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The standard approach of mechanism design theory 
insists on equilibrium behaviour by participants. This 
assumption is captured by imposing incentive con-
straints on the design space. But in bridging from the-
ory to practice, it often becomes necessary to relax 
incentive constraints in order to allow tradeoffs with 
other desirable properties. This article surveys a 
number of different options that can be adopted in  
relaxing incentive constraints, providing a current 
view of the state-of-the-art. 
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Introduction 

MECHANISM design theory formally characterizes institu-
tions for the purpose of establishing rules that engender 
desirable outcomes in settings with multiple, self-
interested agents each with private information about 
their preferences. In the context of mechanism design, an 
institution is formalized as a framework wherein mes-
sages are received from agents and outcomes selected on 
the basis of these messages. The messages represent 
claims by agents about their private information. 
 A simple example is given by an auction, where the 
messages are bids and provide statements about willing-
ness to pay and the outcome allocates the item to an agent 
and determines the payment. A central tenet of mecha-
nism design is that agents will play an equilibrium of the 
game induced by their preferences, beliefs about the pref-
erences of other agents, and the rules of the game that are 
implied by the design of the institution. Since the seminal 
work of Hurwicz1, the standard way in which design pro-
ceeds is through imposing incentive constraints on the 
design problem. 
 In particular, the optimal design is identified amongst 
the possible designs that are incentive compatible, in that 
it is an equilibrium for each agent to report its private  
information truthfully. What is important is not that a  
designer insists on truthful revelation per se. Rather, the 
incentive constraints capture the idea that properties of 
mechanisms are studied in an equilibrium. This broader 
view follows from the revelation principle, which allows 
a focus on incentive-compatible mechanisms without loss 

of generality, once one adopts an equilibrium-based  
design stance. The revelation principle establishes that 
any properties obtained in the equilibrium of a mecha-
nism can also be obtained in the truthful equilibrium of 
an incentive compatible mechanism. 
 Various concepts of equilibrium can be adopted for the 
purpose of mechanism design. The strongest concept is 
dominant-strategy equilibrium, where each agent’s best 
response is invariant to the reports made by other agents. 
Amongst incentive-compatible mechanisms, those that 
admit this solution concept are strategyproof, meaning 
that truthful reporting is a dominant strategy equilibrium. 
For example, a second-price auction, where the item is 
sold to the highest bidder but for the second highest bid 
amount, is strategyproof. 
 Strategyproofness is a property with strong theoretical 
and practical interest. Some of the reasons for its appeal 
include: 
 
(P1) Simplicity: Participants do not need to model or 

counterspeculate about the behaviour of other partici-
pants. 

(P2) Dynamic stability: In dynamic contexts, participants 
do not need to modify their reports in response to 
changes of the reports by other agents. 

(P3) Advice and fairness: Normative advice can be pro-
vided to participants, and strategyproof mechanisms 
are fair in the sense that gaming is neither possible 
nor advantageous. 

(P4) Robustness: Strategyproofness provides a prediction 
about behaviour that is robust to assumptions about 
agent beliefs. 

(P5) Empirical analysis: Reported preferences can be 
reasonably assumed to be truthful, which enables 
empirical work, for the purpose of public policy and 
also for adjusting mechanism parameters or ongoing 
redesign. 

 
These properties have been discussed in the literature2–4. 
Some of these properties have been decisive in selecting 
mechanisms for real-world applications (see note 1). 

The case for relaxing strategyproofness 

On the other hand, there are theoretical reasons to want to 
look for an alternative to full strategyproofness. Some of 
the objections from theory include: 
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(U1) Impossibility theorems: For example, strate-
gyproofness precludes stable matching5, core-
selecting combinatorial auctions6,7, non-dictatorial 
voting rules8,9, and efficient, individual-rational and 
no-deficit double auctions10. 

(U2) Analytical bottleneck: For example, the problem of 
characterizing the optimal strategyproof mecha-
nism for maximizing revenue in combinatorial auc-
tions (even on two items) remains open, and the 
problem of characterizing the maximally efficient, 
strategyproof combinatorial exchange (that runs 
without incurring a deficit) remains open. Gener-
ally speaking, it has proved difficult to handle in-
centive constraints for domains in which the agent’s 
preferences are ‘multi-dimensional’, in the sense 
that they are represented by more than a single 
number. 

(U3) Bad computational properties: For example, strate-
gyproofness precludes polynomial-time constant-
factor approximation schemes for the combinatorial 
public projects problem11, and a sequence of related 
results that establish a gap between what is possible 
to achieve in polynomial time with and without in-
centive constraints exist for combinatorial auctions; 
see ref. 12 for a survey. 

 
In addition, strategyproof mechanisms can be complex to 
describe or implement, and require a fully general lan-
guage with which agents can report their preferences. 
Simpler mechanisms may be preferred in practice, even if 
the strategic complexity is increased. Moreover, while 
there are few examples of strategyproof mechanisms used 
in practice, mechanisms with different kinds of partial 
strategyproofness are quite typical. In public school 
choice, it is common to adopt deferred acceptance algo-
rithms for matching students to schools. But they are 
sometimes used with truncated preference lists, which 
precludes strategyproofness13. In auction design, the 
‘generalized second price’ (GSP) auction for selling ads 
adjacent to internet search engine results14 and the uni-
form price auctions for U.S. Treasury debt15 lack strate-
gyproofness and are adopted for other reasons. However, 
both exhibit one of the signature elements associated with 
strategyproof mechanisms: payments depend only on the 
bids of others and not on a player’s own report, which 
improves the incentive properties. 
 Given the above, there is growing interest in develop-
ing a theory of mechanism design in which the incentive 
constraints are relaxed. Certainly, strategyproofness is a 
powerful property when it can be achieved. However, it is 
undeniably strong; for example, a mechanism in which 
one agent can on one occasion gain a small benefit from a 
deviation is not strategyproof. But what if agents are 
poorly informed about the reports of others, or what if 
strategic behaviour is costly (e.g. due to the cost of  
information to predict what others will do)? 

 Ultimately, we would like to replace strategyproofness, 
where necessary, with a design approach that still retains 
properties (P1)–(P5), while being responsive to the 
aforementioned concerns. In particular, desirable proper-
ties for a new theory of approximate strategyproofness 
include: 
 
(P6) Tradeoff enabling: In view of impossibility theo-

rems, a useful theory should enable a tradeoff be-
tween strategyproofness and other economic and 
computational properties. 

(P7) Design tractability: In view of the difficulty of de-
signing optimal, strategyproof mechanisms, a use-
ful theory should simplify the design problem. 

(P8) Explanatory power: In view of the relative lack of 
strategyproof mechanisms in practice, a useful the-
ory should explain the design features of mecha-
nisms that are used in practice. 

 
A side note: One might wonder whether the relaxation to 
Bayes–Nash equilibrium, and its associated concept of 
Bayes–Nash incentive compatibility (BNIC) are useful as 
a work around for the challenges (U1)–(U3) involved in 
strategyproof design. Although this can help in regard to 
(U1), BNIC loses many of the benefits of strategyproof-
ness, at least (P1), (P2), (P4) and (P5), and arguably (P3). 
Most practioners accept that the Bayes–Nash equilibrium 
does not provide a robust enough prediction of behaviour 
to guide practical design16. Moreover, mechanisms that 
are BNIC but not strategyproof are necessarily fragile in 
that they depend on the designer having adopted accurate 
beliefs in regard to agent preferences. They fail Wilson’s 
real-world design mandate to be ‘detail free’17. 
 In what follows, we introduce relevant notation and  
formal concepts from strategyproof mechanism design 
theory, before continuing to discuss different notions of 
approximate strategyproofness. In closing, we provide a 
brief summary and consider next steps. Readers looking 
for a more gentle introduction to mechanism design the-
ory will benefit from Jackson18. 

