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Strictly proper scoring rules (SPSR) are incentive compatible for eliciting information about random variables

from strategic agents when the principal can reward agents after the realization of the random variables. They

also quantify the quality of elicited information, with more accurate predictions receiving higher scores in

expectation. In this paper, we extend such scoring rules to settings where a principal elicits private probabilistic

beliefs but only has access to agents’ reports. We name our solution Surrogate Scoring Rules (SSR). SSR build

on a bias correction step and an error rate estimation procedure for a reference answer defined using agents’

reports. We show that, with a single bit of information about the prior distribution of the random variables,

SSR in a multi-task setting recover SPSR in expectation, as if having access to the ground truth. Therefore, a

salient feature of SSR is that they quantify the quality of information despite the lack of ground truth, just as

SPSR do for the setting with ground truth. As a by-product, SSR induce dominant truthfulness in reporting.

Our method is verified both theoretically and empirically using data collected from real human forecasters.
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1 INTRODUCTION
Strictly proper scoring rules (SPSR) [3, 10, 13, 28, 33] have been developed to elicit private in-

formation (e.g. probability assessment about whether the S&P 500 index will go up next week)

and evaluate the reported information for settings where the principal will have access to the

ground truth (e.g. whether S&P 500 index actually went up) at some point. The score of an agent

measures the quality of her prediction. Moreover, facing a strictly proper scoring rule, the agent

strictly maximizes her expected score by truthfully revealing her prediction. In this paper, we

focus on extending the literature of SPSR to the information elicitation without verification (IEWV)

settings where the principal does not have access to the ground truth and still wants to elicit private

probabilistic beliefs. We ask the following question:

Can we extend SPSR to scoring mechanisms that can quantify the quality of
elicited probabilistic information and achieve truthful elicitation for IEWV?

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EC ’20, July 13–17, 2020, Virtual Event, Hungary
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7975-5/20/07. . . $15.00

https://doi.org/10.1145/3391403.3399488

https://doi.org/10.1145/3391403.3399488
https://doi.org/10.1145/3391403.3399488


We provide a positive answer to this question for multi-task information elicitation. We develop a

family of scoring mechanisms that under certain assumptions can estimate a biased version of the

ground truth and score predictions against it by removing the bias. As a consequence, we achieve a

certain form of dominant truthfulness in eliciting private probabilistic information, a favorable

property to have for IEWV [6, 9, 11, 14, 15, 17]. To the best of our knowledge, this is the first work

to provide a meta solution framework that enables applications of a SPSR to the IEWV setting for

eliciting probabilistic beliefs. We name our solution as Surrogate Scoring Rules.
As a building block, we first introduce SSR for a stylized setting where the principal has a noisy

ground truth (and its error rates) to evaluate the quality of elicited information. We show that

SSR preserve the same information quantification and truthful elicitation properties just as SPSR,

despite the lack of access to the exact ground truth. These surrogate scoring rules are inspired by

the use of surrogate loss functions in machine learning [1, 4, 22, 29, 30]. They remove bias from the

noisy ground truth such that in expectation a report is as if evaluated against the ground truth.

Built upon the above bias correction step, when the principal only has access to agents’ reports

and one bit of information about the marginal distribution of the ground truth over the entire

task set, we develop a multi-agent, multi-task mechanism, SSR mechanism , to again achieve

information quantification and truthful elicitation under dominant strategy, when agents adopt the

same (arbitrary) strategy for all the tasks they are assigned, and when the principal has sufficiently

many tasks and agents. The method relies on an estimation procedure to accurately estimate the

average bias in the peer agents’ reports. With the estimation, a random peer agent’s report serves as

a noisy ground truth and SSR can then be applied smoothly to achieve the two desired properties.

We evaluate the empirical performance of SSR with 14 real-world human forecast datasets. The

results show that SSR effectively recover, from only agents’ reports, the true scores of agents given

by SPSR with ground truth.

We summarize our contributions as follows:

• We extend Strictly Proper Scoring Rules (SPSR) to a family of scoring mechanisms, Surrogate
Scoring Rules (SSR), that operate in the information elicitation without verification (IEWV)

setting. SSR only require access to peer reports and one-bit information on the prior, and are

able to truthfully elicit probabilistic beliefs.

• SSR can build upon any existing SPSR and quantify the accuracy or value of the reported

information as the SPSR do. Therefore, our work complements the proper scoring rule

literature, and this extension largely expands the application of SPSR in challenging elicitation

setting where the ground truth is unavailable.

• For the IEWV setting, a SSR alike mechanism (SSR mechanism) induces dominant truthfulness

in reporting. To the best of our knowledge, it is the first dominantly truthful mechanism that

elicit probabilistic predictions.
1
Therefore, we also contribute to the peer prediction literature

via providing a mechanism that elicits truthful probabilistic report in dominant strategy and

rewards agents according to prediction accuracy w.r.t. SPSR instead of correlation.

• We evaluate the empirical performance of SSR mechanism on 14 real-world human prediction

dataset. The results show that SSR are able to better assess the true accuracy of agents than

other existing peer prediction methods.

Organization. The rest of the paper is organized as follows. We survey the most relevant results

in the rest of this section. Section 2 lays out the preliminaries. Section 3 provides our model of

IEWV. In Section 4, we study the information elicitation problem in the stylized setting, where

there is a noisy version of the ground truth with known bias. We introduce surrogate scoring rules

1
The mechanism proposed in [16] elicits probabilistic predictions but it is not dominantly truthful. The (variants of)

mechanisms proposed in [5, 14, 17, 31] are dominantly truthful but they elicit categorical information.



as a powerful solution in this section. In Section 5, we propose the dominantly truthful mechanism,

SSR mechanism, to address the general IEWV problem. We present our experimental study about

our mechanisms in Section 6. We conclude the paper with Section 7. Missing details and proofs can

be found in the Appendix of the full version of this paper [18].

1.1 Related work
The most relevant literature to our paper is strictly proper scoring rules and peer prediction. SPSR
are designed to elicit subjective beliefs of random variables when the principal can evaluate agents’

prediction after the random variables realize. The pioneer work [3] proposes the famous Brier score

to quantify the quality of forecasts. Works for variants and full characterization results of SPSR

include [10, 13, 28, 33].

Peer prediction is the most popular solution to IEWV. Its core idea is to score each agent based on

a reference report elicited from the rest of the agents, and to leverage on the stochastic correlation

between different agents’ information. Earlier peer prediction mechanisms incentivize truthfully

reporting at a Bayesian Nash Equilibrium (BNE) [21, 24, 26, 35, 36]. Recent works [5, 15, 31] have

made truthful equilibrium focal in the sense that it leads to the highest expected payoff to agents

among all equilibria. But there is at least one other equilibrium that gives the same expected payoff

to agents. Several more recent works established dominant truthfulness [6, 9, 11, 14, 15, 17]. In

particular, [15, 17, 27] achieve truthful reporting in dominant strategy with infinite number of tasks,

with the follow-up work [14] achieving this goal with finite tasks.

Most of the peer prediction works focus on eliciting categorical signals instead of probabilistic

beliefs. [16] provides a mechanism to elicit probabilistic predictions, but truthfully reporting is an

equilibrium strategy instead of a dominant strategy. When the principal does not have the access

to the ground truth but an unbiased estimator, [34] develops a family of proper scoring rules that

quantifies the value of probabilistic predictions up to an affine transformation [7]. In comparison,

our mechanism does not require to know the ground truth or an unbiased estimate, while it elicits

truthful probabilistic predictions in dominant strategy, and qualifies the value of information in the

predictions as the SPSR does. We emphasize again that our solution SSR provide a meta framework

that maps each existing SPSR to a scoring method to elicit continuous probabilistic predictions.

As mentioned, our work borrows ideas from the machine learning literature on learning with

noisy data (e.g., [8, 22, 29, 32]). At a high level, our goal in this paper aligns with the goal in learning

from noisy labels – both aim to evaluate a prediction when the ground truth is missing, but instead

a noisy signal of the ground truth is available. Our work addresses the additional challenge that

the error rate of the noisy signal remains unknown a priori.

2 PRELIMINARIES
Before we introduce our model of information elicitation without verification, we first briefly

introduce strictly proper scoring rules (SPSR), which are designed for the well-studied information

elicitation with verification settings. We highlight two nice properties of SPSR: (1) SPSR quantify

the value of information and (2) SPSR is incentive compatible for elicitation. Our goal of this paper

is to develop scoring rules that match these properties for the more challenging without verification

settings. Our solutions build upon the understanding of SPSR.

SPSR are designed for eliciting subjective probability distributions of random variables when the

principal can reward agents after the realization of the random variables. SPSR apply to eliciting

predictions for any random variables, but we introduce them for binary random variables in this

section because the rest of our paper focuses on the binary case. Let 𝑦 ∈ {0, 1} represent a binary
event. An agent has subjective belief 𝑝 for the likelihood of 𝑦 = 1. When the agent reports a

prediction 𝑞 for outcome 𝑦 = 1, the principal rewards the agent using a scoring function 𝑆 (𝑞,𝑦)



that depends on both the agent’s report and the realized outcome. Strict properness of 𝑆 (·, ·) is
defined as follows.

