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Abstract

To address the challenge of uncertainty regarding
the attacker’s payoffs, capabilities and other char-
acteristics, recent work in security games has fo-
cused on learning the optimal defense strategy from
observed attack data. This raises a natural concern
that the strategic attacker may mislead the defender
by deceptively reacting to the learning algorithms.
This paper focuses on understanding how such at-
tacker deception affects the game equilibrium. We
examine a basic deception strategy termed imitative
deception, in which the attacker simply pretends
to have a different payoff assuming his true pay-
off is unknown to the defender. We provide a clean
characterization about the game equilibrium as well
as optimal algorithms to compute the equilibrium.
Our experiments illustrate significant defender loss
due to imitative attacker deception, suggesting the
potential side effect of learning from the attacker.

1 Introduction
In AI research, there has been an increasing interest in the ap-
plication of Stackelberg models in addressing security chal-
lenges, also known as Stackelberg security games (SSGs).
This interest is driven in part by a number of high-impact
deployed security applications [Tambe, 2011]. In these real-
world domains, an important challenge facing the security
agency (the defender) is her uncertainty about the attacker’s
capabilities, payoffs, and behavior, etc. To address this chal-
lenge, various learning techniques have been proposed to
learn the attacker’s characteristics or the defender’s optimal
strategy from observed attack data [Letchford et al., 2009;
Marecki et al., 2012; Blum et al., 2014; Balcan et al., 2015;
Haghtalab et al., 2016; Nguyen et al., 2016; Kar et al., 2017;
Gholami et al., 2017; Xu et al., 2016; Peng et al., 2019]. A
crucial assumption in these works is that the attacker always
responds honestly to the defender’s algorithm so that the true
attacker characteristics are learned. However, given the com-
petitive nature of the interaction, this assumption may rarely
hold in practice — the strategic attacker may manipulate his
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reactions to mislead the learning algorithm towards an out-
come that favors the attacker. Such concern of attacker de-
ception motivates the central research question of this paper:

In SSGs with a defender facing an unknown attacker, how
would the attacker’s deception affect the equilibrium?

This paper initiates the study of attacker deception in SSGs
with unknown attacker payoff. We investigate a basic decep-
tion strategy termed imitative deception in which the attacker
simply pretends to have some payoff (which may differ from
his true one) and always plays consistently to this deceptive
payoff. As a result, through learning, the defender eventually
commits to an optimal defense strategy against the attacker’s
deceptive payoff. The attacker aims to find an optimal de-
ceptive payoff such that it leads to a defender equilibrium
strategy that maximizes the attacker’s true utility. Such de-
ception can happen when, e.g., the defender seeks to learn
the optimal strategy against the attacker [Blum et al., 2014;
Gholami et al., 2017; Peng et al., 2019]. Moreover, imitative
deception is easy for the attacker to implement. Thus, we be-
lieve it serves as a natural and important first step towards a
general understanding of attacker deception.

1.1 Results and Implications
We study the attacker’s problem of finding the optimal decep-
tive payoff and the corresponding defender equilibrium strat-
egy, and refer to this game as the imitative deception game.
When the attacker’s deception is unconstrained — i.e., he can
choose any deceptive payoff — we provide a clean characteri-
zation about the attacker’s optimal deception and correspond-
ing optimal defender strategy. Interestingly, we prove that the
optimal attacker deception in this case is to pretend to have
a (deceptive) payoff such that the resulting optimal strategy
for the defender is to play the Maximin strategy, regardless
of what the attacker’s true payoff is. This result conveys a
very interesting conceptual message: in security games, the
attacker would always like to pretend to be strictly competi-
tive against the defender regardless what true payoff he pos-
sesses. This seemingly irrational behavior is in fact highly
strategized and can maximize his true utility. We remark that
this is a special property of security games and does not hold
in general Stackelberg games.

