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ABSTRACT
We introduce the problem of assigning resources to improve their

utilization, for settings where agents have uncertainty about their

own values for using a resource, and where it is in the interest of the

society or the planner that resources be used and not wasted. Done

in the right way, improved utilization maximizes social welfare—

balancing the utility of a high value but unreliable agent with the

group’s preference that resources be used. We introduce the family

of contingent payment mechanisms (CP), which may charge an agent

contingent on use (a penalty). A CP mechanism is parameterized

by a maximum penalty, and has a simple dominant-strategy equi-

librium. Under a set of axiomatic properties, we establish welfare-

optimality for the special case CP(W ), with CP instantiated for a

maximum penalty equal to societal valueW for utilization. The

special case with no upper bound on penalty, the contingent second-
price mechanism, maximizes utilization. We extend the mechanisms

to assign multiple, heterogeneous resources, and present a simula-

tion study of the welfare properties of these mechanisms.
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1 INTRODUCTION
Allocated resources often go to waste, even when in scarce supply.

It is common in university departments, for example, to find that all

rooms are fully booked in advance, yet walking down the corridor

one sees that many rooms are in fact empty. For another university

related example, one of the authors of the present paper received

the following email from the office of career services:

SITE VISIT: XXXXX Corporation
Date: Wednesday, January 17, 2018, 9am to 1pm
NUMBER OF PARTICIPANTS: 25 spots
RESERVATIONS: Reservations are now open. Reserve
your spot today!

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

COST: $15 to hold your reservation. There is no
charge for the visit. You will only be charged if
you cancel within a week before the trip or do
not show up on the morning of the visit.

Another example considers conferences and symposiums where

the organizers decide not to charge any fee for registration: all

seats are usually taken within a few days after the registration is

open, but it is not surprising to find that a large portion of badges

made for participants who did get seats were never picked up

until the end, despite the fact that many people were placed on

the wait list and ultimately turned away. For examples from other

domains, consider allocating spots in a spinning class (and other

facilities e.g. squash courts) to members of a gym, and assigning

time slots for a public electric vehicle charging station to residents

in a neighborhood. Even a gym member who is highly uncertain

about being able/willing to attend the class, or a resident unsure

about actually needing to use the charging station, may reserve a

space just in case this turns out to be convenient.

What is common to these problems is the presence of uncertainty,

self-interest and down-stream utilization decisions on the part of

participants, together with the broader interest of the society or

the planner (a university, a corporation, the conference organizers,

or the citizens of a city) that a resource be used and not wasted:

utilization often has positive externalities beyond the immediate

agents, e.g. the firm benefiting from potentially hiring more stu-

dents if more showed up for the site visit; the planner might also be

interested only in the utilization of the resources, e.g. conditioned

on utilization, a school may not have preference over students with

higher vs. lower willingness to pay for the squash courts.

We formalize the desire for utilization as a welfare gain ofW ≥ 0

when a resource is used, and adopt the design objective of maxi-

mizing expected social welfare: the sum of the expected value to

the assigned agent and the expected value to society or the plan-

ner. The societal valueW models either the positive externality on

the society from utilization, or the weight assigned to the planner

while trading-off agents’ vs. planner’s welfare. In the special case

whereW = ∞, the goal becomes one of maximizing utilization—

the probability that the resource is used.

Despite being important to practice and simple to state, this

problem does not appear to have been formally defined or studied

in the literature. Running a second-price (SP) auction need not

assign a resource to a reliable agent (the agent with the highest

expected value for the option of using a resource need not be the

one most likely to show up). Moreover, the SP auction does not



charge payments contingent on whether or not the resource is

used, therefore misses the opportunity to “shape” incentives to use

a resource once it has been assigned. A penalty of $15 changes

the calculus for an assigned agent: now she will choose to use the

resource as long as her realized value is greater than -$15.

Beyond our opening examples, penalties for not using a resource

are used by some hospitals in charging patients for missing appoint-

ments, by hiking clubs that charge their members for not showing

up for trips they signed-up for, and by some restaurants who charge

a fee if guests reserve tables but do not show up. These approaches

can be viewed as simple, first-come first-served schemes, and where

it is not clear how the penalty should be set: a penalty that is too

small is not effective, whereas a penalty that is too big will drive

away participation in the scheme. We are not aware of any formal

analysis of these kinds of mechanisms, or a design approach that

takes into account the penalty that an individual participant would

be willing to face, which in fact is a good signal for her reliability.

This is the main conceptual contribution of our paper.

Our Results. We formalize the problem of designing mechanisms

for improving resource utilization, and introduce a family of two-

period mechanisms that make use of payments that are contingent

on whether or not a resource is used. In our model, an agent’s

private type corresponds to a distribution on her future value for

using the resource— this value models her utility from using the

resource minus the utility from her outside option, and as a result

may be negative. In period 0, agents make reports with knowledge

of their types. A mechanism assigns the resource, and may both

collect a payment at this time as well as determine a penalty for the

assigned agent in the event the resource is not used. In period 1, the

assigned agent’s value is (privately) realized, and the agent then

decides whether or not to use the resource. We insist on voluntary

participation, and also the mechanism being no-deficit, thus pre-

cluding charging very large penalties while also paying the agents

a very large reward to participate in the first place.
1

We introduce the class of contingent payment mechanisms (CP),
parameterized by a maximum penalty Z . The CP mechanism has

a simple dominant-strategy equilibrium (Theorem 3.3). The main

results establish the welfare-optimality of the CP mechanism when

instantiated for a maximum penalty equal to the societal valueW
for utilization, and under a set of axioms. First, CP(W ) is not domi-

nated for expected welfare by any other mechanism (Theorem 4.5).

Second, amongst mechanisms that always allocate the resource

and support a simple indirect structure, CP(W ) is ex-post optimal,

i.e. maximizes social welfare profile by profile (Theorem 4.7). As

an interesting, and practically-motivated special case, the contin-
gent second-price (CSP) mechanism is the special case of the CP

mechanism with no upper bound on penalty. The CSP mechanism

optimizes utilization (under the same assumptions), and also has

the appealing property that it never collects a payment from an

agent who uses the resource. We extend the mechanisms to the

setting of multiple, heterogeneous resources (where each agent gets

at most one resource) in Section 5,
2
and present simulation results

1
Without the requirement of no-deficit, a simple second price auction for “the option

to use a resource and also get paidW when the resource is used" is welfare-optimal.