Strategyproof mechanisms 

Consider N = {1, …, n} agents, each self-interested and 
with private information about their preferences, and a set 
A = {a1, …, am} of alternatives. For example, the agents 
may be voters or bidders, and the alternatives might  
represent different candidates in an election or different 
allocations of resources (see note 2). A basic dichotomy 
exists in mechanism design between domains with 
money, and thus the ability to transfer utility between 
agents, and domains without money. 
 In domains without money (such as public school 
choice), each agent has a strict preference order ni ∈ L on 
alternatives, where L is the set of all such preferences. A 
preference profile n = (n1, …, nn) is an element of Ln. 
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 It is also useful to associate each agent with a von Neu-
mann–Morgenstern utility function ui

 : A → [0, 1]. Given 
preference order ni, then we require ui ∈ Uni, where Uni is 
the set of representative utility functions for preferences 
ni, such that if aj ni ak then ui(aj) > ui(ak). 
 Given this, a mechanism ( f ) is defined by a choice rule 
f : Ln → A. Each agent makes a claim about his prefer-
ence order, and on the basis of the reports an alternative 
is selected. A strategyproof mechanism has the property 
that, 
 
 ui( f (ni, n–i)) ≥ ui( f (n′i, n–i)), ∀i, ∀ni, ∀n′i, ∀n–i, (1) 
 
where ui ∈ Uni and n–i = (n1, …, ni–1, ni+1, … nn) denotes a 
preference profile without agent i. Preference order  
ni denotes the true preference order of agent i and n′i  
denotes a possible misreport. In words, no agent can 
benefit by misreporting his preference order whatever the 
reports of other agents. 
 In domains with money (such as auctions) we assume 
quasi-linear utility functions, ui

 : A ×  → , such that 
ui(aj, t) ∈  is an agent’s utility for alternative aj and 
payment t ∈ , and ui(aj, t) = vi(aj) – t, where vi ∈ V: 
A →  denotes an agent’s valuation function. Quasi-
linearity insists that an agent’s utility is linear in  
payment, and allows the valuation to be interpreted  
in monetary units. A valuation profile v = (v1, …, vn) is an 
element of Vn, where V is the domain of valuation func-
tions. 
 Given this, a mechanism ( f, p) is defined by a choice 
rule f : Vn → A and a payment rule p : Vn → n. Based on 
reports îv  from each agent i, a mechanism selects alterna-
tive ˆ( )f v  and collects payment ˆ( )ip v  from each agent i. 
A strategyproof mechanism has the property that, 
 
 vi( f (vi, v–i)) – pi(vi, v–i) ≥ vi( f (v′i, v–i)) – pi(v′i, v–i), 
 
       ∀i, ∀vi, ∀v′i, ∀v–i, (2) 
 
where v–i = (v1, …, vi–1, vi+1, …, vn) denotes a valuation 
profile without agent i. In words, no agent can benefit by 
deviating from truthful reporting whatever the reports of 
others. 
 For both domains with and without money, we assume 
symmetry, so that the preference (or valuation) domain is 
the same for all agents, and choice and payment rules are 
invariant to permutations of the preference (or valuation) 
profile. This is for expositional purposes. 
 Sometimes the rules of a mechanism are randomized. 
In this case, the definition of strategyproofness can be 
generalized in the obvious way, to either hold in expecta-
tion or for every possible random draw. Further, we can 
also have a prior on preferences, denoted D ∈ Δ(Ln) (or 
D ∈ Δ(Vn)), where Δ denotes the probability simplex. In 
these cases, we insist that the prior is symmetric with  
respect to agents (but allow for correlated preferences). 

Examples. In a domain without money, well-known 
strategyproof mechanisms include: 
 
• Median mechanism: For example, alternatives are 

the location of a fire station on a [0, 1] line, and each 
agent has a most preferred alternative and preferences 
that are monotonically decreasing away from this  
alternative. The median mechanism locates the fire 
station at the median location amongst the set of  
reports of most-preferred locations. This is strate-
gyproof and Pareto optimal. 

• Random serial dictatorship: For example, n rooms 
are to be assigned to n students. Students are placed 
into a random priority order and assigned the most 
preferred room of those remaining, according to  
reported preference orders. This is strategyproof and 
Pareto optimal. 

 
In a domain with money, well-known strategyproof 
mechanisms include: 
 
• Second-price auction: For example, a painting is 

sold to the highest bidder for the second highest price. 
This is strategyproof and allocatively efficient. 

• Take-it-or-leave-it: For example, suppose multiple 
paintings are to be sold. First, bidders are placed into 
a random priority order. In priority order, each bidder 
is offered the remaining paintings and sold the bundle 
of paintings that maximizes its utility given its repor-
ted valuation function and the price on each painting, 
with prices updated by the auctioneer based on pre-
vious offers and responses. This is strategyproof. 

Quantitative measures of susceptibility 

In this section, we survey different quantitative measures 
of approximate strategyproofness that have appeared in 
the literature or are simple combinations of existing 
ideas. These quantified susceptibility measures (see note 
3) differ along two dimensions: 
 
1. The informational stance: Are agents assumed to be 

well-informed about the reports of other agents (moti-
vating ex post regret) or do agents have uncertainty 
about the reports of other agents (motivating interim 
regret)? 

2. The worst-case versus probabilistic stance: Is the 
designer assumed to have strict uncertainty about 
agent preferences (motivating worst-case measures), 
or does the designer have a (perhaps inaccurate) pro-
babilistic model of agent preferences with which to 
guide design (motivating expected-value and percen-
tile-based measures)? 

 
Along the second dimension we also consider an inter-
mediate analysis approach in terms of worst-case  
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independent and identically distributed (IID) beliefs. 
Here, the susceptibility measures are defined in the worst 
case over all possible preference distributions, under the 
restriction that agent’s preferences are independently and 
identically sampled from the same distribution. 
 It bears emphasis that there are two different view-
points under consideration when categorizing different 
approaches to approximate strategyproofness: that of an 
agent and that of a designer (or planner). These can be 
combined in different ways; for example, the overall 
stance can be that of a perfectly informed agent but a  
designer with strict uncertainty, or that of a Bayesian 
agent and a designer with worst-case IID beliefs. 
 We refer to worst-case measures as ‘type I’ and denote 
them as σ I, worst-case IID measures as ‘type II’ and  
denote them as σ II, and prior-based measures as ‘type III’ 
and denote them as σ III. Variations along the first dimension 
are denoted by footnotes, for example σI

ep versus σI
interim. 

 For the most part we focus on domains with money 
rather than domains without money. Rather, we provide a 
few comments to suggest how the definitions extend to 
domains without money. 

Quantifying via ex post regret 

The ex post regret to agent i at valuation profile 
v = (v1, …, vn) is: 
 
 regret ( ) sup( ( , ) ( , )),

i

i i i i i i i
v V

v u v v u v v− −
′∈

′= −  (3) 

 
where ui(vi, v′–i) = vi( f (vi, v′–i)) – pi(vi, v′–i), and the utility 
for agent i with valuation vi given a mechanism with 
choice rule f and payment rule p and reports vi, v′–i. Simi-
larly, ui(v′i, v′–i) = vi( f (v′i, v′–i)) – pi(v′i, v′–i), and the agent’s 
utility when it reports v′i. 
 Given this we define the following measures of suscep-
tibility: 
 
• Worst-case susceptibility: 
 

  ep sup (regret ( )),
n

I
i

v V
vσ

∈
=  (4) 

 
which is the maximum amount an agent can gain from 
deviation across all possible valuation profiles (see 
note 4). 

