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Abstract

In this paper, we study the combinatorial agency problem introduced by Babaioff, Feldman
and Nisan [7] and resolve some open questions posed in their original paper. Our results include
a characterization of the transition behavior for the class of threshold functions. This result
confirms a conjecture of [7], and generalizes their results for the transition behavior for the OR
technology and the AND technology. In addition to establishing a (tight) bound of 2 on the
social Price of Unaccountability (POU) for the OR technology for the general case of n > 2
agents (the initial paper established this for n = 2, an extended version establishes a bound of 2.5
for the general case), we establish that the POU is unbounded for all other threshold functions
(the initial paper established this only for the case of AND technology). We also obtain a
characterization result for certain compositions of anonymous technologies and establish an
unbounded POU for these cases.

1 Introduction

The classic principal-agent model of microeconomics considers an agent with unobservable, costly
actions, each with a corresponding distribution on outcomes, and a principal with preferences over
outcomes [11, 19]. The principal cannot contract on the action directly (e.g. the amount of effort
exerted), but only on the final outcome of the project. The main goal is to design contracts, with a
payment from the principal to the agent conditioned upon the outcome, in order to maximize the
payoff to the principal in equilibrium with a rational, self-interested agent.

The principal-agent model is a classic problem of moral hazard, with agents with potentially
misaligned incentives and private actions. A related theory has considered the problem of moral
hazard on teams of agents [5, 18, 17]. Much of this work involves a continuous action choice by
the agent (e.g., effort) and a continuous outcome function, typically linear or concave in the effort
of the agents. Moreover, rather than considering the design of an optimal contract that maximizes
the welfare of a principal, considering the loss to the principal due to transfers to agents, it is more
typical to design contracts that maximize the total value from the outcome net the cost of effort,
and without consideration of the transfers other than requiring some form of budget balance.

Babaioff et al. [7] introduce the combinatorial agency problem. This a very specific form of the
moral hazard on team problem in which the agents have binary actions and the outcome is binary,
but where the outcome technology is a complex combination of the inputs of a team of agents.
Each agent is able to exert high or low effort in its own hidden action, with the success or failure
of an overall project depending on the specific technology function. In particular, these authors
consider the AND technology, in which all agents must exert effort in order for the global project
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to have some possibility of success. Other technologies include: the OR technology, the majority
technology, and nested models such as AND-of-ORs and OR-of-ANDs. This can be conceptualized
as a problem of moral hazard to teams where agents are situated on a graph, each controlling the
effort at a particular vertex.

The combinatorial agency framework considers the social welfare, in terms of the cost to agents
and the value to the principal, that can be achieved in equilibrium under an optimal contract
where the principal seeks a contract that maximizes payoff, i.e. value net of transfers to the agents,
in equilibrium. Thus the focus is on contracts that would be selected by a principal, not be a
designer interested in finding an equilibrium that maximizes social welfare. In particular, Babaioff
et al. suggest to consider the (social) Price of Unaccountability (POU), which is the worst case
ratio between the optimal social welfare when actions are observable as compared to when they
are not observable. The worst-case is taken over different probabilities of success for an individual
agent’s actions (and thus different, uncertain technology functions), and over the principal’s value
for a successful outcome. The optimal social welfare is obtained by requesting a particular set of
agents to exert effort, in order to maximize the total expected value to the principal minus the cost
incurred by these agents. In the agency case, the social welfare is again this value net cost, but
optimized under the contract that maximizes the expected payoff of the principal.

The main contribution of this work is to characterize the transition behavior for the k-out-of-n
(or threshold) technology, for n agents and k ∈ {1, . . . , n}. The threshold technology is anony-
mous, meaning that the probability of a successful outcome only depends on the number of agents
contracted to for high effort, not the specific set of agents. Because of this, the transition behav-
ior — a characterization of the optimal contract, which specifies which agents to contract with,
as a function of the principal’s valuation — can be explained in terms of the number of agents
with whom the principal contracts. We establish that the transition behavior (in both the non-
strategic and agency cases) includes a transition from contracting between 0 and l agents for some
1 ≤ l ≤ n, followed by all n − l remaining transitions, for any 0 < α < β < 1, where α (resp. β)
is the probability that the action of a low effort (resp. high effort) action by an agent results in a
successful local outcome. This generalizes the prior result of Babaioff et al. [7] for the AND gate
(a single transition from zero agents contracted to all agents contracted) and the OR gate (all n
transitions), and closes an important open question. This result relies on the fact that a single
function can exhibit increasing returns to scale, or IRS, followed by decreasing returns to scale, or
DRS, whereas Babaioff et al. only considered the possibility that a function exhibits either IRS or
DRS. In addition, we use properties of (log) convex functions to establish this result.

Considering the POU, we establish a tight bound of 2 for the OR technology, for all values of
n, α and β = 1 − α. The initial paper established this POU for the case of n = 2 agents only,
while an extended version of the paper provides a bound of n = 2.5 for the general n > 2 case [8].
In addition, we establish that the POU is unbounded for the threshold technology for the general
case of k ≥ 2, n ≥ 2, including Majority. The initial paper established this result only for AND
technology, and so our result closes this for the more general threshold case for any 0 < α < β < 1.
More specifically, we observe that as α → 0, the POU becomes unbounded.

In addition, we consider non-anonymous technology functions such as the Majority-of-AND,
Majority-of-OR, and AND-of-Majority technologies, and study their transition behavior. Our result
regarding the majority technology, and a technical lemma of Babaioff et al., give the transition
behavior for the AND-of-majority technology. In particular, when a majority gate has its first
transition to l agents, then the first transition as the principal’s value increases under AND-of-
Majority is to l agents on each Majority gate, and then follows the subsequent transitions, with an
additional agent contracted with, in an increment deployed simultaneously on all Majority gates.
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Our result for the Majority-of-OR technology is a bit surprising in that its transition behavior is
similar to the case of the majority technology where there is a single transition from 0 to l followed by
all remaining transitions. Thus far, we have only been able to characterize the transition behavior
for the non-strategic version of Majority-of-OR, but we conjecture a similar transition behavior
for the agency version. Though we have been unable to characterize the transition behavior in
the agency case, we show that the POU for the majority-of-OR technology is unbounded. We
also consider the majority-of-ANDs technology function introduced by [7] and prove the transition
behavior in the non-strategic case consistent with a conjecture of Babaioff et al. [7] for the OR-of-
ANDs. We are unable to prove the transition behavior for the agency case, but show that the POU
is unbounded for the majority-of-ANDs.

We believe that this work is an interesting step in extending the combinatorial agency model in a
direction of interest for crowd sourcing [23, 3, 1, 2]. In particular, it is relevant in applications where
neither the effort nor the individual outcome of each worker is observable. All that is observable
is the ultimate success or failure. One reason for this is that the boundaries between individual
contributions are hard to define, or that the workers themselves preferred to anonymize or hide
individual contributions in some way (e.g., to protect their privacy.) Another motivation is that it
could be extremely costly, or even impossible, to determine the quality of the work performed by an
individual worker when studied in isolation. One can know whether or not the overall project was a
success or failure (lots of site traffic, or no site traffic, an overall artifact that passes required tests,
or an artifact that crashes, etc.) but not know whether or not a counterfactual project outcome,
where the work of any one worker was changed, would be different. For software engineering, the
work of others to integrate individual components has already been done. For a web site, the
opportunity to launch the site has already passed.

A threshold technology models a domain in which a project only succeeds when enough agents
provide high effort (e.g., Wikipedia or the development of open-source software.) For Majority-
of-OR, consider domains such as TopCoder [4], where mini competitions (e.g. OR gates) are used
for each module and then ultimate success occurs if enough individual modules are judged to be
successful. Many Games with a Purpose [23, 22, 24] can be modeled with a Majority-of-AND
technology, since in an individual game, both agents involved must succeed at their task, however
this task is given to more than one set of agents, and we need a majority of these games (or AND
gates) to succeed in order to verify the quality of the output.

1.1 Related Work

A characterization of the transition behavior and the POU was first conjectured for Majority
technology in Babaioff et al. [7], but almost all of the subsequent literature is restricted to read-
once networks [9, 10, 15, 16].

A number of variations of the basic combinatorial agency model have been studied. Considering
contracts that induce mixed Nash equilibria, this can sometimes improve the POU over insisting
on a pure strategy NE, developing a number of upper and lower bound results on the relative gain
from mixed strategies, and identifying a sufficient condition under which mixed strategies provide
no advantage to the principal. These authors conjecture that for any technology function, the
relative gain to the principal for inducing a mixed strategy Nash equilibrium is bounded above by
a constant. Another variation considers the cost of “free labor”, namely, if there are situations
where the principal can benefit from having certain agents reduce their effort level, even when
this effort is free [10]. The principal is hurt by free labor under the OR technology, because free
labor can lead to free riding, while for the AND technology (and any technology with increasing
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returns to scale), the principal is not hurt by free labor. A third variation allows the principal to
audit some fraction of the agents, and discover their individual private action [14]. Results provide
the transition behavior for AND technology and also give some consideration to Majority and OR
technologies.

Some computational complexity results for identifying optimal contracts have also been devel-
oped. This problem is NP-hard for OR technology [15], and the difficulty is later shown to be a
property of unobservable actions [16]. This is in contrast to the AND technology, which is shown
to admit a polynomial time algorithm for computing the optimal contract [15]. An FPTAS is
developed for OR technology, and extended to almost all “series-parallel” technologies [15].

A related topic in economic theory is that of contest design [20, 21, 6, 12]. Contests are situations
in which multiple agents exert effort in order to win a prize. All agents bear the “cost” of the effort
exerted regardless of whether they win a prize. Unlike the moral hazard on teams problem, or the
combinatorial agency problem, the individual outcome from each worker is observable. One agent
is unable to “hide behind” the success or failure of the overall project, since the result from its
own effort are judged in isolation. Moreover, the contest design frameworks do not, to the best
of our knowledge, consider combinations of inputs from workers. Rather, the outcome depends on
the maximum quality outcome generated individually, by each agent. DiPalatino and Vojnovic [13]
analyze a variation with multiple, simultaneous tasks and workers selecting the single task in which
they will participate.

