthwhile? Or always increasing (in which case we may not ever stop

acquiring information)?

• Does H(m) have a single global maximum? In other words, is there an optimal m∗?

To answer those questions, consider the derivative of H(m) with respect to m. Taking

derivatives, we find that

∂H(m)

∂m
=

σα2m log( 1
α)e

−(p−µ)2

2(1−α2m)σ2

√

2π(1 − α2m)
− c. (3.2.3)

Let the first term be represented by χ(m, p) = χ(m). We know that (a) if χ(m) ≤ c

for all m, then H(m) is monotonically decreasing; (b) if χ(m) ≥ c for all m, then H(m) is

monotonically increasing; (c) otherwise, H(m) is increasing for some values m and decreas-

ing for other values m. Since α < 1 and σ > 0, we note that χ(m) is always positive (for

m > 0).

Before we continue with the analysis, we first single out the case when µ = p. In this

case, we can see that χ(m) explodes (→ ∞) as m → 0, but strictly decreases asympotically

to 0 as m → ∞ (see Appendix for proof). Thus, exactly one solution m∗ exists such that

χ(m∗) = c and hence ∂H(m)
∂m = 0. Since χ(m) is strictly decreasing, we know that m∗ is in

fact the global maximum of H(m) when µ = p. In fact, we can solve the equation χ(m∗) = c

for m when µ = p, obtaining

m∗
µ =

1

2
logα

[

cπ

σ2(log α)2

(
√

c2 +
2σ2(log α)2

π
− c

)]

. (3.2.4)

Since a bidder must acquire information at least m = 1 times, a bidder’s optimal information

acquisition strategy is the following: when µ = p, if m∗ ≥ 1, then acquire information only

if H(m∗, p) > 0; else, acquire information only if H(1, p) > 0.
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Now we consider the case where µ 6= p. When we look at the limits, although χ(m)

is not defined at 0, as m → 0, χ(m) → 0 since the exponential term dominates. Also, as

m → ∞, χ(m) → 0 since α2m → 0. Since χ(m) does not explode, it is possible to satisfy

(a) and have H(m) strictly decreasing. However, since χ(m) is continuous, there is always

a m for which χ(m) < c and hence (b) is impossible and H(m) is never strictly increasing.

Consider the function χ(m). Does it have a global maximum m∗∗? If so, we need only

compare χ(m∗∗) to c to tell if H(m) is strictly decreasing. We take the derivative of χ(m)

and obtain

∂χ(m)

∂m
=

−σ2α2m log (α)2e
−(p−µ)2

2(1−α2m)σ2

σ
√

2π(1 − α2m)

(

α2m

1 − α2m
− α2m(p − µ)2

(1 − α2m)2σ2
+ 2

)

.

Setting that expression equal to 0, we obtain

α2m∗∗

σ2

(1 − α2m∗∗)σ2
+ 2 =

α2m∗∗

(p − µ)2

(1 − α2m∗∗)2σ2

=⇒ α4m − α2m(3 + (
p − µ

σ
)2) + 2 = 0. (3.2.5)

Using the quadratic formula as well as the fact that α2m < 1 for all m (see Appendix for

proof), we conclude that if µ 6= p,

m∗∗ =
1

2
logα





1

2



3 + (
p − µ

σ
)2 −

√

(

3 + (
p − µ

σ
)2
)2

− 8







 . (3.2.6)

Since χ(m) is always positive, χ(m) → 0 both as m → 0 and as m → ∞, and ∂χ(m)
∂m = 0

has a unique solution, χ(m∗∗) is the unique global maximum of χ(m) for m > 0 . So we

have the following result.

Lemma 4. Assume µ 6= p. If χ(m∗∗) ≤ c, then H(m) is monotonically decreasing in m.

Otherwise, there are exactly two solutions for m in ∂H(m,p)
∂m = 0, namely m∗

1 ∈ (0,m∗∗) and

m∗
2 ∈ (m∗∗,∞), where m∗

1 defines the minimum of H(m) and m∗
2 defines the maximum.

Proof. Since the global maximum of χ(m) is defined at m∗∗, if χ(m∗∗) ≤ c, then χ(m) ≤ c

for all m and thus H(m) is always decreasing in m.

If χ(m∗∗) > c, since χ(m) is continuous on (0,∞), approaches 0 both as m → 0 and

as m → ∞, and has only one extremum, it follows from the Intermediate Value Theorem

that there must be one m∗
1 ∈ (0,m∗∗) such that χ(m∗

1) = c and one m∗
2 ∈ (m∗∗,∞) such

that χ(m∗
2) = c. Since the condition that χ(m) = c is equivalent to the condition that

∂H(m)
∂m = 0, there are exactly two solutions for either equation.



CHAPTER 3. POSTED-PRICE SEQUENTIAL AUCTION 24

But now we have all the facts we need to determine the shape of H(m), assuming it is

not monotone! In particular, on the interval (0,m∗
1), we know ∂H(m)

∂m < 0 and so H(m) is

decreasing. In the interval (m1,m2),
∂H(m)

∂m > 0 and so H(m) is increasing. Finally, in the

interval (m2,∞), ∂H(m)
∂m < 0 and so H(m) is decreasing again. Thus we conclude that m∗

1

defines the minimum of H(m, p) and m∗
2 defines the maximum. Both m∗

1 and m∗
2 can easily

be solved for numerically, although they lack explicit analytic forms.

If H(m) is not monotone, the maximum value of H(m) is achieved at H(m2) and so

m∗ = m∗
2. Thus, since a bidder must acquire at least m = 1 steps of information, the

bidder’s optimal information acquisition strategy is the following: when µ 6= p, if m∗ ≥ 1,

then acquire information if and only if H(m∗) > 0; else, acquire information if and only if

H(1) > 0. Notice that it may be sufficient to check if H(m∗∗) > 0 since if that condition

holds then it follows that H(m∗) > 0.

We have fully characterized the shape of H(m, p) for a fixed price p, given m > 0. Figures

?? illustrate the four different shapes H(m) can take.

Now We are able to fully define m∗. In particular,

m∗ =

{

m∗
µ µ = p

m∗
2 µ 6= p

(3.2.7)

Now, we obtain a complete characterization of a bidder’s optimal information acquisition

strategy in a posted-price auction.

Proposition 5. Let a bidder be offered a good for price p in a posted-price sequential

auction. She acquires information if and only if (i) m∗ ≥ 1 and H(m∗, p) > 0 or (ii)

m∗ < 1 and H(1, p) > 0. After each step of information acquisition, the bidder re-confirms

that information acquisition is still profitable, i.e. that her beliefs still satisfy either (i) or

(ii). Otherwise, she stops acquiring information.

3.2.2 What else do we know about H(m, p)?

For the sake of future discussion, we also consider the shape of H(m, p) for a fixed value of

m, which we denote as H(p). Taking the derivative of H(p) with respect to p, we obtain

∂H(p)

∂p
= I0(µ, p)

1

2

(

1 − Ψ

(

|p − µ|
√

2s(m,σ)

))

where I0(µ, p) = 1 if µ ≥ p and I0(µ, p) = −1 if µ ≤ p. Thus, given µ, if µ ≥ p, H(p)

is increasing and if µ ≤ p, H(p) is decreasing. Furthermore, H(p) is perfectly symmetric

around µ, since for p < µ H(p) = H(2µ − p). See Figure.
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Hacquire.eps

Figure 3.1: µ 6= p, χ(m∗∗) > c, bidder acquires

Hnoacquire.eps

Figure 3.2: µ 6= p, χ(m∗∗) > c, bidder does not acquire

Hchilessc.eps

Figure 3.3: µ 6= p, χ(m∗∗) ≤ c, bidder acquires

Hmuequalsp.eps

Figure 3.4: µ = p, bidder acquires

Hofp.eps

Figure 3.5: H(p) with µ = 10
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Result 6. For fixed µ and m, H(p) is symmetric around µ.

Next, we look at the behavior of m∗(p) for a fixed µ as |p − µ| varies. Consider the case

where p < µ. Define p1 and p2 such that p1 < p2 < µ. Let m∗
1 = m∗(p1) be the m that

maximizes H(m, p1) and let m∗
2 = m∗(p2) be the m that maximizes H(m, p2). We argue

that it must be that m∗
1 < m∗

2.

From our previous discussion about the shape of H(m, p), we know that χ(m∗
2, p2) = c

and χ(m∗
1, p1) = c. Also, by looking at our expression for χ(m, p), we see that for a fixed m,

if p < µ, as p increases χ(m, p) increases as well. Thus, since p2 > p1, we find χ(m∗
1, p2) >

c. But recall the shape of χ(m)! It reaches its maximum at m∗∗ (< m∗) and then is

monotonically decreasing for m > m∗∗. So if m > m∗
2, then χ(m, p2) < χ(m∗

2, p2) = c. But

since χ(m∗
1, p2) > c, we conclude that it must be the case that m∗

2 > m∗
1. The case where

µ > p is identical and we have the following result.

Result 7. For fixed µ, as p moves further away from µ, i.e. |p − µ| increases, the optimal

number of information acquisition steps m∗ decreases. In other words, m∗ and |p − µ| are

inversely related.

Finally, it is also interesting to look at the behavior of the actual value of H(m∗, p) for a

fixed µ as |p−µ| varies. Although on first glance it may seem that the Envelope Theorem is

required, we make use of our previous results to come to the conclusion in a much simpler

fashion.

Again, we assume without loss of generality that p < µ (the other case is identical).

Recall p1, p2,m
∗
1 and m∗

2 as defined above, where p1 < p2 and m∗
1 < m∗

2. Since (a) H(p) is

decreasing in |p − µ| for a fixed m and (b) H(m∗, p) > H(m, p) for any m 6= m∗, we have

the following inequalities:

H(m∗
2, p2) > H(m∗

1, p2)

H(m∗
1, p2) > H(m∗

1, p1),

which in turn imply that

H(m∗
2, p2) > H(m∗

1, p1).

Thus we conclude that as |p − µ| increases, H(m∗, p) decreases.

Also, looking at the expression for χ(m, p), since χ(m, p) = χ(m, p′) if |p′ − µ| = |p− µ|,
we find that H(m∗, p) is symmetric around µ.



CHAPTER 3. POSTED-PRICE SEQUENTIAL AUCTION 27

Result 8. For fixed µ and p, as p moves further away from µ, i.e. |p − µ| increases,

the expected gain from acquiring the optimal number of steps of information, H(m∗, p),

decreases. In other words, H(m∗, p) and |p − µ| are inversely related.

Taking those results together, we discover that for a fixed µ, H(m∗, p) reaches its maxi-

mum value at H(m∗
µ, µ) and that the m∗

µ such that m∗
µ = arg maxm H(m,µ) is the largest

possible number of information acquisition steps a bidder will take. So, given any bidder

and a posted price p, we know that her optimal number of information acquisition steps is

between m∗∗ and m∗
µ. So,

Result 9. For a fixed p, the maximum number of optimal information acquisition steps for

any bidder will be m∗
µ, as detailed in (??).