2
For assigning multiple heterogeneous resources, the generalized CP mechanisms

are dominant-strategy incentive-compatible, however, the optimality results do not

generalize, and we can construct examples to show that the VCG mechanism can

in Section 6 to demonstrate the effectiveness of our mechanisms,

comparing with second-price auctions and other benchmarks. The

proofs of most results presented in this paper, as well as additional

simulation results, are provided in a full version of this paper [16].

1.1 Related Work
Contingent payments have arisen in previous work. Prominent

examples include auctioning oil drilling licenses [14], royalties [6,

9], ad auctions [24], and selling a firm [11]. Unlike in our model,

payments are contingent on some observable world states (e.g.

amount of oil produced, a click, or the ex post cash flow) rather

than an agent’s own downstream actions. Moreover, the major role

of contingent payments in these applications is to improve revenue

as well as to hedge risk [22]. In contrast, the role of penalties in

our setting is two-fold: to provide participants with a way to signal

their own, idiosyncratic uncertainty, as well as to address problems

of moral hazard that arise once a resource has been assigned.

Our problem is a principal-agent problem [13, 15]. Classically,

problems with hidden information before the time of contracting

are termed adverse selection, and problems for which information

asymmetry arises after contracting are referred to as moral hazard
(see [4, 23]). The distinction between the two is blurred in dynamic

settings such as the present one, and in particular there are infor-

mational asymmetries both before and after contracting. Although

agents’ actions are observable, uncertainty together with participa-

tion constraints precludes charging unbounded penalties, which is

a standard approach when actions are observable in moral hazard.

In regard to auctions in which actions take place after contract-

ing, Atakan and Ekmecki [2] study auctions where the value of

taking each action depends on the collective actions by others, but

these actions are taken before rather than after observing the world

state, and thus the timing of information is quite different than in

our model. Courty and Li [8] study the problem of selling airline

tickets, where passengers have uncertainty about their value at

the time of booking, and decide whether to take a trip only after

realizing their values. Although agents’ types are modeled as distri-

butions, and the optimal mechanism can be understood as a menu of

contingent contracts, they consider distributions that satisfy either

mean-preserving spread or stochastic dominance, and effectively

reduce the type space to one-dimensional. This, in addition to their

focus on revenue, is a departure from the present work.

The closest related work is on the design of mechanisms for

incentivizing reliability in demand-side response in electric power

systems [17–19], where selected agents decide whether to respond

only after uncertainty in their costs are resolved. The objective

there is to guarantee a probabilistic target on the collective actions

taken by agents, and no optimality results are provided. Crucially,

there is no hard feasibility constraint in these settings— that is,

whereas only one agent can be assigned to a resource in our model,

in demand response problems any number of agents can be selected.

Other papers study assignment problems under uncertainty, in-

cluding models with the possibility that workers assigned to tasks

will prove to be unreliable [21], and general models of dynamic

mechanism design, where the goal is to maximize expected total

achieve better expected welfare or utilization. Still, simulation results demonstrate

significantly better performance on average.
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Figure 1: Agent value distributions under two type models.

(discounted) value in the presence of uncertainty [3, 5, 20] (dynamic

VCG mechanism). The difference between these models and our

problem is that there is no need or possibility for the “shaping” of

downstream behavior through contingent payments. In Porter et

al. [21], for example, the probability that a worker fails to complete

a task is fixed— this corresponds to the special case we discuss in

Example 2.1, and we allow for much more general agent types. In

dynamic VCG, the solution would be to simply run a second-price

auction with reserve −W in period 1 (i.e. allowing a payment of up

toW to agents). This is outside our design space: we seek mecha-

nisms that assign the resource in a period before the value of agents
are realized, which is important in the aforementioned motivating

settings, because it allows for planning by agents.

2 PRELIMINARIES
We first introduce the model for the assignment of a single resource.

There is a set of agents N = {1, 2, . . . , n} and two time periods. In

period T = 0, the value of each agent i ∈ N for using the resource

is uncertain, represented by a random variableVi ∈ R, whose exact
(and potentially negative) value is not realized until period T = 1.

The cumulative distribution function (CDF) Fi of Vi is agent i’s
private information at period 0, and corresponds to her type. Let
F = (F1, . . . , Fn ) denote a type profile.

The assignment is determined in period 0, whereas the allocated

agent decides on whether to use the resource at period 1, after she

privately learns the realizationvi ofVi . In addition, if the resource is

utilized, then society gains valueW ≥ 0. Define V +i ≜ max{Vi , 0}.
We make the following assumptions about Fi for each i ∈ N :

(A1) E
[
V +i

]
> 0, which means that Vi takes positive value with

non-zero probability, thus the option to use the resource as one
wishes has positive value. An agent for which this is violated

would never be interested in the resource.

(A2) E
[
V +i

]
< +∞, which means that agents do not get infinite

expected utility from the option to use the resource.

The following are two example value distributions.

Example 2.1 ((wi ,pi ) model). The value for agent i to use the re-

source iswi > 0, however, she is able to do so only with probability

(w.p.) pi ∈ (0, 1). With probability 1−pi , agent i is unable to use the
resource. This hard constraint can bemodeled asVi taking value−∞
with probability 1 − pi . See Figure 1a. We have E

[
V +i

]
= wipi > 0.