2 Model

In the combinatorial agency model, a principal employs a set of n self-interested agents. Each
agent i has an action space Ai and a cost (of effort) associated with each action ci(ai) ≥ 0 for
every ai ∈ Ai. We let �a−i = (a1, . . . , ai−1, ai+1, . . . , an) denote the action profile of all other agents
besides agent i. Similar to Babaioff et al. [7], we focus on a binary-action model. That is, agents
either exert effort (ai = 1) or do not exert effort (ai = 0), and the cost function becomes ci if
ai = 1 and 0 if ai = 0. If agent i exerts effort, she succeeds with probability βi. If agent i does
not exert effort, she succeeds with probability αi, where 0 < αi < βi < 1. We deal with the case
of homogenous agents (e.g. βi = β, αi = α and ci = c for all i), though some of the prior work
deals with the case of heterogenous agents. Sometimes we use the additional assumption of [7],
that β = 1− α, where 0 < α <

1
2 .

Completing the description of the technology is the outcome function f , which determines the
success or failure of the overall project as a function of the success or failure of each agent. Let
�x = (x1, . . . , xn), with xi ∈ {0, 1} to denote the success or failure of the action of agent i given its
selected effort level. Following Babaioff et al. [7] we focus on a binary outcome setting, so that the
outcome is 1 (= success) or 0 (= failure.) Given this, we study the following outcome functions:

1. AND technology: f(x1, x2, ..., xn) = ∧i∈Nxi. In other words, the project succeeds if and only
if all agents succeed in their tasks.

2. OR technology: f(x1, x2, ..., xn) = ∨i∈Nxi. In other words, the project succeeds if and only
if at least one agent succeeds in her task.

3. Majority technology: f(x) = 1 if a majority of the xi are 1. In other words, the project
succeeds if and only if a majority of the agents succeed at their tasks.1

1
Note that this is different from the AND and OR technologies function since this is not a “read-once” network.
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4. Threshold technology: We can generalize the majority technology into a threshold technology,
where f(x) = 1 if and only if at least k of the xi are 1, e.g. at least k of the n agents succeed
in their tasks.

In fact, the threshold technology is a generalization of the OR, AND and majority technologies,
since the k = 1 case is equivalent to the OR technology, the k = n case is equivalent to the AND
technology, and the k = �n2 � case is equivalent to the majority technology. It should be noted that
the set of threshold technologies is exactly the set of threshold functions. It is easy to see that each
of these outcome functions is anonymous, meaning that the outcome is invariant to a permutation
on the agent identities.

Given outcome function f , and success probabilities α and β, then action profile �a induces a
probability p(�a) ∈ [0, 1] with which the project will succeed. This is just

p(�a) = E�x[f(�x) | �x ∼ �a] (1)

where the local outcomes �x are distributed according to α,β and as a result of the effort �a by
agents. Since p considers the combined effect of technology f , α and β, then we refer to p as the
technology function.

The principal has a value v for a successful outcome and 0 for an unsuccessful outcome. Like [7],
we assume that the principal is risk-neutral and seeks to maximize expected value minus expected
payments to agents. The principal is unable to observe either the actions �a or the (local) outcomes
�x. The only thing the principal can observe is the success or failure of the overall project. Based
on this, a contract specifies a payment ti ≥ 0 to each agent i when the project succeeds, with a
payment of zero otherwise. The principal can pay the agents, but not fine them. It is convenient to
include in a contract the set of agents that the principal intends to exert high effort; this is the set
of agents that will exert high effort when the principal selects an appropriate payment function.

The utility to agent i under action profile �a is ui(�a) = ti · p(�a) − ci if the agent exerts effort,
and ui(�a) = ti · p(�a) otherwise. The principal’s expected utility is u(�a) = v · p(�a)−

�
i∈N ti · p(�a).

The principal’s task is to design a contract so that its utility is maximized under an action profile
�a that is a Nash equilibrium. We make the same assumption as Babaioff et al. [7], that if there are
multiple Nash equilibria (NE), the principal can contract for the best NE.2 The social welfare for
an action profile �a is given by u(�a) +

�
i∈N ui(�a) = v · p(�a)−

�
i∈N ci · ai, with payments from the

principal to the agents canceling out.
Throughout, we focus on outcome functions that aremonotonic, so that f(�x) = 1 ⇒ f(x�1, �x−1) =

1 for x�1 ≥ x1. Based on this, then the technology function p is also monotonic in the amount of
effort exerted, that is for all i and all �a−i ∈ {0, 1}n−1, p(1,�a−i) ≥ p(0,�a−i). Similarly, a technology
function p is anonymous if it symmetric with respect to the players. That is, it is anonymous if
it only depends on the number of agents that exert effort and is indifferent to permutations of the
joint action profile �a. This is true whenever the underlying outcome function is anonymous.

In the non-strategic variant of the problem, the principal can choose which agents exert effort
and these agents need not be “motivated”, the principal can simply bear their cost of exerting
effort. Let S∗

a and S∗
ns denote the optimal set of agents to contract with in the agency case and the

A read-once network is a network that can be represented by a graph with a labeled source and sink, where there

is a unique player corresponding to each edge. The project succeeds if and only if there exists a path, consisting of

successful players, between the source and the sink [7]. Much of the previous work on the combinatorial agency prob-

lem applies to read-once networks and thus the understanding of the majority technology seems less well understood

than the AND, OR, AND-of-ORs and OR-of-ANDs technologies.
2
This is reasonable, since the principal can announce which set of agents should exert effort and also design the

payment to provide strict incentive to exert effort for those contracted.
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non-strategic case respectively. That is, these sets of agents are those that maximize the expected
value to the principal net cost, first where the sets must be induced in a Nash equilibrium and
second when they can be simply selected.

Definition 2.1. [7] The Price of Unaccountability (POU) for an outcome function f is defined as
the worst case ratio (over v, α and β) of the social welfare in the non-strategic case and the social
welfare of the agency case:

POU (f) = sup
v>0,α,β

p(S∗
ns(v)) · v −

�
i∈S∗

ns(v)
ci

p(S∗
a(v)) · v −

�
i∈S∗

a(v)
ci

, (2)

where p is the technology function induced by f , α and β, with 0 < α < β < 1.

In studying the POU, it becomes useful to characterize the transition behavior for a technology.
The transition behavior is, for a fixed technology function p, the optimal set of contracted agents
as a function of the principal’s value v. We know that when v = 0 it is optimal to contract with 0
agents and likewise, as v → ∞, it is optimal to contract with all agents. However, we would like
to understand what are the optimal sets of agents contracted between these two extreme cases.
There are, in fact, two sets of transitions, for both the agency and the non-strategic case. For
anonymous technologies, there can be at most n transitions in either case, since the number of
agents in the optimal contract is (weakly) monotonically increasing in the principal’s value. We
seek to understand how many transitions occur, and the nature of each “jump” (i.e. the change
in number of agents contracted with at a transition.)

We also consider compositions of these technologies such as majority-of-AND, Majority-of-
OR, and AND-of-Majority. These technologies are no longer anonymous. For example, in the
AND-of-Majority case, one can imagine that the probability of success will be different when i

agents are contracted on the same majority function and when they are contracted on i different
majority functions. With non-anonymous technologies, one needs to specify the contracted set of
agents, in addition to the number of agents contracted. In considering composition of anonymous
technologies, we assume we are composing identical technology functions, e.g. each AND gate in
the majority-of-AND technology consists of the same number of agents.

3 Transition Behavior of the Optimal Contract

Below we will characterize the transition behavior of the threshold technology, which gives us the
transition behavior for the majority technology. We show that there exists an l ∈ {1, ..., n} such
that the first transition is from 0 to l agents followed by all remaining transitions. This result holds
for any value of α,β such that 0 < α < β < 1.

Our proof builds on the framework of Babaioff et al. [7]. In Babaioff et al., it was shown that the
AND technology always exhibits “increasing returns to scale” (IRS) and the OR technology always
exhibits “decreasing returns to scale” (DRS). It was also shown that any anonymous technology
that exhibits IRS has a single transition from 0 to n agents for the optimal contract in the non-
strategic case and that any anonymous technology that exhibits DRS exhibits all n transitions in
the non-strategic case. Similar to the non-strategic case, it was shown in Babaioff et al. that the
AND technology always exhibits overpayment (OP), in the agency case, where the OP condition
guarantees a single transition from 0 to n, and the OR technology always exhibits increasing
relative marginal payment (IRMP), in the agency case, where the IRMP condition guarantees all
n transitions.
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We show that the threshold technology exhibits IRS up to a certain number of agents contracted
and DRS thereafter, which gives the transition characterization for the non-strategic case. Likewise,
we show that the threshold function exhibits OP to a point and IRMP in the agency case, which
is sufficient to give the transition characterization for the agency case. Our analysis is new, in
the sense that we consider the possibility that a single technology can exhibit IRS up to a certain
number of agents contracted, followed by DRS and likewise, that it can exhibit OP up to a certain
number of agents contracted, followed by IRMP. Babaioff et al. only considered the possibility a
function exhibits either IRS or DRS, and likewise, either OP or IRMP. In addition to this insight,
we use properties of (log) convex functions to establish this result. We state our main theorems
that give a complete characterization of the transition behavior of the majority technology below:

Theorem 3.12 For any threshold technology (any k, n, c, α and β) in the non-strategic case,
there exists an 1 ≤ lns ≤ n where, such that the first transition is from 0 to lns agents, followed by
all remaining n− lns transitions.

Theorem 3.17 For any threshold technology (any k, n, c, α and β) in the agency case, there
exists an 1 ≤ la ≤ lns such that the first transition is from 0 to la agents, followed by all remaining
n− la transitions.

The following observations give us the optimal payment rule for any technology and establish
a monotonic property for the optimal contract as a function of v.

Definition 3.1. [7] The marginal contribution of agent i for a given a−i is denoted by ∆i(�a−i) =
p(1,�a−i) − p(0,�a−i), and is the difference in the probability of success of the technology function
when agent i exerts effort and when she does not.

For anonymous technologies, if exactly j entries in �a−i are 1, then ∆i = pj+1 − pj , where pj is
the probability of success when exactly j agents exert effort. Since p is strictly monotone, we have
∆i > 0 for all i.