3.3 Numerical Example Revisited

We return to the situation outlined in Chapter 2 about the couple who is being offered the

home for p = 8. Recall that the couple has beliefs (µ0, σ0) about their value, where µ0 = 10

and σ0 = 2.5. Also, recall that they can acquire m pieces of information for a cost of 0.01m

and they know that their computational effectiveness, 1 − α, is equal to 0.3 (i.e. α = 0.7).

Should the couple acquire information? Should they accept the price? We can now answer

these questions using the equilibrium strategies outlined above.

First, notice that µ 6= p. So, we plug our values into the expression for m∗∗ and find out

within what range we are looking for m∗. We find that

m∗∗ = 0.5522.

For interest’s sake, we also calculate m∗
µ = 5.026. Thus, the optimal m∗ number of deliber-

ations lies in the interval (0.5522, 5.026). Recall that we want to find m∗ ∈ (0.5522, 5.026)

such that χ(m∗) = c, i.e.

2.5 ∗ 0.72m∗

log(1/0.7)e
−0.32

1−0.72m

√

2π(1 − 0.72m)
= c.

Evaluating numerically, we obtain that

m∗ = 4.5125.

Since H(4.5125, 8) = 0.241 > 0, the couple decides to acquire information once. They

then re-evaluate whether to acquire information again. Using a simulator, we obtain that
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µ1 = 11.51 and we know σ1 = ασ0 = 1.75. Since µ 6= p, we follow the same process and

determine that m∗ = 3.571. Since H(3.571, 8) = −0.0245 < 0, the couple decides to stop

acquiring information.

Since µ1 = 11.51 > p = 8, the couple’s optimal bidding strategy is to accept the offer.

Their total gain from the purchase is µ1 − p − 0.01 = 3.5.

3.4 Looking Ahead

In any situation where only one bidder is acquiring information and must choose an action,

she makes her decision to acquire information based on what she expects the “posted price”

she is facing to be. Once this posted price is estimated, her optimal information acquisition

strategy is to follow the strategy outlined above for a posted-price sequential auction. We

use this idea when looking at more complex auctions in the following two chapters.



Chapter 4

Second-Price Sealed-Bid Auction

In this chapter, we formulate and solve the equilibrium bidding and information acquisition

problems for a bidder in a second-price sealed-bid (SPSB) auction. Our analysis of the

posted-price sequential auction in the previous chapter comes in handy as a useful tool.

In a SPSB auction, a bidder must decide what to bid. On first glance, it may not seem

that she is facing any sort of fixed price. Instead, she wins the good only if her bid is

greater than the bids of all the other bidders, and pays a price equal to the highest bid

other than her own. In effect, however, she does face a “posted price” equal to the value

of the highest of the other bids. This value depends on both the bidding strategies and

potential information acquisition strategies of the other bidders.

In this chapter, we first formulate a bidder’s optimal bidding strategy. This is straightfor-

ward since a bidder’s optimal bidding strategy is independent of her beliefs about the other

bidders’ strategies. We then look at a bidder’s optimal information acquisition strategy,

considering two cases: (a) when a bidder believes that all the other bidders are informed

of their exact values and hence do not acquire information, and (b) when a bidder believes

that all the other bidders are uninformed and can also acquire information. That distinction

is important because a bidder’s decision to acquire information is affected by others’ bids

and others’ decisions to acquire information, which in turn are affected by how informed

the other bidders are.

4.1 Optimal Bidding Strategy

The bidder must decide the optimal bid b∗ to submit in this auction. We know the SPSB

auction is incentive compatible for informed bidders because the value of a bid b does not

29
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affect the price that a bidder pays for the good, but instead indicates the maximum price

the bidder will accept, so long as that price is bid by another bidder. In fact, the SPSB

auction is strategyproof [18]: an informed bidder’s optimal bidding strategy is to bid her

true value b∗ = v.

The incentive-compatibility of the auction extends to a system where bidders’ values are

uncertain: the optimal bidding strategy is for a bidder to bid her expected value of the

good (see proof in Appendix). So, the optimal bid for a bidder that is no longer acquiring

information is b∗(µ, σ) = µ. Notice that this bid is optimal regardless of the distribution

over outside bids. Since this optimal bid always has strictly positive expected value (she

never pays more than her mean), a bidder should always bid.

4.2 Optimal Information Acquisition Strategy

In a SPSB auction, the value of acquiring information is computed as the increase in utility

from placing a different bid minus the cost of acquiring information. In a sealed-bid auction,

the value of acquiring information is uncertain because it depends on (a) whether the bidder

will win the good, and (b) the price that the bidder will pay for the good. Both depend on

the others’ bidding and information acquisition strategies.

4.2.1 One Uninformed Bidder

Consider an auction with n + 1 bidders. Without loss of generality, let bidder 0 be the

uninformed bidder. She assumes that all other bidders know their true values for the good

and hence will not acquire information. Thus she only needs to consider their bidding

strategies.

We call these bidders 1 through n the “informed bidders” and denote bidder i’s value by

vi. For simplicity’s sake, we index the bidders such that v1 > v2 > . . . > vn. According to

the optimal bidding strategy for informed bidders in a SPSB auction, their bids will be equal

to their values. Letting θi denote the bid of bidder i, we have θi = vi for all i ∈ {1, 2, .., n}.

Assume that bidder 0 has a belief about the distribution from which the informed bidders’

valuations are drawn. So we say she is knowledgeable. In particular, according to our model

of informed bidders, she assumes that the density of that distribution is ζ with full support

on [θ, θ̄], where θ ≥ 0. Recall from Chapter 2 that ζ is Gaussian with mean ν and standard

deviation ρ.

If the informed bidders follow their optimal bidding strategies, bidder n is essentially
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facing a “posted price” of p = θ1, i.e. the highest order statistic of the n informed bidders’

values. Let g denote the distribution of θ1 (or equivalently p). From statistics, we know

that the distribution of the highest order statistic of n values drawn from a distribution

with density f and cumulative distribution function F is

f (n)(x) = nf(x)F n−1(x). (4.2.1)

We can then write the distribution of p to be

g(p) = nζ(p)

(∫ p

−∞
ζ(t) dt

)n−1

. (4.2.2)

Since ζ(t) is Gaussian, we can represent the integral in terms of the standard normal cumu-

lative distribution function Φ(z), because for any Gaussian cumulative distribution function

F with mean µ and standard deviation σ, F (x) = Φ( x−µ
σ ). So we obtain

g(p) =
n√
2πρ

e
−(p−ν)2

2ρ2 Φ

(

p − ν

ρ

)n−1

. (4.2.3)

Now we can write down a formula for the value of acquiring information. The following

is the expression for the expected utility of a bid b, given g(p) and a bidder with belief

distribution f over her value:

Û(b) =

∫ b

p=0
g(p)

∫ ∞

−∞
(v − p)f(v) dv dp. (4.2.4)

Let m consecutive steps of information acquisition be represented by IAm. Let the bidder

have beliefs (µ, σ) about her value before acquiring information, and let her have beliefs

(µm, αmσ) after IAm. So, according to the optimal bidding strategy, before IAm, her best

action is to bid b∗ = µ, and after IAm, her revised best action is to bid b∗
IA

m = µm.

Denote the bidder’s expected gain from IAm as the function Jp(m), and recall that each

step of information acquisition costs c. Mathematically, using 2.1.4, Jp(m) is the difference

between the utility of b∗ and the utility of b∗IAm given that the new mean is µm, all minus
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the cost mc of acquiring information:

Jp(m) =

(
∫ µ

p=0
g(p)

∫ p

−∞
f

µ,
√

(1−α2m)σ
(µm)(0 − (µm − p)) dµm dp

)

+

(
∫ ∞

p=µ
g(p)

∫ ∞

p
f

µ,
√

(1−α2m)σ
(µm)((µm − p) − 0) dµm dp

)

−mc (4.2.5)

=

∫ ∞

µ
g(p)Hµ≤p(m, p) dp +

∫ µ

0
g(p)Hµ≥p(m, p) dp

=

∫ ∞

0
g(p)H(m, p) dp (4.2.6)

= Ep[H(m, p)]. (4.2.7)

Obviously, a necessary condition for a bidder to acquire information m times in the SPSB

auction is if Jp(m) > 0. However, as we established in the previous chapter when discussing

posted price auctions, the strategy of acquiring information m consecutive times is dom-

inated by the strategy of acquiring information once and then using that information to

decide whether to acquire additional information. Thus, we have the following proposition.

Proposition 10. In a second-price sealed-bid auction, when a bidder believes he is facing

informed bidders whose maximum value, p, is distributed according to density g(p), the

optimal information acquisition strategy is to acquire information as long as there is some

m ≥ 1 number of information acquisition steps such that Jp(m) > 0. After each step of

information acquisition, the bidder re-confirms that there exists m ≥ 1 such that Jp(m) > 0.

Otherwise, she stops acquiring information.

With that result in mind, it is natural to consider whether there exists an optimal m∗
J

such that

m∗
J = arg max

m
Jp(m)

for a given distribution g(p). If there is such an m∗
J , then the bidder need only check whether

Jp(m
∗
J) > 0 in determining her optimal acquisition strategy. To answer such questions, we

look at the function Jp(m).

First, we note that Jp(m) is the expected value of H(m, p) over p given g(p). Intuitively

we want to find an m∗
J such that “on average” if p is distributed according to g(p), H(m∗

J , p)

is as large as possible. Unfortunately, because of the complexities of both g(p) and H(m, p),

although Jp(m) is easily evaluated numerically for any given m and g(p), it is difficult to

deal with analytically (e.g. we cannot take a derivative with respect to m and set it equal

to 0). As a result, we propose a conservative approach for estimating whether there exists

an m ≥ 1 such that Jp(m) > 0.
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Approach to Estimate Optimal Information Acquisition Strategy

Our approach is first to calculate the expected value of p given g(p), i.e.

E[p] =

∫ ∞

0
pg(p) dp

We then proceed as we would in the posted price auction, using E[p] as the posted price

and obtaining the m∗ = m∗(E[p]) such that H(m,E[p]) is maximized. Next we evaluate

Jp(m
∗) > 0 and determine whether we should acquire information. Notice that Jp(m

∗) > 0

is a sufficient condition for acquiring information (because then we know there exists some

m ≥ 1 such that Jp(m) > 0), but it is not necessary. Thus the danger is that we may fail

to acquire information when we should.

So now, how good of an estimate is m∗? Essentially, we need to look at the two functions

E[H(m, p)] and H(m,E[p]), since

m∗
J = arg max

m≥1
E[H(m, p)] and

m∗ = arg max
m≥1

H(m,E[p]).

We know that E[H(m, p)] = H(m,E[p]) when both g(p) and H(m, p) are symmetric around

the same mean µ. Unfortunately, g(p) is not symmetric. Instead, it is skewed to the left.1

So, informally the “hump” of g(p) is to the left of E[p].