 
• Worst-case IID susceptibility: Let φ ∈ Δ(V) denote a 

full support distribution, and v–i ~ IID–i(φ) denote a 
valuation profile to all agents except i, where each 
valuation is sampled identically and independently 
from φ. Given this, we define 

 
 ep ~ ( )sup(sup( [regret ( , )])),

i i
i

II
v IID i i i

v
E v vφ

φ
σ

− − −=  (5) 

  which is the expected amount an agent could gain 
from optimally deviating from truthful reporting on 
every valuation profile, given a worst-case IID distri-
bution on valuations and taking the maximum over all 
possible agent valuations. 

 
• Prior-based susceptibility: Given a prior D on valua-

tion profiles, we define 
 

 ep ~ ( | )sup( [regret ( , )]),
i i i

i

III
v D v v i i i

v
E v vσ

− − −=  (6) 

 
which is the expected amount an agent could gain 
from optimally deviating from truthful reporting, tak-
ing the maximum over all possible agent valuations, 
and where D(v–i

 | vi) denotes the conditional distribu-
tion given vi. 

 
We have the relationship: 
 
 σ I

ep ≥ σ II
ep, σ I

ep ≥ σ III
ep. (7) 

 
For distributions D that are restricted to be conditionally 
IID, given vi, then we have 
 
 σ II

ep ≥ σ III
ep. (8) 

 
and this is the sense in which the designer’s perspective 
is worst-case (but distributional) in the type-II measure. 
 The type-II and type-III susceptibility measures can be 
immediately extended to domains without money. First, 
regret is extended to be defined in terms of a representa-
tive utility function, 
 
 regret ( , ) sup( ( , ) ( , )),

i

i i i i i i i i
L

u u u− −
′∈

′= −
n

n n n n n  (9) 

 
for ui ∈ Uni, where ui(ni, n–i) = ui( f (ni, n–i)), for a mecha-
nism with choice rule f. Given this, the type-III measure 
of susceptibility in a domain without money would be  
defined as, 
 

 ep ~ ( | )
,
sup ( [regret ( , )]),

i i i
i i i

III
D i i

u U
Eσ

− −
∈

= u
n

n n n
n

n  (10) 

 
and similarly for the type-II measure (see note 5). 
 In place of ex post regret, but still based on ex post  
regret, we can adopt: 
 
• 0/1 indicator: Define indicator I(regret(v) > 0), 

equal to 1 if there is at least one agent with non-zero 
regret. For the type-I susceptibility measure, a sensi-
ble generalization is to count the number of profiles 
that are manipulable in this sense: 
 
 0/1 ( (regret( ) 0)).

n

I

v V
vσ

∈

= >∑ I  (11) 
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At a profile v where regret(v) = 0, then truthful  
reporting is a (complete information) Nash equili-
brium. Given this, the measure counts the number of 
profiles where truthful reporting is not a (complete  
information) Nash equilibrium. Moreover, if σ I

0/1 = 0, 
then the mechanism is strategyproof (see note 6).  
Alternatively, if the mechanism has a randomized 
choice rule, then one can define, for some fixed agent i, 

 

 prob sup (Pr(regret ( ) 0)),
n

I
i

v V
vσ

∈
= >  (12) 

 
where Pr(regreti(v) > 0) is the probability of non-zero 
regret to agent i on profile v given the randomized 
choice rule. In words, σ I

prob is the maximum probabi-
lity, across all valuation profiles, that an agent has a 
useful deviation. 
 The type-II and type-III susceptibility measures can 
be adapted to this approach as well. For example, 
given a prior D then a simple definition for the type-
III measure is: 

 

 0/1 ~ [ (regret ( ) 0)],III
v D iE vσ = >I  (13) 

 
representing the probability of non-zero regret given 
the prior (see note 7). 

 
• Marginal incentives: Define Δi(v) = limε→0 (regreti(ε, v)/ 

ε), where regreti(ε, v) is the maximum regret to agent i 
at valuation profile v given that it is limited to deviate 
to some v′i that is within distance ε (for some metric) 
of vi. This is the maximal rate of increase in utility for 
agent i by making a small deviation around its true 
valuation at valuation profile v. Given this, the earlier 
susceptibility measures can be extended to adopt this 
quantity. For example, we could define the type-I 
measure as, 

 

 marginal sup ( ) .I
i

v i
vσ

⎛ ⎞
= Δ⎜ ⎟

⎝ ⎠
∑  (14) 

 
In words, this is the maximum total marginal incen-
tive to deviate across all valuation profiles (see note 
8). Measures based on marginal incentives are appro-
priate if agents are likely to deviate through small  
adjustments to reports, perhaps coupled with feedback 
in the context of an ongoing (e.g. repeated) auction. 

 
• Quantile-based measures: For the type-II and type-

III measures, let Fφ or FD denote the cumulative  
distribution function on ex post regret induced by a 
mechanism, under the IID model φ and prior D model 
respectively. Given this, we can define 

 

ep, perc ( ) theIII zσ =  zth percentile of ex post regret  

       according to prior D. (15) 

In words, ep, perc
IIIσ  (95%) is the 95% percentile of ex 

post regret, such that an agent has less than this 
amount of regret with probability 0.95. This is defined 
analogously for the type-II measure, where the per-
centile is identified with respect to the worst-case dis-
tribution φ, that maximizes z (see note 9). Similarly, 
we can define (and analogously for ep, tail )

IIσ  
 

 ep, tail ( ) 1 ( ),III
DFσ ε ε= −  (16) 

 
for ε ≥ 0, as the probability that an agent has ex post 
regret greater than ε. 

Quantifying via interim regret 

In place of ex post regret we can adopt interim regret as 
the basis for quantifying susceptibility. This takes a dif-
ferent informational stance: agents have only probabilistic 
information about the reports of other agents, and must  
select a optimal misreport given this probabilistic model. 
 A worst-case regret measure is not well defined given 
this informational stance, but we can develop type-II and 
type-III measures: 
 
• Worst-case IID susceptibility: Let IID–i(φ) denote an 

IID distribution over valuation profiles to all agents 
except i, defined according to φ. Give this, we define: 

 

 interim IID ( )
, ,

sup ( [ ( , )]
i

i i

II
i i i

v V v V
E u v vφ

φ
σ

− −
′∈ ∈

′=  

 
     IID ( )[ ( , )]),

i i i iE u v vφ− −−  (17) 
 

which is the maximum expected amount an agent 
could gain by deviating from truthfulness over all 
possible valuations, given a worst-case IID distribu-
tion on valuations for other agents, and restricting the 
agent to select a single misreport v′i for all realizations 
v–i (see note 10). 

 
• Prior-based susceptibility: Given a prior D on 

valuation profiles, we define 
 

 interim ( | )
,

sup ( [ ( , )]
i i

i i

III
D v v i i i

v V v V
E u v vσ

− −
′∈ ∈

′=  

 
     ( | )[ ( , )]),

i iD v v i i iE u v v
− −−  (18) 

 
where D(v–i|vi) denotes the conditional distribution, 
given agent i’s valuation is vi. This has the same mean-
ing as interim ,IIσ  except that it is defined on prior D. 