Remark 3.2. [7] The best contracts (from the principal’s point of view) that induce the action
profile �a ∈ {0, 1}n as a Nash equilibrium are ti = 0 when the project is unsuccessful and ti =

ci
∆i(�a−i)

when the project succeeds and the principal requests effort ai = 1 from agent i.

The following remark of Babaioff et al. [7] establishes that the optimal contract for an anonymous
technology function is (weakly) monotonically increasing with the principal’s value and is used in
establishing Lemma 3.6.

Remark 3.3. [7] For any anonymous technology function p, if contracting with k1 agents is
optimal for v1, and contracting with k2 agents is optimal for v2, and v1 > v2, then k1 ≥ k2.

The following two lemmas are from [7] and are used in the proof of Lemma 3.6, which gives a
sufficient condition for a technology function to have a first transition to l, followed by all remaining
transitions. Let Qi be the total expected payment when contracting with i agents, or in other words,
Qi =

pi·i·c
pi−pi−1

= pi · i · ti. In the non-strategic case, let Qi be the total sum of costs of the number
of agents contracted, or in other words, Qi = i · c. Note that the following lemmas hold in both
the non-strategic case and the agency case. Finally, let vi,j denote the specific principal’s value at
which he is indifferent between contracting with i agents or j agents in the agency case. For the
non-strategic case, vi,j is the principal’s value at which he is indifferent between i agents exerting
effort and j agents exerting effort. More formally, the point vi,j at which the principal is indifferent
between contracting between i agents and j agents can be expressed as pi · vi,j −Qi = pj · vi,j −Qj .

Solving for vi,j , we get that vi,j =
Qj−Qi

pj−pi
. In what follows, we mainly consider the value of v0,i for
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all i and the value of vi,i+1 for all i. We define u(i, v) as the utility to the principal of contracting
with i agents when his value is v. In other words, u(i, v) = pi ·v−Qi, where Qi is the total expected
payment, either in the non-strategic case or the strategic case.

Lemma 3.4. [7] u(l, v0,l) > u(i, v0,l) for all i �= l if and only if Qi
Ql

>
pi−p0
pl−p0

for all i �= l.

Lemma 3.5. [7] u(i, vi−1,i) > u(i+ 1, vi,i+1) for all i > l if and only if Qi+1−Qi

ti+1−ti
>

Qi−Qi−1

ti−ti−1
for all

i > l.

The following lemma gives a set of sufficient conditions for an anonymous technology to have
a first transition from 0 to l, for some l ∈ {1, ..., n}, followed by all remaining n − l transitions.
This lemma holds for both the non-strategic case (by setting Qi = i · c) and the agency case (by
setting Qi =

i·c
∆i

). We view this lemma as a generalization of Theorem 9 from [7] and it follows a
similar proof structure. This lemma states that as long as a technology function exhibits OP up
to a certain number of agents contracted followed by IRMP, then the transition behavior involves
a first transition from 0 to l, for some l ∈ {1, ..., n}, followed by all remaining n− l transitions.

Lemma 3.6. Any anonymous technology function that satisfies:

1. Qi
Ql

>
pi−p0
pl−p0

for all i �= l

2. Ql+1−Ql

pl+1−pl
>

Ql
pl−p0

3. Qi+1−Qi

pi+1−pi
>

Qi−Qi−1

pi−pi−1
for all i > l

for some l ∈ {1, ..., n} has a first transition from 0 to l and then all n − l subsequent transitions,
where Qi is defined appropriate for the non-strategic case or the agency case.

Now that we have established a set of sufficient conditions for an anonymous technology to
exhibit a first transition from 0 to l, followed by all remaining transitions (for either the non-
strategic case or the agency case), we interpret what these conditions are for the non-strategic
case.

Lemma 3.7. Any anonymous technology that has a probability of success function that satisfies:

1. pi−p0
i >

pi−1−p0
i−1 for all 2 ≤ i ≤ l and pi−p0

i <
pi−1−p0

i−1 for all i > l

2. 1
pi+1−pi

>
1

pi−pi−1
for all i > l

for some l ∈ {1, ..., n} has a first transition from 0 to l and then all n− l subsequent transitions for
the nonstrategic version of the problem.

In establishing that the threshold technology satisfies the conditions outlined in Lemma 3.7, it
becomes useful to define a property of the probability of success function.

Definition 3.8. We say that a probability of success p for a particular technology is unimodal if
it satisfies one of three alternatives:

1. pi − pi−1 > pi−1 − pi−2 for all 2 ≤ i ≤ j and pi − pi−1 < pi−1 − pi−2 for all i > j

2. pi − pi−1 > pi−1 − pi−2 for all 2 ≤ i ≤ n

3. pi − pi−1 < pi−1 − pi−2 for all 2 ≤ i ≤ n
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Let f(i) = pi−p0
i . This function is useful to consider, because in order to establish the first

condition of Lemma 3.7, we need to show that f(i) is unimodal.

Lemma 3.9. If the probability of success function is unimodal over the set {1, ..., n}, then we know
that f(i) is also unimodal.

Corollary 3.10. For any anonymous technology function (p, c) that has a unimodal probability of
success, there exists an 1 ≤ l ≤ n such that the first transition in the non-strategic case is from 0
to l agents (where l is the smallest value that satisfies pl−p0

l >
pl+1−p0

l+1 ) followed by all remaining
n− l transitions.

Therefore, it suffices to show that p is unimodal in order to establish that the technology (p, c)
exhibits a first transition from 0 to l, for some l ∈ {1, ..., n}, followed by all remaining n − l

transitions, in the non-strategic case.

Lemma 3.11. The probability of success function for any threshold technology is unimodal.

The characterization of the transition behavior of the threshold technology in the non-strategic
case follows from Lemmas 3.7, 3.9, and 3.11.

Theorem 3.12. For any threshold technology (any k, n, c, α and β) in the non-strategic case,
there exists an 1 ≤ lns ≤ n where, such that the first transition is from 0 to lns agents, followed by
all remaining n− lns transitions.

Now that we have characterized the transition behavior of the threshold technology, for any
k, in the non-strategic case, we focus on establishing the conditions of Lemma 3.6, for the agency
case. The following lemma is used to show that the first condition in Lemma 3.6 is satisfied by the
threshold technology.

Lemma 3.13. The discrete valued function, Qi
pi−p0

, is convex.

Lemma 3.14. There exists a value of 1 ≤ la ≤ n such that Qi
Qla

>
pi−p0
pla−p0

for all i �= la.

Since there exists an la such that Qi
pi−p0

>
Qi+1

pi+1−p0
for all 1 ≤ i < la and Qi

pi−p0
<

Qi+1

pi+1−p0
for all

la ≤ i < n, we have the following corollary.

Corollary 3.15. We have Qla+1−Qla
pla+1−pla

>
Qla

pla−p0
, where 1 ≤ la ≤ n satisfies Qi

Qla
>

pi−p0
pla−p0

for all

i �= la.

Lemma 3.16. We have Qi+1−Qi

pi+1−pi
>

Qi−Qi−1

pi−pi−1
for all i > la where la is the smallest value such that

Qla
pla−p0

<
Qla+1

pla+1
.

Lemmas 3.6, 3.14, 3.16 and 3.18 and Corollary 3.15 establish the following result.

Theorem 3.17. For any threshold technology (any k, n, c, α and β) in the agency case, there
exists an 1 ≤ la ≤ lns such that the first transition is from 0 to la agents, followed by all remaining
n− la transitions.

Finally we show that the first transition in the agency is at most the value of the first transition
in the non-strategic.

Lemma 3.18. For any threshold technology, we get la ≤ lns.

Below we give the trend in transition behavior as a function of β, when α = 0.

Remark 3.19. For any threshold technology with fixed k ≥ 2, n, c and α = 0, we have that l = k

for β close enough to 1 and l = n for β close enough to 0.
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4 Price of Unaccountability

In this section, we provide results regarding the Price of Unaccountability for OR and threshold
technologies.

Lemma 4.1. [7] For any technology function, the price of unaccountability is obtained at some
value v which is a transition point, of either the agency or the non-strategic cases.

We are able to improve slightly upon this result, for the OR technology, which is needed to
establish Theorem 4.5. We suspect that this result can be improved further, in that the POU
occurs at the first transition in the agency case.

Lemma 4.2. For the OR technology, the price of unaccountability occurs at a transition in the
agency case, as opposed to a transition in the non-strategic case.

The following theorem is a result of Babaioff et al. [7], where they derive the price of unaccount-
ability for AND technology where β = 1 − α. (In fact, they give the price of unaccountability for
any anonymous technology with a single transition in both the agency and non-strategic cases.) It
is easy to see from the closed form expression of the POU that POU → ∞ as α → 0.

Theorem 4.3. [7] For the AND technology with α = 1 − β, the price of unaccountability occurs
at the transition point of the agency case and is POU = ( 1α − 1)n−1 + (1− α

1−α).

Remark 4.4. [7] The price of unaccountability for the AND technology is not bounded. More
specifically, POU → ∞ as α → 0 and POU → ∞ as β → 0.

In their original paper, Babaioff et al. [7] show that the Price of Unaccountability for the OR
technology is bounded by 2 for exactly 2 agents and give an upper bound of 2.5 for the general
case [8], when β = 1 − α. We extend these results for the β = 1 − α case and show that the
Price of Unaccountability is bounded above by 2 for any OR technology (i.e. for all n). This result
is tight, namely, as α → 0, POU → 2. We suspect that these results hold for the more general
0 < α < β < 1 case, but we have been unable to prove it for all values of α, β.

Theorem 4.5. The POU for the OR technology is bounded by 2 for all α,β = 1− α and n.

The following remark follows from the proof of Theorem 4.5.

Remark 4.6. For any n, as α → 0, POU → 2 for the OR technology.

In contrast to the OR technology, we show that the POU for the threshold technology with
k ≥ 2 is unbounded. This result holds for any 0 < α < β < 1.

Theorem 4.7. The Price of Unaccountability for the threshold technology is not bounded for all
values of k ≥ 2 and n. More specifically, when α → 0, POU → ∞.

Lemma 4.8. As α → 0, we know that k ≤ la ≤ lns, where la is the first transition in the agency
case and lns is the first transition in the non-strategic case.