If the resource is allocated to agent i , it will be used with probability
pi , and the expected social welfare is pi (wi +W ). □

Example 2.2 (Exponential model). The utility for agent i to use
the resource is a fixed valuewi > 0 minus a random opportunity

cost, which is exponentially distributed with parameter λi > 0. The

probability density function of Vi is given by fi (v) = λie
λi (v−wi )

for v ≤ w j , and fi (v) = 0 for v > wi . See Figure 1b. □

2.1 Two-Period Mechanisms
A two-periodmechanism is defined byM=(R,x , t (0), t (1)). At period
0, based on knowledge of her type Fi , each agent makes a report ri
from some set of messages R. r = (r1, . . . , rn ) ∈ Rn

denotes a report

profile. Based on the reports, an allocation rule x = (x1, . . . ,xn ) :
Rn → {0, 1}n assigns the right to use the resource to at most one

agent, which we denote as i∗, for whom xi∗ (r ) = 1. xi (r ) = 0 for

all i , i∗. Each agent is charged t
(0)

i (r ) in period 0. The mechanism

also determines the penalty t
(1)

i∗ (r ) for agent i∗.
At the beginning of period 1, the allocated agent privately ob-

serves the realized value vi∗ of Vi∗ , and decides on whether to use

the resource. The mechanism then collects the penalty t
(1)

i∗ (r ) from

i∗ if she did not use the resource (let t
(1)

i (r ) = 0 for i , i∗).3

Second Price and Contingent Second Price mechanisms. For ex-
ample, the standard second price (SP) auction can be described

as a two-period mechanism where R = R≥0, i
∗ ∈ argmaxi ∈N ri ,

t
(0)

i∗ (r ) = maxi,i∗ ri , and all other payments are 0. The SP auction

does not make use of the period 1 payments. Another mechanism

is the contingent second price (CSP) mechanism, which is the same

as SP, except t
(1)

i∗ (r ) = maxi,i∗ ri instead of t
(0)

i∗ (r ): the winner pays
the second highest bid, but only if she fails to use the resource.

We assume that agents are risk-neutral, expected-utilitymaximiz-

ers with quasi-linear utility functions. Assume agent i is allocated
the resource and is facing a two-part payment (z,y), where z is the
period 1 penalty payment and y is the period 0 base payment. Her
utility from using the resource in period 1 is vi − y, and her utility

from not using the resource is −z −y. Therefore, after observing vi
in period 1, the rational decision is to use the resource if and only

if vi − y ≥ −y − z ⇔ vi ≥ −z (breaking ties in favor of using the

resource). Let 1{·} be the indicator function, and define ui (z) as

ui (z) ≜ E [Vi1{Vi ≥ −z}] − zP [Vi < −z] = E [max{Vi ,−z}] , (1)

we know that the expected utility of an allocated agent facing two-

part payment (z,y) is u(z) − y. Given report profile r , an agent’s

expected utility is therefore: xi (r )ui (t
(1)

i (r )) − t
(0)

i (r ).
Assume throughout the paper that the agents make rational deci-

sions in period 1, if allocated. The interesting question is in agents’

incentives regarding their reports in period 0. For any vector s =

(s1, . . . , sn ) and i ∈ N , we denote s−i ≜ (s1, . . . , si−1, si+1, . . . , sn ).

Definition 2.3 (Dominant strategy equilibrium). A two-period

mechanism has a dominant strategy equilibrium (DSE) if ∀i ∈ N , for

any type Fi satisfying (A1) and (A2), there exists a report r
∗
i ∈ R s.t.

∀ri ∈ R, ∀r−i ∈ Rn−1
, xi (r

∗
i , r−i )ui (t

(1)

i (r∗i , r−i )) − t
(0)

i (r∗i , r−i ) ≥

xi (ri , r−i )ui (t
(1)

i (ri , r−i )) − t
(0)

i (ri , r−i ).

Let r∗(F ) = (r∗
1
, . . . , r∗n ) denote the report profile under a DSE

given type profile F .

Definition 2.4 (Individual rationality). A two-period mechanism

is individually rational (IR) if ∀i ∈ N , for any Fi satisfying (A1) and

(A2), ∀r−i ∈ Rn−1
, xi (r

∗
i , r−i )ui (t

(1)

i (r∗i , r−i )) − t
(0)

i (r∗i , r−i ) ≥ 0.

3
More generally, we may think of mechanisms that charge the allocated agent a non-

zero payment in period 1 even if she used the resource. Without temporal preference

for money, it is without loss to move this part of the payment to period 0, and at the

same time subtract the same amount from the penalty payment.



IR requires that an agent’s expected utility is non-negative under

her dominant strategy given that she makes rational decisions in

period 1 (if allocated), regardless of the reports made by the rest of

the agents. IR is based on the expected utility before uncertainty

is resolved. It is still possible for an agent to get negative utility at

the end of period 1. We cannot charge unallocated agents without

violating IR, thus t
(0)

i (r ) ≤ 0 for all i , i∗ for all r ∈ Rn
.

The expected revenue of a two-period mechanismM is the total

expected payment from the agents to the mechanism in DSE:

revM (F ) ≜
∑
i ∈N

t
(0)

i (r∗) + t
(1)

i∗ (r∗) · P
[
Vi∗ < −t

(1)

i∗ (r∗)
]
. (2)

Definition 2.5 (No deficit). A two-period mechanism satisfies no
deficit (ND) if, for any type profile F that satisfies (A1) and (A2), the

expected revenue is non-negative: revM (F ) ≥ 0.

A mechanism is anonymous if the outcome is invariant to per-

muting the identities of agents. A mechanism satisfies no subsidy if

the mechanism does not make payments to unallocated agents.

The utilization achieved by mechanismM is the probability with

which the allocated agent rationally decides to use the resource:

utM (F ) ≜ P
[
Vi∗ ≥ −t

(1)

i∗ (r∗)
]
. (3)

The expected value to society from the resource being utilized is

therefore utM (F )W , and the expected social welfare is the sum of

the values to the society and the agent from using this resource:

swM (F ) ≜ E
[
Vi∗1{Vi∗ ≥ −t

(1)

i∗ (r∗)}
]
+ utM (F )W . (4)

Our objective is to design mechanisms that maximize expected

social welfare. We do not consider monetary transfers in the social

welfare function. The reason t
(1)

i (r∗) appears is that it affects the
decision of the allocated agent in period 1.

3 CONTINGENT PAYMENT MECHANISM
We introduce in this section a class of contingent payment mech-

anisms parametrized by a maximum penalty Z an agent may be

charged in period 1, and show that under (A1) and (A2), the contin-

gent payment mechanism with Z =W achieves higher welfare and

utilization than the second price auction in DSE. The uniqueness

and optimality are discussed in Section 4.