 
 For distributions D that are conditionally IID, given vi, 
then we have the relationship: 
 

 interim interim.II IIIσ σ≥  (19) 



SPECIAL SECTION: GAME THEORY 
 

CURRENT SCIENCE, VOL. 103, NO. 9, 10 NOVEMBER 2012 1026 

Moreover, the following inequalities hold: 
 

 interim ep interim ep, .III III II IIσ σ σ σ≤ ≤  (20) 
 
As with ex post regret-based measures, these susceptibi-
lity measures can be generalized to domains without 
money. For example, 
 
 interim IID ( )

, , ,
sup ( [ ( , )]

i
i i i i

II
i i i

L L u U
E uφ

φ
σ

− −
′∈ ∈ ∈

′=
nn n

n n  

 
    IID ( )[ ( , )]),

i i i iE uφ− −− n n  (21) 
 
and similarly for interim .IIIσ  The measure is now defined in 
terms of the supremum over all utility functions that are 
representative of an agent’s preferences. 
 The variations explored in the context of ex post regret 
can also be adopted here, including 0/1, marginal-
incentives and quantile-based measures. 

Quantifying via reference 

In domains with money, an alternative measure of sus-
ceptibility is provided by the divergence between the dis-
tribution on payments in a mechanism and its ‘reference’ 
mechanism. 
 The reference mechanism has the same choice rule but 
a different payment rule, and is strategyproof. For exam-
ple, the reference mechanism could be a strategyproof 
combinatorial auction (e.g. the VCG mechanism) and the 
mechanism in question a core-selecting combinatorial 
auction. 
 For the Kullback–Lieber (KL) divergence, the suscep-
tibility measure (expressed here as a type-III measure) is: 
 

 ref
ref ref

0

( )
( ) log d ,

( )
III

w

h w
h w w

h w
σ

∞

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫  (22) 

 
where href(w) is the probability density function on pay-
ments in the reference mechanism (induced by distribu-
tion D on valuation profiles) and h(w) is the probability 
density function on payments for the mechanism under 
consideration (induced by D). The definition is easily 
adapted to a type-II measure; e.g. by adopting the distri-
bution φ that maximizes the divergence. 
 A number of variations are possible. For example, the 
payment can be normalized by an agent’s value or  
replaced by (normalized) payoff, and the distribution can 
be restricted to agents with non-zero payoff (see note 11). 

Limiting criteria 

The ex post and interim regret-based susceptibility meas-
ures have also been adopted for the purpose of characte-

rizing mechanisms according to their limiting behaviour, 
for large ‘replica’ economies. 
 Generally speaking, a replica economy is constructed 
by increasing the number of agents in a system without 
increasing the number of alternatives that are distinct in 
payoff from the perspective of a given type; e.g. without 
increasing the number of schools in public school choice, 
or the number of different kinds of goods in a market set-
ting. 
 Two limiting criteria that have been proposed are: 
 
• ε-strategyproofness (or threshold strategyproofness): 

For any ε > 0, there is some n0 such that for any number 
of agents n ≥ n0, susceptibility σI

ep ≤ ε (see note 12). 
• SP-L: A mechanism is strategyproof in the large if, 

for any ε > 0, there is some n0 such that for all n ≥ n0, 
susceptibility interim

IIσ ε≤  (see note 13). 
 
Observe that ε-strategyproofness (ε-SP) implies SP-L. 
Moreover, SP-L is strictly weaker than ε-SP, because it 
precludes knife-edge cases through its use of distri-
butions; e.g. the competitive mechanism is SP-L, but not  
ε-SP, except with additional continuity assumptions2,32. 

Discussion 

Given a particular susceptibility measure, a designer can 
proceed to identify mechanisms within a feasible class 
with minimal susceptibility, or understand tradeoffs  
between susceptibility and other economic and computa-
tional properties. 
 In worst-case frameworks, a designer can also adopt 
the measure in a ‘strong sense’ and consider a dominance 
relationship between two mechanisms. For expositional 
purposes, consider the following design approach,  
inspired by σI

ep. Say that mechanism M1 dominates M2 if: 
 
(i) the ex post regret to agent i is no greater in M1 than 

M2 for all valuation profiles, and 
(ii) there is at least one profile where the ex post regret to 

agent i in M1 is strictly less than the ex post regret in 
M2. 

 
Given this, then a mechanism is optimal in regard to ex 
post regret if it is undominated by any other mechanism. 
Certainly, a mechanism is optimal in this sense if it 
minimizes ex post regret on every profile. Many varia-
tions are possible. For example, one can consider domi-
nance in regard to the total ex post regret across agents, 
or according to the 0/1 (‘regret > 0’) criterion (see note 
14). 
 The ex post regret-based susceptibility measures take 
an extreme informational stance, in that implicit to the 
approach is a model where agents are perfectly informed 
about the reports of others. Still, their appeal is that they 
are simple, and a minimal relaxation from strategyproof-
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ness. In particular, σI
ep = 0 implies strategyproofness (as 

does σII
e p or σIII

ep = 0, except for degenerate type profiles). 
Moreover, these measures bound interim regret-based 
measures, with interim ep

II IIσ σ≤  and interim ep .III IIIσ σ≤  There 
can also be a real sense in which ex post regret is a pro-
blem if agents become informed after the fact about a 
possibily useful deviation from reporting true prefer-
ences. In this case, an agent could be unhappy or consider 
the mechanism unfair. 
 In cases where the guarantees provided by ex post  
regret measures are too weak or the measures do not pro-
vide strong enough design guidance, then it makes sense 
to adopt interim regret-based measures. The informa-
tional stance adopted in the interim regret-based suscep-
tibility measures is more plausible, in that it provides 
agents with only probabilistic models of other agents. 
Moreover, in adopting the type-II measure it still avoids 
any assumptions about agent beliefs, while capturing this 
appealing interim rather than ex post stance for the pur-
pose of design. On the other hand, it seems probable that 
interim regret measures are more cumbersome to work 
with, analytically and computationally, than ex post  
regret measures (see ref. 29 for a discussion); see refs 19 
and 30 for an analysis of design tradeoffs in voting and 
auction contexts. Although the tight connection with 
strategyproofness is lost, zero susceptibility under type-II 
or type-III interim regret implies that a mechanism is 
BNIC. 
 Both ex post and interim susceptibility measures can be 
compared against a cost C > 0 of manipulation. C could 
represent the cost to an agent for gathering information 
about other agents, or the computational (or cognitive) 
cost of determining an optimal deviation, or the moral 
cost of strategic behaviour (see note 15). Given this, then 
a mechanism can be said to be ‘approximately strate-
gyproof with respect to cost C’ if susceptibility σ ≤ C. 
For example, if interim ,II Cσ ≤  then an agent with arbitrary 
IID beliefs about the reports of other agents will not 
choose to deviate from truthful reporting when incurring 
cost C for doing so. 
 Quantile-based measures of ex post regret may provide 
a useful middle ground between ex post and interim  
regret measures. Implicit to type-II and type-III ex post 
measures are that an agent can capture the expected ex 
post regret, given a distribution on reports of other 
agents. But this is likely an unreasonably pessimistic as-
sumption given the informational stance of ex post regret. 
In comparison, the quantile-based approach allows a de-
signer to adopt the ex post regret at a particular percentile 
as a simple proxy for the idea that agents will in fact not 
be fully informed about the reports of other agents. For 
example, a design that achieves a negligible ex post regret 
at the 75 percentile may be useful in practice, since 
agents only have a non-neglible ex post regret with prob-
ability 0.25. Despite some experimental support (see note 
16), there is as yet no theory to formalize the connection 

between quantile-based, ex post measures and interim 
measures. 
 In adopting divergence between the payments of a 
mechanism and those of a strategyproof mechanism with 
the same choice rule, the reference-based approach is mo-
tivated by the same informational stance as interim  
regret – a mechanism is adjudged to be robust against 
manipulation if the rules of the mechanism are similar, in 
distribution to those of the reference. An advantage  
enjoyed over interim regret measures is that it finesses 
the need to analyse (or compute) optimal (interim) misre-
ports. In addition to some experimental support31, a theo-
retical analysis bounds a variation on interim