Recall that both the optimal m∗(p) for a given p as well as the value of H(m∗, p) increases

the closer p gets to µ. Thus, we deduce generally that when E[p] − µ > 0 our approach

under-compensates for the high values of H(m, p) achieved when p is near µ and m∗ is

typically an underestimate of m∗
J . Meanwhile, when E[p] − µ < 0, our approach over-

compensates for the high values of H(m, p) achieved when p is near µ and so m∗ is typically

an overestimate of m∗
J .

Nevertheless, given the information we have, intuitively the above is a very reasonable

approach to approximating m∗ and we expect that J(m∗) will in most instances have the

same sign as J(m∗
J). Notice that in this setup the uninformed bidder will only under-

acquire information. This happens when |m∗ − m∗
J | is large enough such that Jp(m

∗) < 0

but Jp(m
∗
J) > 0. In this case it may be practical to search values between m∗ − δ and

m∗ + δ for some integer δ determined by the expected error of m∗, and see whether there

exists some m in that range such that Jp(m) > 0. Doing so will diminish the probability of

bidders failing to acquire information when they should.

1This can be easily verified by graphing g(p) for any value of n, ν, and ρ
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Proposition 11. In a second-price sealed-bid auction, when a bidder believes he is facing

informed bidders whose maximum value p is distributed according to density g(p), a bid-

der’s optimal information acquisition strategy can be approximated by first calculating E[p]

and determining m∗ using the algorithm outlined in 5. If Jp(m
∗) > 0, then the bidder ac-

quires information. After each step of information acquisition, the bidder re-confirms that

Jp(m
∗) > 0 still holds. Otherwise, she stops acquiring information. Note that this is a

conservative approach in the sense that using this approximate strategy will never cause the

bidder to acquire too much information.

Remark 4.2.1. Notice that the bidders’ optimal information acquisition strategy depends

entirely on her having beliefs about the distribution of p, i.e. g(p) (which requires the

knowledge of both ζ and n, the number of bidders). Other than that outside knowledge,

she is given no other guidance by the SPSB auction as to whether she should acquire

information. Thus, an uninformed bidder that does not know g(p) will have to follow some

sub-optimal best-case or ad-hoc strategy to acquire information.

4.2.2 All Uninformed Bidders

In the SPSB auction, a bidder does not get any dynamic feedback on the values of the other

bidders. What happens when she believes that all bidders are now uninformed?

In this situation, according to our model laid out in Chapter 2, the means of the current

belief distributions for the uninformed bidders are distributed according to a γ, a Gaussian

with mean ν and standard deviation
√

1 − α2ρ.

Again let us assume we have n + 1 bidders in the auction, each of which we index by

i ∈ {0, 1, . . . , n}. Each bidder is uninformed, can acquire information, and believes that

all the other bidders are also uninformed and can acquire information. Assume that each

bidder i enters the auction with an initial valuation distribution (µi
0, σ0), where the µi

0 are

drawn according γ, and where σ0 = αρ is the same across the bidders.

So, the question we consider is the following: for any given bidder i, how does her

information acquisition strategy change once she knows other bidders are also uninformed?

When all the bidders are completely uninformed, their values are distributed according

to γ. When all the bidders are informed, their values are distributed according to fν,ρ = ζ.

What happens when bidders acquire information? For the sake of argument, we assume a

symmetric equilibrium in which every bidder acquires the same amount (m) of information.

The consistency of our model implies that the bidders’ values are now distributed according

to fν,
√

1−α2mρ. Thus, as bidders acquire information symmetrically, the distribution over
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their values maintains the same mean µ but the standard deviation increases. Let the

expected maximum value of the n bids be denoted by θ1. Hence, we have the following

proposition.

Proposition 12. In a symmetric equilibrium where every bidder begins as being uninformed

and acquires the same amount of information, the expected maximum value of the n bids,

E[θ1], increases as bidders acquire information. When bidders are fully informed, E[θ1] is

largest.

Proof. Recall that the formula for the distribution of the highest order statistic of n values

drawn from a distribution with density f and cumulative distribution function F is

f (n)(x) = nf(x)F n−1(x).

We also note the following fact from statistics.

Fact 13. Let f and g be Gaussian distributions where both have mean µ but f has standard

deviation σ and g has standard deviation ρ, where σ > ρ. Then,

E[f (n)(x)] > E[g(n)(x)]

The proposition then follows. If the bidders acquire information symmetrically, obviously

the expected maximum value of the n other bids increases since the standard deviation of

fν,
√

1−α2mρ increases as m increases from 1. As m → ∞, the standard deviation approaches

ρ and we have the situation when all bidders are informed. Thus, the expected maximum

value is the greatest when all bidders are informed.

In his paper, Parkes [11] solves the second-price sealed-bid auction equilibrium with

uninformed agents using a symmetric equilibrium of the type described above. Every agent

acquires the same amount of information. However, this leads to wasteful and unnecessary

information acquisition amongst bidders with lower valuations, and insufficient information

acquisition by bidders with higher valuations.

In an asymmetric Nash equilibrium, we want the right bidders to acquire the right

amount of information. We want each bidder to acquire information optimally according

to the maximum value implied by other bidders’ optimal information acquisition strategies.

Each bidder chooses to acquire information based on the expected “posted price” submitted

by the highest bidder, i.e. E[θ1] . However, this maximum value is in turn determined by

how much information each bidder chooses to acquire.
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Nevertheless, in expectation we expect bidders with high values (close to E[θ1]) to acquire

the most information and bidders with low values (much lower than E[θ1]) to acquire

the least (if any) information. Unfortunately, this occurrence of asymmetric information

acquisition does not fit into our Gaussian model of bidders’ values, since the distribution

becomes skewed. In particular, the rightmost segments of the distribution stretch out (as

if it were the rightmost tail of fν,
√

1−α2mρ for some m > 1), whereas the leftmost segments

of the distribution don’t move (as if no information is acquired and the values remain

distributed according to fν,
√

1−α2ρ). Even with asymmetric information acquisition, so long

as the highest value bidders are still acquiring information, the expected maximum value

of the n bids increases.

Although it is theoretically possible to find a fixed point mf number of information

acquisition steps such that E[θ1] such that θ1 ∼ f
(n)

ν,
√

1−α
2mf

will lead all the bidders to

acquire an ex post optimal amount of information once they see what the actual highest bid

is, we leave such a derivation to future research.

Instead, we choose to approximate the optimal information acquisition strategy by find-

ing the maximum number of information acquisitions m̂ that any given bidder expects the

highest value bidders to take. We then estimate the expected maximum value we are facing

by using the distribution f
ν,
√

1−α2m̂ρ
to model the other bids. This is obviously an over-

estimate since the maximum amount of information acquisition occurs. The bidder then

decides whether to acquire information using the same strategy outlined in the posted-price

auction analysis, where the posted price is equal to the expected highest order statistic of

f
ν,
√

1−α2m̂ρ
. Because the posted price is overestimated, she will acquire too little informa-

tion if her mean is less than the posted price, and too much information if her mean is above

the posted price. Because of the construction of E[θ1], we expect the former situation to

occur much more frequently than the latter.

Recall that for any bidder with standard deviation σ about her true value, the maximum

number of information acquisition steps she will take is defined by m∗
µ(σ) as defined in 3.2.4.

Since all bidders enter the auction with the same standard deviation σ0, we can calculate

m∗
µ(σ0). This becomes our m̂.

Since bidders are given no dynamic information about the other bidders in a SPSB

auction, the best each bidder can do when facing uninformed bidders is to approximate

her highest competitors’ expected number of information acquisition steps and deduce an

expected value for the “posted price”, i.e. highest maximum bid, she faces. Here we have

given an approach for a bidder to approximate that expected value.

Remark 4.2.2. Whenall bidders are uninformed in a SPSB auction, the optimal information
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acquisition strategy becomes much harder to compute, as a bidder’s uncertainty about oth-

ers’ bidders actions is magnified, even if she knows g(p). Without that knowledge of g(p),

a bidder has no choice but to follow some suboptimal best-case or ad-hoc strategy.

4.3 Numerical Example Revisited

We again come back to our couple who is buying the home in a second-price sealed-bid

auction. We can now determine their optimal information acquisition and bidding strategies.

Recall that the couple has an initial belief distribution (µ0, σ0) about their value where

µ0 = 10 and σ0 = 2.5. Also, they can acquire each piece of information for a cost c = 0.01

and their computational effectiveness 1 − α is equal to 0.3. The couple is told that there

are n = 10 other bidders in the auction.

Other Bidders All Informed

In this scenario, the couple assumes that all the other 10 bidders are informed of their exact

values.

Now assume that the couple has a belief about the distribution ζ from which the other

bidders’ values are drawn. Assume that this belief comes from knowledge of past auctions

for homes of similar quality. In particular, they believe that ζ is Gaussian with mean ν = 8

and standard deviation ρ = σ0
α = 3.57. From the equations above, we can write down the

formula for the distribution g over the maximum bid p, according to the couple’s beliefs, as

g(p) =
10

3.57
√

2π
e−

(p−8)2

25.49 Φ

(

p − 8

3.57

)9

,

which implies

E[p] = 13.493.

The couple now proceeds as they would in a posted-price auction where p = 13.493. In

particular, they find that m∗∗ = 1.13946. Notice that H(1.13946, 13.493) = 0.0106 > 0,

so there is no need to compute m∗ since m∗ > m∗∗ and H(m∗, p) > H(m∗∗, p) > 0.

So the couple acquires information. Using a simulator, we find that µ1 = 10.605 and

σ1 = ασ0 = 1.75. Should the couple acquire information again? Plugging into the formula,

we obtain m∗∗ = 1.379. Since H(1.379, 13.493) = −0.0045 < 0, we calculate m∗ = 2.286 and

find that H(2.286, 13.493) = −0.0026 < 0. Thus the couple stops acquiring information.
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Since µ1 = 10.605 and they are no longer acquiring information, the couple’s optimal

strategy is to bid truthfully b∗ = 9.8604. Running a simulation and drawing n = 10 values

independently from the distribution ζ, we obtain a maximum bid of 12.335. Thus, the

couple’s bid is not accepted and they do not buy the home. Overall, they lose $0.01 from

their one step of information acquisition.

Other Bidders All Uninformed

In this scenario, the couple assumes that all the other 10 bidders are uninformed of their

exact values. Using the same distribution ζ over true values to be consistent, the couple

believes that each of the other bidders i enters the auction with mean µi
0 distributed ac-

cording to a Gaussian f with mean ν = 8 and standard deviation
√

(1 − α2)ρ = 2.55, and

standard deviation σ0 = αρ = 2.5.

Using the approximation we describe above, we obtain the value for m∗, the maximum

number of deliberations any given bidder will take and find that

m∗ = 5.03.

So our couple approximates the final distribution they face as Gaussian with mean ν = 8 and

standard deviation
√

1 − α2m∗ρ = 3.52. The expected maximum value of this distribution

is calculated to be

E[p] = 13.416.