Definition 2.1. A function 𝑆 : [0, 1] × {0, 1} → R that maps the reported belief 𝑞 and the ground

truth 𝑦 into a score is a strictly proper scoring rule if it satisfies E[𝑆 (𝑝,𝑦)] > E[𝑆 (𝑞,𝑦)], for all
𝑝, 𝑞 ∈ [0, 1] and 𝑝 ≠ 𝑞. The expectation is taken with respect to 𝑦 ∼ Bernoulli(𝑝).

There is a rich family of strictly proper scoring rules, including Brier (𝑆 (𝑞,𝑦) = 1 − (𝑞 − 𝑦)2
),

logarithmic (𝑆 (𝑞,𝑦) = log(𝑞) if 𝑦 = 1 and 𝑆 (𝑞,𝑦) = log(1 − 𝑞) if 𝑦 = 0) and spherical scoring

rules [10].

Incentive compatibility of SPSR. The definition of SPSR immediately gives incentive com-

patibility. If an agent’s belief is 𝑝 , reporting it truthfully uniquely maximizes his expected score.

SPSR quantify value of information. Another nice property of SPSR is that they quantify

the value/accuracy of reported predictions. To give a rigorous argument, we use an indicator vector

y of length 2 to represent outcome 𝑦, with 1 at the 𝑦-th position and 0 otherwise. That is, y = (0, 1)
if 𝑦 = 1 and y = (1, 0) if 𝑦 = 0. We use a probability vector q = (1 − 𝑞, 𝑞) to represent probability 𝑞.

By the representation theorem [10, 19, 28], any strictly proper scoring rule can be characterized

using a corresponding strictly convex function 𝐺 as follows: 𝑆 (𝑞,𝑦) = 𝐺 (y) − 𝐷𝐺 (y, q), where
𝐷𝐺 is the Bregman divergence function of 𝐺 . Now consider the unknown true distribution of 𝑦,

denoted p∗ = (1 − 𝑝∗, 𝑝∗). The expected score (with respect to p∗) of an agent with prediction 𝑞 is

E𝑦∼p∗ [𝑆 (𝑞,𝑦)] = E𝑦∼p∗ [𝐺 (y)] − E𝑦∼p∗ [𝐷𝐺 (y, q)] .
This means that the maximum score an agent can receives in expectation is E𝑦∼p∗ [𝐺 (y)] and
this happens when the agent reports q = p∗. Moreover, a prediction q with smaller divergence

E𝑦∼p∗ [𝐷𝐺 (y, q)] receives higher score in expectation. Intuitively, E𝑦∼p∗ [𝐷𝐺 (y, q)] characterizes
how “far away" q is from the true distribution of 𝑦 under divergence function 𝐷𝐺 . This implies

that a strictly proper scoring rule 𝑆 qualifies the the accuracy of a prediction 𝑞 based on the

corresponding divergence function. When 𝑆 is taken as the Brier scoring rule, the corresponding

Bregman divergence is the quadratic function. Then E𝑦∼p∗ [𝐷𝐺 (y, q)] = | |p∗ − q| |2, implying that a

prediction closer to p∗ according to ℓ2 norm receives a higher score in expectation. When 𝑆 is taken

as the log scoring rule, the corresponding Bregman divergence is the KL-divergence, 𝐷𝐾𝐿 , which is

also called relative entropy. Then, E𝑦∼p∗ [𝐷𝐺 (y, q)] = 𝐷𝐾𝐿 (p∗ | |q) +𝐻 (p∗) where 𝐻 is the entropy

function. A prediction with smaller KL-divergence from p∗ receives a higher score in expectation.

This property of SPSR allows the principal to take an expert’s average score over a set of prediction

tasks as a proxy of his average accuracy and rank experts accordingly.

3 OUR MODEL
The goal of this work is to develop scoringmechanisms that quantify the value of elicited information

and are incentive compatible, similar to SPSR, but for settings without verification, i.e. when the

principal does not have access to the realization of the predicted binary events. We model the

information elicitation without verification problem for a multi-task setting. The details of our

model and our design goals are described below.

3.1 Model of Information Structure
A principal has a set of [𝑀] = {1, ..., 𝑀} binary random variables (tasks) 𝑦𝑘 ∈ {0, 1} for all 𝑘 ∈ [𝑀],
which she wants to obtain predictions for. Part of our results can be generalized to non-binary

tasks, which can be found in Section B of the Appendix [18]. There is a set [𝑁 ] = {1, ..., 𝑁 } of
agents. Neither the principal nor the agents have access to the ground truth 𝑦𝑘 , but agents each



observe a private signal 𝑜𝑖,𝑘 , which relates to 𝑦𝑘 , for task 𝑘 , where 𝑜𝑖,𝑘 comes from a finite domain

[𝑂𝑖 ] = {0, 1, ...,𝑂𝑖 }. We allow that the domains of signals differ across agents. We make a few

assumptions on the information structure of this setting.

Assumption 1. Tasks are independent and similar a priori, that is, the joint distribution of
(𝑜1,𝑘 , ..., 𝑜𝑁,𝑘 , 𝑦𝑘 ) is i.i.d. for all task 𝑘 ∈ [𝑀].

This assumption is natural when the set of tasks are of similar nature, for example, tasks asking

about the reproducibility of studies published in a particular journal within a certain time period.

While researchers may a priori hold some beliefs about the journal-wide replication rate, they

receive private signals about each study which allows them to give more informed predictions for

individual studies. We note that most studies in the field of IEWV make a similar assumption.
2

Agents share a common prior 𝑝 := Pr[𝑦𝑘 = 1] for each task 𝑘 . We denote the distribution of

a signal 𝑜𝑖,𝑘 conditioned on 𝑦𝑘 by D+
𝑖 (conditioned on 𝑦𝑘 = 1) and D−

𝑖 (conditioned on 𝑦𝑘 = 0).

According to Assumption 1, this conditional distribution (D+
𝑖 ,D−

𝑖 ) is shared across different tasks

for agent 𝑖 . We assume thatD+
𝑖 ≠ D−

𝑖 , otherwise, 𝑜𝑖,𝑘 is independent with𝑦𝑘 . Each agent knows her

ownD+
𝑖 andD−

𝑖 . For each task, we further assume that agents’ signals are independent conditioned

on the ground truth.

Assumption 2. For each task, the agents’ signals are mutually independent conditional on the
ground truth. That is, ∀𝑘 ∈ [𝑀], Pr

[
𝑜1,𝑘 , ..., 𝑜𝑁,𝑘 |𝑦𝑘

]
=
∏
𝑖∈[𝑁 ] Pr[𝑜𝑖,𝑘 |𝑦𝑘 ].

This assumption is to exclude scenarios where agents have some form of “side information”

to coordinate reports. With “side information”, it is impossible to have any mechanism that can

truthfully elicit agents’ predictions without access to the ground truth. This issue has been noted in

IEWV for objective questions by Kong et al. [14, 16] and the same assumption has been adopted.

Each agent forms her own belief about 𝑦𝑘 based on her received signal 𝑜𝑖,𝑘 . We use 𝑝𝑖,𝑘 := Pr[𝑦 =

1|𝑜𝑖,𝑘 ] to represent agent 𝑖’s posterior belief on task 𝑘 . The principal, who knows neither the prior

𝑝 nor the conditional signal distributions D+
𝑖 and D−

𝑖 , hopes to elicit predictions 𝑝𝑖,𝑘 from some

agents. We make a technical assumption about the prior and the knowledge of the principal.

Assumption 3. The common prior 𝑝 ≠ 0.5 and the principal knows 1(𝑝 > 0.5).

We assume that the principal knows one bit of information about the prior of tasks. This bit of

information can help the principal distinguish between a set of truthful predictions vs. a set of

inverted predictions (i.e. everyone reporting 1 − 𝑝𝑖,𝑘 instead of 𝑝𝑖,𝑘 ), which otherwise is impossible.

In practice, this bit of information is usually easy to get. For example, the principal may not know

the replication rate of a journal but knows whether on average more than half of the studies are

successfully replicated. The assumption 𝑝 ≠ 0.5 is a technical condition we will need later to

distinguish the true scenario from the inverted one.

𝑝𝑖,𝑘 encodes the randomness of 𝑜𝑖,𝑘 . And, 𝑝𝑖,𝑘 is a discrete random variable with values taken in

[0,1]. Assumptions 1 and 2 jointly imply that the agents’ posterior beliefs 𝑝𝑖,𝑘 are homogeneous

across tasks and conditionally independent across agents.

Proposition 3.1. Under Assumptions 1 and 2, agents’ beliefs 𝑝𝑖,𝑘 are

2
In [5, 14, 17, 27, 31], where they consider information elicitation for subjective questions (i.e., questions with no ground

truth concept, e.g., how do you rank the movie), the authors all assumed that the joint distribution of agents’ signals is the

same for each task and signals are independent across tasks. In [14, 16], where they consider information elicitation for

objective questions (i.e., questions with ground truth), the authors all assumed that the joint distribution of agents’ signals

together with the ground truth is the same for each task, and all signals and the ground truth are independent across tasks.