When the attacker’s deception is constrained and cannot
be arbitrary payoff, we examine the problem computation-



ally, and present a general optimization framework to solve
the imitative deception game under constrained attacker de-
ception. We then show that instantiating our framework for
two natural types of constraints results in a compact formula-
tion as a Mixed Integer Linear Program (MILP), which can be
solved efficiently as shown by our experiments. Finally, our
simulation illustrates significant benefit [loss] of the attacker
[defender] in presence of imitative attacker deception.

1.2 Additional Related Work
Secrecy and deception in security The study of deception
in security domains has a rich literature (see, e.g., [Fraunholz
et al., 2018] for a survey). In SSGs, recent work examines de-
ception from the defender’s side and study how to mislead the
attacker’s decision by exploiting the defender’s knowledge re-
garding uncertainties [Zhuang et al., 2010; Xu et al., 2015;
Rabinovich et al., 2015; Guo et al., 2017]. However, attacker
deception — the natural counterpart in this line of research
— has not been paid much attention. To our knowledge,
the only relevant study is the recent work by [Nguyen et al.,
2019], however focusing on repeated games and analyzing
Bayesian Nash equilibrium, whereas our game is one-shot
and is a Stackelberg model with commitment.
Attacks to ML algorithms Research on adversarial learn-
ing has attempted to design various types of attacks to ma-
chine learning algorithms [Brückner et al., 2012; Brückner
and Scheffer, 2011; Barreno et al., 2010; 2006; Lowd and
Meek, 2005] The attacker deception in our game can be
viewed as a type of causative attack to the defender’s learning
algorithm, with the goal of maximizing the attacker’s utility.

2 Preliminaries and Our Model
Basic Setup. We consider a standard SSG where a defender
allocates K security resources to protect N targets (K < N )
against an attacker’s attack. Let [N ] = {1, 2, . . . , N} denote
the set of targets. A pure strategy of the defender is an as-
signment of these K resources to an arbitrary subset of K
targets (i.e., no scheduling constraints), and a mixed strategy
is thus a probability distribution over these pure strategies. A
defender mixed strategy in this setting can be equivalently
represented as a vector of marginal coverage probabilities
x = (x1, x2, . . . , xN ), where

∑
j xj ≤ K and xj ∈ [0, 1]

is the probability of protecting target j ∈ [N ] [Kiekintveld et
al., 2009]. Let X denote the set of all these mixed strategies.
Player Payoffs. If the attacker attacks target j that is not pro-
tected by the defender, he obtains a reward of Ra

j while the
defender receives a penalty of P d

j . Conversely, if j is pro-
tected, the attacker receives a penalty of P a

j (< Ra
j ) while the

defender gets a reward of Rd
j (> P d

j ). The players’ expected
utilities at j are thus computed as follows:

Ud
j (xj) = xjR

d
j + (1− xj)P d

j (1)

Ua
j (xj) = xjP

a
j + (1− xj)Ra

j (2)

Strong Stackelberg Equilibrium (SSE). Given the payoff
structure, for any defense strategy x ∈ X, let Γ(x) denote
the set of targets of the highest expected utility for the at-
tacker. SSG models assume that the attacker is aware of the

defender’s mixed strategy x, and thus the rational attacker
will attack some target j ∈ Γ(x) as his best (pure) response
[Tambe, 2011]. We call Γ(x) the attack set with respect to x.

The commonly adopted solution concept in SSGs is the
Strong Stackelberg Equilibrium (SSE), which consists of a
defender mixed strategy x∗ and an attacker best response i∗ ∈
Γ(x∗). Formally, (x∗, i∗) is an SSE if:

(x∗, i∗) = argmax
x∈X,i∈Γ(x)

Ud
i (xi) (3)