Notice that this is only slightly less than the E[p] when all bidders are informed.

The couple now proceeds as they would in a posted-price auction where p = 13.416. In

particular, they find that m∗∗ = 1.1097. Since H(1.1097, 13.416) = 0.0123 > 0, the couple

acquires information. Using the same simulation as above, we obtain that µ1 = 10.605 and

σ1 = 1.75. Should the couple continue acquiring information? They calculate m∗∗ = 1.338

and m∗ = 2.286, where H(2.286, 13.416) = 0.00005 > 0, and so they acquire information,

finding that µ2 = 9.8604 and σ0 = ασ1 = 1.225. Should they acquire yet again? Now,

m∗∗ = 2.42089. This time, we notice that χ(m∗∗) = 0.0002 < c = 0.01 and so H(m, 12.616)

is decreasing in m. So there is no m such that H(m, p) has positive value and so the couple

stops acquiring information.

Since µ2 = 9.8604 and they are no longer acquiring information, the couple’s optimal

strategy is to bid truthfully b∗ = 9.8604. To simulate the other uninformed bidders, we draw

n = 10 values independently from a Gaussian distribution with ν = 8 and standard deviation
√

(1 − α2)ρ = 2.14. For each value, we calculate the optimal m∗ number of acquisitions
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and have each bidder acquire information bm∗c times. We then obtain a maximum bid of

11.539. Thus, the couple’s bid is not accepted and they do not buy the home. Their overall

loss is 2(0.01) = $0.02 from acquiring information two times.

Thus, in the case where we have all uninformed bidders, both the revenues to the seller

as well as the gains to the bidder are decreased compared to the case where everybody is

informed. We look into this effect in more detail in Chapter 6.



Chapter 5

Ascending-Price Auction

In this chapter, we formulate and solve the equilibrium bidding and information acquisition

strategies for a bidder in an asynchronous ascending-price auction. We analyze the optimal

bidding and information acquisition strategies in two cases: (a) when a bidder believes that

all the other bidders are informed of their exact values and do not acquire information,

and (b) when a bidder believes that all the other bidders are uninformed and can acquire

information.

Like in the SPSB, in the ascending-price auction, whether a bidder wins the good depends

on the bids of other bidders. However, bidders are given dynamic feedback about the other

bids in the ascending-price because of the price level p. Namely, they not only have a belief

distribution about the highest bid but they also know that the highest bid will be greater

than p. Notice that this p is not like a posted price for the bidder because if she bids at p,

she is not guaranteed to win the good at that price. Instead, p increases over time.

In this analysis, we make a simplifying assumption that a bidder can acquire at most a

fixed m̃ pieces of information each time she decides to acquire information. As opposed to

the posted-price and SPSB equilibrium information acquisition strategies where the bidder

acquires information so long as H(m, p) > 0 or Jp(m) > 0 for some m, in this auction,

we limit bidders that want to acquire information to acquiring between 1 and m̃ pieces of

information. Since the auction must wait while bidders acquire information, this restriction

on bidders is not unrealistic.

When hard valuation problems are introduced to the asynchronous ascending-price auc-

tion, the optimal bidding strategy becomes closely intertwined with the optimal information

acquisition strategy. In fact, when many bidders can acquire information, an intricate model

of interaction between bidders emerges. In particular, some bidders may become locked into

40
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a waiting game in which each bidder prefers to sit tight and wait for some other bidder to

acquire information and to place a new bid that will increase the price. Perhaps the price

will increase above any value the bidder would consider paying and she will never have to

acquire information, saving her the costs.

5.1 One Uninformed Bidder

First, we consider the case with one uninformed bidder that can acquire information and

that assumes all the other bidders are informed of their values.

5.1.1 Optimal Bidding Strategy

In the asynchronous ascending-price auction, at any given price level p, the bidder has three

options: (1) bid, (2) remain active, or (3) drop out.

When a bidder is completely informed about her value, v, her optimal bidding strategy

will be to submit bids until p = v. At this point, she will no longer bid. Once p = v + ε

as a result of another bid, she will drop out. Because the bidder knows her exact value,

she never chooses to remain active. Instead, informed bidders are forthcoming and want to

push up the price to their threshold. They have no uncertainty and hence never induce a

waiting game.

Now consider an uninformed bidder with beliefs (µ, σ) about her value. So long as the

auction is still running, she does not have to bid or to drop out. Instead, she can just remain

active, which always has nonnegative utility (because remaining active implicitly includes

the option to drop out at any time). To keep the auction running smoothly, we assume

that if a bidder is indifferent between bidding or remaining active, she will bid and that if

a bidder is indifferent between dropping out or remaining active, she will drop out.

Intuitively, because of her uncertainty, a bidder will choose not to acquire information

only when the price level is so far below her mean that it will never be worth it for her to

acquire information at that price or when the price level is so far above her mean that she

will never acquire information past that price. Otherwise, she will remain active. However,

if the auction reaches the waiting game and the auctioneer approaches the bidder, she must

either bid or drop out. In this case, for a bidder who is no longer acquiring information, if

µ > p, the expected utility of bidding is µ − p if she wins the good at p and 0 in all other

cases, while the expected utility of dropping out is 0. Similarly, if µ < p, the expected

utility of bidding is negative, µ− p, if she wins the good at p and 0 in all other cases, while



CHAPTER 5. ASCENDING-PRICE AUCTION 42

the expected utility of dropping out is 0. Thus, after she is finished acquiring information,

the bidder then bids if the price level is below her mean and drops out if the price level is

above her mean.

It is helpful to define and characterize the following two posted prices.

Definition 5.1.1. Assume that the bidder is offered the opportunity to buy the good at

price p and that the bidder must either bid or drop out. Then we define p = p as the price

at which an uninformed bidder with beliefs (µ, σ) does not drop out (hence p < µ) and is

indifferent between bidding and acquiring information.

Definition 5.1.2. Assume that the bidder is offered the opportunity to buy the good at

price p and that the bidder must either bid or drop out. Then we define p = p as the

price at which an uninformed bidder with beliefs (µ, σ) does not bid (hence p > µ) and is

indifferent between acquiring information and dropping out.

We first consider p. When facing a posted price p < µ, a bidder either acquires informa-

tion or buys the good at p. From Chapter 3, we know that the bidder’s expected value for

acquiring information at any posted price p is H(m, p) where the bidder acquires m pieces

of information. On the other hand, the bidder’s expected value of bidding is µ − p. Thus,

the condition for p is

H(m̃∗, p) = µ − p, (5.1.1)

where m̃∗ = min (m∗, m̃) and m∗ is as derived in Chapter 3 for a posted price auction. If

H(m̃∗, p) < 0, then we say that p > 0 does not exist. In our analysis, we assume p > 0

exists.

Recall that H(m̃, p) and H(m∗, p) are increasing in p when p < µ (see Figure!!). So,

when µ > p > p the LHS of the equation increases whereas the RHS decreases. Thus, for

p such that µ > p > p, the bidder prefers acquiring information. On the other hand, for p

such that µ > p > p, the LHS of the equation decreases whereas the RHS increases, and

thus we find that the bidder prefers to bid. So,

Lemma 14. If p is the posted price at which a bidder with beliefs (µ, σ) is given the option

to buy a good and p is defined as above, then p < µ and (a) if µ > p > p, the bidder acquires

information and (b) if µ > p > p, the bidder does not acquire information and bids.

Now we consider p. When facing a posted price p > µ, a bidder either acquires in-

formation or drops out. From Chapter 3, we know that the bidder’s expected value for

acquiring information at any posted price p is H(m, p) where the bidder acquires m pieces
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of information. On the other hand, the bidder’s value from dropping out is 0. Thus, the

condition for p is

H(m̃∗, p) = 0, (5.1.2)

where again m̃∗ = min (m∗, m̃). If H(m̃∗, p) < 0, then we say that p > 0 does not exist. In

our analysis, we assume that p > 0 exists.

Recall that when µ < p, both H(m̃, p) and H(m∗, p) are decreasing in p. Thus, for

p > p > µ, the bidder prefers to acquire information since the LHS increases. On the other

hand for p > p > µ, the LHS decreases and the bidder prefers to drop out. So,

Lemma 15. If p is the posted price at which a bidder with beliefs (µ, σ) is given the option

to buy a good and p is defined as above, then p > µ and (a) if p > p > µ, the bidder acquires

information and (b) if p > p > µ, the bidder does not acquire information and drop out.

oNow we apply the same methodology as in the SPSB auction of considering a bidder’s

decision problem in light of a “posted price”, namely her expected value for the maximum

of the other bidders’ values, i.e. E[θ1]. Taking the above two lemmas together, we have the

following conclusion:

Proposition 16. Let the posted price a bidder believes she is facing be denoted by E[θ1]. If

E[θ1] > p or if E[θ1] < p, she does not acquire information. Instead, she bids while p < µ

and drops out when p > µ. Otherwise, if p > E[θ1] > p, she will remain active.

Two questions immediately arise: first, what is E[θ1] in the asynchronous ascending-

price auction? Secondly, what happens when the auction enters a waiting game and the

bidder is approached by the auctioneer? She no longer has the choice of remaining active

and must decide whether to acquire information and then whether to bid or to drop out.

Looking at E[θ1]

To answer the first question, we notice that, like in the SPSB auction analysis, we are able

to use the posted price as a basic tool with which to analyze the ascending price auction.

There are two main differences between SPSB and ascending-price auctions. First, a bidder

is given feedback during the auction about other bids and thus dynamically updates the

expected “posted price” she is facing. Each time a bid is placed, she is given new information

about the other bids. Secondly, when new bids are placed, she is allowed to acquire more

information in response to the new information, and so the ascending-price auctions allow

for multiple stages of information acquisition.
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At the beginning of the ascending-price auction, before bidding has begun, the bidder

has the same beliefs about the other bidders’ values as in the SPSB. We recall the function

g from Chapter 4, which represents the bidder’s belief distribution over the maximum value

of the other bidders’ values. So, at the beginning of the auction, the bidder believes the

“posted price” she is facing is E[θ1|θ1 ∼ g]. As the ascending-price auction proceeds, the

bidder is given additional information about the maximum value, namely that θ1 ≥ p where

p is the current price level.

In symbols, when the ascending-price auction is at price level p, the bidder believes that

θ1, the maximum value of the other bidders, is distributed according to g(θ1|θ1 ≥ p), where

g is defined as in Chapter 4 and

g(θ1|θ1 ≥ p) =

{

0 θ1 < p
g(θ1)

∫

∞

p
g(θ1) dθ1

θ1 ≥ p
(5.1.3)

So E[θ1] = E[θ1|θ1 ≥ p], where θ1 ∼ g(θ1|θ1 ≥ p). Notice that E[θ1] is weakly increasing in

p.