Definition 3.1 (Contingent payment mechanism). The contingent
payment mechanism with max. penalty Z (CP(Z )) collects two-part

bids b = (b1, . . . ,bn ). For each i ∈ N , bi = (b
(1)

i ,b
(0)

i ) ∈ R, where

R = {(z,y) ∈ R2 | 0 ≤ z ≤ Z , y = 0} ∪ {(z,y) ∈ R2 | z = Z , y ≥ 0}.

• Allocation rule: xi∗ (b) = 1 for i∗ ∈ argmaxi ∈N {b
(0)

i + b
(1)

i }

(breaking ties at random); xi (b) = 0 for all i , i∗,

• Payment rule: let i ′ ∈ argmaxi,i∗ {b
(0)

i + b
(1)

i }. t
(0)

i∗ (b) = b
(0)

i′ ;

t
(1)

i∗ (b) = b
(1)

i′ ; t
(0)

i (b) = t
(1)

i (b) = 0, for all i , i∗.

Under the CP(Z ) mechanism, each agent may bid a period 0

base payment if she is willing to bid Z as penalty, in which case

bi = (Z ,b
(0)

i ) for some b
(0)

i ≥ 0. Otherwise, she may bid a maximum

acceptable penalty (up to Z ) and no base payment, i.e. bi = (b
(1)

i , 0)

for some b
(1)

i ∈ [0,Z ]. The resource is allocated to the highest base

payment bidder, if there exist agents with b
(0)

i > 0 (since b
(1)

i ≤ Z

z

ui (z)

Z

E[V +i ]

ui (Z )

z0i

(a) ui (Z ) ≥ 0

z

ui (z)
E[V +i ]

z0i Z

(b) ui (Z ) < 0

Figure 2: Expected utility as a function of penalty z.

thus b
(1)

i + 0 ≤ b
(0)

i +Z ). Otherwise, the resource is allocated to the
highest penalty bidder. The allocated agent is charged a two-part

payment equal to the bid of the second “highest" bidder. When

Z = 0, we get the SP auction, as agents cannot bid on the penalty.

Recall that ui (z) as defined in (1) is the expected utility of agent i
if she is allocated and charged only a penalty z. ui (z), as a result, is
also the highest period 0 base payment agent i is willing to accept,

when her penalty is z. We first state some properties that are useful

for establishing the DSE under CP(Z ).

Lemma 3.2. Assuming (A2), the expected utilityui (z) as a function
of the penalty z satisfies:
(i) ui (0) = E

[
V +i

]
, limz→+∞ ui (z) = E [Vi ], and

(ii) ui (z) is continuous, convex, and monotonically decreasing in z.

See Figure 2. For part (i), ui (0) = E[V
+
i ] by definition, and

limz→∞ E [ui (z)] = E [Vi ] holds by the monotone convergence

theorem. Part (ii) holds sincemax{Vi ,−z} is monotonically decreas-

ing in z, continuous, and convex, so ui (z) inherits these properties.
Intuitively, when z = 0, the agent uses the resource iff the realized

value is non-negative, thus gets expected utility E[V +i ]. As z in-

creases, the expected utility continuously decreases. When z = ∞,

the agent always uses the resource and never pays the penalty, thus

her expected utility converges to E [Vi ].

Theorem 3.3 (Dominant strategy in CP(Z )). Given (A1)-(A2),
under the contingent payment mechanism with maximum penalty Z ,
it is a dominant strategy for each agent i ∈ N to bidb∗i,CP = (Z ,ui (Z ))

ifui (Z ) ≥ 0. Otherwise, it is a dominant strategy to bidb∗i,CP = (z0i , 0),
where z0i is the unique zero-crossing of ui (z).

Proof. First, observe that the message spaceR is effectively one-

dimensional. For any (b
(1)

i ,b
(0)

i ), ( ˜b
(1)

i ,
˜b
(0)

i ) ∈ R, denote (b
(1)

i ,b
(0)

i ) ⪰

( ˜b
(1)

i ,
˜b
(0)

i ) ifb
(1)

i +b
(0)

i ≥ ˜b
(1)

i +
˜b
(0)

i . For any agent type Fi under (A1)
and (A2), the agent’s expected utility is weakly lower for a higher

payment, i.e.b
(1)

i +b
(0)

i ≥ ˜b
(1)

i +
˜b
(0)

i ⇒ ui (b
(1)

i )−b
(0)

i ≤ ui ( ˜b
(1)

i )− ˜b
(0)

i .

We now show that for any agent, her expected utility at the two-

part bid b∗i,CP is exactly zero. If ui (Z ) ≥ 0, agent i gets expected

utility ui (Z ) − ui (Z ) = 0 if she is charged b∗i,CP = (Z ,ui (Z )). In the

case where ui (Z ) < 0, the continuity, convexity and monotonicity

of ui (z) (part (ii) of Lemma 3.2) implies that there is a unique zero

crossing z0i < Z of ui (z) s.t. ui (z
0

i ) = 0. If agent i is charged b∗i,CP =

(z0i , 0), her expected utility is then ui (z
0

i ) − 0 = 0. This implies

that b∗i,CP is an agent’s “highest acceptable payment" in the R. The

argument for dominant strategy is then standard, observing that

the mechanism allocates to the “highest" bidder, and charges the

allocated agent a second “highest" bid. □

When Z = 0, the CP(Z ) mechanism reduces to the SP auction,

where it is a DSE to bid b∗i,SP = E[V
+
i ]. When Z → +∞, and with



(A3) E [Vi ] < 0,

then CP(Z ) reduces to the CSP mechanism, where it is a dominant

strategy for each agent i to bid her largest acceptable penalty z0i ,

which the unique zero crossing of ui (z) (see Figure 2). z0i exists

and is unique given (A3), since ui (z) is continuous, monotonically

decreasing in z, and converges to E [Vi ] < 0.
4

3.1 Better Welfare and Utilization than SP
The following lemmas states useful properties of utilization and

expected social welfare as functions of penalty z.