• Conditionally homogeneous and independent across tasks: For each agent 𝑖 ∈ [𝑁 ], condi-
tioned on 𝑦𝑘 , her posterior beliefs 𝑝𝑖,𝑘 are i.i.d. for all tasks 𝑘 ∈ [𝑀]. That is, ∀𝑘, 𝑘 ′ ∈ [𝑀]
and 𝑘 ≠ 𝑘 ′, ∀𝑢 ∈ [0, 1],∀𝑣 ∈ {0, 1}, Pr[𝑝𝑖,𝑘 = 𝑢 |𝑦𝑘 = 𝑣] = Pr[𝑝𝑖,𝑘′ = 𝑢 |𝑦𝑘′ = 𝑣]; and ∀𝑀 ′ ⊆
[𝑀], Pr[{𝑝𝑖,𝑘 }𝑘∈𝑀′ |{𝑦𝑘 }𝑘∈𝑀′] = ∏

𝑘∈𝑀′ Pr[𝑝𝑖,𝑘 |𝑦𝑘 ].
• Conditionally independent across agents: ∀𝑘 ∈ [𝑀], Pr[𝑝1,𝑘 , ..., 𝑝𝑁,𝑘 |𝑦𝑘 ] =

∏
𝑖∈[𝑁 ] Pr[𝑝𝑖,𝑘 |𝑦𝑘 ].

The “conditionally homogeneous" condition simply states that agent’s “expertise levels" are

similar across tasks with same outcomes. In fact, our results hold for models with more general

information structures as long as Proposition 3.1 and Assumption 3 are satisfied.
3

3.2 Mechanism design goals
The principal is interested in designing a scoringmechanism to facilitate the elicitation of predictions

for 𝑦𝑘 . For each task 𝑘 , the principal can ask some subset [𝑁𝑘 ] ⊆ [𝑁 ] agents to give a prediction

𝑞𝑖,𝑘 ,∀𝑖 ∈ [𝑁𝑘 ]. 𝑞𝑖,𝑘 can be different from 𝑝𝑖,𝑘 . The principal then pays each agent scores based on

the predictions she collects from all tasks. We denote [𝑀𝑖 ] ⊆ 𝑀 the set of tasks agent 𝑖 answers.

Given a mechanism, an agent may report her belief via some strategy and influence the final

predictions elicited. We consider that agents adopt strategies for each task independently, but each

strategy could be a mixed strategy.

Definition 3.2. Let Δ [0,1] be the space of all probability distributions over [0, 1]. The strategy
of an agent 𝑖 on task 𝑘 is a mapping 𝜎 : [0, 1] → Δ [0,1] that maps her posterior belief 𝑝𝑖,𝑘 into a

distribution 𝜎 (𝑝𝑖,𝑘 ) over [0,1] such that the agent draws a report 𝑞𝑖 from 𝜎 (𝑝𝑖,𝑘 ).

We define a strategy as a mapping from the space of posterior beliefs, rather than from the space

of private signals. This is without loss of generality because if two realizations of 𝑜𝑖,𝑘 give the same

posterior, we can merge the two realizations into one combined realization in our model. We also

assume that each agent adopts the same strategy across tasks.

Assumption 4. (Consistent Strategy) For any agent 𝑖 ∈ [𝑁 ], she adopts the same strategy 𝜎𝑖 (·)
over all tasks 𝑘 ∈ [𝑀𝑖 ].

This assumption is reasonable as we assume that tasks are a priori similar to each agent. We

denote the strategy adopted by agent 𝑖 on all tasks by 𝜎𝑖 (·) and denote the strategy profile of all

agents except agent 𝑖 by 𝜎−𝑖 . We also sometimes abuse our notations and use 𝜎𝑖 and 𝜎−𝑖 to represent
the predictions resulted from these strategies.

The principal would like to design a mechanismM that, when only having access to the reported

predictions of the agents, can score agents for each of their reported predictions. The score that

agent 𝑖 receives for predicting 𝑞𝑖,𝑘 for task 𝑘 , when other agents use strategies 𝜎−𝑖 on all assigned

tasks, is denoted as 𝑅𝑖 (𝑞𝑖,𝑘 ;𝜎−𝑖 ). 𝑅𝑖 (𝑞𝑖,𝑘 ;𝜎−𝑖 ) depends on agent 𝑖’s prediction on task 𝑘 and can

depend on other agents’ predictions on all other tasks. We restrict our attention to anonymous

mechanisms and hence drop the subscript 𝑖 in the score function: we have 𝑅(𝑞𝑖,𝑘 ;𝜎−𝑖 ) as the score
of prediction 𝑞𝑖,𝑘 . E[𝑅(𝑞𝑖,𝑘 ;𝜎−𝑖 )] is the expected score that agent 𝑖 receives for reporting 𝑞𝑖,𝑘 when

other agents use strategies 𝜎−𝑖 . The expectation is taken over the randomness in the ground truth,

other agents’ signals, and other agents’ strategies.

In this IEWV setting, the principal hopes to designM with similar properties as what SPSR have

for the information elicitation with verification settings: quantification of the value of information

and incentive compatibility.

3
Here we allow the priors of different tasks to be different and the 𝑝 in Assumption 3 refers to the mean prior of all tasks.



Quantify value of information. The score of each prediction should reflect the true accuracy

of the prediction, similar to what SPSR achieve. That is, for all 𝑖 , 𝑘 and 𝑞𝑖,𝑘 and for any true

distribution of ground truth 𝑦𝑘 , E[𝑅(𝑞𝑖,𝑘 ;𝜎−𝑖 )] = 𝑓
(
𝐸𝑦𝑘 [𝑆 (𝑞𝑖,𝑘 , 𝑦𝑘 )]

)
holds for a SPSR 𝑆 (·, ·) and a

strictly increasing function 𝑓 .

This design goal aspires that the score an agent receives for a prediction in IEWV recovers what

the agent would receive with a SPSR (with access to the ground truth) in expectation.

Dominant truthfulness. Amechanism is dominantly truthful if each agent reporting truthfully

on each assigned task leads to higher expected payoff than other strategies, regardless of other

agents’ reporting strategies.

Definition 3.3. For an agent 𝑖 , a strategy 𝜎𝑖 is a (weakly) dominant strategy if ∀𝑘 ∈ [𝑀𝑖 ] and 𝑜𝑖,𝑘 ,
∀𝑖 ∈ [𝑁 ], ∀{D+

𝑗 ,D−
𝑗 }𝑗 ∈[𝑁 ] , ∀𝜎 ′

𝑖 ,∀𝜎−𝑖 : E[𝑅(𝜎𝑖 ;𝜎−𝑖 ) |𝑜𝑖,𝑘 ] ≥ E[𝑅(𝜎 ′
𝑖 ;𝜎−𝑖 ) |𝑜𝑖,𝑘 ], and 𝜎𝑖 is a strictly

dominant strategy if the equality holds only when 𝜎 ′
𝑖 = 𝜎𝑖 .

A dominant truthful mechanism in IEVW is a mechanism where truthful reporting is each agent’s

weakly dominant strategy and a strictly dominant strategy if her peers’ reports are informative
4
.

Let 𝜎∗
𝑖 be the truthful reporting strategy for agent 𝑖 , i.e., 𝜎∗

𝑖 is the function that maps a belief 𝑝𝑖

to a distribution where all probability mass is put on 𝑝𝑖 . Let 𝑞−𝑖,𝑘 := 1

𝑁−1

∑
𝑗≠𝑖 𝑞 𝑗,𝑘 be the mean of

agents’ reported predictions other than agent 𝑖’s. Note that 𝑞−𝑖,𝑘 is a random variable because of

the randomness in reporting strategy 𝜎 𝑗 and the randomness in signal 𝑜 𝑗,𝑘 received by agent 𝑗 for

𝑗 ≠ 𝑖 . We say that 𝑞−𝑖,𝑘 is informative about the ground truth if E[𝑞−𝑖,𝑘 |𝑦𝑘 = 1] ≠ E[𝑞−𝑖,𝑘 |𝑦𝑘 = 0].
We formally define the dominantly truthful mechanisms as follows.

Definition 3.4. (Dominant truthfulness). A mechanism M is dominantly truthful if ∀𝑖 ∈ [𝑁 ],
∀𝑘 ∈ [𝑀𝑖 ] and 𝑜𝑖,𝑘 , ∀{D+

𝑗 ,D−
𝑗 }𝑗 ∈[𝑁 ], ∀𝜎𝑖 ≠ 𝜎∗

𝑖 ,∀𝜎−𝑖 : E[𝑅(𝜎∗
𝑖 ;𝜎−𝑖 ) |𝑜𝑖,𝑘 ] ≥ E[𝑅(𝜎𝑖 ;𝜎−𝑖 ) |𝑜𝑖,𝑘 ], and

the inequality holds strictly for any strategy profile 𝜎−𝑖 under which 𝑞−𝑖,𝑘 is informative about 𝑦𝑘 .

In Definition 3.4, we characterize the condition that peers’ reports are informative by that the

expectation of the mean of peers’ reports differs for different realizations of the ground truth.

4 ELICITATIONWITH NOISY GROUND TRUTH
Before we develop mechanisms with desirable properties for our general model, we first achieve

these desirable properties, in this section, under a very stylized setting: elicitation with noisy ground
truth. In this setting, we introduce surrogate scoring rules as an effective solution. These scoring

rules will be the building blocks of our mechanisms for the general model.