It should be noted that there is interesting structure to the social welfare ratio as a function
of the principal’s value v. For a fixed number of agents contracted in the agency case, the social
welfare ratio is increasing. However, at a transition in the agency case, the social welfare ratio drops
significantly such that the maximum ratio for each successive agency contract never reaches the
maximum ratio for the previous agency contract. Proving this behavior could be useful in studying
the Price of Unaccountability for restricted of v and α.
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5 Composition of Anonymous Technologies

In this section, we study the composition of various technology functions. For the majority-of-AND
and majority-of-OR technology, we are unable to provide the characterization of transition behavior
for the agency case, but we provide the characterization of transition behavior in the non-strategic
case and we provide a result regarding the Price of Unaccountability.

5.1 Majority-of-ANDs

We prove the transition behavior for the majority-of-AND technology in the non-strategic case.
These results for the more general threshold-of-ORs case. For the following assume that in the
majority-of-AND technology, the majority gate contains q AND gates, each with m agents. This
builds on a conjecture of Babaioff et al. who conjecture the following behavior for both the non-
strategic and agency cases. We are unable to prove the transition behavior for the agency case.

Lemma 5.1. If the principal decides to contract with j ·m+ a agents for some j ∈ Z+ and some
0 ≤ a < m, the probability of success is maximized by fully contracting j AND gates and contracting
with a remaining agents on the same AND gate.

Lemma 5.2. For any principal’s value v, the optimal contract involves a set of fully contracted
AND gate.

Theorem 5.3. The transition behavior for the majority-of-AND technology in the non-strategic
case has a first transition to l fully contracted AND gates, where 1 ≤ l ≤ n, followed by each
subsequent transition of fully contracted AND gates.

While we are unable to characterize the transition behavior for the majority-of-AND technology
in the agency case, we know that the first transition in the agency case must involve contracting
at most l ·m agents (proof similar to that of Lemma 4.8). This allows us to prove that the Price of
Unaccountability is unbounded. The proof of Theorem 5.4 is omitted but has a virtually identical
proof as Theorem 4.7.

Theorem 5.4. The Price of Unaccountability is unbounded for the majority-of-AND technology.

5.2 Majority of ORs

We will characterize the transition behavior for the non-strategic case of the majority of ORs below.
In what follows, we assume that each OR gate has j agents and there are m of them comprising
a majority function (i.e. n = j · m). We also assume that k = �m2 �.

3 Since the following lemma
is a statement regarding the probability of success, it holds for both the non-strategic and agency
cases, because the probability of success is the same in both. In considering the majority-of-OR
case, we further assume that β = 1− α and 0 < α <

1
2 .

Lemma 5.5. Consider an integer i such that i = a · m + b, where 0 ≤ b < m. Fixing i, the
probability of success for a majority-of-ORs function is maximized when a+1 agents are contracted
on each of b OR gates and a agents are contracted on each of n− b OR gates.

The following lemma gives the complete transition behavior in the majority-of-OR technology
in the nonstrategic case.

3
It should be noted that these results do not hold for the more general threshold-of-ORs case. In fact we can

construct a setting where this transition behavior will not occur.
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Lemma 5.6. The first transition for the non-strategic case of the majority-of-OR technology jumps
from contracting with 0 agents to l agents, where 1 ≤ l ≤ k, followed by all remaining transitions,
where the transitions proceed in such a way so that no OR gate has more than 1 more agent
contracted as compared to any other OR gate.

We conjecture that a similar transition behavior holds in the agency case, but we have thus far
been unable to prove it. Although we have been unable to characterize the transition behavior in
the agency case, we do know that as α → 0, the first transition jumps to k. While we omit the
proof of this lemma, it is very similar to Lemma 4.8. This is enough to determine that the POU is
unbounded.

Lemma 5.7. In the agency case of the majority-of-OR technology, as α → 0, the first transition
occurs to a value k.

The following theorem has a similar proof to Theorem 4.7.

Theorem 5.8. The Price of Unaccountability is unbounded for the majority-of-OR technology.

5.3 AND of Majority

In what follows, we will also characterize the transition behavior of AND-of-majorities. Similar to
the previous case, these results hold for the more general AND-of-threshold’s. We give a result
from [7] that allows for the characterization of the transition behavior of AND-of-majority. Let g
and h be two Boolean functions on disjoint inputs with any cost vectors, and let f = g ∧ h. An
optimal contract S for f for some v is composed of some agents from the g-part (denoted by the
set R) and some agents from the h-part (denoted by the set T ).

Lemma 5.9. [7] Let S be an optimal contract for f = g ∧ h on v. Then, T is an optimal contract
for h on v · tg(R), and R is an optimal contract for g on v · th(T ).

The previous lemma gives us a characterization of the transition behavior in the AND-of-
majorities technology. The statement of this result is analogous to the result given in [7] for the
AND-of-ORs technology. Since the previous lemma holds for both the non-strategic and agency
variations of the problem, the following theorem holds for both the non-strategic and agency vari-
ations of the problem.

Theorem 5.10. Let h be an anonymous majority technology and let f =
�nc

j=1 be the AND of
majority technology that is obtained by a conjunction of nc of these majority technology functions
on disjoint inputs. Then for any value v, an optimal contract contracts with the same number of
agents in each majority component.

Theorem 5.10 gives us a complete characterization of the transition behavior in the AND-of-
majorities technology for both the non-strategic and the agency cases. Since we know that the first
transition in both the agency and non-strategic cases for the AND-of-majority technology occurs
to a value greater than 1, we have the following result. The proof structure is similar to that of
Theorem 4.7.

Theorem 5.11. The Price of Unaccountability is unbounded for the AND-of-majority technology.
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6 Conclusions

In this work, we advance the understanding of the combinatorial agency model. We prove the
transition behavior for the threshold technology for general α,β. We study the majority technology,
the majority-of-OR technology, and the AND-of-majority technology and observe the connection
between these technologies and crowdsourcing systems. Babaioff et al. [7] showed that the POU
was not bounded for the AND technology, for any n. We strengthen this result, and prove that the
POU is not bounded for the threshold technology for all k ≥ 2, any n ≥ 2, and any 0 < α < β < 1.
More specifically, the POU for the threshold technology (with k ≥ 2) approaches ∞ as α → 0.
Babaioff et al. [7] showed that the POU was bounded by 2 for the OR technology with 2 agents
and bounded by 2.5 in the general case [8]. We show that the POU is bounded by 2 for the OR
technology for all values of α,β = 1− α and n and this bound is tight.

While we do not study the entire class of anonymous functions, we do study a natural class
in the k-out-of-n (or threshold) technology. The entire class of anonymous functions is easy to
characterize using the set of “exact-value” functions [25]. The “exact value” function Ek is 1 if and
only if exactly k agents succeed and 0 otherwise. The set of exact-value functions form a basis for
the class of anonymous functions, or in other words, any anonymous function f can be written as
follows: f(x) =

�
0≤k≤nEk(x) ∧ vk, where (v0, ..., vn) ∈ {0, 1}n+1 and x is the success vector of the

agents [25]. We leave studying the entire class of anonymous functions as a direction for future work.
In fact, we suspect that the threshold technology has a more well-behaved transition behavior than
other anonymous functions. This would imply that the threshold function is a desirable technology
for crowdsourcing work and is the most significant open direction.
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A Proofs from Section 3

Lemma 3.6 Any anonymous technology function that satisfies:

1. Qi
Ql

>
pi−p0
pl−p0

for all i �= l

2. Ql+1−Ql

pl+1−pl
>

Ql
pl−p0

3. Qi+1−Qi

pi+1−pi
>

Qi−Qi−1

pi−pi−1
for all i > l

for some l ∈ {1, ..., n} has a first transition from 0 to l and then all n − l subsequent transitions,
where Qi is defined appropriate for the non-strategic case or the agency case.
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Proof. From Lemma 3.4, we know that if Qi
Ql

>
pi−p0
pl−p0

for all i �= l, then u(l, v0,l) > u(i, v0,l) for all
i �= l. By Remark 3.3, since l is the optimal contract at v0,l, for any v > v0,l, it must be the case
that the optimal contract involves contracting with at least l agents. Likewise, since 0 is optimal at
v0,l, by Remark 3.3, if i were optimal for any v < v0,l, then 0 could not be optimal at v0,l. Therefore
we know that for all v < v0,l, contracting with 0 agents is the only optimal contract. Since at v0,l,
the only optimal contracts are 0 and l, there is no value of v for which it is optimal to contract
with i ∈ 1, 2, ..., l − 1 agents. Thus the technology function exhibits a jump between contracting
between 0 agents and contracting with l agents.

From Lemma 3.5, we know that if Qi+1−Qi

pi+1−pi
>

Qi−Qi−1

pi−pi−1
for all i > l, then u(i, vi−1,i) > u(i +

1, vi,i+1) for all i > l. Also, we know that the statement Qi+1−Qi

pi+1−pi
>

Qi−Qi−1

pi−pi−1
for all i > l, is

equivalent to vi,i+1 > vi−1,i for all i > l. Since Ql+1−Ql

pl+1−pl
>

Ql
pl−p0

, we also know that vl,l+1 > v0,l.

In what follows, we show that for any v ∈ (vi−1,i, vi,i+1) for some i > l, contracting with exactly
i agents is the only optimal contract. If we combine this with the fact that 0 is optimal for all
v ≤ v0,l and the fact that n is optimal for all v ≥ vn−1,n we get that the first transition occurs from
0 to l and all remaining n− l transitions occur.

Now consider any value v ∈ (v0,l, vl,l+1), we know that contracting with l agents yields higher
utility to the principal than contracting with j < l agents from above. Likewise, consider any value
v ∈ (vl,l+1, vl+1,l+2), we know know by the definition of vl,l+1, that contracting with l+ 1 agents is
strictly better than contracting with l agents for all v > vl,l+1 and we know that contracting with
l+1 agents is strictly better than contracting with j agents, where j < l, since contracting with l is
strictly better than contracting with j < l agents for all v > v0,l. Now we will proceed inductively
(much like the proof of Theorem 9 in [7]), as follows: consider any value v ∈ (vi,i+1, vi+1,i+2) for
any i > l, we know that contracting with i + 1 is strictly better than contracting with i for all
v > vi,i+1. We know that contracting with i + 1 agents is strictly better than contracting with j

agents, where j < i, because the induction hypothesis gives us that contracting with i agents is
strictly better than contracting with j < i agents.