Lemma 3.4. Assuming (A1) and (A2), when agent i is allocated
and charged a two-part payment (z,y), the utilization and expected
social welfare are independent of the base payment y, and satisfy:

(i) the utilization uti (z) ≜ P [Vi ≥ −z] is right continuous and
monotonically non-decreasing in z. Moreover, uti (z) = 1 +

u ′i (z+), where u
′
i (z+) is the right derivative of ui at z.

(ii) the social welfare swi (z) ≜ E [Vi1{Vi ≥ −z}] +W P [Vi ≥ −z]
is right continuous, monotonically non-decreasing in z when
z ≤W , and monotonically non-increasing in z when z >W .

The continuity and monotonicity of uti (z) are obvious. From

Fubini’s theorem and the fundamental theorem of calculus, we can

show that the right derivative of ui (z) is equal to the right limit

of −Fi (−v) at z, which is equal to P [Vi ≥ −z] − 1. Intuitively, the

agent uses the resource with higher probability when the penalty z
increases. This, in turn, results in a smaller probability of paying the

penalty, thus ui (z) decreases slower as z increases, corresponding
to a shallower slope of the convex function ui (z). For part (ii),
observe that swi (z) = E [(Vi +W )1{Vi ≥ −z}], and that Vi +W is

non-negative iff. Vi ≥ −W , thus charging z =W optimizes swi (z).

Lemma 3.5. Let u1(z) and u2(z) be the expected utilities of two
agents whose types satisfy (A1) and (A2), and consider z1, z2 ∈ R
s.t. z1 < z2. If u1(z1) ≥ u2(z1), and u1(z2) ≤ u2(z2), we have: (i)
ut1(z1) ≤ ut2(z2), and (ii) sw1(z1) ≤ sw2(z2) if z1 ≤ z2 ≤ W , and
sw1(z1) ≥ sw2(z2) ifW ≤ z1 ≤ z2.

Intuitively, whenu2(z) crossesu1(z) from below,u1(z2)−u1(z1) ≤
u2(z2) − u2(z1). The convexity of ui (z) then implies that the right

derivative of u2(z) at z2 must be higher than the right derivative of

u1(z) at z1, hence the inequality on utilization. The CP mechanism

with the maximum penalty set to Z =W will have some very nice

optimality properties. As a preliminary observation, we state the

following result relative to the SP auction.

Theorem 3.6. For any set of agent types satisfying (A1)-(A2),
under the dominant strategy equilibria, the CP(W )mechanism Pareto-
dominates the second price auction in utilization and social welfare.

We leave the proof to the full paper [16]. When SP and CP(W )

allocate the resource to the same agent, Lemma 3.4 implies that

CP(W ), charging a non-negative penalty, (weakly) improves utiliza-

tion andwelfare. In the casewhere SP andCP(W ) allocate to agents 1

and 2 respectively, we have two cases as shown in Figure 3. Observe

4
Note that the value of the option to use the resource is E

[
V +i

]
, which we assume is

positive. (A3) only requires that an agent gets negative expected utility from committing

to always use the resource, regardless of what happens. This is natural: without (A3),
an agent would accept any unboundedly large penalty for the right to use a resource.
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Figure 3: Example economies where the SP winner (agent 1)
is different from the CP(W ) winner (agent 2.)

V1 =


100, w.p. 0.2,

−20, w.p. 0.4,

−∞, w.p. 0.4,

V2 =


40, w.p. 0.4,

−10, w.p. 0.4,

−∞, w.p. 0.2.
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Figure 4: Agents’ value distributions and expected utility
functions in Example 3.7.

that u1(0) ≥ u2(0) and u2(min{z0
1
,W }) ≥ u1(min{z0

1
,W }). Let z∗

be the penalty that agent 2 is charged under CP(W ), we also have

z∗ ∈ [min{z0
1
,W },W ]. Lemmas 3.4 and 3.5 then imply ut2(z

∗) ≥

ut2(min{z0
1
,W }) ≥ ut1(0), sw2(z

∗) ≥ sw2(min{z0
1
,W }) ≥ sw1(0).

The domination result holds for arbitrary tie-breaking rules for

the twomechanisms. The same analysis on CSP shows that it always

achieves a higher utilization than SP. We illustrate through the

following examples the improvement in welfare and utilization

from CP(W ) over SP, and show that SP can be arbitrarily worse.

Example 3.7 (Double gain in CP(W )). ConsiderW = 50, and two

agents with value distributions and expected utilities as shown in

Figure 4. Compared with agent 2, agent 1 has higher value for the

resource, but lower probability of willing to use the resource and

higher probability for a hard constraint. Under SP, the DSE bids are

b∗
1,SP = 20, b∗

2,SP = 16 thus agent 1 is allocated. The utilization is

ut1(0) = P [V1 ≥ 0] = 0.2 and the social welfare is sw1(0) = 100 ∗

0.2 + 50 ∗ 0.2 = 30. Whereas under CP(W ), b∗
1,CP = (z0

1
, 0) = (30, 0)

and b∗
2,CP = (W ,u2(W )) = (50, 2). Agent 2 is allocated and charged

penalty t
(1)

2
(b) = 30, thus the utilization is P [V2 ≥ −30] = 0.8, and

the social welfare is sw2(30) = 40 ∗ 0.4 − 10 ∗ 0.4 + 50 ∗ 0.8 = 52.

Note that these are higher than ut2(0) = P [V2 ≥ 0] = 0.4 and

sw2(0) = 36— what is achieved if agent 2 is allocated the resource

under SP in some other economy, and charged no penalty. □

Example 3.8 (SP arbitrarily worse). Under the (wi ,pi )model intro-

duced in Example 2.1, the expected utility for agent i given penalty

z isui (z) = wipi −(1−pi )z. Consider an economy with two (wi ,pi )
agents:p1 = ε ,w1 = 1/ε , andp2 = 1−ϵ ,w2 = 1 for some small ε > 0.