This stylized setting has only one event 𝑦 and one agent 𝑖 , who observes a signal 𝑜𝑖 generated

from distribution D𝑖 (𝑦) and forms the posterior 𝑝𝑖 = Pr[𝑦 = 1|𝑜𝑖 ]. The principal, although cannot

observe 𝑦, has access to a noisy ground truth 𝑧 that has two error rates, 𝑒+𝑧 and 𝑒−𝑧 , defined as follows:
𝑒+𝑧 := Pr[𝑧 = 0|𝑦 = 1], 𝑒−𝑧 := Pr[𝑧 = 1|𝑦 = 0] . They are the probabilities that 𝑧 mismatches 𝑦 under

the two realizations of 𝑦. The principal knows the realization 𝑧 and 𝑒+𝑧 , 𝑒
−
𝑧 . The principal cannot

expect to do much if 𝑧 is independent of𝑦. Hence, we assume that 𝑧 and𝑦 are stochastically relevant,

an assumption commonly adopted in the information elicitation literature [21].

4
Usually, in a dominant truthful mechanism, truthful reporting is the strict dominant strategy. In IEWV, however, if all the

peer agents report predictions independently w.r.t. the ground truth, then there will be no information available for the

mechanism to incentivize truthful reporting. Therefore, it is inevitable to allow a dominant truthful mechanism in IEWV to

pay truthfully reporting strictly higher only when the peer reports are informative about the ground truth. For example,

in [14, 17], the dominant truthful mechanism is defined to be a mechanism that pays truthful reporting strictly higher when

for each agent, there exists at least one peer agent reporting truthfully. We will see later that in our definition, we do not

require that at least one peer agent reports truthfully. We allow all peer agents to be non-truthful but the mean of their

peers reports should be dependent with the ground truth.



Definition 4.1. Random variable 𝑧 is stochastically relevant for random variable 𝑦 if the distribu-

tion of 𝑦 conditioned on 𝑧 is different for different realizations of 𝑧.

The following lemma shows that the stochastic relevance requirement directly translates to a

constraint on the error rates, that is, 𝑒+𝑧 + 𝑒−𝑧 ≠ 1.

Lemma 4.2. 𝑧 is stochastically relevant to 𝑦 if and only if 𝑒+𝑧 + 𝑒−𝑧 ≠ 1.

The goal of the principal in this setting is to design a scoring rule to elicit the posterior 𝑝𝑖
truthfully using this noisy ground truth 𝑧 and the knowledge of error rates 𝑒+𝑧 , 𝑒

−
𝑧 . We define the

design space of the scoring rule with noisy ground truth as follows.

Definition 4.3. Given a noisy ground truth 𝑧 with error rates (𝑒+𝑧 , 𝑒−𝑧 ) ∈ [0, 1]2
, a scoring rule with

noisy ground truth is a function 𝑅 : [0, 1] × {0, 1} → R that maps a prediction 𝑞𝑖 ∈ [0, 1] and a

realized noisy ground truth 𝑧 ∈ {0, 1} to a score. The function 𝑅 can depend on error rates (𝑒+𝑧 , 𝑒−𝑧 ).
Adopting the terminology from the scoring rule literature, we refer to strict properness as the

property that a scoring rule with noisy ground truth gives a strictly higher expected score to a

truthful report than a non-truthful report.

Definition 4.4. A scoring rule 𝑅(𝑞𝑖 , 𝑧) with noisy ground truth 𝑧 is strictly proper if it holds for all
realizations of 𝑜𝑖 and 𝑝𝑖 = Pr[𝑦 = 1|𝑜𝑖 ], that ∀𝑞𝑖 ∈ [0, 1] (𝑞𝑖 ≠ 𝑝𝑖 ),E𝑧 |𝑜𝑖 [𝑅(𝑝𝑖 , 𝑧)] > E𝑧 |𝑜𝑖 [𝑅(𝑞𝑖 , 𝑧)] .

4.1 Surrogate scoring rules (SSR)
In this section, we present our solution, the surrogate scoring rules, for this stylized setting. SSR is

a family of scoring rules with noisy ground truth and is strictly proper under mild conditions.

Definition 4.5 (Surrogate Scoring Rules). 𝑅 : [0, 1] × {0, 1} → R+ is a surrogate scoring rule if

for some strictly proper scoring rule 𝑆 : [0, 1] × {0, 1} → R+ and a strictly increasing function

𝑓 : R+ → R+, it holds for that ∀𝑝𝑖 , 𝑞𝑖 , 𝑒+𝑧 , 𝑒−𝑧 ∈ [0, 1] and 𝑒+𝑧 + 𝑒−𝑧 ≠ 1, E𝑧 [𝑅(𝑞𝑖 , 𝑧)] = 𝑓
(
E𝑦 [𝑆 (𝑞𝑖 , 𝑦)]

)
,

where 𝑦 is the ground truth drawn from Bernoulli(𝑝𝑖 ) and 𝑧 is the noisy ground truth generated by

𝑦 with error rates 𝑒+𝑧 , 𝑒
−
𝑧 .

The above definition seeks a surrogate scoring rule 𝑅(·) that helps us remove the bias in 𝑧 and

return us a strictly proper score in expectation. The idea is borrowed from the machine learning

literature on learning with noisy data [4, 20, 22, 29, 32]. SSR can be viewed as a particular class of

proxy scoring rules [34]. But the approach of [34] to achieve properness is to plug in an unbiased
proxy ground truth to a strictly proper scoring rule. SSR on the other hand directly work with

biased proxy and the scoring function is designed to de-bias the noise. Easily we have the following

strict properness result for SSR:

Theorem 4.6. Given an agent’s fixed prior 𝑝 and private signal 𝑜𝑖 , SSR 𝑅(𝑞𝑖 , 𝑧) with noisy ground
truth 𝑧 is strictly proper for eliciting the posterior 𝑝𝑖 = Pr[𝑦 = 1|𝑜𝑖 ] if 𝑧 and 𝑜𝑖 are independent
conditioned on 𝑦, and 𝑧 are stochastically relevant to 𝑦.

We give an implementation of SSR, which we name as SSR𝛼 :

𝑅(𝑞𝑖 , 𝑧 = 1) =
(1 − 𝑒−𝑧 ) · 𝑆 (𝑞𝑖 , 1) − 𝑒+𝑧 · 𝑆 (𝑞𝑖 , 0)

1 − 𝑒+𝑧 − 𝑒−𝑧
, (1)

𝑅(𝑞𝑖 , 𝑧 = 0) =
(1 − 𝑒+𝑧 ) · 𝑆 (𝑞𝑖 , 0) − 𝑒−𝑧 · 𝑆 (𝑞𝑖 , 1)

1 − 𝑒+𝑧 − 𝑒−𝑧
, (2)

where 𝑆 can be any strictly proper scoring rule. We note that the knowledge of the error rates

𝑒+𝑧 , 𝑒
−
𝑧 is crucial for defining the above SSR. This SSR function is inspired by Natarajan et al.[22]. It

has the following property:



Mechanism 1 SSR mechanism (Sketch)

1: For each task 𝑘 , we uniformly randomly pick at least 3 agents, assign task 𝑘 to them and collect

their reported predictions.

2: For each agent 𝑖 and each task 𝑘 she answers, we construct a reference report 𝑧𝑖,𝑘 using peer

agents’ reports; estimate the error rates 𝑒+𝑧𝑖,𝑘 and 𝑒−𝑧𝑖,𝑘 for 𝑧𝑖,𝑘 .

3: Pay each agent 𝑖 for 𝑞𝑖,𝑘 on task 𝑘 by SSR 𝑅(𝑞𝑖,𝑘 , 𝑧𝑖,𝑘 ) if 𝑒+𝑧𝑖,𝑘 + 𝑒+𝑧𝑖,𝑘 ≠ 1, and pay 0, otherwise.

Lemma 4.7 (Lemma 1, [22]). For SSR𝛼 : ∀𝑞𝑖 , 𝑒+𝑧 , 𝑒−𝑧 ∈ [0, 1] and 𝑒+𝑧 + 𝑒−𝑧 ≠ 1,∀𝑦 ∈ {0, 1} :

E𝑧 |𝑦 [𝑅(𝑞𝑖 , 𝑧)] = 𝑆 (𝑞𝑖 , 𝑦).
Intuitively speaking, the linear transform in SSR𝛼 will ensure that in expectation, the prediction

𝑞𝑖 is scored as if it was scored against 𝑦 using a SPSR. This can be proved fairly straightforwardly

via spelling out the expectation. Interested readers are also referred to [22]. We would like to note

that other surrogate loss functions designed for learning with noisy labels can also be leveraged to

design SSR.

Theorem 4.8. SSR𝛼 is a surrogate scoring rule and∀𝑝𝑖 , 𝑞𝑖 , 𝑒+𝑧 , 𝑒−𝑧 ∈ [0, 1] (𝑒+𝑧 +𝑒−𝑧 ≠ 1),E𝑧 [𝑅(𝑞𝑖 , 𝑧)] =
E𝑦 [𝑆 (𝑞𝑖 , 𝑦)], where 𝑦 is the ground truth drawn from Bernoulli(𝑝𝑖 ) and 𝑧 is the noisy ground truth
generated by 𝑦 with error rate 𝑒+𝑧 , 𝑒

−
𝑧 .