Now we induct backwards as in [7]. Consider the v > vn−1,n, we know that contracting with n

agents has strictly greater utility than contracting with j > n agents (trivially true). Now consider
v ∈ (vi−1,i, vi,i+1) for all l < i < n, contracting with i agents is strictly better than contracting with
i+ 1 agents by the definition of vi,i+1 and by the induction hypothesis, we know that contracting
with i agents is strictly better than contracting with j > i+1 agents. Now consider v ∈ (v0,l, vl,l+1),
we know that contracting with l agents is strictly better than contracting with l + 1 agents and
all j > l + 1 agents, by the induction hypothesis. Finally consider v ∈ (0, v0,l), we know that
contracting with 0 agents is strictly better than contracting with j ∈ {1, 2, ..., l} agents from above.
The induction hypothesis gives us that contracting with 0 agents is strictly better than contracting
with j > l agents.

Combining the two inductive arguments gives us that contracting with 0 agents is optimal for
v ∈ (0, v0,l), contracting with l agents is optimal for v ∈ (v0,l, vl,l+1) and contracting with i + 1
agents is optimal for v ∈ (vi,i+1, vi+1,i+2) for all i ≥ l.

Lemma 3.7 Any anonymous technology that has a probability of success function that satisfies:

1. pi−p0
i >

pi−1−p0
i−1 for all 2 ≤ i ≤ l and pi−p0

i <
pi−1−p0

i−1 for all i > l

2. 1
pi+1−pi

>
1

pi−pi−1
for all i > l

for some l ∈ {1, ..., n} has a first transition from 0 to l and then all n− l subsequent transitions for
the nonstrategic version of the problem.

15



Proof. We show that the conditions of Lemma 3.6 are satisfied. Since Qi = i · c for the nonstrategic
case, the condition that Qi

Ql
>

pi−p0
pl−p0

for all i �= l is equivalent to i
l >

pi−p0
pl−p0

for all i �= l or pl−p0
l >

pi−p0
i , for all i �= l. The latter is clearly satisfied by condition 1 of this Lemma. The condition

Qi+1−Qi

pi+1−pi
>

Qi−Qi−1

pi−pi−1
for all i > l is equivalent to 1

pi+1−pi
>

1
pi−pi−1

for all i > l, which is equivalent to

condition 3 of this Lemma. The condition Ql+1−Ql

pl+1−pl
>

Ql
pl−p0

is equivalent to 1
pl+1−pl

>
l

pl−p0
. Since

condition 1 of this Lemma gives us pl−p0
l >

pl+1−p0
l+1 , we know pl−p0

l > pl+1 − pl, which gives us the
desired result.

Lemma 3.9 If the probability of success function is unimodal over the set {1, ..., n}, then we
know that f(i) is also unimodal.

Proof. If pi − pi−1 > pi−1 − pi−2 for all 2 ≤ i ≤ n, then pi−p0
i >

pi−1−p0
i−1 for all 2 ≤ i ≤ n

as well. Likewise, if pi − pi−1 < pi−1 − pi−2 for all 2 ≤ i ≤ n, then pi−p0
i <

pi−1−p0
i−1 for all

2 ≤ i ≤ n as well. Finally, consider the case that pi − pi−1 > pi−1 − pi−2 for all 2 ≤ i ≤ j and
pi − pi−1 < pi−1 − pi−2 for all i > j. Since pi − pi−1 > pi−1 − pi−2 for all 2 ≤ i ≤ j, we know that
pi−p0

i >
pi−1−p0

i−1 for all 2 ≤ i ≤ j. Now consider the smallest value of l for which pl−p0
l <

pl−1−p0
l−1 .

Note that if pl − pl−1 > pl−1 − pl−2 > ... > p1 − p0, it must be the case that pl−p0
l >

pl−1−p0
l−1 , so

therefore we know that pl − pl−1 < pl−1 − pl−2. We also know that pl − pl−1 <
pl−1−p0

l−1 . Since

pl+1 − pl < pl − pl−1 <
pl−1−p0

l−1 , we know that pl+1 − pl <
pl−p0

l , and therefore pl+1−p0
l+1 <

pl−p0
l .

Applying this reasoning inductively, we get the desired result.

Corollary 3.10 For any anonymous technology function (p, c) that has a unimodal probability
of success, there exists an 1 ≤ l ≤ n such that the first transition in the non-strategic case is from
0 to l agents (where l is the smallest value that satisfies pl−p0

l >
pl+1−p0

l+1 ) followed by all remaining
n− l transitions.

Proof. It suffices to show that the conditions of Lemma 3.7 are met. We know from Lemma 3.9,
that f(i) is unimodal, so condition 1 is satisfied. We also know from the proof of Lemma 3.9, that
if pi−p0

i <
pi−1−p0

i−1 , then pi − pi−1 < pi−1 − pi−2. Since pi−p0
i <

pi−1−p0
i−1 for all i > l, pi − pi−1 <

pi−1 − pi−2 for all i > l and condition 2 is satisfied.

Lemma 3.11 The probability of success function for any threshold technology is unimodal.

Proof. Denote the probability of success when contracting with j agents as P (n, j,≥ k). More
specifically, let P (n, j,≥ k) denote the probability of success when you contract with j agents out
n and at least k succeed. Note that, ∆j+1 = P (n, j+1,≥ k)−P (n, j,≥ k) = (β−α) · (P (n−1, j,≥
k−1)−P (n−1, j,≥ k)) = (β−α) ·P (n−1, j,= k−1), where P (n−1, j,= k−1) is the probability
that exactly k − 1 agents succeed when j agents are contracted out of the n − 1. Note that:
P (n− 1, j+1,= k− 1)−P (n− 1, j,= k− 1) = (β−α) · (P (n− 2, j,= k− 2)−P (n− 2, j,= k− 1)).
Note that the discrete distribution: P (n−2, j, 0), P (n−2, j, 1), ..., P (n−2, j, n−2) is the convolution
of two binomial random variables. Since binomial random variables are strongly unimodal and the
convolution of any two strongly unimodal function is also strongly unimodal, we know that the
distribution: P (n − 2, j, 0), P (n − 2, j, 1), ..., P (n − 2, j, n − 2) is strongly unimodal. Note that if
(P (n−2, j,= k−2) < P (n−2, j,= k−1)), this means the mode of this distribution is greater than
k−1. Therefore the mode of the distribution, P (n−2, j+1, 0), P (n−2, j+1, 1), ..., P (n−2, j+1, n−
2), is also greater than k−1, so we know (P (n−2, j+1,= k−2) < P (n−2, j+1,= k−1)). Hence we
know if P (n−1, j+1,= k−1) < P (n−1, j,= k−1), P (n−1, j+2,= k−1) < P (n−1, j+1,= k−1),
which gives us that ∆j is a unimodal function.
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Lemma 3.13 The discrete valued function, Qi
pi−p0

, is convex.

Proof. Since 1
∆i

is log-convex (Lemma A.1) and pi
pi−p0

is log-convex (Lemma A.3), we know that
pi

∆i(pi−p0)
is also log-convex. Since a log convex function is also convex, we know that pi+1

∆i+1(pi+1−p0)
−

pi
∆i(pi−p0)

>
pi

∆i(pi−p0)
− pi−1

∆i−1(pi−1−p0)
for all i. Therefore we know that pi+1·(i+1)

∆i+1(pi+1−p0)
− pi·(i+1)

∆i(pi−p0)
>

pi·(i−1)
∆i(pi−p0)

− pi−1

∆i−1(pi−1−p0)
. Adding pi

∆i(pi−p0)
to both sides, pi+1·(i+1)

∆i+1(pi+1−p0)
− pi·i

∆i(pi−p0)
>

pi·i
∆i(pi−p0)

−
pi−1

∆i−1(pi−1−p0)
, as desired.

Lemma 3.14 There exists a value of 1 ≤ la ≤ n such that Qi
Qla

>
pi−p0
pla−p0

for all i �= la.

Proof. Since Qi
pi−p0

is convex, Qi+1

pi+1−p0
− Qi

pi−p0
>

Qi
pi−p0

− Qi−1

pi−1−p0
for all i. Therefore if Qi

pi−p0
− Qi−1

pi−1−p0
>

0, then Qi+1

pi+1−p0
− Qi

pi−p0
> 0. Let la be the smallest l such that Ql+1

pl+1−p0
− Ql

pl−p0
, therefore we know

that Qi
pi−p0

>
Qi+1

pi+1−p0
for all 1 ≤ i < la and Qi

pi−p0
<

Qi+1

pi+1−p0
for all la ≤ i < n, so Qi

Qla
>

pi−p0
pla−p0

for

all i �= la. If Qi
pi−p0

− Qi−1

pi−1−p0
< 0 for all i, then Q1

p1−p0
>

Q2
p2−p0

> ... >
Qn

pn−p0
, so Qi

Q1
>

pi−p0
p1−p0

for all
i �= 1.

Lemma 3.16 We have Qi+1−Qi

pi+1−pi
>

Qi−Qi−1

pi−pi−1
for all i > la where la is the smallest value such that

Qla
pla−p0

<
Qla+1

pla+1
.

Proof. We know for all i ≥ la,
Qi

pi−p0
<

Qi+1

pi+1−p0
or in other words pi·i

∆i(pi−p0)
<

pi+1·(i+1)
∆i+1(pi+1−p0)

. Since
pi

pi−p0
>

pi+1

pi+1−p0
for any value of i, we know that i

∆i
<

i+1
∆i+1

. Note that if pi−p0
i >

pi+1−p0
i+1 , it must

be that ∆i+1 < ∆i, since p is unimodal, so pi+1

∆i+1
>

pi
∆i

. If pi−p0
i ≤ pi+1−p0

i+1 , then it must be that
∆i
pi

>
∆i+1

pi+1
or in other words, pi+1

∆i+1
>

pi
∆i

. Note that if pi+1

∆i+1
>

pi
∆i

, then pi+1

∆i+1
· pi
pi+1

>
pi
∆i

· pi−1

pi
or in

other words pi
∆i+1

>
pi−1

∆i
, since p is log-concave.