Agent 1 is allocated under SP since b∗
1,SP = 1 > b∗

2,SP = 1− ε . Agent

2 is allocated under CP(W ) as long asW > 1, since z0
1
= 1/(1−ε) ≈ 1

and z0
2
= (1 − ε)/ε ≫ 1. The utilization under SP and CP(W ) are ε

and 1 − ε , respectively, and the welfare under the two mechanisms

are 1 + εW and (1 − ϵ)(1 +W ). Thus, CP(W ) can have arbitrarily

better utilization and welfare by selecting a better winner. □
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Figure 5: Iso-profit curves in the 2-D payment space.

The higher welfare and utilization achieved by the CP(W ) mech-

anism come from two different aspects of its design. First, charging

a penalty z ∈ [0,W ] changes the period 1 decision of the allocated

agent, promoting the resource to be used more efficiently. Second,

the CP(W ) mechanism selects a better winner:

• For i s.t. ui (W ) ≥ 0, the DSE two-part bids under CP(W ) add

up to ui (W ) +W = E [Vi1{Vi ≥W }] −W P [Vi < −W ] +W =

E [(Vi +W )1{Vi ≥ −W }] = swi (W ), the highest achievable wel-

fare from allocating the resource to agent i and setting an optimal

penalty z =W . As a result, if maxi ∈N {b
(0)

i + b
(1)

i } ≥W , CP(W )

selects the agent with highest achievable welfare.

• WhenW is large and ui (W ) < 0, agents with higher probabilities

of showing up have ui (z) that decrease more slowly with z, thus
have relatively higher zero crossing z0i , and are more likely to

be allocated. With largeW , higher utilization is more likely to

generate higher social welfare.

4 CHARACTERIZATION AND OPTIMALITY
In this section, we study the optimal mechanism design problem

with the following properties:
5

P1. Dominant-strategy equilibrium

P2. Individually rational

P3. No deficit

P4. Anonymous

P5. Deterministic

P6. No subsidy

Recall that while facing a two part payment (z,y), an agent’s

expected utility is ui (z) − y. We work with iso-profit curves in the

two dimensional payment space, which are sets of (z,y) pairs for
which ui (z) − y = α for some constant α , i.e. an agent will be

indifferent to all payments (z,y) that reside on the same iso-profit

curve. See Figure 5. The zero-profit curve (i.e. where α = 0, the

solid line depicted in Figure 5) is characterized by y = ui (z), thus is
continuous, convex, monotonically decreasing (Lemma 3.2).

4.1 Optimality of the CP(W) Mechanism
Define the frontier of a set of agents N with type profile F to be

the upper-envelope of the zero-profit curves of all agents, i.e. for

all z ∈ R, uN (z) ≜ maxi ∈N ui (z). This characterizes the maximum

willingness to pay (as base payment, given penalty z) by all agents

in N . As the upper envelope of a finite set of continuous, convex,

and decreasing functions, uN (z) has the same properties. When

(A3) is satisfied by all agents, uN (z) also has a unique zero-crossing,
which we denote as z0N . Define the frontier of the sub-economy

5
For (P5) deterministic, we require that the outcome is deterministic unless multiple

agents make the same reports, and that when breaking ties, the two-part payment

each agent may be charged if allocated is still deterministic. (P5) also requires positive
responsiveness, i.e. if a tied agent was to make a “strictly higher" report in an otherwise

equivalent economy, then she has to be allocated with probability one in this other

economy. See the full paper for a more detailed discussion.
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Figure 6: Characterization of possible outcomes undermech-
anisms that satisfy (P1)-(P6).

without agent i asuN \{i }(z) ≜ maxj,i uj (z), and them
th frontier of

the economy as themth
upper envelope of {ui (z)}i ∈N . See Figure 6.

We first characterize the possible outcomes for any two-period

mechanism satisfying (P1)-(P6) in the following lemma.

Lemma 4.1. Assume that the type space includes all value distri-
butions satisfying (A1)-(A3), and consider a two-period mechanism
that satisfies (P1)-(P6). For any type profile F , the allocated agent i∗

and the two-part payment (z∗,y∗) agent i∗ is charged satisfy:
(i) (z∗,y∗) resides weakly below ui∗ (z).
(ii) (z∗,y∗) resides weakly above the frontier of the rest of the econ-

omy uN \{i∗ }(z).
(iii) The allocated agent faces a non-negative base payment y∗ ≥ 0.

Instead of requiring the type space to include all value distribu-

tions that satisfy (A1)-(A3), this lemma also holds assuming that the

type space is the set of all (wi ,pi ) types. Part (i) is implied by IR. If

part (ii) is violated, i.e. if there exists agent i , i∗ s.t.ui (z
∗)−y∗ > 0,

then in the economy where the type of agent i∗ is also given by

Fi , pretending that her type is Fi∗ is a useful deviation. Part (iii) is
proved by showing that if the allocated agent is charged y∗ < 0 in

some economy, we can replace the agent’s type with some (wi ,pi )
type, in which case either IC or ND is violated.

Given (P4) anonymity, regardless of whether there are ties, there

is a two-part payment (z∗,y∗) a mechanism charges its allocated

agent(s). Lemma 4.1 implies that (z∗,y∗) is in between the first

and second frontiers and above the horizontal axis (see Figure 6),

and that the allocated agent(s) resides on the frontier at z∗ (i.e.

uN (z∗) = ui∗ (z
∗) if agent i∗ is allocated). The following lemma

proves monotonicity of utilization and welfare w.r.t. the penalty z∗,
achieved by mechanisms under (P1)-(P6), for any fixed economy.

Lemma 4.2. Fix any type profile F satisfying (A1) and (A2). Among
all mechanisms with (P1)-(P6), the utilization achieved by a mech-
anism is higher if it charges its allocated agent(s) a higher penalty
z∗. Similarly, the achieved welfare is monotonically increasing in z∗

when z∗ ≤W , and monotonically decreasing in z∗ when z∗ >W .