IIIσ (which takes 
the expectation on vi rather than ‘sup vi’) in terms of the 
KL-divergence in this reference-mechanism sense29. Still, 
there remains an opportunity for the development of addi-
tional theory to explain and interpret this approach. 
 Approaches that adopt 0/1 indicators, for example, 
counting profiles with non-zero regret, are probably too 
crude to provide normative design guidance. On the other 
hand, they have been demonstrated to have positive 
value, and can explain a number of mechanism designs 
that appear in practice13. The design of randomized 
mechanisms with a parameter that makes a tradeoff  
between the probability that an agent has non-zero regret 
and economic and computational properties has enabled 
positive theoretical results35. 
 Considerations in regard to marginal incentives are 
probably important in practice, at least as a secondary 
consideration. Susceptibility measures defined in these 
terms capture a defining feature of many mechanisms 
found in real-world domains with money – namely the 
payment does not depend directly on an agent’s bid, and 
thus there is no marginal incentive to deviate except on 
boundaries between alternatives. 

Limited rationality and tolerable manipulability 

In this section, we survey additional approaches to appro-
ximate strategyproofness. Rather than build from quanti-
tative measures of susceptibility to manipulation, these 
approaches are more qualitiative in nature. 
 For example, they include methods in which explicit 
models of limited agent rationality are adopted, and those 
of tolerable manipulability – which look to establish that 
a mechanism will have good properties despite the possi-
bility that agents will find useful manipulations. 

Limited-rationality approaches 

A number of approaches have been developed that seek 
to formalize the idea that approximate strategyproofness 
can be acceptable in practice due to limited agent ration-
ality in identifying optimal deviations. These approaches 
to modelling the interaction between limited-rationality 
and approximate strategyproofness include: 
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• Computational resistance: A mechanism is worst-
case computationally resistant to manipulation if  
deciding whether an agent has non-zero regret is NP-
hard (see note 17). Based on the standard complexity 
assumption of P ≠ NP, this implies that any algorithm 
would require exponential time to identify a useful 
deviation on some instances. Recognizing that this 
complexity measure is likely too coarse to be effective 
in practice, alternate approaches emphasize as a  
design criterion that mechanisms not be easy to mani-
pulate in the average case, for any plausible distri-
bution on preference profiles. See Faliszewski and 
Procaccia37 for a recent survey. 

• Price-taking behaviour: In domains with money, a 
model of limited rationality is to assume price-taking 
behaviour of agents. This stipulates that an agent will 
behave as if it does not affect prices, and make a 
truthful report about its valuation as long as the alter-
native that is selected by the mechanism maximizes 
its utility at the prices and with respect to its valuation 
function. Parkes and Ungar38 adopted an assumption 
of price-taking behaviour in designing an efficient, 
ascending-price combinatorial auction. Another  
example of a mechanism that is approximately strate-
gyproof in this sense is the competitive mechanism, in 
which the choice and payment rules select the effi-
cient allocation and competitive equilibrium prices32. 

• Feasible truthfulness: Another approach is to limit 
the reasoning of an agent to only consider some subset 
of reports of other agents, and not require an optimal 
best-response to these reports. In a general setting of a 
mechanism in which each agent sends a message  
´ ∈ L to the mechanism, given an abstract message set 
L, one way to do this is to define a partial best-
response function, 

 
 bi : Ln–1 → L, (23) 

 
with the semantics ‘I would report bi(´–i) ∈ L if the others 
reported ´–i’. This function is partial, and need not be  
defined for all reports of other agents. Given this, a mes-
sage ´ is feasibly-dominant (with respect to the partial 
best-response function), for agent i with valuation vi, if 
for every ´–i, either 
 
(a) ´–i is not in the domain of bi, or 
(b) the agent’s utility is better from ´ than bi(´–i). 
 
Either the agent is unaware of the possibility of these  
reports from others, or its message is better than the best 
it can compute, as represented via its partial best-
response function. Thus, this approach seeks to explicitly 
capture limited agent rationality. 
 Let us further assume that some of the messages  
allowed by the mechanism allow for direct reports of 
valuation, and thus can be truthful. Given this, a mecha-

nism is feasibly truthful with respect to some set of  
‘admissible’ partial best-response functions if, for every i 
and every vi ∈ V, agent i has a feasibly dominant and 
truthful message with respect to its partial best-response 
function (see note 18). 

Tolerable manipulability 

Another approach to approximate strategyproofness is to 
seek mechanisms that have good properties despite the 
possibility of strategic behaviour by agents. The idea is to 
analyse the properties for a set of possible agent beha-
viours (see note 19). Some approaches that have been 
adopted include: 
 
• Algorithmic implementation: One approach is to 

consider a set of strategies S1, …, Sn for each agent, 
where each Si

 : V → V, and then say that a mechanism 
M is an algorithmic implementation in undominated 
strategies of property P if: 

 
(i) the outcome of M satisfies P for any combination 

of strategies s ∈ S1 × ⋅⋅⋅ × Sn and any v ∈ Vn, 
(ii) for every strategy s′i that does not belong to Si, 

there exists a strategy si in Si that dominates s′i, 
such that for every v–i ∈ Vn–1, we have that 

 
  ui(si(vi), v–i) ≥ ui(s′i(vi), v–i), (24) 
 
(iii) this ‘improvement step’, of determining a better 

strategy in Si, can be computed in polynomial 
time. 

 
The approach of algorithmic implementation does not 
require coordination amongst players, or an assump-
tion on the rationality of players beyond that they pre-
fer not to play a dominated strategy (see note 20). 
Still, it is not an equilibrium approach. It may not be 
straightforward for a player to choose a strategy from 
set Si, and an agent may have ex post regret for its 
choice. 

 
• Set-Nash equilibrium. A related approach is to con-

sider a set of strategies that are defined such that, for 
agent i, Ri(vi) ` V defines a set of valuation functions 
that the agent might report given valuation vi. Given 
this, let Ri(*) = 4vi∈VRi(vi), which is the set of all  
possible reports i might make given that another agent 
has strict uncertainty about i’s valuation. The set-
valued strategies (R1, …, Rn) form a set-Nash equili-
brium if, 
 
for every i, for every vi, every v′–i ∈ ×j≠i Rj(*), and 
every v″i  ∈ V, there exists a report v′i ∈ Ri(vi) such that 
ui(v′i, v′–i) ≥ ui(v″i , v′–i). 
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 In words, this says that as long as an agent believes 
that all other agents are adopting a strategy in R, then 
the agent has a best response in R. Whereas algo-
rithmic implementation requires that there is a ‘rec-
ommended’ strategy that dominates all strategies 
outside the recommended set, the set-Nash concept is 
weaker in that it requires that there is a best-response 
in the set given that other agents adopt strategies 
within the same set (see note 21). 