Since pi
pi−p0

>
pi+1

pi+1−p0
, it must be that i+1

∆i+1
>

i
∆i

if pi·i
∆i(pi−p0)

<
pi+1·(i+1)

∆i+1(pi+1−p0)
. Thus i+1

∆i+1
>

i
∆i

for all i ≥ la.
We know from Lemma A.1 that 1

∆i
is a log-convex function so therefore 1

∆i+1
− 1

∆i
>

1
∆i

− 1
∆i−1

for all i. Therefore we know that i+1
∆i+1

− i+1
∆i

>
i−1
∆i

− i−1
∆i−1

for all i. Adding 1
∆i

to both sides we get

that i+1
∆i+1

− i
∆i

>
i
∆i

− i−1
∆i−1

for all i. Combining this with the fact that pi+1

∆i+1
>

pi
∆i

for all i ≥ l∗
and i+1

∆i+1
>

i
∆i

for all i ≥ la, we get that pi
∆i+1

( i+1
∆i+1

− i
∆i

) + i+1
∆i+1

>
pi−1

∆i
( i
∆i

− i−1
∆i−1

) + i
∆i

for all
i ≥ la as desired.

Lemma A.1. ∆i is log-concave.

Proof. ∆i = pi− pi−1 = P (n, i,≥ k)−P (n, i− 1,≥ k), where P (n, i,≥ k) is the probability that at
least k agents succeed when i succeed with probability β and n− i succeed with probability of α.

Note that P (n, i,≥ k)− P (n, i− 1,≥ k) = (β − α) · (P (n− 1, i− 1,≥ k− 1)− P (n− 1, i− 1,≥
k)) = (β−α) ·P (n− 1, i− 1,= k− 1), where P (n− 1, i− 1,= k− 1) is the probability that exactly
k−1 agents succeed when i−1 agents succeed with probability β and n−i succeed with probability
α.

We abbreviate the following: fi+1 = P (n − 1, i + 1,= k − 1), fi = P (n − 1, i,= k − 1) and
fi−1 = P (n− 1, i− 1,= k − 1). It suffices to show that: f2

i ≥ fi+1fi−1.
We can write:

fi+1 = β · P (n− 2, i,= k − 2) + (1− β) · P (n− 2, i,= k − 1)
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fi = α · P (n− 2, i,= k − 2) + (1− α) · P (n− 2, i,= k − 1)
fi = β · P (n− 2, i− 1,= k − 2) + (1− β) · P (n− 2, i− 1,= k − 1)
fi−1 = α · P (n− 2, i− 1,= k − 2) + (1− α) · P (n− 2, i− 1,= k − 1)

Note that:
fi+1fi−1 = αβP (n−2, i,= k−2)P (n−2, i−1,= k−2)+α(1−β)P (n−2, i,= k−1)P (n−2, i−1,=

k−2)+β(1−α)P (n−2, i,= k−2)P (n−2, i−1,= k−1)+(1−α)(1−β)P (n−2, i,= k−1)P (n−2, i−1,=
k − 1)

Also note that:
fifi = αβP (n−2, i,= k−2)P (n−2, i−1,= k−2)+α(1−β)P (n−2, i,= k−2)P (n−2, i−1,=

k−1)+β(1−α)P (n−2, i,= k−1)P (n−2, i−1,= k−2)+(1−α)(1−β)P (n−2, i,= k−1)P (n−2, i−1,=
k − 1)

f2
i −fi−1fi+1 = (β−α)(P (n−2, i,= k−1)P (n−2, i−1,= k−2)−P (n−2, i−1,= k−1)P (n−2, i,=

k − 2)).
Note that we can then write:
P (n− 2, i,= k − 1) = βP (n− 3, i− 1,= k − 2) + (1− β)P (n− 3, i− 1,= k − 1)

P (n− 2, i− 1,= k − 1) = αP (n− 3, i− 1,= k − 2) + (1− α)P (n− 3, i− 1,= k − 1)
P (n− 2, i,= k − 2) = βP (n− 3, i− 1,= k − 3) + (1− β)P (n− 3, i− 1,= k − 2)
P (n− 2, i− 1,= k − 2) = αP (n− 3, i− 1,= k − 3) + (1− α)P (n− 3, i− 1,= k − 2)

So we can write:
P (n− 2, i,= k − 1)P (n− 2, i− 1,= k − 2) = (βP (n− 3, i− 1,= k − 2) + (1− β)P (n− 3, i− 1,=
k−1))(αP (n−3, i−1,= k−3)+(1−α)P (n−3, i−1,= k−2)) = αβP (n−3, i−1,= k−2)P (n−3, i−1,=
k − 3) + β(1 − α)P (n − 3, i − 1,= k − 2)P (n − 3, i − 1,= k − 2) + α(1 − β)P (n − 3, i − 1,=
k − 1)P (n− 3, i− 1,= k − 3) + (1− α)(1− β)P (n− 3, i− 1,= k − 1)P (n− 3, i− 1,= k − 2)

And:
P (n− 2, i− 1,= k − 1)P (n− 2, i,= k − 2) = (αP (n− 3, i− 1,= k − 2) + (1− α)P (n− 3, i− 1,=
k−1))(βP (n−3, i−1,= k−3)+(1−β)P (n−3, i−1,= k−2)) = αβP (n−3, i−1,= k−2)P (n−3, i−1,=
k − 3) + β(1 − α)P (n − 3, i − 1,= k − 3)P (n − 3, i − 1,= k − 1) + α(1 − β)P (n − 3, i − 1,=
k − 2)P (n− 3, i− 1,= k − 2) + (1− α)(1− β)P (n− 3, i− 1,= k − 1)P (n− 3, i− 1,= k − 2)

So (P (n− 2, i,= k − 1)P (n− 2, i− 1,= k − 2)− P (n− 2, i− 1,= k − 1)P (n− 2, i,= k − 2)) =
(β−α)(P (n−3, i−1,= k−2)P (n−3, i−1,= k−2)−P (n−3, i−1,= k−1)P (n−3, i−1,= k−3))

Note that P (n, j, k) for fixed n, k is strongly unimodal since it is the convolution of two binomial
random variables, which are also strongly unimodal. Therefore we know that P (n − 3, i − 1,=
k−2)P (n−3, i−1,= k−2)−P (n−3, i−1,= k−1)P (n−3, i−1,= k−3) > 0, so f2

j −fj−1fj+1 > 0
for all n > 3 and all n > k > 2.

Now we address the k = 2 case. When k = 2:
fi+1 = β · (1− β)i(1− α)n−i−2 + (1− β) · P (n− 2, i,= k − 1)

fi = α · (1− β)i(1− α)n−i−2 + (1− α) · P (n− 2, i,= k − 1)
fi = β · (1− β)i−1(1− α)n−i−1 + (1− β) · P (n− 2, i− 1,= k − 1)
fi−1 = α · (1− β)i−1(1− α)n−i−1 + (1− α) · P (n− 2, i− 1,= k − 1)

Note that:
fi+1fi−1 = β · (1− β)i(1− α)n−i−2α · (1− β)i−1(1− α)n−i−1 + α(1− β)P (n− 2, i,= k− 1)(1−

β)i−1(1−α)n−i−1+β(1−α)(1−β)i(1−α)n−i−2P (n−2, i−1,= k−1)+(1−α)(1−β)P (n−2, i,=
k − 1)P (n− 2, i− 1,= k − 1)

Also note that:
fifi = α · (1− β)i(1− α)n−i−2β · (1− β)i−1(1− α)n−i−1 + α(1− β)(1− β)i(1− α)n−i−2P (n−

2, i− 1,= k− 1) + β(1− α)P (n− 2, i,= k− 1)(1− β)i−1(1− α)n−i−1 + (1− α)(1− β)P (n− 2, i,=
k − 1)P (n− 2, i− 1,= k − 1)
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f2
i − fi−1fi+1 = (β−α)(P (n− 2, i,= k− 1)(1−β)i−1(1−α)n−i−1−P (n− 2, i− 1,= k− 1)(1−

β)i(1− α)n−i−2) = (β − α)2(1− β)i−1(1− α)n−i−2P (n− 2, i,= k − 1) > 0.
Finally we consider the case that n = 3 (and k = 2 necessarily). For the n = 3 case:
P (3, 1,≥ 2)− P (3, 0,≥ 2) = (β − α)P (2, 0,= 1) = 2α(1− α)

P (3, 2,≥ 2)− P (3, 1,≥ 2) = (β − α)P (2, 1,= 1) = β(1− α) + α(1− β)
P (3, 3,≥ 2)− P (3, 2,≥ 2) = (β − α)P (2, 2,= 1) = 2β(1− β)

We know that: (β(1− α)− α(1− β)) > 0
β2(1− α)2 + 2αβ(1− α)(1− β) + α2(1− β)2 > 4αβ(1− α)(1− β)
(P (3, 2,≥ 2)− P (3, 1,≥ 2))2 > (P (3, 1,≥ 2)− P (3, 0,≥ 2))(P (3, 3,≥ 2)− P (3, 2,≥ 2))

Now consider the case that k = 1. When k = 1, pi − pi−1 = (1− (1− β)i(1−α)n−i)− (1− (1−
β)i−1(1− α)n−i+1) = (1− β)i−1(1− α)n−i(β − α. Therefore ∆i/∆i−1 = 1−β

1−α for any i and ∆i is a
log-concave function.

Now consider the case that k = n. When k = n, pi − pi−1 = βiαn−i − βi−1αn− i+ 1 =
βi−1αn−i(β − α). Therefore ∆i/∆i−1 =

β
α for any i and ∆i is a log-concave function.

Lemma A.2. pi is log-concave.

Proof. Since ∆i is a discrete function, we know that ∆i+1∆1 − ∆i∆2 + ∆i+1∆2 − ∆i∆3 + ... +
∆i+1∆i−1−∆i∆i < 0 so ∆i+1∆1−∆i∆2+∆i+1∆2−∆i∆3+ ...+∆i+1∆i−1−∆i∆i−∆i∆1 < 0. In
other words, we know∆i+1(∆1+...+∆i)−∆i(∆1+...+∆i)−∆i∆i+1, or∆i+1pi−∆ipi−∆i∆i+1 < 0
or p2i > (pi +∆i+1)(pi −∆i) = pi+1pi−1, as desired.

Lemma A.3. pi
pi−p0

is log-convex.