An important implication of this lemma is that the highest

possible welfare achievable by any mechanism under (P1)-(P6) is

achieved by charging a penalty z∗ =W if maxi ∈N ui (W ) ≥ 0 and

z∗ = maxi ∈N z0i otherwise. Lemma 4.1 then requires allocating

to agent(s) in argmaxi ∈N ui (z
∗), which is in fact the set of agents

allocated under CP(W ). Therefore, the only ways to achieve an

even higher welfare than the CP(W ) mechanism are (i) break ties

in favor of higher welfare instead of at random, and (ii) charge a

higher penalty, when the CP(W ) penalty determined by the second

highest bid is lower than the optimal penalty z∗.



Definition 4.3 (Generic input). A type profile F satisfies the generic
input property if for any i, j ∈ N , i , j: we have (i) ui (W ) , uj (W ),

if ui (W ), uj (W ) ≥ 0, and (ii) z0i , z0j , if ui (W ), uj (W ) < 0.

A type profile is generic if no two agents have the same pe-

riod 0 willingness to pay given penaltyW , or the same maximum

acceptable penalty that is belowW . As a result, there would not

be any tie under the CP(W ) mechanism.
6
An immediate result is

that the CP mechanism is welfare optimal for the (wi ,pi ) type
space with the generic input assumption, since in this type do-

main, a higher penalty does not improve utilization, or induce more

welfare-optimal period 1 utilization decision of the allocated agent.

Corollary 4.4. Assume the type space is the set of all (wi ,pi )
value distributions. With the generic input assumption, the CP(W )
mechanism is welfare-optimal type profile by type profile among all
two-period mechanisms that satisfy (P1)-(P6).

Wealso have the following result, the first of our twomain results.

Theorem 4.5 states that the CP(W ) mechanism is not dominated in

welfare by any two-period mechanism under (P1)-(P6).

Theorem 4.5. Assume the type space is the set of all value distribu-
tions satisfying (A1) and (A2). Assuming generic input, no two-period
mechanism under (P1)-(P6) achieves weakly higher social welfare
than the CP(W ) mechanism for all type profiles, and a strictly higher
social welfare than the CP(W ) mechanism for at least one type profile.

Intuitively, if a mechanismM under (P1)-(P6) always achieves

weakly higher welfare than CP(W ), lemmas 4.1 and 4.2 require that

it always allocates the resource to the winner under CP(W ). We

then show a violation of either IR or DSE, if M ever charges the a

higher penalty than the CP(W ) mechanism does to improve welfare.

A payment space P of a mechanism with message space R is the

set of two-part payments that’s achievable by some report profile

of the agents: P = {(t
(1)

i∗ (r ), t
(0)

i∗ (r )) ∈ R2 | r ∈ Rn }.

Definition 4.6 (Ordered payment space). A payment spaceP ⊆ R2

is ordered if all agents with types satisfying (A1) and (A2) agree

on which one of any two pairs of payments is more preferable.

Formally, ∀(z,y), (z̃, ỹ) ∈ P, for all F1, F2 under (A1) and (A2),

u1(z) − y > u1(z̃) − ỹ ⇒ u2(z) − y ≥ u2(z̃) − ỹ.

The second main result is that the CP(W ) mechanism is welfare-

optimal profile by profile among a large class of mechanisms that

always allocate the resource, and use an ordered payment space.

Theorem 4.7. Assume the type space is the set of all value distri-
butions satisfying (A1) and (A2). With the generic input assumption,
the CP(W ) mechanism is welfare-optimal type profile by type pro-
file, among all two-period mechanisms that satisfy (P1)-(P6), always
allocate the resource, and use an ordered payment space.

In fact, all mechanisms discussed so far use ordered payment

spaces. The second price auction always charges no penalty and a

non-negative base payment, thusPSP = {(z,y) ∈ R2 | z = 0, y ≥ 0},

as illustrated in Figure 7a. Similarly, PCSP = {(z,y) ∈ R2 | z ≥

6
The generic inputs assumption is only needed for the indirect, CP(W ) mechanism.

A direct revelation version, that always breaks ties in favor of the agent with higher

utilization, has all the performance guarantees stated in Corollary 4.4 and Theorems 4.5

and 4.7 without the generic input assumption.
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Figure 7: Ordered payment spaces for various mechanisms.

0, y = 0}, as in Figure 7b. The CP(Z ) mechanism sets payments

P
CP(Z ) = {(z,y) ∈ R2 | 0 ≤ z ≤ Z , y = 0} ∪ {(z,y) ∈ R2 | z =

Z , y ≥ 0}, as illustrated in Figure 7c. In addition, mechanisms

with an ordered payment space support a simple indirect message

structure: the interpretation is that the mechanism asks an agent

to report the largest payment in the ordering that is acceptable.

Given this, dominant-strategy mechanisms can be achieved by

allocating to the agent with the highest report and charging the

second-highest report (defined with respect to the payment order).

4.2 Uniqueness and Optimality of CSP
The CSP mechanism can be considered as a special case of the

CP(W ) mechanism with no upper bound on the penalty (Z = ∞).

Defining generic input as no ties in agents’ maximum acceptable

penalties, we can obtain the following analogous optimality results

for utilization. Under the additional assumption of no-charge when
using the resource, we can state a uniqueness result for CSP.

Theorem 4.8. Assume the type space is the set of all value dis-
tributions satisfying (A1)-(A3), assume generic input, and consider
two-period mechanisms that satisfy (P1)-(P6):
(i) the CSP mechanism is the unique mechanism that always allo-

cates the resource, and does not charge the allocated agent if the
resource is utilized (i.e. “no-charge").

(ii) for the (wi ,pi ) type space, the CSP mechanism is optimal for
utilization, type profile by type profile.

(iii) the CSP mechanism is not dominated for utilization.
(iv) the CSP mechanism is utilization optimal type profile by type

profile, among all mechanisms that always allocate the resource
and use an ordered payment space.

5 ASSIGNMENT OF MULTIPLE RESOURCES
In this section, we generalize the model to allow for assigning

multiple, heterogeneous resources but where each agent remains

interested in receiving at most one resource (i.e., the unit-demand

setting). Let N = {1, 2, . . . ,n} be the set of n agents and M =

{a,b, . . . ,m} be the set ofm resources. For each a ∈ M , the value

for each agent i ∈ N to use resource a is a random variable Vi,a
with CDF Fi,a . {Fi,a }a∈M corresponds to agent i’s type.