 
• Mixture of truthful and rational agents. Another  

approach models the agent population with a mixture 
of truthful and self-interested rational agents. Given 
this, a mechanism can be said to be tolerably mani-
pulable with respect to some property P if, 
 
(i) the outcome of the mechanism is undominated in 

regard to property P (in the sense of the perform-
ance across preference profiles) by any strate-
gyproof mechanism when all agents is rational, 
and 

(ii) the outcome of the mechanism dominates that of 
any strategyproof mechanism in regard to pro-
perty P if one or more agents behave in a truthful 
way, and the other agents play an equilibrium of 
the game induced by the mechanism and that 
some fraction of the agents is truthful. 

 
 Informally, if some of the agents will follow a 
truthful strategy (even against their own self interest), 
then the mechanism’s performance is better than that 
of the best strategyproof mechanism. Moreover, the 
performance of the mechanism reduces to that of a 
strategyproof mechanism when all agents are rational 
(see note 22). 

Discussion 

The approaches reviewed in this section provide a quali-
tative counterpoint to the various susceptibility measures. 
Although they, by definition, do not provide the same  
direct opportunity for making tradeoffs between desirable 
properties and properties of approximate strategyproof-
ness, the methods have variously been shown to provide 
positive (explanatory) power for mechanisms found in 
practice or used to expand the design space of what is 
achievable in mechanism design. 
 In principle, adopting explicit models of computational 
intractability is an appealing approach to approximate 
strategyproofness – it suggests replacing strategyproof-
ness with mechanisms that can be manipulated, but where 
an agent would not be expected to be able to find a useful 
manipulation in a reasonable amount of time. However, 
in the context of social choice, many voting rules have 
turned out to be easy to manipulate; see Parkes and Xia45 

for some exceptions. Moreover, random misreports have 
been demonstrated to succeed with non-negligible pro-
bability given a uniform random preference profile46–48. 
See ref. 37 for a survey and suggestions for future  
research. 
 In regard to models of price-taking behaviour, auction 
designers do find this stance useful in practice, in order to 
gain a first-order understanding of the properties of an 
auction. One place where this is seen is through the  
design of ‘activity rules’ in ascending-price auctions, 
which constrain bids (responding to ask prices) to be con-
sistent with a well-defined utility function. Secondary 
support for models that approach approximate strate-
gyproofness through price-taking agent models can be 
obtained through the SP-L limit criterion2, which tends to 
pivot around whether or not prices are ‘pay-your-bid’ or 
more ‘second price’ in nature. 
 In regard to notions of feasible truthfulness, the fun-
damental challenge seems to be identifying plausible 
ways with which to model the limits on the knowledge of 
participants. Specifically, what limits the set of admissi-
ble, partial best-response functions? For example, should 
the extent to which knowledge is limited depend also on 
the design of a mechanism, with the design affecting 
which parts of the strategy space (or possible reports of 
other agents) an agent commits effort to exploring and 
understanding? 
 Tolerable manipulability is an appealing theoretical 
approach because it focuses attention on the performance 
of a mechanism and de-emphasizes incentive constraints. 
But looking back at the five properties (P1)–(P5), held up 
in explaining the desirability of strategyproofness, these 
approaches will tend to fail in regard to (P1), (P2) and 
(P5). For a concept such as algorithmic implementation 
or set-Nash, normative advice can be provided about the 
set of strategies an agent should consider. In this sense, 
property (P3) is partially achieved. Mechanisms that suc-
ceed relative to strategyproof mechanisms because some 
participants choose to be truthful (in the sense of the 
‘mixture’ models), even though this is against their self-
interest can be welfare improving, but are not fair to 
those participants who behave straightforwardly. 

Conclusion 

Strategyproofness has been a useful, but unarguably  
extreme approach to aligning incentives for the purpose 
of mechanism design. The research community is now 
beginning to take seriously the idea of relaxing strate-
gyproofness in various ways. The goal of this survey has 
been to describe the current state-of-the-art. 
 In summary, we can return to the list of desirable prop-
erties of strategyproof mechanisms, namely (P1) strategic 
simplicity, (P2) dynamic stability, (P3) advice/fairness, 
(P4) robustness and (P5) empirical analysis, and try to
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Table 1. Desirable properties achieved through different approaches to approximate strategyproofness 

  Ex post Interim  Limit Computational Price Feasible Tolerable 
  regret regret Reference criteria resistance taking truthful manipulability 
 

(P1) Strategic simplicity o* o*  o†  o‡ *  
(P2) Dynamic stability 
(P3) Advice/fairness o* o*  o† ** o‡ * o♠ 
(P4) Robust performance [                         (if succeeds)         ] 
(P5) Empirical/policy o* o*  o†  o‡ * 
(P6) Tradeoff enabling    
(P7) Tractable design   o   o   o  o  
(P8) Explanatory power       

Generally,  – yes, o – partial and missing entry – no. More specifically: o* – if regret low enough relative to cost of manipulation; o† – if eco-
nomy large enough; o‡ – if SP-L in the limit and economy large enough; * – if mechanism allows agents to submit partial response functions; 

** – if the mechanism is resistant, can say ‘don’t bother to try’; o♠ – can give partial advice; o  – perhaps, not enough evidence yet. 
 
 
 
situate the various methods against these properties.  
Table 1 considers these properties, as well as the addi-
tional properties, proposed for new concepts of approxi-
mate strategyproofness, namely (P6) tradeoff enabling, 
(P7) design tractability and (P8) explanatory power. 
 Different approaches to approximate strategyproofness 
are succeeding in different ways, and the right way to re-
lax strategyproofness is still not well understood. For ex-
ample, we do not at present have a good understanding of 
the interaction between notions of approximate strate-
gyproofness and the complexity of the problem of 
mechanism design itself. In part, the right approach to 
approximate strategyproofness will depend on whether 
the goal is to gain an analytical understanding of existing 
mechanisms or to design (either analytically, or computa-
tionally) new mechanisms. These different agendas are 
driving different approaches, and it seems likely that 
there will be no simple ‘one size fits all’ approach that 
comes to dominate. 

Notes 

1. For example, in the context of public school choice, where match-
ing mechanisms are used to assign high-school students to schools, 
public officials cited the fairness that comes from removing the 
need for gaming on the part of students as a significant advantage 
in adopting a deferred-acceptance approach in favour of the status 
quo mechanism3. 

2. Generally speaking, there can be a continuum on alternatives, but 
we adopt a finite set for expositional clarity. 

3. This terminology is adopted from Carroll19. 
4. Parkes et al.20, proposed a payment rule for combinatorial ex-

changes that minimizes maximum ex post regret (subject to budget 
balance) across all agents on every valuation profile and thus 
minimizes σI

ep. Day and Milgrom21 proposed a payment rule for 
combinatorial auctions that minimizes that maximum ex post regret 
(subject to core constraints) across all agents on every valuation 
profile and thus minimizes σI

ep. Schummer22 studied the tradeoff 
between σI

ep and efficiency in two-agent, two-good exchange 
economies. Kothari et al.23 adopted σI

ep in studying the tradeoff  
between runtime, efficiency and approximate strategyproofness for 
procurement auctions. Birrell and Pass24 adopted σI

ep in studying 

approximately strategyproof, randomized voting rules (adopting 
expected ex post regret, with expectation taken with respect to the 
randomization of the rule, in place of ex post regret). 

5. The type-I measure does not extend in a useful way to domains 
without money because the worst-case regret, considering worst-
case utility functions, will be 1 whenever a mechanism is not strat-
egyproof. 