Proof. Since p is log concave, we know that p2i > pi+1pi−1 = (pi +∆i+1)(pi −∆i) or in other words
∆i∆i+1+∆ipi−∆i+1pi > 0, which gives us that p0(pi−p0)(∆i∆i+1+∆ipi−∆i+1pi > 0) and that
p0((2pi − p0)∆i∆i+1 − (pi − p0)(∆ipi −∆i+1pi)) > 0, which means that p2i − (pi − p0)2)∆i∆i+1 −
p0pi(pi−p0)(∆ipi−∆i+1pi) > 0. Therefore we have: (pi−p0)2(∆i+1pi−∆ipi)−p2i (∆i+1(pi−p0)−
∆i(pi−p0))+p2i − (pi−p0)2)∆i∆i+1 > 0, so (pi−p0)2(p2i +∆i+1pi−∆i−∆i∆i+1) > p2i (pi−p0)2+
∆i+1(pi−p0−∆i)p2i−∆i(pi−p0)p2i , or (pi−p0)2(pi+∆i+1)(pi−∆i) > p2i (pi−p0+∆i+1)(pi−p0−∆i),
which gives us (pi−p0

pi
)2 > pi+1−p0

pi+1

pi−1−p0
pi−1

, as desired.

B Proofs from Section 4

Lemma 4.2 For the OR technology, the price of unaccountability occurs at a transition in the
agency case, as opposed to a transition in the non-strategic case.

Proof. It suffices to show that for a fixed agency contract, the social welfare ratio is increasing as v
increases. First consider the OR technology. We know that for all i < j, pj−p0

j <
pi−p0

i . Therefore

we have that for all i < j, pj
j <

pi
i . If ipj < jpi, we have:
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jpi(v
� − v) > ipj(v

� − v) for any v
�
> v

−jpiv − ipjv
�
> −jpiv

� − ipjv

−jcpiv − icpjv
�
> −jcpiv

� − icpjv

pivpjv
� − jcpiv − icpjv

� + icjc > piv
�
pjv − jcpiv

� − icpjv + icjc

(pjv
� − jc)(piv − ic) > (pjv − jc)(piv

� − ic)

pjv
� − jc

piv
� − ic

>
pjv − jc

piv − ic
for any v

�
> v

Therefore, we know for fixed non-strategic and fixed agency contracts, the social welfare ratio

increases and v increases. Finally, we know that pj+1v∗−(j+1)c
piv∗−ic = pjv∗−jc

piv∗−ic , where v∗ is the point at
which a principal is indifferent between contracting between j agents and contracting with j + 1
agents. Therefore we know, for fixed agency contract, the social welfare ratio is increasing as v

increases.

Theorem 4.5 The POU for the OR technology is bounded by 2 for all α,β = 1− α and n.

Proof. To establish this result, it suffices to show that the social welfare ratio is bounded everywhere
by 2. Given Lemma 4.2, it suffices to consider only transition points in the agency case, so let us
consider the social welfare ratio at a transition in the agency case. Let us consider the social welfare
ratio at vi,i+1, where the principal is indifferent between contracting with i agents and i+1 agents
in the agency case. Also suppose at vi,i+1, the optimal non-strategic contract is j, where n ≥ j > i.

Therefore, we can write the social welfare ratio as: pjvi,i+1−j
pivi,i+1−i . We want to show that pjvi,i+1−j

pivi,i+1−i ≤ 2.

If 2pi − pj > 0, then this statement is equivalent to vi,i+1 ≥ 2i−j
2pi−pj

. If 2pi − pj < 0, then this

statement is equivalent to vi,i+1 ≤ j−2i
pj−2pi

.

First we consider the case that 2pi − pj > 0. First suppose that 2i− j ≤ 0, then we know that
2i−j

2pi−pj
< 0, so vi,i+1 ≥ 2i−j

2pi−pj
. Therefore it suffices to consider the case that 2i − j > 0. Since

the optimal non-strategic contract is j at vi,i+1, we know that 1
∆j+1

≥ vi,i+1 ≥ 1
∆j

. Therefore, it

suffices to show that 1
∆j

≥ 2i−j
2pi−pj

. Since 2i− j < j and ∆j < ∆j−1 < ... < ∆1, we know that ∆j <

p2i−j

2i−j = pi−(pi−p2i−j)
2i−j = pi−(∆i+∆i−1+...+∆2i−j+1)

2i−j <
pi−(∆j+∆j−1+...+∆i+1)

2i−j = pi−(pj−pi)
2i−j = 2pi−pj

2i−j .
Now we consider the case that 2pi − pj < 0. Since the optimal non-strategic contract is j

at vi,i+1, we know that 1
∆j+1

≥ vi,i+1 ≥ 1
∆j

. Therefore it suffices to show that 1
∆j+1

≤ j−2i
pj−2pi

or

pj−2pi ≤ (j−2i)(pj+1−pj). We can write pj = 1−θjq0, where θ = 1−β
1−α and q0 = (1−α)n. Therefore

it suffices to show that (1− θjq0)− 2(1− θiq0) ≤ (j − 2i)(1− θj+1q0 − (1− θjq0)) or equivalently
−1 + 2θiq0 − θjq0 ≤ (j − 2i)θjq0(1 − θ) or equivalently, θiq0(2 − θj−i − (j − 2i)θj−i(1 − θ)) ≤ 1.
Therefore it suffices to show that θiq0 ≤ 1

2 . θiq0 = (1 − β)i(1 − α)n−i. Since 1 − β = α <
1
2 , we

know that (1− β)i(1− α)n−i <
1
2 for all i > 0.

Therefore the only remaining case is i = 0 and 2p0 − pj < 0. We note that when i = 0,
2i− j < 0, for any value of j. We also notice that if 2p0 − 1 > 0, then 2p0 − pj > 0. In other words

if α ≥ 1− n

�
1
2 , then 2p0 − pj > 0. For n ≥ 3, the RHS is at most 0.207, therefore if α > 0.207 and

n ≥ 3, we know from above that pjv0,1−j
p0v0,1

≤ 2. (The n = 2 case is established in [7]).

Now suppose that α ≤ 5−
√
5

10 . This means that α < 0.276. If α ≤ 5−
√
5

10 , then:
0 ≤ 5 · α2 − 5 · α+ 1
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2 · α− 2 · α2 ≤ α2 − α+ α2 + 1− 2 · α+ α2

2 · α · (1− α) ≤ α2 − α · (1− α) + (1− α)2
α·(1−α)

α2−α·(1−α)+(1−α)2 ≤ 1
2

θ
θ2−θ+1 ≤ 1

2 , where θ = α
1−α = 1−β

1−α

Since q0 >
1
2 ≥ θ

θ2−θ+1 , so

θ ≤ q0 · (θ2 − θ + 1)
θ − θ2 · q0 ≤ q0 − θ · q0
(1− θ · q0) · θ ≤ (1− θ) · q0
(1− θ · q0)θ(1− θ)q0 ≤ (1− θ)q0(1− θ)q0
p1(p2 − p1) ≤ (p1 − p0)2 (eq. *)

We now use eq. * to prove inductively that pjp1 − i · (p1 − p0)2 ≤ 2p1p0 Base case (j = 2): We
combine p21− (p1−p0)2 ≤ 2p1p0 with eq. *, we get p21− (p1−p0)2+p1(p2−p1) ≤ (p1−p0)2+2p1p0,
or p1p2 − 2(p1 − p0)2 ≤ 2p1p0.

Inductive Step: We are given that pjp1 − j(p1 − p0)2 ≤ 2p1p0. If p1(p2 − p1) ≤ (p1 − p0)2,
p1(pj+1 − pj) ≤ (p1 − p0)2 for all j ≥ 2, because pj+1 − pj < p2 − p1 (diminishing returns to scale
of the OR function). Combining p1(pj+1 − pj) ≤ (p1 − p0)2 with pjp1 − j(p1 − p0)2 ≤ 2p1p0, we get
p1pj − j(p1 − p0)2 + p1(pj+1 − pj) ≤ (p1 − p0)2 + 2p1p0, or p1pj+1 − (j + 1)(p1 − p0)2 ≤ 2p1p0.

Theorem 4.7 The Price of Unaccountability for the threshold technology is not bounded for
all values of k ≥ 2 and n. More specifically, when α → 0, POU → ∞.

Proof. We show that there exists a social welfare ratio that approaches ∞ as α → 0. This is
sufficient to establish the desired result since the POU is described as the maximum social welfare
ratio (where the maximum is taken over v). We focus on the social welfare ratio at the point of the

first transition in the agency case. We can write this social welfare ratio as pj ·v−j·c
p0·v , where v is the

point of the first transition in the agency case and j is the optimal contract for the non-strategic
case at v. We know from Lemma 4.8, that the first transition in the agency case jumps from 0
to i ≥ k. We write v = pi·i·c

(pi−pi−1)(pi−p0)
, where v is the point at where the principal is indifferent

between contracting with 0 agents and i agents in the agency case. We know from Lemma 4.8 that

k ≤ i ≤ j. Therefore, we can write the social welfare ratio at v as pjpiic−jc(pi−pi−1)(pi−p0)
p0piic

. Note

that this ratio is at least as big as pipiic−ic(pi−pi−1)(pi−p0)
p0piic

or pipi−1+pip0−pi−1p0
pip0

= pi−1

p0
+ 1 − pi−1

pi
.

As α → 0, we see that pi−1

p0
→ ∞ and 1 ≥ pi−1

pi
≥ 0, therefore this ratio approaches ∞. Hence, as

α → 0, pjpiic−jc(pi−pi−1)(pi−p0)
p0piic

→ ∞. Hence, the POU approaches ∞.

Lemma 4.8 As α → 0, we know that k ≤ la ≤ lns, where la is the first transition in the agency
case and lns is the first transition in the non-strategic case.

Proof. Recall that the first transition in the non-strategy case occurs to a value lns that satisfies
argmin

i

i·c
pi−p0

. As α → 0, pi − p0 approaches 0, for all i < k. Therefore, i·c
pi−p0

→ ∞. As α → 0,

i·c
pi−p0

approaches a constant for i ≥ k. Thus for sufficiently small α, the minimum occurs at an
lns ≥ k.