So far we have assumed secret dropout, but in fact, if we assume overt dropout, the

bidder can also revise her expected value based on k, the number of agents left. This serves

to give her more information with which to refine her beliefs about the maximum value she

is facing. Now she can compute g(θ1|θk ≥ p > θk+1), assuming that all the θi are drawn

from a common distribution ζ, and then look at E[θ1] = E[θ1|θk ≥ p > θk+1]. So overt

dropout gives the bidder even more information about E[θ1]. For simplicity, however, we

assume that we have secret dropout. The bidder does not know how many agents are left

until the auctioneer comes up to her, at which point she knows there are only two bidders

left, herself and the highest bidder.

Compared to the SPSB, as the auction progresses the bidder becomes much more well-

informed of the highest bid she is facing and can choose not to acquire information until

the price has reached a level where she finds it necessary. Thus, bidders are able to make

better decisions about when to incur the cost and to acquire information, when just to bid,

and when just to drop out.

A Brief Aside - p∗ and p∗∗

We begin by defining the following two symbols to help keep our reasoning clear.

Definition 5.1.3. Let p∗ be the price level in an ascending-price auction such that E[θ1|θ1 >

p∗] = p. So if p > p∗, a bidder will not acquire information and drops out when p > µ.
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Definition 5.1.4. Let p∗∗ be the price level in an ascending-price auction such that

E[θ1|θ1 > p∗∗] = p. So if p < p∗∗, a bidder will never acquire information, bids while

p < µ, and drops out when p > µ.

Obviously, p∗∗ < p∗ since E[θ1|θ1 > p] is increasing in p and p > p. Also, since p increases

over time, once p > p∗, the bidder never acquires information and waits until p > µ to drop

out.

We are interested in the relative positions of µ and p∗ and p∗∗. Notice that intuitively p∗

is the price level that implies an E[θ1] so high that the bidder thinks she is not competitive

and would rather not waste resources acquiring information. On the other hand p∗∗ is the

price level that implies an E[θ1] so low that the bidder thinks she is easily the highest bidder

and does not think she needs to acquire information. Thus it must be that p∗∗ < µ0. We

consider three cases.

1. µ0 << E[θ1|θ1 > 0]. In this case, the bidder may not acquire information even at

the onset of the auction because the expected posted price she faces is too high. As

the price level p increases, E[θ1] only increases and so the bidder will never acquire

information. In this case, p∗∗ probably does not exist (there is never a price level

where the bidder thinks she is easily the highest bidder). On the other hand, µ0 >> p∗

because right at the very beginning stages of the auction the bidder believes she is

not competitive and will not want to waste her resources acquiring information. So

we have µ0 >> p∗ and p∗∗ does not exist. So even when p > p∗ the bidder will remain

in the auction until p = µ0, but this does not have a big effect since by assumption

µ0 is very low.

2. µ0 < E[θ1|θ1 > 0]. In this case, p∗∗ is either very low or nonexistent (there is only a

very low price level (or no price level) where the bidder thinks she is easily the highest

bidder). On the other hand, p may have to come relatively close to her mean µ before

she believes that she is not competitive. Thus, we have µ0 > p∗ >> p∗∗. Even when

p > p∗, the bidder will remain in the auction until p = µ0, but again µ0 is assumed

not to be very high.

3. µ0 ' E[θ1|θ1 > 0] or even µ0 > E[θ1|θ1 > 0]. In this case, at low price levels the

bidder may believe that she is easily the highest bidder and does not need to acquire

information. So p∗∗, although low, probably exists. On the other hand, because the

bidder is told her value is likely to be the maximum bid, p will have to rise above her

mean µ0 before she will believe she is not competitive. So we have p∗ > µ0 > p∗∗. So,

once p > p∗, high bidders immediately drop out.
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5.1.2 Optimal Information Acquisition Strategy

To understand the optimal strategies in the waiting game with one uninformed bidder, we

begin by looking at how the auction progresses.

Let us assume the same setup as in Chapter 4 with n + 1 bidders indexed by i ∈
{0, 1, . . . , n}. Let bidder 0 be the uninformed bidder with beliefs (µ, σ) about her true

value. For all the other bidders, let their true values be θi for i ∈ {1, 2, . . . , n} such that

θ1 > θ2 > . . . > θn.

Without loss of generality, we assume the price level p begins at 0 and recall that the

bid increment is ε. Each informed bidder i follows her optimal bidding strategy of bidding

until p = θi and then dropping out if a higher bid is placed. On the other hand, if p < p∗∗

or p > p∗, bidder 0 bids while p < µ and drops out if p > µ; otherwise, if p∗ > p > p∗∗ she

remains active. The waiting game only occurs when bidder 1 is no longer willing to bid and

bidder 0 is not bidding but remains active. To make our analysis more readable, we let the

term “act according to her mean” refer to bidder 0 bidding if p < µ and dropping out if

p > µ. Also, let µ denote bidder 0’s current mean after acquiring information, and let µ0

denote bidder 0’s initial mean before acquiring information.

In determining the optimal information acquisition strategy for bidder 0, we have the

following cases to consider:

1. θ1 > p∗. In this case, bidder 1 continues bidding until either θ1 or he is the only bidder

left. When p = θ2, bidder 2 will stop bidding and drop out (and all other informed

bidders other than bidder 1 will also have dropped out). Bidder 1 will continue driving

up the price until θ1. Since θ1 > p∗, during the process of bidder 1 driving up the price,

bidder 0 will eventually act according to his mean and does not acquire information.

If µ0 > θ1, bidder 0 wins the auction at price θ1 without acquiring information. If

µ0 < θ1, bidder 1 wins the auction at price max (µ0, θ1).

Notice that in this case bidder 0 does not acquire information, and the waiting game

does not occur.

2. p∗ > θ1. We have two cases.

(a) p∗∗ > θ1. In this case, bidder 1 will continue bidding until p = θ1, after which

he will not bid any further. At this point, the only bidders left will be bidders 0

and 1, since all the other informed bidders will have dropped out. Since p∗∗ > p,

bidder 0 will act according to his mean and not acquire information. If µ0 > θ1

bidder 0 wins the good at price θ1. If µ0 < θ1 bidder 1 wins the good at price
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µ0.

(b) θ1 > p∗∗. In this case, bidder 1 will continue bidding until p = θ(1), at which

point she will not bid any further. At this point, the only bidders left will be

bidders 0 and 1, since all the other informed bidders will have dropped out. Since

p∗ > p > p∗∗, bidder 0 will want to remain active but not to bid. So we are in the

waiting game. At this point, the auctioneer will approach bidder 0 and demand

that he either bid or drop out. This is the scenario we focus on when developing

bidder 0’s optimal information acquisition strategy. After acquiring information,

if µ > θ1, she will win the good at price θ1; otherwise, bidder 1 wins at price

θ1 − ε.

Notice that the only situation in which bidder 0 acquires information is if p∗ > θ1 >

p∗∗.

If bidder 0 is the only uninformed bidder, when the auctioneer approaches her, she knows

exactly which situation she is in. In particular, there is only one other bidder left, whose

value is the current price level p. Thus, bidder n is facing exactly a posted-price! If she

decides to bid at p = θ1, she will win the auction at θ1.

To decide whether to bid or to drop out, the bidder follows exactly the information

acquisition strategy outlined in Chapter 3, with a posted price equal to θ1. The only caveat

is that the bidder can acquire at most m̃ pieces of information. So, she acquires information

if

H(m̃∗, θ1) > max (0, µ0 − θ1).

The RHS of the equation denotes the bidder’s action if she does not acquire information -

she either bids or drops out, depending on the sign of µ0 − θ1.

Thus we have characterized the equilibrium information strategy when only one bidder

is acquiring information.

Proposition 17. In an asynchronous ascending-price auction with one uninformed bidder,

if θ1 > p∗ or θ1 < p∗∗, the uninformed bidder acts according to her initial mean µ0. If

p∗ > θ1 > p∗∗, the waiting game occurs at p = θ1. In this case, the bidder acquires

information if and only if H(m̃∗, θ1) > max (0, µ0 − θ1).

Remark 5.1.1. When there is only one uninformed bidder in the ascending-price auction,

she does not need to know anything about g(p)! The auction mechanism gives her all the

knowledge she needs about θ1 (i.e. the value itself) and it does not matter whether she
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is informed of either ζ, the distribution over the other bidders’ values, or n, the number

of other bidders. In other words, the uninformed bidder’s optimal information acquisition

strategy is uninfluenced by her knowledge about the competition. This remark sounds

familiar to Rezende’s conclusion [14]; however, his model involved all uninformed bidders,

not just one. The result we find here is in stark contrast to the situation with the SPSB

auction.

5.2 All Uninformed Bidders

Now we turn our attention to the situation in which each bidder is uninformed and assumes

that every other bidder is uninformed as well. So long as the auction is not in a waiting game,

bidders will follow the optimal strategies outlined in the previous section. In particular,

using the theory developed above, we have

Proposition 18. While an ascending-price auction is running and has not reached a wait-

ing game, an uninformed bidder acts according to her initial mean µ0 if p < p∗∗ or if p > p∗,

regardless of whether the other bidders are informed or uninformed. Otherwise, she remains

active.

Let there be n bidders in the auction. Let them be indexed with i ∈ {1, 2, . . . , n} such

that µ1
0 > µ2

0 > . . . > µn
0 , where µi

0 is the mean of the initial belief distribution (µi
0, σ0) with

which bidder i enters the auction. According to our model, the µi
0 are drawn independently

from the same distribution γ (as defined in Chapter 2) and σ0 = αρ is the same for all

bidders. As a result, we see that p∗1 > p∗2 > . . . > p∗n and p∗∗1 > p∗∗2 > . . . > p∗∗n, where

p∗i and p∗∗i denote p∗ and p∗∗ for bidder i respectively.

Assuming all the bidders follow the above strategy, the auction reaches a waiting game

when p = p∗∗1. At this point, bidder 1 is assigned the good and all the bidders i such that

p∗i > p > p∗∗i are remaining active. Say there are k such active bidders. According to

the auction protocol, the auctioneer then randomly selects one of the k active bidders, say

bidder 2, and demands that she either bid or drop out. We assume that the auctioneer

informs the bidders of k, the number of agents still left in the auction. What is bidder 2’s

optimal information acquisition strategy?

Unlike when there is only one uninformed bidder and so she knows exactly the posted

price she faces, in this scenario the bidder has a more complicated situation. She knows

there are k bidders left in the auction other than herself. Ideally, the bidder would rather

remain active and have other people acquire information and bid, in hopes of the price rising
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past her p∗ and making her drop out without incurring any costs. However, the auctioneer

must force somebody to keep the auction running and has chosen bidder 2.

On first glance, this situation seems very similar to the situation at the beginning of

the second-priced sealed-bid auction with k uninformed bidders. Bidder 2 must decide the

estimated maximum value she is facing in order to determine whether to acquire information.