With Theorem 4.8 we know that SSR𝛼 quantifies the quality of information just as the strictly

proper scoring rule 𝑆 does. Further, SSR𝛼 has the following variance:

Theorem 4.9. Let 𝑝𝑧 := Pr[𝑧 = 1]. SSR𝛼 suffers the following variance:

E𝑧
[
𝑅(𝑞𝑖 , 𝑧) − E𝑧 [𝑅(𝑞𝑖 , 𝑧)]

]
2

=
2𝑝𝑧 · (1 − 𝑝𝑧)
(1 − 𝑒+𝑧 − 𝑒−𝑧 )2

· (𝑆 (𝑞𝑖 , 1) − 𝑆 (𝑞𝑖 , 0))2 . (3)

5 ELICITATIONWITHOUT VERIFICATION
The results in the previous section are built upon the fact that there exists a noisy copy of the

ground truth and we know its error rates. In this section, we apply the idea of SSR to information

elicitation without verification. A reasonable way to do so is to take agents’ reports as the source

for this noisy reference of the ground truth. Yet the principal cannot assume the knowledge of

the noise in agents’ reports. We find a way to construct a noisy ground truth from agents’ report

with estimable error rates. We refer this noisy ground truth as the reference report. Applying SSR
with this reference report, we can finally get a dominantly truthful mechanism that elicits the

information and that the payment of the mechanism also quantifies the value of information of

agents’ reports as what the SPSR do. We call this mechanism SSR mechanism . We present the

sketch of our mechanism in Mechanism 1.

The challenge of designing such a mechanism is to construct such a reference report 𝑧𝑖,𝑘 in

Mechanism 1 and successfully estimate its error rates 𝑒+𝑧𝑖,𝑘 , 𝑒
−
𝑧𝑖,𝑘

. In the following sections, we show

how to construct such a reference report and how to estimate the error rates.

5.1 Reference report and its property
Let 𝑠 𝑗,𝑘 be a binary signal independently drawn from Bernoulli(𝑞 𝑗,𝑘 ). We term 𝑠 𝑗,𝑘 the prediction
signal of agent 𝑗 on task 𝑘 . We construct the reference report 𝑧𝑖,𝑘 for agent 𝑖 as follows:We uniformly
randomly pick an agent 𝑗 from the peer agent set [𝑁 ]\{𝑖}, collect her prediction 𝑞 𝑗,𝑘 , and draw the
prediction signal 𝑠 𝑗,𝑘 ∼ Bernoulli(𝑞 𝑗,𝑘 ). We use this 𝑠 𝑗,𝑘 as the reference report 𝑧𝑖,𝑘 .

Clearly, conditioned on the reports 𝑞 𝑗,𝑘 , 𝑗 ∈ [𝑁 ], the distribution of 𝑧𝑖,𝑘 is Bernoulli
(
𝑞−𝑖,𝑘

)
as we

uniformly randomly pick a prediction signal. Note that in our model, 𝑞𝑖,𝑘 ∼ 𝜎𝑖 (𝑝𝑖,𝑘 ), 𝑖 ∈ [𝑁 ], 𝑘 ∈



[𝑀]. Due to Proposition 3.1 and Assumption 4, 𝑞−𝑖,𝑘 is i.i.d. across tasks 𝑘 ∈ [𝑀]. Thus, 𝑧𝑖,𝑘 , 𝑘 ∈ [𝑀]
have the following two properties.

Lemma 5.1. ∀𝑖 ∈ [𝑁 ], 𝑘 ∈ [𝑀], 𝑧𝑖,𝑘 is independent to agent 𝑖’s posterior 𝑝𝑖,𝑘 conditioned on 𝑦𝑘 .

This property ensures that 𝑧𝑖,𝑘 can be used as the conditionally independent noisy ground truth

by Theorem 4.6 and thus, SSR with 𝑧𝑖,𝑘 is strictly proper for eliciting the posterior belief 𝑝𝑖,𝑘 .

Lemma 5.2. For any strategy profile agents play, reference reports of an agent 𝑖 ∈ [𝑁 ] are i.i.d. and
have the same error rates w.r.t. the ground truth, i.e., ∀𝜎1, ..., 𝜎𝑁 ,∀𝑖 ∈ [𝑁 ], ∃𝑒+𝑖 , 𝑒−𝑖 ∈ [0, 1],∀𝑘 ∈ [𝑀] :

Pr[𝑧𝑖,𝑘 = 0|𝑦𝑘 = 1] = 𝑒+𝑖 , Pr[𝑧𝑖,𝑘 = 1|𝑦𝑘 = 0] = 𝑒−𝑖 .

This lemma shows that the error rates of the reference reports for agent 𝑖 are the same across

all tasks. This property makes it possible to estimate the error rates using multi-task data. In the

following sections, we introduce the estimation of the error rates and complete our mechanism.

5.2 Asymptotic setting
To better deliver our idea for error rates estimation, we start with an asymptotic setting with infinite

amounts of tasks and agents, i.e.,𝑀, 𝑁 → ∞. We will later provide finite sample justification for

our mechanism.

We focus on estimating the error rates of the reference reports for agent 𝑖 . Based on Lemma 5.2, we

can use 𝑧 to denote the reference report for agent 𝑖 on a generic task, and we only need to estimate

the error rates 𝑒+𝑧 , 𝑒
−
𝑧 of 𝑧. Our estimation algorithm relies on establishing three equations. We

show that the three equations, with knowing their true parameters (which is true in the asymptotic

setting), together will uniquely define 𝑒+𝑧 , 𝑒
−
𝑧 . Then, in next section, we argue that in the finite

sample setting, with imperfect estimate of parameters from agents’ reports, the solution from the

perturbed set of equations will approximate the true values of 𝑒+𝑧 , 𝑒
−
𝑧 , with guaranteed accuracy.

To construct the three equations, we make the following preparation. Let S−𝑖 := {𝑠 𝑗,𝑘 }𝑗≠𝑖,𝑘∈[𝑀 ]
be a realization of the prediction signals from all agents except 𝑖 on all tasks. For a single task, we

draw three random variables 𝑧1, 𝑧2, 𝑧3. 𝑧1 is a prediction signal uniformly randomly picked from all

peer agents’ prediction signals on that task. Excluding the picked signal 𝑧1, we then a uniformly

randomly pick a prediction signal and set it as 𝑧2. Finally, we uniformly randomly pick a prediction

signal as 𝑧3, excluding both 𝑧1 and 𝑧2. 𝑧1, 𝑧2, 𝑧3 are independent conditioned on the ground truth as

agents’ reports are conditional independent and we have infinite number of agents. Meanwhile,

𝑧1 has the same error rates with the reference report 𝑧 as they two come from the same random

process. With infinite number of agents, 𝑧2 and 𝑧3 also have the same error rates as 𝑧. For the same

reason to 𝑧 (Proposition 3.1 and Assumption 4), 𝑧1, 𝑧2, 𝑧3 each is i.i.d. across tasks. Therefore, with

infinite tasks, we can know any statistics about 𝑧1, 𝑧2 and 𝑧3 by counting corresponding frequencies

on S−𝑖 . We can then establish the following three equations.

1. First-order equation: The first equation is based on the distribution 𝑧. Let 𝛼−𝑖 := Pr[𝑧 = 1].
𝛼−𝑖 can be expressed as a function of 𝑒+𝑧 , 𝑒

−
𝑧 via spelling out the conditional expectation:

𝛼−𝑖 = 𝑝 · Pr[𝑧 = 1|𝑦 = 1] + (1 − 𝑝) · Pr[𝑧 = 1|𝑦 = 0] = 𝑝 · (1 − 𝑒+𝑧 ) + (1 − 𝑝) · 𝑒−𝑧 . (4)

2. Matching between two prediction signals: The second equation is derived from a second

order statistics, namely the matching probability. We consider the matching-on-1 probability of

two uniformly randomly picked prediction signals 𝑧1, 𝑧2 (on the same task, but from different

peer agents). Denote this probability as 𝛽−𝑖 := Pr[𝑧1 = 1, 𝑧2 = 1] . This matching probability can be



Mechanism 2 SSR mechanism

1: For each task 𝑘 , uniformly randomly pick at least 3 agents, assign task 𝑘 to them, collect their

reported predictions and generate the prediction signal for each prediction.

2: For each agent 𝑖 and each task 𝑘 she answers, uniformly randomly select one prediction signal

𝑠 𝑗,𝑘 from her peers’ prediction signals on the same task and let the reference report 𝑧𝑖,𝑘 := 𝑠 𝑗,𝑘 .

3: Solve Eqn.(4, 5, 6) to obtain 𝑒−𝑧 , 𝑒
+
𝑧 .