6. Kelly25 proposed the σI
0/1 measure for comparing the susceptibility 

to manipulation of mechanisms. Pathak and Sönmez13 adopted a 
variation on σ I

0/1 in comparing the susceptibility of manipulation of 
different mechanisms for public school choice. 

7. Immorlica and Mahdian26 studied σ III
0/1 for stable matching markets 

and uniform random preferences. Kojima and Pathak27 extended 
the study to many-to-one markets and also related the susceptibility 
measure to the fraction of strategies that will be truthful in a (com-
plete information) Nash equilibrium in a large market. 

8. Erdil and Klemperer16 adopted this approach in the design of core-
selecting payment rules for combinatorial auctions. They adopted a 
lexicogrphical design stance: first seeking a payment rule that 
minimizes a variation on σI

ep, and then breaking ties in favour of a 
rule that minimizes σ I

marginal. In domains with money, zero type-II or 
type-III marginal-incentive-based susceptibility can be achieved 
for generic distributions by insisting that payments are ‘agent-
independent’. This requires that an agent’s payment is indepenent 
of its report conditioned on the selected alternative and removes 
marginal incentives except in non-generic cases where a deviation 
changes the alternative. Dütting et al.28 imposed this agent-
independence requirement and then tried to seek mechanisms that 
are optimal in a variation on σIII

ep, minimizing expected ex post  
regret. 

9. Lubin29 introduced the percentile-based approach to approximate 
strategyproofness. 

10. Carroll19 introduced this measure of susceptibility, and obtained a 
quantified tradeoff between susceptbility and economic properties 
of voting rules; see also Carroll30 for an application to tradeoffs  
between susceptibility and efficiency in double auctions. 

11. Lubin and Parkes31 provided an empirical study of this reference 
mechanism approach in the context of combinatorial exchanges. 

12. Roberts and Postlewaite32 introduced ε-SP as a design criterion and 
studied the competitive mechanism, in which the mechanism se-
lects an efficient allocation and competitive equilibrium prices on 
the basis of reported valuations. See also Ehlers et al.33 for a study 
of ε-SP in the context of anonymous voting rules. 

13. Azevedo and Budish2 introduced SP-L as a design criterion and 
studied a number of mechanisms. The pseudomarket mechanism34, 
competitive mechanism, uniform price and student-optimal  
deferred acceptance mechanism are SP-L. The pay-your-bid Treas-
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ury auctions, Boston mechanism for public school choice, and  
bidding points and draft mechanisms for course allocation are not 
SP-L. In defining the large-market limit for SP-L, the approach is 
to fix φ, a finite set of payoff types, a finite set of alternatives that 
are distinct in payoff from the perspective of a given type, bounded 
von Neumann–Morgenstern utilities, a finite number of distinct 
payments, and then increase the number of agents. 

14. Pathak and Sönmez13 adopted this 0/1 criterion and dominance  
relation in ranking mechanisms for public school choice. Parkes et 
al.20, and Lubin and Parkes31 studied the profile-wise minimization 
of ex post regret for various statistics on the regret in a profile; for 
example, maximum regret across agents. 

15. Schummer22 made some remarks about the possible role of moral 
cost in precluding deviations from truthful behaviour. 

16. Lubin29 identified payment rules for combinatorial exchanges that 
achieve low ex post regret at the 70 or 80 percentile by maximizing 
the number of agents with zero regret. These same rules achieve 
Bayes–Nash equilibrium (in restricted strategy spaces, for reasons 
of computational tractability) with small divergence from truthful 
strategies. 

17. This approach was introduced by Bartholdi et al.36 in the context of 
social choice. 

18. This approach of feasible truthfulness was introduced by Nisan and 
Ronen39 in the context of combinatorial auctions, and operational-
ized the idea by defining a mechanism with a message space that 
allows an agent to submit a claim about its valuation and also an 
‘appeal’, which was a partial function k : Vn h Vn. 

19. The term ‘tolerable manipulability’ was introduced by Feigenbaum 
and Shenker40. 

20. Babaioff et al.41 introduced this approach and applied it to the 
problem of designing computationally tractable and approximately 
efficient combinatorial auctions. 

21. Lavi and Nisan42 adopted this set-Nash approach for the analysis of 
the properties of dynamic auctions, where adopting full strate-
gyproofness precludes auctions with good properties. 

22. This definition was proposed by Zou et al.43 in a dynamic alloca-
tion setting without money. They introduced a mechanism with 
performance that dominates serial dictatorship when some agents 
are truthful, and reduces to serial dictatorship when all agents are 
rational. Othman and Sandholm44 had earlier proposed a stronger 
condition, with (ii) replaced by (ii′) the performance is better than 
any strategyproof mechanism if any agent fails to be rational in 
any way. This definition is appealing in principle, but proved to be 
too strong (with associated negative results). 

 
 

1. Hurwicz, L., On informationally decentralized systems. In Deci-
sion and Organization (eds McGuire, C. B. and Radner, R.), North 
Holland, Amsterdam, 1972. 

2. Azevedo, E. and Budish, E., Strategyproofness in the large as a 
desideratum for market design. Technical Report, Harvard Univer-
sity, 2012. 

3. Pathak, P. A. and Sönmez, T., Leveling the playing field: Sincere 
and sophisticated players in the Boston mechanism. Am. Econ.  
Rev., 2008, 98, 1636–1652. 

4. Abdulkdiroğlu A., Pathak, P. A., Roth, A. E. and Sönmez, T., 
Changing the Boston School choice mechanism: Strategy-
proofness as equal access. Technical Report, National Bureau of 
Economic Research, 2006. 

5. Roth, A. E., The economics of matching: Stability and incentives. 
Math. Oper. Res., 1982, vol. 7, pp. 617–628. 

6. Bikhchandani, S. and Ostroy, J. M., The package assignment 
model. J. Econ. Theory, 2002, 107, 377–406. 

7. Ausubel, L. M. and Milgrom, P. R., Ascending auctions with 
package bidding. Front. Theor. Econ., 2002, 1, 1–42. 

8. Gibbard, A., Manipulation of voting schemes: A general result. 
Econometrica, 1973, 587–601. 

9. Satterthwaite, M. A., Strategy-proofness and Arrow’s conditions: 
Existence and correspondence theorems for voting procedures and 
social welfare functions. J. Econ. Theory, 1975, 10, 187–217. 

10. Myerson, R. B. and Satterthwaite, M. A., Efficient mechanisms 
for bilateral trading. J. Econ. Theory, 1983, 29, 265–281. 

11. Papadimitriou, C., Schapira, M. and Singer, Y., On the hardness of 
being truthful. In Proceedings of the IEEE Symposium on Founda-
tions of Computer Science, 2008, pp. 250–259. 

12. Blumrosen, L. and Nisan, N., Combinatorial auctions. In Algo-
rithmic Game Theory (eds Nisan, N. et al.), Cambridge University 
Press, 2007. 

13. Pathak, P. A. and Sönmez, T., School admissions reform in Chi-
cago and England: Comparing mechanisms by their vulnerability 
to manipulation. Am. Econ. Rev., 2012 (in press). 

14. Edelman, B., Ostrovsky, M. and Schwarz, M., Internet advertising 
and the generalized second-price auction. Am. Econ. Rev., 2007, 
97, 242–259. 

15. Cramton, P. and Ausubel, L. M., Demand reduction and ineffi-
ciency in multi-unit auctions. Technical Report, University of 
Maryland, 2002. 

16. Erdil, A. and Klemperer, P., A new payment rule for core-selecting 
package auctions. J. Eur. Econ. Assoc., 2010, 8, 537–547. 