She then follows her optimal bidding strategy. However, in this situation bidder 2 has several

additional key pieces of information when she is approached, namely

1. the minimum above which the ultimate “posted price” for which the good will be sold

lies, i.e. the current price level p,

2. the expected amount of information already acquired by each bidder still left in the

auction and hence the current distribution over bidder’s means, and

3. the maximum amount of information acquired by the highest bidders in the auction.

To see how she finds out this information, we look closely at the progress of the auction.

We assume that a bidder can see when the waiting game has begun and observes when

other bidders are approached, when they bid, and when they drop out (i.e. as k decreases).

Also, the auctioneer chooses a bidder at random to approach, so he chooses any given

bidder with probability 1
k . Thus, when a bidder is approached, she does not expect to be

approached again for another k turns.

Let the waiting game begin at price level p′. Without loss of generality, say that bidder 2

is approached by the auctioneer at price level p′
2. She knows that (a) from observation s other

bidders have been approached before her and that (b)
p′2−p′

ε of the s bidders have acquired

information and chosen to bid instead of drop out. Notice that when a bidder acquires

information in the waiting game she has no incentive to acquire information more than once

because she would rather remain active and wait for somebody else to acquire information.

Acquiring information once is the minimum she needs to appease the auctioneer and by

doing so she just delays the rest of her information acquisition for later, when she will have

even more information about the price level. So, at price level p′ when k bidders are left,

bidder 0 expects that that each bidder has acquired information m′ = bp′1−p′

kε c times. Thus,

each bidder is expected to have beliefs about her value with standard deviation αm′

σ0.

Given the standard deviation of a bidder’s beliefs, recall our formula for the maximum

value of m∗
µ(σ) in 3.2.4, for a bidder whose mean is equal to the price level and whose

standard deviation is σ0. Since the “posted price” that bidders expect to face is equal

to the expected mean of the highest bidder, the maximum number of times that bidder 0



CHAPTER 5. ASCENDING-PRICE AUCTION 50

expects any bidder to acquire information in this waiting game before it ends is m∗
µ(σ)! At

any given time, she expects σ = αmσ0 and so m∗
µ = m∗(αmσ0).

In theory, if all the original bidders acquired information m∗ times and none dropped

out, their values would be distributed according to a Gaussian f with mean ν and stan-

dard deviation
√

1 − α2m∗ρ. However, in reality we only have an altered version of that

distribution, since only the highest value bidders have acquired m∗ pieces of information,

the middle value bidders have acquired less information, and the low value bidders have

dropped out. A truly optimal equilibrium strategy would be for bidder 0 to use this altered

distribution in her calculations.

To maintain the consistent properties of our model and analysis, however, we approxi-

mate that distribution with a Gaussian. In particular, we assume that the distribution of

values over the n original bidders is exactly Gaussian f with mean ν and standard deviation√
1 − α2m∗ρ. This overestimates the value of the highest order statistic of the k values left

because, as we found in Chapter 3, the expected maximum value increases in the standard

deviation, holding the mean fixed. Still, we assume it is a reasonable approximation be-

cause what we are most interested in is what happens with the highest value bidders. More

advanced statistics may be able to provide a method for modeling the distribution when a

fraction of the bidders acquires information and the other fraction does not.

Thus, at any given price level p′ when bidder 0 is approached by the auctioneer, she is

equipped with an approximate distribution f
ν,
√

1−α2m∗ over the values of the n bidders in

the auction. She then calculates the expected value of the highest order statistic in that

distribution, obtaining E[θ1] = E[p]. Now she faces a posted price! She then acquires

information if there exists an m̃′ = max (m∗, m̃) such that H(m̃′, E[p]) > 0. After acquiring

information, she bids if µm̃′ > p and drops out otherwise.

Remark 5.2.1. In an asynchronous ascending-price auction with uninformed bidders, the

incentives are such that little wasteful information acquisition occurs. If a bidder knows

her value is low relative to her beliefs about E[θ1], she quickly drops out without acquiring

information. If she knows her value is around the middle of the her expected distribution

over θ1, she remains in the auction for a little while but once p starts approaching her mean

µ, she knows that the small chance that she is the high bidder is erased and she drops

out. On the other hand, the high bidders know that they are high and stay in. As soon

as one of their means drops below p, however, they drop out. When there are very few

high-value bidders, this quickly becomes a problem as few bidders bid and many drop out.

If this happens, the auction may be won at a price much lower than the the second highest

bidder’s value! This will hurt the seller’s revenue.
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What if the bidder does not know ζ or n? In this case, the only knowledge she has is that

θ ≥ p and that there are k other bidders in the auction. Thus, the best-case strategy she

can adopt is to assume θ1 = p and to respond accordingly. This is always an underestimate

of the true maximum value over the bidders, and so if µ > θ1 the bidder acquires too little

information and if µ < θ1, the bidder acquires too much. Nonetheless, the bidder still has

some information about her competition in the auction and only has to acquire information

(albeit occasionally wasteful) when the auctioneer approaches her. Again, this is in stark

contrast to the situation in the SPSB auction where much wasteful deliberation occurs when

uninformed bidders are not knowledgeable.

5.3 Numerical Example Revisited

We return to our couple. They now find themselves in an ascending-price auction for their

dream home. The auctioneer tells them there are n = 10 other bidders.

All Informed Bidders

Like in the second-price sealed-bid auction, the couple assumes the 10 other bidders are

informed and that their values are distributed according to ζ, a Gaussian with mean ν =

8 and standard deviation ρ = 3.57. Because the auctioneer does not want to wait an

excessively long time for any one bidder to acquire information, he imposes a condition

that, if bidders decide to acquire information, bidders may acquire at most m̃ = 1 pieces of

information.

Recall the definitions above for p and p. Solving these two formulas numerically,

H(1, p) = µ − p and

H(1, p) = 0,

we obtain

p = 9.515 and

p = 13.842.

So, according to their optimal strategy, the couple will bid at price level p if E[θ1|θ1 > p] ≤
9.515 and will drop out at p if E[θ1|θ1 > p] ≥ 13.842, where θ1 is the highest value of the

other bidders.
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What is E[θ1|θ1 > p]? From our analysis, we know

E[θ1|θ1 > p] =

∫ ∞

0
θ1g(θ1|θ1 > p) dθ1

=

∫∞
p θ1g(θ1) dθ1
∫∞
p g(θ1) dθ1

.

We want to find p∗∗ such that E[θ1|θ1 > p∗∗] = p = 9.515 and p∗ such that E[θ1|θ1 >

p∗] = p = 13.842. Recall from our analysis of the SPSB numerical example, however, that

E[θ1|θ1 > 0] = 12.616. Thus, for no p > 0 will E[θ1|θ1 > p] = 9.515. So there is no p∗∗ > 0

and hence there is no price level for which the couple will bid rather than remain active until

approached by the auctioneer. So the couple sits tight until the waiting game occurs. What

about p∗? Solving numerically, we find that E[θ1|θ1 > p∗] = 13.842 gives us p∗ = 10.857.

So if the price level exceeds 10.857, the couple will not acquire information.

Running a simulation, we obtain values for the n = 10 other bidders and find that

θ3 = 10.352, θ2 = 11.026 and θ1 = 12.412. So bidder 2 will bid until p = 11.026 and then

drop out and bidder 1 will bid until p = 12.412 and then wait. At this point, if the couple

is still in the auction, the auctioneer will approach the couple and require that they either

bid or drop out. However, once p ≥ 10.857, the couple will not acquire information because

competition is too tough. Since µ = 10 < 10.857, the couple drops out at 10.857. At this

point there are two other bidders left, and bidding continues until p = 11.026, at which

point bidder 1 wins the good at that price.

In this auction format, the couple leaves the auction with no net loss or gain because

they do not acquire information. Compared to when their outcome in the SPSB auction,

their utility is increased because in the ascending format, they have a lot of knowledge

about θ1, know that they are not competitive, and do not waste their resources in acquiring

information.

All Uninformed Bidders

Now let’s imagine that the couple now assumes that the other 10 bidders are in fact unin-

formed. Using the same distribution ζ over true values to be consistent, the couple believes

that each of the other bidders i enters the auction with mean µi
0 distributed according to

γ with mean ν = 8 and standard deviation
√

(1 − α2)ρ = 2.55, and standard deviation

σ0 = αρ = 2.5. Let ε = 0.5.

According to our analysis, the auction will run with bidders bidding until p = p∗∗1.

Running a simulation, we find that µ1
0 = 11.95 and that there is no p∗∗1 > 0. So the
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auction begins with no players bidding. On the other hand, even when nobody has bid, the

maximum information acquisition steps anybody will take can be calculated to be

m∗ = 5.03.

and so we obtain (keeping in mind that θ1 > p)

E[θ1] = 13.286.

With that expected price in the auction, six of the bidders drop out and four bidders remain

in addition to the couple. So the auction begins in a waiting game. Let the other bidders

be indexed 1, 2, 3, 4.

We do not consider all the details of the auction, but instead consider only the couple’s

viewpoint. We know the waiting game starts at p = 0. Say that at p = 1.5, the couple is

approached. Since E[θ1|θ1 > 1.5] = 13.286 and H(1, E[θ1]) = 0.013 > 0, the couple acquires

information and now has µ1 = 10.605 as before and σ1 = 1.75. Say the couple is approached

again at p = 2.5. Since E[θ1|θ1 > 2.5] = 13.2863 and H(1, E[θ1]) = −0.0029 < 0, the couple

doesn’t acquire information but bids (since 10.605 > 2.5). Say that the bidder is approached

again at p = 4, 5.5, 7, 8.5, 10and11. At p = 4, 5.5, 7, 8.5, 10, H(1, E[θ1]) < 0 and so the couple

does not acquire information but bids since p < µ = 10.605. However, at p = 11, the couple

calculates that E[θ1] = 13.6724 and does not acquire information. Since p > µ, however,

the couple decides to drop out. At this point there are two other bidders left.

The outcome of the auction for the couple is that their net loss is 0.01 from acquiring

information once. This is an improvement over their outcome in the SPSB format with

uninformed bidders. Nonetheless, the couple acquires more information than she needs to

in the ascending-price format with informed bidders.



Chapter 6

Results and Discussion

In this chapter, we present the results of a basic comparison between the two dynamic

auction mechanisms: the second-price sealed-bid and the asynchronous ascending-price.

We do so by looking at the empirical implications of the optimal strategies we have derived.

We do not consider the posted-price because we believe that it depends too much on the

part of the auctioneer to establish a revenue-maximizing price and any efficiency analysis

will be unrealistic. When the bidders are informed, the auctioneer sets p = θ1 and always

achieves 100% in revenues; when bidders are uninformed, the auctioneer sets p = E[θ1] and

either achieves 0 or E[θ1] in revenues. Furthermore, any interesting information acquisition

properties in the posted price auction, as we have shown, can be observed in an ascending-

price auction with one uninformed bidder. The purpose of presenting an analysis of the

optimal strategies in a posted-price auction has been to lay out a basic strategy for acquiring

information given a posted price. As we have seen, using that strategy as a foundation is

very useful in analyzing dynamic auctions.