Now we focus on the agency case. Recall that the first transition occurs to a value la that
satisfies argmin

i

pi·i·c
(pi−pi−1)·(pi−p0)

. We note that as α → 0, pi
pi−p0

→ 1 for any i. Therefore as α → 0,

this quantity approaches ∞ for all i < k. When i = k, as α → 0, this quantity becomes k·c
pk

, which

is a constant. When i > k, as α → 0, this quantity approaches i·c
pi−pi−1

. Thus the minimum value
occurs at a value la ≥ k. Combining this with Lemma 3.18, we know that k ≤ la ≤ lns.
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C Proofs from Section 5

Lemma 5.1 If the principal decides to contract with j · m + a agents for some j ∈ Z+ and
some 0 ≤ a < m, the probability of success is maximized by fully contracting j AND gates and
contracting with a remaining agents on the same AND gate.

Proof. Consider an arbitrary contract of exactly j · m + a agents (that is not the case described
above). Suppose that this contract specifies the following number of agents contracted on each AND
gate x̂ = (x1, ..., xq). Suppose that there exists an i and j such that xi ≤ xj < m. We show that the
contract ŷ = (x1, ..., xi − 1, ..., xj + 1, ..., xq) has strictly greater success probability. We can write
the success probability of the contract ŷ as follows: p(ŷ) = βxj+1αm−xj−1βxi−1αm−xi+1P (n−2, k−
1) + βxj+1αm−xj−1(1 − βxi−1αm−xi+1)P (n − 2, k − 1) + βxi−1αm−xi+1(1 − βxj+1αm−xj−1)P (n −
2, k − 1) + (1 − βxj+1αm−xj−1)(1 − βxi−1αm−xi+1)P (n − 2, k) And we can similarly write the
probability of success for x̂. We know that βxjαm−xj−1(β − α)(P (n − 2, k − 1) − P (n − 2, k)) >
βxi−1αm−xi(β − α)(P (n − 2, k − 1) − P (n − 2, k)) for any xi ≤ xj . Therefore, we know that
p(ŷ) > p(x̂), as desired.

Lemma 5.2 For any principal’s value v, the optimal contract involves a set of fully contracted
AND gate.

Proof. Suppose that there exists a principal’s value v > 0 and a j, where j = i · m + a for some
a > 0, such that j is the optimal contract. In an abuse of notation, we say that the probability
of success for this contract is p(j). (Note that the preceding Lemma tells us exactly how these
agents are contracted). If there exists a v > 0 such that this contract is optimal then p(j)v − j >

p(j − 1)v − (j − 1), or v >
1

p(j)−p(j−1) , where p(j − 1) is the probability of success of contracting

with j − 1 agents. In what follows, we show that p(j + 1) − p(j) > p(j) − p(j − 1). We can write
p(j) = βaαm−aP (n − 1, k − 1) + (1 − βaαm−a)P (n − 1, k) = P (n − 1, k) + βaαm−a(P (n − 1, k −
1)− P (n, k − 1)). Therefore, p(j + 1) = P (n− 1, k) + βa+1αm−a−1(P (n− 1, k − 1)− P (n, k − 1))
and p(j − 1) = P (n− 1, k) + βa−1αm−a+1(P (n− 1, k − 1)− P (n, k − 1)). Hence p(j + 1)− p(j) =
βa+1αm−a−1(P (n−1, k−1)−P (n, k−1))−βaαm−a(P (n−1, k−1)−P (n, k−1)) = βaαm−a−1(β−
α)(P (n−1, k−1)−P (n, k−1)) and p(j)−p(j−1) = βa−1αm−a(β−α)(P (n−1, k−1)−P (n, k−1)),
which gives us p(j + 1) − p(j) > p(j) − p(j − 1) as desired. Therefore if v >

1
p(j)−p(j−1) , then this

means v >
1

p(j+1)−p(j) , and j cannot be the optimal contract.

Theorem 5.3 The transition behavior for the majority-of-AND technology in the non-strategic
case has a first transition to l fully contracted AND gates, where 1 ≤ l ≤ n, followed by each
subsequent transition of fully contracted AND gates.

Proof. From Lemma 5.2, it suffices to consider only the contracts that involve fully contracted
AND gates. This is equivalent to a threshold function with a probability of success βn for a high
effort agent and a probability of success αn for a low effort agent. Using Theorem 3.12, we get the
desired result.

Lemma 5.5 Consider an integer i such that i = a · j + b, where 0 ≤ b < j. Fixing i, the
probability of success for a majority-of-ORs function is maximized when a+1 agents are contracted
on each of b OR gates and a agents are contracted on each of j − b OR gates.

Proof. Consider an allocation of contracts to OR gates: x̂ = (x1, x2, ..., xm). If x̂ is not the
allocation of contracts in which a + 1 agents are contracted on each of b OR gates and a agents
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are contracted on each of m − b OR gates, then there exists an i such that xi > a and a j

such that xj < a. Now consider the agents contracted for the ith OR gate, label these agents
a1, a2, ..., axi . Likewise consider the agents contracted for the jth OR gate, label these agents
a�1, a

�
2, ..., a

�
xj
. We use the notation al = 1 if agent l succeeds and al = 0 if agent l does not succeed.

Consider the following three events: A = (a1 = 1 ∨ a2 = 1 ∨ ... ∨ axi−1 = 1), B = (axi = 1), and
C = (a�1 = 1∨ a�2 = 1∨ ...∨ a�xj

= 1). We can write the probability of success of a profile x̂ in terms
of these three events. We can also write the probability of success of the profile ŷ in terms of these
three events, where ŷ is the profile obtained from x̂, by contracting one less agent on the ith OR
gate and one more agent on the jth OR gate. p(x̂) = Pr(A ∧ B ∧ C) · pm−2,k−2 + Pr(A ∧ B ∧ C) ·
pm−2,k−2+Pr(A∧B ∧C) · pm−2,k−2+Pr(A∧B ∧C) · pm−2,k−1+Pr(A∧B ∧C) · pm−2,k−1+Pr(A∧
B ∧C) · pm−2,k−1+Pr(A∧B ∧C) · pm−2,k−1+Pr(A∧B ∧C) · pm−2,k, where pm,k is the probability
that at least k agents succeed out of m. Similarly, p(ŷ) = Pr(A ∧ B ∧ C) · pm−2,k−2 + Pr(A ∧ B ∧
C) · pm−2,k−2 +Pr(A ∧B ∧C) · pm−2,k−1 +Pr(A ∧B ∧C) · pm−2,k−1 +Pr(A ∧B ∧C) · pm−2,k−2 +
Pr(A ∧B ∧ C) · pm−2,k−1 + Pr(A ∧B ∧ C) · pm−2,k−1 + Pr(A ∧B ∧ C) · pm−2,k. Therefore, we can
write p(ŷ)− p(x̂) = (Pr(A∧B ∧C)−Pr(A∧B ∧C)) · (pm−2,k−2 − pm−2,k−1). It is easy to see that
pm−2,k−2 − pm−2,k−1 > 0. Note that A,B,C are all independent events, therefore Pr(A∧B ∧C) =
Pr(A) ·Pr(B) ·Pr(C) and Pr(A∧B∧C) = Pr(A) ·Pr(B) ·Pr(C). Since xi−1 > xj , Pr(A) > Pr(C)
and Pr(C) > Pr(A), which gives us (Pr(A ∧B ∧ C)− Pr(A ∧B ∧ C)) · (pm−2,k−2 − pm−2,k−1) > 0
and p(ŷ)− p(x̂) > 0 as desired.

Lemma 5.6 The first transition for the non-strategic case of the majority-of-OR technology
jumps from contracting with 0 agents to l agents, where 1 ≤ l ≤ k, followed by all remaining
transitions, where the transitions proceed in such a way so that no OR gate has more than 1 more
agent contracted as compared to any other OR gate.

Proof. First we show that the first transition jumps from 0 to a value of at most k. The majority of
OR function which is equivalent to a majority function with α� = 1−(1−α)j and β� = 1−α(1−α)j−1.
As α → 0, note that the first transition jumps from 0 to k. As α increases, so does α� + β�, as does
the expected number of OR gates that succeed when you contract with k agents. Therefore we
know for all α and β = 1− α, first transition occurs to a value l that is at most k. Since the first
transition jumps from a value 0 to l (where l ≤ k), there exists a v such that plv− l > pl−1v−(l−1)
and pl+1v − (l + 1) < plv − l, or in other words, there exists a v such that 1

pl+1−pl
> v >

1
pl−pl−1

.

This means that pl − pl−1 > pl+1 − pl. From Lemma 3.11, we know that (pl+1 − pl)− (pl − pl−1) =
(β� − α�)2(P (m − 2, l − 1,= k − 2) − P (m − 2, l − 1,= k − 1)), where α� = 1 − (1 − α)j and
β� = 1−(1−β)(1−α)j−1. If this is < 0, it means that P (m−2, l−1,= k−2) < P (m−2, l−1,= k−1)
and the expected number of agents that succeed when you have l−1 agents succeed with probability
β� and m− l− 1 agents succeed with probability α� is greater than k− 1. Lemma 3.11 also tells us
that pl+i − pl+i−1 > pl+i+1 − pl+i, for all 1 ≤ i ≤ m− l − 1.

Now we consider the marginal increase in probability of success of contracting with the m+1st

agent. We can write the marginal contribution of the m + 1st agent as pm+1 − pm = P (m, 1,≥
k)−P (m, 0,≥ k) = (β��−α��)(P (m−1, 0,≥ k−1)−P (m−1, 0,≥ k)) = (β��−α��)P (m−1, 0,= k−1)
(with α�� = 1 − (1 − β)(1 − α)j−1 and β�� = 1 − (1 − β)2(1 − α)j−2). Observe that pm − pm−1 =
P (m,m,≥ k)− P (m,m− 1,≥ k) = (β� − α�)(P (m− 1,m− 1,≥ k − 1)− P (m− 1,m− 1,≥ k)) =
(β� − α�)P (m − 1,m − 1,= k − 1) (with α� = 1 − (1 − α)j and β� = 1 − (1 − β)(1 − α)j−1). Note
that (1− β)(1− α)j−2(β − α) < (1− α)j−1(β − α), so β�� − α�� < β� − α�. Therefore, we know that
pm+1 − pm < pm − pm−1. Using the same arguments as above we get that contracting with each
successive agent has a smaller marginal increase in probability of success than the previous agent,
which gives us the desired result.
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