The SP auction can be generalized as the VCG mechanism [7,

12, 25], where it is a dominant strategy for agent i to bid ui,a (0) =
E[V +i,a ] for each a ∈ M . The naive generalization of the CP(Z )

mechanism fails to be incentive compatible, since agents’ expected

utilities are not quasi-linear in the period 1 penalty payments.

A set of two-part payments {(za ,ya )}a∈M is a set of competitive
equilibrium (CE) price if the market clears when each agent selects

her favorite resource given these payments: no resource is selected

more than once, and a resource a ∈ M that is not selected has zero

prices: za = ya = 0. Recall that in the message space of a CP(Z )
mechanism, a two-part payment (z,y) is “higher" if it has a larger



sum z + y, and that an agent has a lower expected utility if she

is charged a higher two-part payment. We generalize the CP(Z )
mechanism as the minimum CE price mechanism [1, 10]:

Definition 5.1 (Generalized CP(Z ) mechanism). The generalized
CP mechanism with max. penalty Z (the GCP(Z ) mechanism) col-

lects distributions {Fi,a }i ∈N ,a∈M from the agents, and computes

the minimum CE payments {(za ,ya )}a∈M in the payment space

R = {(z,y) ∈ R2 | 0 ≤ z ≤ Z , y = 0} ∪ {(z,y) ∈ R2 | z = Z , y ≥ 0}.

• Allocation rule: allocate to each agent her favorite resource given

the min CE payments: xi (F ) = a∗i ∈ argmaxa∈M ui,a (za ) − ya
(breaking ties to clear the market), if maxa∈M ui,a (za ) − ya > 0.

• Payment rule: charge each agent t
(1)

i (F ) = za∗i and t
(0)

i (F ) = ya∗i
if agent i is allocated resource a∗i . All other payments are zero.

For the case where them resources are identical, the mechanism

reduces to the (m + 1)th price version of the CP(Z ) mechanism.

When Z = 0, the mechanism reduces to VCG, and for the case

whenZ = ∞, we get the generalized CSP (GCSP) mechanism, which

prices each resource at the minimum CE penalties. Demange and

Gale [10] prove that the minimum CE price mechanism is incentive

compatible, and Alaei et al. [1] provide a recursive algorithm to

compute these minimum CE prices.

Theorem 5.2. Given assumptions (A1)-(A2), under the generalized
CP(Z ) and the generalized CSP mechanisms, it is a dominant strategy
for each agent to truthfully report her type.

6 SIMULATION RESULTS
In this section, we compare the welfare and utilization achieved

by different mechanisms. We adopt the exponential type model

(see Example 2.2), under which agent i’s value for using resource
a is Vi,a = wi,a − Oi,a , where wi,a > 0 is the fixed value and

Oi,a ∼ Exp(λi,a ) is the exponentially distributed opportunity cost.

E
[
Vi,a

]
= wi,a − λ−1i,a where λ−1i,a is the expectation of Oi,a .

We consider the type distribution where the values and the ex-

pected opportunity costs are uniformly distributed: λ−1i,a ∼ U[0, L]

and wi,a ∼ U[0, λ−1i,a ]. With wi,a < λ−1i,a , (A1)-(A3) are satisfied.

We set L = 10 andW = 5, corresponding to scenario where the

societal valueW is equal to the expected opportunity cost for an

average agent to use a resource. We present in the full version of

this paper [16] additional results for settings where the societal

preference for utilization is weaker or stronger, which show the

robustness of the contingent payment mechanisms.

Single Resource Assignment. We first study the assignment of a

single resource. Varying the number of agents from 2 to 15, we

compute the average welfare and utilization over 10,000 randomly

generated profiles under the CP(W ), CSP, SPmechanisms, and other

benchmarks. See Figure 8. The First-Best benchmark is the highest

achievable welfare and utilization, subject to the assumptions of IR

and ND. The Random benchmark assigns the resource at random

to one of the agents without charging any payment, modeling the

first-come-first-serve reservation systems.

Figure 8a shows that the CP(W ) mechanism achieves slightly

higher welfare than the CSP mechanism, and is very close to the

first-best welfare. Both CP(W ) and CSP achieve better social welfare

than the SP auction. The average utilization under the mechanisms
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Figure 8: Social welfare and utilization for a single resource.

0 5 10 15

# of agents

6

8

10

12

14

16

18

S
o
c
ia

l 
W

e
lf
a
re

(a) Social Welfare

0 5 10 15

# of agents

0.5

1

1.5

2

2.5

3

U
ti
liz

a
ti
o
n First Best

GCPM(W)

GCSP

VCG

FCFS

(b) Utilization

Figure 9: Social welfare and utilization for three resources.

is shown in Figure 8b. In comparison to the SP auction, both CSP

and CP(W ) mechanisms achieve significantly higher utilization.

Note that without using any base payment, CSP still achieves sig-

nificantly higher welfare than random assignment, which can be

considered as the status-quo of many real-life reservation systems.

Multiple Heterogeneous Resources. We compare in Figure 9 the so-

cial welfare and utilization (expected number of utilized resources)

for assigning 3 heterogeneous resources, as the number of agents

varies from 2 to 15. The First Come First Serve (FCFS) benchmark

allows each agent to choose her favorite remaining resource as they

arrive in a random order, and does not charge any payments.

7 CONCLUSION
We study the problem of resource assignment where agents have

uncertainty about their values and where it is in the interest of the

society or the planner that resources be used and not wasted. The

CP(W ) mechanism optimizes social welfare for assigning a single

resource, and can be generalized to assign multiple heterogeneous

resources. Simulation results demonstrate the effectiveness and

robustness of the contingent payment mechanisms.

Interesting directions for future work include (i) generalizing

the model to allow for more than two time periods, where agents

may arrive asynchronously, uncertainty unfolds gradually over

time, and resources can be re-allocated, (ii) repeated assignments of

resources (e.g. weekly spinning classes) using points, and (iii) fold-

ing in considerations from behavioral economics, understanding

the impact of present-bias on resource utilization, and designing

commitment devices through contingent payment mechanisms.
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