4: Pay each agent 𝑖 for 𝑞𝑖,𝑘 on task 𝑘 by SSR𝛼 if 𝑒+𝑧𝑖 + 𝑒+𝑧𝑖 ≠ 1, and pay 0, otherwise.

written as a function of 𝑒−𝑧 , 𝑒
+
𝑧 :

𝛽−𝑖 = 𝑝 · Pr [𝑧1 = 1, 𝑧2 = 1|𝑦 = 1] + (1 − 𝑝) · Pr [𝑧1 = 1, 𝑧2 = 1|𝑦 = 0]
= 𝑝 · Pr [𝑧1 = 1|𝑦 = 1] · Pr [𝑧2 = 1|𝑦 = 1] + (1 − 𝑝) · Pr [𝑧1 = 1|𝑦 = 0] Pr [𝑧2 = 1|𝑦 = 0]
= 𝑝 · (1 − 𝑒+𝑧 )2 + (1 − 𝑝) · (𝑒−𝑧 )2. (5)

3. Matching among three prediction signals: The third equation is obtained by going one

order higher that, we check the matching-on-1 probability over three prediction signals 𝑧1, 𝑧2, 𝑧3

drawn randomly from three different peer agents on the same task. Denote this probability as

𝛾−𝑖 := Pr[𝑧1 = 𝑧2 = 𝑧3 = 1] . Similarly as Eqn. (5), we have:

𝛾−𝑖 = 𝑝 · (1 − 𝑒+𝑧 )3 + (1 − 𝑝) · (𝑒−𝑧 )3. (6)

Notice that all three parameters 𝛼−𝑖 , 𝛽−𝑖 , 𝛾−𝑖 can be perfectly estimated using S−𝑖 with infinite

number of tasks and agents, yet without accessing any of the ground truth. With the knowledge of

these three parameters, we prove the following:

Theorem 5.3. (𝑝, 𝑒−𝑧 , 𝑒+𝑧 ) are uniquely identified using Eqn.(4, 5, 6) under Assumption 3, that is,
when 𝑝 ≠ 0.5 and the principal knows 1(𝑝 > 0.5).

The solution of Eqn.(4, 5, 6) can be expressed in closed form, which we present in Mechansim 3 in

the finite sample setting. Now we have completed our mechanism. The full mechanism is presented

in Mechanism 2. We further show that the three equations are both necessary and sufficient to

estimate the error rates:

Theorem 5.4. The higher order (≥ 4) matching equations do not bring in additional information.

Theorem 5.3 shows that without ground truth data, knowing how frequently human agents

reach consensus with each other will help us characterize their (average) subjective biases. Further,

it implies that SSR mechanism is asymptotically (in𝑀, 𝑁 ) preserving the information quantification

as strictly proper scoring rules do and induces a strictly dominant strategy for agent to report

truthfully, when 𝑧 is informative (weakly dominant strategy otherwise). To see this, because both

𝑒+𝑧 , 𝑒
−
𝑧 are set to their true values, we have E[𝑅(𝑞𝑖,𝑘 , 𝑧)] = E[𝑆 (𝑞𝑖,𝑘 , 𝑦)]. Formally,

Theorem 5.5. When 𝑧 is informative, asymptotically (𝑀, 𝑁 → ∞) the expected score of SSR mech-
anism equals to the score of its corresponding strictly proper scoring rule 𝑆 :E[𝑅(𝑞𝑖,𝑘 , 𝑧)] = E[𝑆 (𝑞𝑖,𝑘 , 𝑦)] .

Corollary 1. SSR mechanism is dominantly truthful with infinite number of tasks and agents.

Remark 1. Theorem 5.3 and 5.5 rely on Proposition 3.1 and Assumptions 3 and 4. Proposition 3.1 and
Assumption 4 guarantee that there exists, across the predictions of different tasks, a similar information
pattern that we can learn to infer the ground truth. Therefore, they can be hardly relaxed in IEVW
settings. For Assumption 3, we’d like to argue that at least one bit of information is needed in order to



Mechanism 3 Estimation of 𝑒+𝑧 , 𝑒
−
𝑧

1: Estimate 𝛼−𝑖 , 𝛽−𝑖 , 𝛾−𝑖 . Compute the following quantities:

𝑎 =
𝛾−𝑖 − 𝛼−𝑖𝛽−𝑖

𝛽−𝑖 − (𝛼−𝑖 )2

, 𝑏 =
𝛼−𝑖𝛾−𝑖 − (𝛽−𝑖 )2

𝛽−𝑖 − (𝛼−𝑖 )2

, 𝑥 =
𝑎 −

√
𝑎2 − 4𝑏

2

, 𝑥 =
𝑎 +

√
𝑎2 − 4𝑏

2

2: Denote by 𝑒, 𝑒 as the 𝑥, 𝑥 that are closer and further to 𝛼−𝑖 respectively:

𝑒 = argmin𝑥 ∈{𝑥,𝑥 } |𝑥 − 𝛼−𝑖 |, 𝑒 = argmax𝑥 ∈{𝑥,𝑥 } |𝑥 − 𝛼−𝑖 |

3: If 𝑝 < 0.5: 𝑒−𝑧 := 𝑒, 𝑒+𝑧 := 1 − 𝑒; else if 𝑝 > 0.5: 𝑒−𝑧 := 𝑒, 𝑒+𝑧 := 1 − 𝑒 .

distinguish the case when agents are truthfully reporting from the case that agents are misreporting
by reverting their observations. This is because for every possible tuple (𝑝, 𝑒−𝑧 , 𝑒+𝑧 ) resulted by truthful
reporting from agents, consider the following counterfactual world: relabeling 0 → 1 and 1 → 0,
we will have another distribution of observations characterized by the tuple (1 − 𝑝, 𝑒+𝑧 , 𝑒

−
𝑧 ). Then

agents misreporting will lead to a distribution with parameters being the same as (𝑝, 𝑒−𝑧 , 𝑒+𝑧 ). Thus the
mechanism designer cannot tell the above two cases apart. Some work [14] relaxes Assumption 3 by
excluding the “relabeling equilibrium” from consideration.

We will show in the next section, SSR mechanism is also dominantly truthful with finite number

of tasks and agents under mild conditions. Several remarks follow. (1) We would like to emphasize

again that for an agent 𝑖 , both 𝑧 and 𝑅(·) come from prediction signals of her peer agents’ reports

S−𝑖 : 𝑧 will be decided by agents 𝑗 ≠ 𝑖’s reports S−𝑖 . 𝑅(·) not only has 𝑧 as input, but its definition

also depends on 𝑒+𝑧 and 𝑒
−
𝑧 , which will be learned from S−𝑖 . (2) When making decisions on reporting,

we show under our mechanisms agents can choose to be oblivious of how much error presents in

others’ reports. This removes the practical concern of implementing a particular Nash Equilibrium.

(3) Another salient feature of our mechanism is that we have migrated the cognitive load for having

prior knowledge from agents to the mechanism designer. Yet we do not assume the designer has

direct knowledge neither; instead we will leverage the power of estimation from reported data to

achieve our goal.

5.3 Finite sample analysis
With finite𝑀, 𝑁 , there are multiple reasons that we won’t be able to obtain perfect estimates of

𝑒+𝑧 , 𝑒
−
𝑧 . For instance, in forming Eqn.(4, 5, 6), the error rates of two randomly picked prediction

signals 𝑧2, 𝑧3 will not have the exactly same error rates with 𝑧. However when the number of agent

is large enough, we will show that the error rates of 𝑧2, 𝑧3 can approximate these 𝑒+𝑧 , 𝑒
−
𝑧 with small

and diminishing errors (as a function of number of agents 𝑁 ). This can factor into the errors in

estimating 𝛽−𝑖 . Furthermore, the algorithm’s estimates of the following three parameters for each

agent 𝑖 , 𝛼−𝑖 , 𝛽−𝑖 , 𝛾−𝑖 , are not perfect.
All three parameters 𝛼−𝑖 , 𝛽−𝑖 , 𝛾−𝑖 can be estimated from agents’ reports, without the need of

knowing any ground truth labels. Let 𝑘1, 𝑘2, 𝑘3 be the three agents whose prediction signals are

selected as 𝑧1, 𝑧2, 𝑧3 for each task 𝑘 ∈ [𝑀] (In practice, we only need to assign task 𝑘 to these three

randomly selected agents). Then we estimate:

𝛼−𝑖 =

∑𝑀
𝑘=1

1(𝑠𝑘1,𝑘 = 1)
𝑀

, 𝛽−𝑖 =

∑𝑀
𝑘=1

1(𝑠𝑘1,𝑘 = 𝑠𝑘2,𝑘 = 1)
𝑀

, 𝛾−𝑖 =

∑𝑀
𝑘=1

1(𝑠𝑘1,𝑘 = 𝑠𝑘2,𝑘 = 𝑠𝑘3,𝑘 = 1)
𝑀

.

We then solve the system of equations (4, 5, 6) with these estimates to obtain estimated error rates

𝑒+𝑧 , 𝑒
−
𝑧 . We present the solution in Mechanism 3.



We give a statistical consistency analysis for this estimation procedure for this finite sample

setting. We bound the estimation error in estimating reports’ error rate as a function of𝑀 and 𝑁 .