Our main concern is the fact that the equivalence between the ascending-price auction

and the second-price sealed-bid auction breaks down when bidders are not completely in-

formed of their own private values, i.e. a hard valuation problem is introduced. In fact,

we will see that each auction provides different knowledge to bidders and thus different

incentives to incur costs and acquire information. Specifically, we find that the multi-stage

nature of the ascending price auction provides much more knowledge to an uninformed

bidder of what kind of competition she is facing.

When hard valuation problems are introduced and costs must be incurred for acquiring

more information, we are primarily interested in whether the right bidders acquire the

right amount of information. In other words, we prefer auction mechanisms that

54
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provide incentives for the least competitive bidders (with low values) to acquire no or

very little information, for the medium-value bidders to acquire just enough information to

figure out they are not competitive, and for the highest-value bidders to acquire a significant

amount of information to determine easily whether they in fact have the highest value. This

point of concern is on behalf of the bidders’ interests.

We are also concerned with sellers’ revenues. Whether bidders decide to acquire info and

bid is affected by their knowledge about competition. Since this knowledge varies between

the two dynamic auctions, the resulting revenues may also differ. As Rezende points out

[14], it is not entirely clear how information acquisition affects seller’s revenues. If bidders

begin the auction with abnormally high initial beliefs about their values (much higher than

their true values), the seller will profit from those bidders not acquiring information. On

the other hand, if bidders begin the auction with abnormally low initial beliefs, the seller

will profit from their acquiring information.

Recall that there are two types of information that bidders may have: (a) knowledge

about the bidder’s own private true value and (b) information about the highest value faced

by the bidder. The structure of the auction mechanism determines both the incentives for a

bidder to acquire information about his own private value as well as how much knowledge (if

any) bidders receive about other bidders’ values. In particular, the more knowledge bidders

receive about the highest bidder’s value in the auction, the more “right” the amount of

information they acquire.

6.1 One Uninformed Bidder

Consider the situation where only one bidder, bidder 0, is uninformed and the rest are

informed. We compare the two auctions in (a) how much knowledge about θ1 is provided

and (b) what the incentives are to acquire information.

What knowledge about θ1 is provided?

The second-price sealed-bid auction gives bidder 0 no information about θ1. The only

information she has is information we assume she has when she enters the auction. So she

may or may not know ζ, the distribution from which bidders’ true values are drawn, or n,

the number of bidders in the auction.

On the other hand, the ascending-price auction with one uninformed bidder tells bidder

0 exactly the value of the highest bidder she faces. It does not matter whether the bidder
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knows ζ or n; she simply faces a posted price when the waiting game sets in. Thus, the

structure of the asynchronous ascending-price auction fully informs a single uninformed

bidder about her competition. The only uncertainty left is that in her own value.

How do incentives to acquire information compare?

Bidders’ knowledge about θ1 determines their incentives to acquire information. In the

SPSB auction, the optimal information acquisition strategy is the same as that in the

posted-price auction, using E[p] as the posted price (assuming the bidder knows ζ and n).

If p = θ1 is especially high or low, the SPSB auction does not alert the uninformed bidder

in any way and thus she does not adjust her strategy.

In the ascending-price auction, the optimal information acquisition strategy is also the

same as that in the posted-price auction, but this time using the actual value θ1 as the

posted price. This requires no knowledge of ζ or n. If θ1 is especially high or low, the

ascending-price auction alerts the uninformed bidder and she is able to adjust her strategy

accordingly.

Empirical study

To test these conclusions empirically, we simulate several sets of n = 20 bidders, whose true

values are distributed according to ζ with mean ν = 10 and standard deviation ρ = 3. We

initialize everybody at µ0 = 10 and then use a randomized function to help each bidder

“acquire information.” Repeating until the bidders’ uncertainty decreases to 0, we obtain

a set of values representing bidders’ true values. This is by no means a comprehensive

empirical study, but we have included it as a simple simulation in order to illustrate some

major points and to encourage future empirical studies.

Our methodology is, for each set of bidders, to place ourselves as an uninformed bidder

in the shoes of different bidders and to determine whether these bidders, if they were

uninformed, acquire the “right” amount of information. We consider three situations: (a)

the asynchronous ascending-price auction, (b) the second-price sealed-bid auction where the

uninformed bidder knows ζ, n and hence g(p), and (c) the second-price sealed-bid auction

where the uninformed bidder knows neither ζ or n and hence has no information about

the highest bid. We assume that in that last case the bidder uses a best-case strategy and

assumes that the highest value is equal to her mean, E[p] = µ0. So she always acquires

information bm∗
µc times.

In our simulation we set α = 0.7, c = 0.01, and σ0 = ρα = 2.1. It then follows that
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bm∗
µc = 4.

We consider the viewpoints of four different bidders: (a) a “low” bidder (the second

lowest true value), (b) a “medium” bidder (the tenth lowest true value), (c) a “high” bidder

(the third highest true value), and (d) the “highest” bidder (the highest value). We compare

the performance of each auction according to the following measurements:

1. number of steps of information acquisition, m. The closer the highest maximum value

is to a bidder’s true value, the more she should acquire information.

2. allocative efficiency, η, where η is between 0 and 1 and is equal to the value of the

bidder that wins the good divided by the value of the highest bidder in the auction.

3. revenue, R, where R is between 0 and 1 and is equal to the price paid by the bidder

that wins the good divided by the value of the highest bidder in the auction (i.e. the

maximum possible revenue).

4. gain, G, where G is the total gain of the uninformed bidder after the outcome of the

auction.

When a bidder knows ζ, in the SPSB auction, she acquires information according to E[p].

In the ascending-price auction, she acquires information according to the exact p = θ1. So

we consider three cases: (a) p < E[p], (b) p ' E[p], and (c) p > E[p]. The results of our

simulations are in Tables 6.1 through 6.6.

Our results confirm our intuition about the key difference between the ascending-price

and SPSB auctions. When the price is lower than expected, i.e. p < E[p], the ascending-

price auction alerts bidders of that fact and they adjust their information acquisition strate-

gies accordingly. Across the board the low value bidder knows that her value is low and

does not acquire information. If the uninformed bidder has a medium value, she adjusts

and acquires some information to see if she might be competitive. If the uninformed bidder

has a very high value, she realizes she is very competitive and acquires more information to

determine whether she is in fact the highest bidder.On the other hand, in the second-price

sealed-bid auction, the uninformed bidder has no idea that the maximum value is lower than

expected, and so, if she has a medium value she assumes she is not competitive and does

not acquire information. Even if the uninformed bidder actually has the highest value in

the auction, it may be the case (as we see in our results) that her initial mean is low and she

drops out. She is not aware that the values in general are low, and so loses the opportunity

to win the good for a positive gain. Similarly, when the price is higher than expected, i.e.

p > E[p], the ascending-price auction also alerts bidders of that fact and, as we can see, the
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low and medium value bidders respond accordingly by not acquiring information. In fact,

not even the high bidder acquires information in our simulation because she realizes that

the maximum value is unexpectedly high. The SPSB auction, however, does not convey this

knowledge and so the bidders do not react. Finally, when the price is around the expected

value, the two auctions provide similar incentives for bidders to acquire information.

So, if the value of the highest bidder is much higher or lower than expected, the ascending-

price auction informs bidders and provides the right incentives for the right bidders to

acquire information about their private values. On the other hand, the second-price sealed-

bid does not provide any information for bidders to change their information acquisition

strategies. They always act as if the maximum value is equal to the expected value. Finally,

notice that when the bidder does not have knowledge of g(p), a lot of wasteful information

acquisition occurs. Thus we have the following conclusion:

Result 19. When there is only one uninformed bidder, the ascending-price auction lets

the bidder know the highest value bid and thus provides incentives for the right bidders to

acquire the right amount of information by adjusting based on the deviation of the actual

highest bid from its expected value . The second-price sealed bid auction does not provide any

knowledge about the maximum value and thus does not give incentives for bidders to adjust

their information acquisition strategies. When the bidder does not know ζ, the second-price

sealed-bid auction results in the uninformed bidder acquiring much more information than

she should.

We note that when there is only one uninformed bidder, the revenues of both auctions are

quite similar. If the uninformed bidder has the highest value and does not acquire enough

information, it is possible that an inefficient outcome results, but the revenues to the seller

remain high because competition is tough. In each auction, the seller is guaranteed at least

θ2, the second highest value of the informed bidders.

6.2 All Uninformed Bidders

When all the bidders are uninformed, we have seen that it is important in the optimal

information acquisition strategies for both auctions to know ζ, the distribution from which

bidders’ values are drawn.

As in the case where only one bidder is uninformed, the second-price sealed-bid auction

does not give any extra information to a bidder other than that with which she enters

the auction. In other words, she may know ζ and n, but she does not get any feedback
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on how much information each bidder acquires. The best she can do is estimate how

much information each bidder acquires, use that information to estimate the distribution

of bidders’ final values after information acquisition and hence the expected value of the

highest bidder, i.e. E[θ1]. In the approximate strategy detailed in Chapter 4, a bidder

will overestimate E[θ1]. If µ0 > E[θ1], the bidder acquires too much information and if

µ0 < E[θ1], the bidder acquires too little information. If, however, bidders do not know

ζ and instead follow a best-case strategy as in the previous section, the non-competitive

bidders will inevitably acquire too much information. Thus the SPSB with uninformed

bidders does not provide any knowledge about θ1.

Now consider the ascending-price auction. This auction mechanism gives bidders a

relatively large amount of information compared to the SPSB. Most importantly, the bidder

is told a minimum price (i.e. the current price level) above which θ1 lies. Once the waiting

game begins, the bidder also can see how much information has been acquired. Furthermore,

if we assume overt dropout, the bidder knows how many bidders are left and can use the

information θk > p > θk+1 in refining her beliefs about E[θ1]. As the auction progresses,

the bidder can in fact obtain a very good estimate of the actual θ1. Thus it is much easier in

the ascending-price auction for bidders to know their relative competitiveness in the auction

and to acquire the “right” amount of information.

What about the sellers’ revenues? In the SPSB auction, if a bidder does not acquire

(enough) information, the seller may profit if his initial belief is especially high and may

lose if his initial belief is especially low.

In the ascending-price auction, recall our analysis of the relative positions of p∗, p∗∗, andµ0.

If there are bidders whose initial values are very close to E[θ1] or greater than E[θ1], then

they will stay in the auction and acquire information at a price level greater than their

means. Thus, in this scenario it is possible for the seller to have increased revenues re-

gardless of whether those initial beliefs are high or low. The reason is that high-value

bidders know that they are very competitive and are willing to take a chance and acquire

information, even when the price level exceeds their means.

Bidders whose initial values are lower than or much lower than E[θ1] may drop out of the

auction without acquiring information. But this situation affects the seller’s revenues the

same way as in the SPSB auction. Even though they do not acquire enough information,

they may help or hinder the seller’s revenues based on their initial beliefs about their true

values.