17. Wilson, R., Game-theoretic approaches to trading processes. In 
Advances in Economic Theory: Fifth World Congress (ed. Bewley, 
T. F.), Cambridge University Press, 1987, pp. 33–77. 

18. Jackson, M. O., Mechanism theory. In Encyclopedia of Life Sup-
port Systems (ed. Derigs, U.), EOLSS Publishers, Oxford, UK, 
2003. 

19. Carroll, G., A quantitative approach to incentives: Application to 
voting rules. Technical Report, MIT, 2011. 

20. Parkes, D. C., Kalagnanam, J. R. and Eso, M., Achieving budget-
balance with Vickrey-based payment schemes in exchanges. In 
Proceedings of the 17th International Joint Conference on Artifi-
cial Intelligence (IJCAI 2001), Seattle, Washington, USA, 4–10 
August 2001, pp. 1161–1168. 

21. Day, R. and Milgrom, P., Core-selecting auctions. Int. J. Game 
Theory, 2008, 36, 393–407. 

22. Schummer, J., Almost-dominant strategy implementation: Exchange 
economies. Games Econ. Behav., 2004, 48, 321–336. 

23. Kothari, A., Parkes, D. C. and Suri, S., Approximately-
strategyproof and tractable multi-unit auctions. Decision Support 
Syst. (Spec. Issue), 2005, 39, 105–121. 

24. Birrell, E. and Pass, R., Approximately strategy-proof voting. In 
Proceedings of the 22nd International Joint Conference on Artifi-
cial Intelligence (IJCAI 2011), Barcelona, Spain, 16–22 July 2011, 
pp. 67–72. 

25. Kelly, J. S., Minimal manipulability and local strategy-proofness. 
Soc. Choice Welfare, 1988, vol. 5, pp. 81–85. 

26. Immorlica, N. and Mahdian, M., Marriage, honesty, and stability. 
In Proceedings of the 16th Annual ACM–SIAM Symposium on 
Discrete Algorithms (SODA 2005), Vancouver, British Columbia, 
Canada, 23–25 January 2005, pp. 53–62. 

27. Kojima, F. and Pathak, P. A., Incentives and stability in large two-
sided matching markets. Am. Econ. Rev., 2009, 99, 608–627. 

28. Dütting, P., Fischer, F., Jirapinyo, P., Lai, J. K., Lubin, B. and 
Parkes, D. C., Payment rules through discriminant-based classifi-
ers. In Proceedings of the 13th ACM Conference on Electronic 
Commerce EC’12, Valencia, Spain, 4–8 June 2012, pp. 477–494. 

29. Lubin, B., Combinatorial markets in theory and practice: Mitigat-
ing incentives and facilitating elicitation. Ph D thesis, Computer 
Science, Harvard University, 2010. 

30. Carroll, G., The efficiency-incentive tradeoff in double auction 
environments. Technical Report, MIT, 2011. 

31. Lubin, B. and Parkes, D. C., Quantifying the strategyproofness of 
mechanisms via metrics on payoff distributions. In Proceedings of 
the 25th Conference on Uncertainty in Artificial Intelligence, 
2009, pp. 349–358. 



SPECIAL SECTION: GAME THEORY 
 

CURRENT SCIENCE, VOL. 103, NO. 9, 10 NOVEMBER 2012 1032 

32. Roberts, D. J. and Postlewaite, A., The incentives for price-taking 
behaviour in large exchange economies. Econometrica, 1976, 44, 
115–127. 

33. Ehlers, L., Peters, H. and Storcken, T., Threshold strategy-
proofness: On manipulability in large voting problems. Games 
Econ. Behav., 2004, 49, 103–116. 

34. Zeckhauser, R. and Hylland, A., The efficient allocation of indi-
viduals to positions. J. Polit. Econ., 1979, 87, 293–314. 

35. Archer, A., Papadimitriou, C., Talwar, K. and Tardos, E., An ap-
proximate truthful mechanism for combinatorial auctions with 
single parameter agents. In Proceedings of the 14th ACM–SIAM 
Symposium on Discrete Algorithms (SODA 2003), Baltimore, 
Maryland, USA, 12–14 January 2003, pp. 205–214. 

36. Bartholdi, J. J., Tovey, C. A. and Trick, M. A., The computational 
difficulty of manipulating an election. Soc. Choice Welfare, 1989, 
6, 227–241. 

37. Faliszewski, P. and Procaccia, A. D., AI’s war on manipulation: 
are we winning? AI Mag., 2010, 31, 53–62. 

38. Parkes, D. C. and Ungar, L. H., Iterative combinatorial auctions: 
Theory and practice. In Proceedings of the 17th National Confer-
ence on Artificial Intelligence (AAAI 2000), Austin, Texas, USA, 
30 July–3 August 2000, pp. 74–81. 

39. Nisan, N. and Ronen, A., Computationally feasible VCG mecha-
nisms. J. Artificial Intel. Res., 2007, 29, 19–47. 

40. Feigenbaum, J. and Shenker, S., Distributed algorithmic mecha-
nism design: Recent results and future directions. In Proceedings 
of the 6th International Workshop on Discrete Algorithms and 
Methods for Mobile Computing and Communications (DIAL-M 
2002), Atlanta, Georgia, USA, 28 September 2002, pp. 1–13. 

41. Babaioff, M., Lavi, R. and Pavlov, E., Single-value combinatorial 
auctions and algorithmic implementation in undominated strate-
gies. J. ACM, 2009, 56. 

42. Lavi, R. and Nisan, N., Online ascending auctions for gradually 
expiring items. In Proceedings of the 17th ACM–SIAM Sympo-
sium on Discrete Algorithms (SODA 2005), Vancouver, British 
Columbia, Canada, 23–25 January 2005, pp. 1146–1155. 

43. Zou, J., Gujar, S. and Parkes, D. C., Tolerable manipulability  
in dynamic assignment without money. In Proceedings of the  
24th AAAI Conference on Artificial Intelligence (AAAI 2010), 
Atlanta, Georgia, USA, 11–15 July 2010, pp. 947–952. 

44. Othman, A. and Sandholm, T., Better with Byzantine: Manipula-
tion-optimal mechanisms. In Proceedings of the 2nd International 
Symposium on Algorithmic Game Theory (SAGT 2009), Paphos, 
Cyprus, 18–20 October 2009, pp. 60–71. 

45. Parkes, D. C. and Xia, L., A complexity-of-strategic-behaviour 
comparison between Schulze’s rule and ranked pairs. In Proceed-
ings of the 26th AAAI Conference on Artificial Intelligence,  
2012. 

46. Friedgut, E., Kalai, G. and Nisan, N., Elections can be manipu-
lated often. In Proceedings of the 49th IEEE Symposium on Foun-
dations of Computer Science (FOCS 2008), Philadelphia, PA, 
USA, 25–28 October 2008, pp. 243–249. 

47. Isaksson, M., Kindler, G. and Mossel, E., The geometry of  
manipulation – a quantitative proof of the Gibbard–Satterthwaite 
theorem. Combinatorica, 2012, 32, 221–250. 

48. Mossell, E. and Rácz, M. Z., A quantitative Gibbard–Satterthwaite 
theorem without neutrality. In Proceedings of the 44th symposium 
on Theory of Computing (STOC 12), New York, 2012, pp. 1041–
1060. 

 
 
 
ACKNOWLEDGEMENT. Thanks to Eric Budish for helpful discus-
sions. All remaining errors are our own. 

 

 
 
 