The first source of errors is due to the imperfect estimations of 𝛽−𝑖 , 𝛾−𝑖 , 𝛼−𝑖 . The second one is due

to estimation errors for matching probability with heterogeneous agents. Formally we have the

following theorem:

Lemma 5.6. 𝑒+𝑧 , 𝑒
−
𝑧 given by Mechanism 3 satisfy |𝑒+𝑧 − 𝑒+𝑧 | ≤ 𝜖, |𝑒−𝑧 − 𝑒−𝑧 | ≤ 𝜖 with probability at

least 1 − 𝛿 , where 𝜖 := 𝑂
(

1

𝑁
+
√

ln
1

𝛿

𝑀

)
, which can be made arbitrarily small with increasing𝑀 and 𝑁 .

Denote by Δ := (1−𝑝) (1− 𝑒−𝑧 − 𝑒+𝑧 ). The above estimation of 𝑒+𝑧 , 𝑒
−
𝑧 further leads to the following

the above consistency result:

Theorem 5.7. For the scoring function 𝑅(·) defined for SSR𝛼 using 𝑒+𝑧 , 𝑒−𝑧 , when 𝑀, 𝑁 are large
enough s.t. 𝜖 ≤ (1 − 𝑒−𝑧 − 𝑒+𝑧 )/4, with probability at least 1 − 𝛿 ,

|𝑅(𝑞𝑖 , 𝑧) − 𝑅(𝑞𝑖 , 𝑧) | ≤
12𝜖 · max 𝑆

Δ2
, ∀𝑞𝑖 ∈ [0, 1], 𝑧 ∈ {0, 1},

where max 𝑆 is the maximum score of the underlying SPSR that 𝑅 builds on. This further implies that

|E[𝑅(𝑞𝑖 , 𝑧)] − E[𝑅(𝑞𝑖 , 𝑧)] | ≤
12𝜖 · max 𝑆

Δ2
, |E[𝑅(𝑞𝑖 , 𝑧)] − E[𝑆 (𝑞𝑖 , 𝑦)] | ≤

12𝜖 · max 𝑆

Δ2
, ∀𝑞𝑖 ∈ [0, 1]

Now we present the incentive guarantees in finite sample regime under noisy estimations. We

first note that any linear transformation of a particular SSR mechanism preserves its incentive

property. To simply our analysis, we will first perform the following operation to “cancel" the

effects of noisy estimation of 𝑒+𝑧 , 𝑒
−
𝑧 in the denominator of 𝑅(·): 𝑅(𝑞𝑖 , 𝑧) := (1 − 𝑒+𝑧 − 𝑒−𝑧 ) · 𝑅(𝑞𝑖 , 𝑧) -

note the above linear transform (independent of agent’s reports) does not change the incentive

property of SSR.

Theorem 5.8. When 𝑧 is informative, set 𝑀, 𝑁 large enough but finite, SSR mechanism returns
a score that is 𝜖 (𝑀, 𝑁 ) close to the score of its corresponding strictly proper scoring rules, where

𝜖 (𝑀, 𝑁 ) = 𝑂
(

1

𝑁
+
√

ln𝑀
𝑀

)
is a diminishing term in both 𝑀 and 𝑁 . Further, for each agent 𝑖 , it is a

strictly dominant strategy to truthfully report 𝑞𝑖,𝑘 ,∀𝑘 when 𝑆 (𝑞,𝑦) is strongly concave and Lipschitz
in 𝑞 for any 𝑦 ∈ {0, 1} and𝑀, 𝑁 are sufficiently large.

The intuition about dominant truthfulness part is that when 𝑀, 𝑁 are sufficiently large, the

estimation error is too small such that the deviation gain through utilizing the error cannot surpass

the loss in the true score, and the qualified𝑀, 𝑁 are determined by the curvature of 𝑆 (·).

Corollary 2. When SPSR 𝑆 (𝑞,𝑦) is strongly concave and Lipschitz in 𝑞 for all 𝑦 ∈ {0, 1}, the SSR
mechanism built upon 𝑆 (·) is dominantly truthful with finite but sufficiently large 𝑁 and𝑀 .

For example, Log scoring rule over interval [0.01, 0.99] is strongly concave and Lipschitz.
5

6 EMPIRICAL STUDIES
Using 14 real-world human forecasting datasets, we demonstrate that without the need of accessing

ground truth, SSR mechanism demonstrate stronger correlation with the true scores given by SPSR

(which use ground truth outcome) than the other peer prediction methods across different datasets

we tested over.

5
When log scoring rule is applied, the range of the prediction is usually restricted to a closed interval excluding point 0 and

1, e.g., [0.01, 0.99]. This is because log scoring rule is not well-defined (infinite) when the prediction is 0 (or 1) while the

ground truth is 1 (or 0).



Items G1 G2 G3 G4 H1 H2 H3 M1a M1b M1c M2 M3 M4a M4b

# of questions (original) 94 111 122 94 88 88 88 50 50 50 80 80 90 90

# of agents (orginal) 1972 1238 1565 7019 768 678 497 51 32 33 39 25 20 20

After applying the filter

# of questions 94 111 122 94 72 80 86 50 50 50 80 80 90 90

# of agents 1409 948 1033 3086 484 551 87 51 32 33 39 25 20 20

Avg. # of answers per question 851 533 369 1301 188 252 33 51 32 33 39 18 20 20

Avg. # of answers per agent 57 62 44 40 28 37 33 50 50 50 80 60 90 90

Majority vote correct ratio (%) 0.90 0.92 0.95 0.96 0.88 0.86 0.92 0.58 0.76 0.74 0.61 0.68 0.62 0.72

Table 1. Statistics about binary-outcome datasets from GJP, HFC and MIT datasets

6.1 Setting
We evaluate the properties of SSR mechanism (built upon three popular SPSR) with 14 real-world

forecasting datasets and compare the results to those of other four popular existing peer prediction

methods. In what follows, we introduce the details of these settings.

6.1.1 Datasets. We conduct our experiments on 14 datasets from three human forecasting and

crowdscourcing projects: the Good judgment Project (GJP), the Hybrid Forecasting Project (HFC)

and an MIT collected human judgment datasets. These three projects are different in both the

populations of participants, forecast topics and elicitation methods.

GJP datasets [2]. It contains four datasets on geopolitical forecasting questions. The four

datasets, denoted by G1∼G4, was collected from 2011 to 2014 respectively. They have different

forecasting questions and forecasters. Each forecaster has a single probabilistic prediction for a

question she answered in the datasets.

HFC datasets [12]. It contains three datasets, denoted by H1∼H3, collected from the Hybrid

Forecast Competition organized by IARPA in 2018. The three datasets share the same forecasting

questions about geopolitics, finance, economics, etc, but have different forecasters and collecting

methods. These three datasets record multiple probabilistic predictions each forecaster made at

different dates. We used the final prediction made by a forecaster on a question she answered.

MIT datasets [25]. It contains seven datasets, denoted as M1a, M1b, M1c, M2, M3, M4a, M4b,

with different questions and forecasters. The questions ranges from the capital of states to the

price interval that artworks belong to, to some trivia questions. The forecasters were students in

class and colleagues in labs. In datasets M1a, M1b, M4a, M4b, forecasters made binary vote on a

forecasting question. In datasets M1c, M2, M3, forecasters gave a probabilistic prediction.

We focus on the forecasting questions with binary outcomes in these datasets. We filtered out

the questions with less than 10 submitted predictions and the participants who predicted on less

than 15 questions. No questions were filtered out from GJP and MIT datasets and only a few from

HFC datasets. Basic statistics of these datasets are presented in Table 1.

6.1.2 SPSR. We consider three SPSR: Brier score, log scoring rule, and rank-sum scoring rule. The

first two are the most widely adopted scoring rules, and they are equivalent to squared error and

cross-entropy loss, respectively, for measuring the accuracy of predictions. The rank-sum scoring

rule can be written as an affine transformation (depending on the number of tasks in each ground

truth category) of AUC-ROC metric, [23]. Therefore, it is also of interest to us.



In the experiments, we adopt the convention used the in the GJP for Brier score that it ranges

from 0 to 2 and a smaller score corresponds to a higher accuracy.
6
To align with Brier score, we

also use a log scoring rule and a rank-sum score rule that a smaller score corresponds to a higher

accuracy and the minimum possible score is 0.

Let [𝑀𝑖 ] be the set of tasks answered by agent 𝑖 . Recall that 𝑞𝑖,𝑘 and 𝑦𝑘 are agent 𝑖’s prediction

and the ground truth for task 𝑘 , respectively. The exact formulas for the three scoring rules we

used are as follows:

• Brier score: 𝑆Brier (𝑞𝑖,𝑘 , 𝑦𝑘 ) = (𝑞𝑖,𝑘 − 𝑦𝑘 )2 +
(
(1 − 𝑞𝑖,𝑘 ) − (1 − 𝑦𝑘 )

)
2

= 2(𝑞𝑖,𝑘 − 𝑦𝑘 )2.

An agent’s accuracy score under Brier score is the mean Brier score
1

𝑀𝑖

∑
𝑘∈[𝑀𝑖 ] 𝑆

Brier (𝑞𝑖,𝑘 , 𝑦𝑘 ).
• Log scoring rule: 𝑆 log (𝑞𝑖,𝑘 , 𝑦𝑘 ) = log(𝑞𝑖,𝑘 ) if𝑦𝑘 = 1; and 𝑆 log (𝑞𝑖,𝑘 , 𝑦𝑘 ) = log(1−𝑞𝑖,𝑘 ) if𝑦𝑘 = 0.