Conclusion 20. When all bidders are uninformed, the asynchronous ascending-price auc-

tion provides better incentives than the second-price sealed-bid auction for the right bidders
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to acquire the right amount of information. Furthermore, it is possible in the ascending-

price auction to achieve higher revenues than in the SPSB auction, because bidders have

enough knowledge about their relative competitiveness.

A quick reference to the synchronous ascending-price auction

Here we make a brief intuitive comparison between the synchronous ascending-price auction,

also known as a Japanese auction, and the two dynamic auctions we have studied in this

paper. In the Japanese auction, bidders do not have the option of remaining active. By not

dropping out of the auction, they are implicitly bidding. When all the bidders are informed

and only one bidder (bidder 0) is uninformed, bidder 0 is not given as much information

as she is in the asynchronous auction. The reason is that, at every price level p, she must

decide whether to acquire information, to bid, or to drop out. She cannot just wait until the

other bidders push the price up; she must bid at every price level. Thus, the synchronous

ascending-price auction provides much less information to an uninformed bidder about θ1.

Nonetheless, it still provides some. In particular, an uninformed bidder knows that for any

given price level p, θ1 ≥ p, and with overt dropout, she also knows θk > p > θk+1.

The synchronous ascending-price auction provides some dynamic feedback to bidders

about the maximum value θ1 and thus has the advantage over the SPSB auction of re-

ducing wasteful information acquisition when θ1 is different from expected. Nonetheless, it

does not provide as much feedback as the asynchronous ascending-price auction. Thus, the

synchronous ascending-price auction may be a viable alternative mechanism to the SPSB

auction in reducing wasteful information acquisition, but does not seem to hold much ad-

vantage over the asynchronous auction.



CHAPTER 6. RESULTS AND DISCUSSION 61

Bidder APm SBIm SBUm APG SBIG SBUG

Low 0 0 4 0 0 -0.04
Medium 1 0 4 -0.01 0 -0.04

High 2 2 4 -0.02 -0.02 -0.04
Highest 4 0 4 0.64 0.68 0.64

Table 6.1: p = 13.750 < E[p] = 15.602

Bidder APη SBIη SBUη APR SBIR SBUR

Low 1 1 1 0.95 0.95 0.95
Medium 1 1 1 0.95 0.95 0.95

High 1 1 1 0.95 0.95 0.95
Highest 1 0.95 1 0.95 0.91 0.95

Table 6.2: p = 13.750 < E[p] = 15.602

Bidder APm SBIm SBUm APG SBIG SBUG

Low 0 0 4 0 0 -0.04
Medium 0 0 4 0 0 -0.04

High 0 0 4 0 0 -0.04
Highest 3 7 4 0.86 0.82 0.85

Table 6.3: p = 15.306 ' E[p] = 15.602

Bidder APη SBIη SBUη APR SBIR SBUR

Low 1 1 1 0.94 0.94 0.94
Medium 1 1 1 0.94 0.94 0.94

High 1 1 1 0.94 0.94 0.94
Highest 1 1 1 0.94 0.94 0.94

Table 6.4: p = 15.306 ' E[p] = 15.602
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Bidder APm SBIm SBUm APG SBIG SBUG

Low 0 0 4 0 0 -0.04
Medium 0 0 4 0 0 -0.04

High 0 5 4 0 -0.05 -0.04
Highest 2 2 4 2.57 2.57 2.55

Table 6.5: p = 17.218 > E[p] = 15.602

Bidder APη SBIη SBUη APR SBIR SBUR

Low 1 1 1 0.85 0.85 0.85
Medium 1 1 1 0.85 0.85 0.85

High 1 1 1 0.85 0.85 0.85
Highest 1 1 1 0.85 0.85 0.85

Table 6.6: p = 17.218 > E[p] = 15.602



Chapter 7

Conclusion

In this paper, we have taken a mathematical approach to formulating a consistent model for

mid-auction multi-stage information acquisition for uninformed bidders in auctions. This

improves on the stylized models used by Compte & Jehiel [4] and Rezende [14] and also

on the simple uniform model introduced by Parkes [11]. Using this new model, we have

formulated optimal bidding and information acquisition strategies for the three canonical

auction formats: the posted-price, the second-price sealed-bid, and the ascending-price.

Our analysis confirms many of the results found in earlier work. In particular, we

have confirmed Sandholm’s [17] observation that a bidder can make better decisions about

whether or not to perform further computation about the value of a good if it is well-

informed about the other bidders’ bids. The ascending-price auction format provides bidders

with much more knowledge about the highest bid faced, especially when only one bidder is

uninformed, and thus bidders acquire the more “right” amount of information than in the

SPSB auction.

The major finding of Compte & Jehiel [4] is that some bidders that do not acquire

information in the SPSB auction will acquire information in the ascending-price auction,

conditional on there being overt dropout. When there is secret dropout, however, Compte

& Jehiel claim that bidders that do not acquire information in the SPSB auction will also

not acquire information in the ascending-price auction. Thus, they conclude that while the

ascending-price auction is preferable when there is overt dropout, with secret dropout, the

ascending-price auction is equivalent to the SPSB.

Rezende [14], on the other hand, finds a “remarkably simple formula” to determine the

optimal moment for a bidder to acquire information in an ascending-price auction with secret

dropout and argues that it is optimal regardless of how the other bidders behave. Using
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this analysis, he concludes that the dynamic auctions are preferable over one-shot auctions.

Furthermore, Rezende claims that the assumption of overt dropout has no qualitative effect

on his analysis.

From the results of this paper, we are able to reconcile those contradictory findings.

Compte & Jehiel fail to take into account the improvement even with secret dropout that the

ascending-price auction has over the SPSB because bidders that do acquire information in

the SPSB but shouldn’t have because their values are too low, no longer acquire information

in the ascending-price auction. This is in line with our finding that the ascending-price

auction induces the right amount of information acquisition on the part of the right bidders.

Parkes [11] also comes to that conclusion.

In his paper, Rezende suggests that it may be true that sellers’ revenues are higher in

dynamic auctions. We too note a similar intuition. It will be interesting to test these

hypotheses in a simulation with many uninformed bidders.

We conclude that the ascending-price auction is much more effective than the second-

price sealed-bid auction at providing knowledge to bidders about other bidders’ values. So

the dynamic feedback provided in the ascending-price auction reduces the amount of waste-

ful computation performed by bidders. Bidders care about not wasting their information

acquisition efforts and incurring those costs only when they have a good chance of winning

the auction. Thus, bidders should prefer the ascending-price auction. In fact, we believe

that the asynchronous ascending-price auction that we study should be chosen over the

synchronous one.

When many bidders are uninformed, the ascending-price auction may even lead to higher

revenues than the second-price sealed-bid. If this is true, then even the sellers may prefer

to implement the dynamic feedback auction as opposed to the single-shot one. The sellers’

main concern is the revenues the auctions produce.

Future Work

The results found in this paper hint at a variety of directions for future work relating to

mid-auction information acquisition in auctions with bounded-rational bidders. We list a

few here:

• A detailed comparison between the asynchronous ascending-price auction and the

synchronous one in the case where many bidders are uninformed.

• Extension of our model to accommodate multi-object and perhaps combinatorial auc-

tions.
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• Conducting an empirical study of the approximate information acquisition strategies

detailed in this paper when all the bidders are uninformed, and checking to see when

and whether the revenue problem exists in the asynchronous ascending-price auction.

• Designing new auction mechanisms that are optimized for reducing wasteful informa-

tion acquisition while maximizing efficiency and revenues.

We hope that this paper will encourage future research in those and other areas.
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Miscellaneous Proofs

Proof of Proposition 1

The following is Chiburis’ derivation [3] that proves (2.1.1). For all x ∈ R,

∫ ∞

−∞
fµ,

√
1−α2σ(y)fy,ασ(x)dy

=
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−∞

1
√

2π(1 − α2)σ
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, and z2 =
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y2+α4µ2+(1−α2)2x2−2α2µy−2(1−α2)xy+2α2(1−α2)µx
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. Continuing, we get
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2π
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−∞ e−

z2

2 dz is an integral over a Gaussian probability density and therefore is

equal to 1.

Proof of Proposition 2

The following is the inductive proof proposed by Chiburis [3] to prove (2.1.2). The inductive

step relies on the fact that the convolution of two Gaussians with the same mean µ, but

one with standard deviation x and one with standard deviation y is a Gaussian with mean

µ and standard deviation
√

s2 + y2 [6].

So, suppose we have deliberated m − 1 times. By the inductive hypothesis, our cur-

rent mean is chosen according to a Gaussian with mean µ and standard deviation
√

(1 −
alpha(2(m − 1)))σ, and our current beliefs have standard deviation σm−1 = αm−1σ. In

our mth deliberation, the new mean is chosen according to a Gaussian with standard de-

viation σm−1

√
1 − α2. Then in the overall process, the new mean is chosen according

to the convolution of a Gaussian with standard deviation σ
√

1 − α2(m−1) and a Gaus-

sian with standard deviation σm−1

√
1 − α2. By the convolution fact stated above, this

is equivalent to choosing the new mean according to a Gaussian with standard deviation
√

σ2(1 − α2(m−1) + α2(m−1)(1 − α2)) = σ
√

1 − α(2m).
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Proof of the movement of χ(m) when µ = p

If µ = p, then we have

χ(m) =
σα2m log( 1

α)
√

2π(1 − α2m)
.

Consider as m → 0. In this case, the denominator approaches 0 while the numerator

approaches 1. Hence, the whole term explodes (→ ∞). Now consider as m → ∞. In

this case, the denominator approaches
√

2π while the numerator approaches 0. Thus χ(m)

approaches 0.

Solving for m∗∗

Recall (3.2.5), the expression for m∗∗ that we need to solve:

α4m − α2m(3 + (
p − µ

σ
)2) + 2 = 0.

Applying the quadratic formula, we find that

α2m∗∗

=
1

2



3 + (
p − µ

σ
)2 ±

√

(

3 + (
p − µ

σ
)2
)2

− 8



 .

Notice, however, that α2m is less than 1. Thus it must be the case that the “-” holds.

Taking logs of both sides, we get our result.

Proof of Incentive Compatibility of SPSB with Uninformed Bidders

To prove that it is optimal for an uninformed bidder with beliefs (µ, σ) about her true value

to place a bid equal to µ in a SPSB auction, we first recall the formula (4.2.4) for a bidder’s

expected utility given a bid b:

Û(b) =

∫ b

p=0
g(p)

∫ ∞

−∞
(v − p)f(v) dv dp.

To find the b that maximizes this equation, we differentiate with respect to b and set the

expression equal to 0, obtaining

g(b∗)
∫ ∞

−∞
(v − b∗)f(v)dv = 0.

The solution is to set b∗ = µ, regardless of the distribution over outside bids, g(p). This

shows that the auction is incentive compatible for uninformed bidders.
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