An agent’s accuracy under log scoring rule is also the mean score
1

𝑀𝑖

∑
𝑘∈[𝑀𝑖 ] 𝑆

log (𝑞𝑖,𝑘 , 𝑦𝑘 ).
As it is unbounded in the worst case, we change all predictions with value 1 to 0.99 and

predictions with value 0 to 0.01 to ensure a well-defined score.

• Rank-sum scoring rule is a multi-task scoring rule. For a single task 𝑘 , it assigns a score

𝑆 rank (𝑞𝑖,𝑘 , 𝑦𝑘 ) = −𝑦𝑘 ·𝜓
(
𝑞𝑖,𝑘 |{𝑞𝑖,𝑘′}𝑘′∈[𝑀𝑖 ]

)
,

where 𝜓
(
𝑞𝑖,𝑘 |{𝑞𝑖,𝑘′}𝑘′∈[𝑀𝑖 ]

)
:=

∑
𝑘′∈[𝑀𝑖 ] 1(𝑞𝑖,𝑘′ < 𝑞𝑖,𝑘 ) −

∑
𝑘′∈[𝑀𝑖 ] 1(𝑞𝑖,𝑘′ > 𝑞𝑖,𝑘 ) is the rank

of prediction 𝑞𝑖,𝑘 in all agent 𝑖’s predictions. Then, agent 𝑖’s rank-sum score 𝑆 rank𝑖 is defined:

𝑆 rank𝑖 =
∑
𝑘∈[𝑀𝑖 ] 𝑆

rank (𝑞𝑖,𝑘 , 𝑦𝑘 ).7 The range of the score increases with the number of answered

tasks quadratically. We normalize the score using 1 + 4

𝑀2

𝑖

𝑆 rank𝑖 to range [0, 2].

6.1.3 Treatments. Though existing peer prediction methods are not designed for recovery of SPSR,

we add comparisons to them for completeness of our study.
8
In particular, we’d like to understand

whether in practice SSR has the advantage of revealing the true scores given by SPSR while not

accessing ground truth information.

In our experiments, we consider four popular existing peer prediction methods, serving as com-

parisons to SSR: proxy scoring rule (PSR) with extremized mean [34], peer truth serum (PTS) [27],

correlated agreement (CA) [31], determinant mutual information (DMI) [14].

PSR is to directly apply the SPSR w.r.t. an unbiased proxy of the ground truth, andWitkowski et al

recommended using the extremized mean of the reported predictions as the unbiased proxy, when

there is no verification data available [34]. Using different SPSR as the building block, we can get

different PSR. PTS, CA, DMI are not build upon SPSR and are designed to elicit a categorical label

instead of a probabilistic prediction. When applied them on datasets with probabilistic predictions,

we assume that a categorical label is drawn from the probabilistic prediction and we compute an

asymptotically consistent estimator of their expected scores, where the expectation is taken over

the drawn of the categorical label.

6.2 Main results

Unbiasedness of SSR. We exam to what extend SSR recover the true accuracy scores given by

different SPSR. We compute the true mean score and mean SSR score of each human forecaster in

all datasets.

6
This is different from using SPSR as a payment method, where the higher the better. We can transfer between these two

usages by applying a negative scalar.

7
The AUC-ROC of agent 𝑖 is equal to 1

2

(
1 − 1

𝑀+
𝑖
(𝑀𝑖−𝑀+

𝑖
) 𝑆

rank
𝑖

)
, where𝑀𝑖+ :=

∑
𝑘′∈[𝑀𝑖 ] 1(𝑦𝑘′ = 1) [23].

8
We do not intend to claim our mechanism is better in any sense, as it would be an unfair comparison since the goals were

different in each design of these mechanisms.



(a) Brier (𝑦 = 0.787 · 𝑥 + 0.001) (b) Log (𝑦 = 0.790 · 𝑥 − 0.005) (c) Rank-sum (𝑦 = 0.839 · 𝑥 − 0.057)

Fig. 1. Regression of individuals’ true accuracy and SSR score over 14 datasets under three different SPSR.

(a) Brier score (b) Log scoring rule (c) Rank-sum scoring rule

Fig. 2. The number of datasets in each level of correlation (measured by Pearson’s correlation coefficient)
between individuals’ peer prediction scores and different SPRS.

The pairs of true mean accuracy score and mean SSR score of every individual in the 14 datasets

are illustrated by blue dots in Fig 1. It is clear that most of them concentrate around 𝑦 = 𝑥 , which

demonstrates the unbiasedness of SSR scores. Then, we separate forecasters into different bins w.r.t.

their true scores. For Brier score and rank-sum scoring rule, the centers of the bins are from 0 to

2.0 with a width of 0.05. For log scoring rule, the centers of the bins are from 0 to 5 with a width

of 0.1. For forecasters in each bin, we then calculate the mean SSR score of these forecasters (we

ignore bins with less than 20 forecasters). We find that for users at same true score level, their SSR

scores are also at at similar level. These are illustrated by orange triangles in Fig 1. Finally, we draw

the linear regression curves on these binned means such that each true accuracy level is weighted

uniformly in the regression (blue curve in Fig 1). The slope for the three curves are all around 0.8,

while the intercepts are all round 0. This shows that the average SSR score is extremely close to

the true accuracy score when the true accuracy score is small. In other words, SSR can calibrate

the true accuracy almost perfectly for sophisticated forecasters. Given most agents have a true

accuracy score better than uniformly randomly guessing 0 and 1 (which is 1 in Brier score and

rank-sum score and 2.3 in log score) in these 14 datasets, SSR approximate the true scores well for

most of the time.

Correlation with SPSR. We exam the correlations between agents’ peer prediction scores and

true accuracy scores given by the three SPSR, Brier score, log scoring rule and rank-sum scoring

rule. When a SPSR is chosen as the true score, we also use this SPSR as the underlying scoring rule

called by SSR and PSR. PTS, CA and DMI scores are independent from which SPSR is used. We

adjust the scores such that a lower score corresponds to a higher accuracy (or a higher payment to

the agents) in the context of each peer prediction method.

We exam these correlations on each dataset independently, and categorize the level of correlations

according to the Pearson’s correlation coefficient and p-values. As shown in Fig 2, we find that

for Brier score, and log scoring rule, SSR achieves a Pearson’s correlation coefficient > 0.8 on

9 out of 14 datasets. The second best, PSR, achieves a coefficient > 0.8 on at most 6 out of 14

datasets. PTS and CAS do not have a coefficient > 0.8 on any datasets, while DMI achieves



(a) Mean squared loss (b) Mean cross-entropy loss (c) AUC-ROC

Fig. 3. The portion of top 𝑡% forecasters w.r.t. 3 different metrics (mean squared loss, cross-entropy loss,
AUC-ROC loss) in the top 𝑡% forecasters selected by different methods (averaged over 14 datasets).

(a) Mean squared loss (b) Mean cross-entropy loss (c) AUC-ROC

Fig. 4. The portion of bottom 50% forecasters w.r.t. 3 different metrics (mean squared loss, cross-entropy loss,
AUC-ROC loss) in the top 𝑡% users selected by different methods (averaged over 14 datasets).

coefficient > 0.8 on at most 2 of the datasets. For rank-sum scoring rule, all peer prediction

scores achieve similar levels of correlation among 14 datasets, while SSR are better than the others.

We observe similar results on Spearman’s correlation test (Fig 5 in the Appendix [18]). This result

on Spearman’s (rank) test, in particular, implies that SSR mechanism rank the agents in a similar

order of agents’ true expertise.

Expert identification. We exam to what extent different peer prediction scores can identify

top performing experts. We rank the forecasters according to one of three most-widely used loss

function (mean squared loss, mean cross-entropy loss, and AUC-ROC). We focus on two metrics

about expert identification: i. percent of true top 𝑡% forecasters in the top 𝑡% forecasters selected by

a peer prediction methods, ii. percent of below-average forecasters, the bottom 50% forecasters,

in the top 𝑡% forecasters selected by a peer prediction methods. Results are shown in Fig 3 and

Fig 4. We find that for both mean squared loss and mean cross-entropy loss, in the top 𝑡% forecaster

selected by SSR, there are more true top 𝑡% forecasters, than in the top forecasters selected by

other peer prediction scores for 𝑡% ranges from 5% to 50%. Meanwhile, there are less below-average

forecasters in the top 𝑡% forecasters top 𝑡% by SSR and PSR than by the other peer prediction

scores. For AUC-ROC, different peer prediction scores have similar performance, while SSR and

DMI are slightly better than the others. These results echo the results about the correlation of peer

prediction scores w.r.t. different SPSR.

7 CONCLUDING REMARKS
We propose SSR to quantify the value of elicited information in IEWV settings, as strictly proper

scoring rules do for the with verification setting. SSR also induce truthful reporting in strictly

dominant strategy for eliciting probabilistic predictions. SSR contribute to both the SPSR and peer



prediction literature. Our findings are both verified analytically and empirically. Our work opens

up the study of calibrating the value of information for the peer prediction setting.
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