Sometimes two action profiles (x∗, i∗) and (x′, i′) are both
SSEs of the game. Yet, they must always yield exactly the
same utility for both players [Yin et al., 2010]. In such cases,
we say (x′, i′) is reducible to (x∗, i∗).
Imitative Attacker Deception. Our model assumes that
the attacker’s true payoff {P a

j , R
a
j }j∈[N ] is unknown to the

defender. The attacker can manipulate his behavior to mis-
lead the defender if that is beneficial. We focus on a basic
deception model, which we term imitative deception. That
is, the attacker simply behaves according to a different pay-
off {P̂ a

j , R̂
a
j }j∈[N ], instead of his true payoff, and will do so

consistently throughout the game. Such deception may hap-
pen in many scenarios, especially those where the defender
seeks to learn the attacker’s payoff. The attacker’s goal is to
find the optimal deceptive payoff so that it leads to a SSE
defense strategy that maximizes the attacker’s true utility.
Remarks on Terminologies. Under imitative attacker decep-
tion, the SSE is defined in exactly the same way except that
it is now with respect to the attacker’s deceptive payoff. Yet,
to distinguish this deceptive situation from truthful attacker
behavior, we call the induced game imitative deception game
and the corresponding SSE the deceptive SSE.

3 Unconstrained Imitative Deception
In this section, we study the case where the attacker’s de-
ception is unconstrained. Concretely, the attacker can imitate
any payoff {P̂ a

j , R̂
a
j }j∈[N ] as long as P̂ a

j < R̂a
j . We provide

a complete characterization about both players’ strategies in
this unconstrained setting, and prove that the optimal imita-
tive attacker deception is to pretend to have a payoff such that
the optimal defender strategy is to play the Maximin strategy.
Our main theorem is formally stated as follows.
Theorem 1. For any true attacker payoff {P a

j , R
a
j }j∈[N ], the

deceptive Strong Stackelberg Equilibrium (SSE) under opti-
mal attacker imitative deception is characterized as follows:
• The defender’s optimal strategy is always the Maximin

strategy xmm;
• The attacker attacks target

i∗ = arg max
j∈[N ]

[
xmmj P

a
j + (1− xmmj )Ra

j

]
;

• The attacker’s optimal imitative payoffs can be con-
structed as follows (this is just one possible construc-
tion; there are many others): (i) For any j ∈ [N ], set
P̂ a
j = −Rd

j and R̂a
j = −P d

j for all j ∈∈ [N ]; (ii) if
xmmi∗ = 0, then re-set R̂a

i∗ = −Umm and P̂ a
i∗ = −Umm − 1

where Umm = minj [x
mm
j R

d
j + (1 − xmmj )P d

j ] is the de-
fender’s Maximin utility.



Remarks. Theorem 1 provides a complete characteriza-
tion about both players’ optimal strategies under imitative
attacker deception. It also illustrates the usefulness of the
Maximin strategy in handling attacker deception in security
domains. Note that the attacker’s optimal deceptive payoffs
may not be exactly the opposite of the defender’s payoffs, i.e.,
P̂ a
j = −Rd

j and R̂a
j = −P d

j — sometimes he needs to treat
his “favoriate” target i∗ specially to make sure attacking i∗ is
indeed his best response (i.e., the “if xmmi∗ = 0” step in The-
orem 1). We remark that Theorem 1 relies on the structure
of security games and does not hold for general Stackelberg
games. The following corollary shows that the attacker has
no incentive for imitative deception in zero-sum SSGs.

Corollary 1. In zero-sum games, the attacker’s optimal imi-
tative deception strategy is to play truthfully.

Admittedly, Theorem 1 is somewhat counter intuitive since
the defender will always be misled to play the same strategy
xmm regardless of the attacker’s true payoffs. Before giving
the full proof of Theorem 1, we provide an illustrative ex-
ample and attempt to provide some intuition underlying this
result. However, we note that its full proof is more involved.

Example 1 (An example and intuitions of Theorem 1). Con-
sider a security game with 3 targets. The defender and at-
tacker payoffs are specified as follows:

target 1 target 2 target 3
Rd

i 1 3 1
P d
i -3 -2 0
Ra

i 2 1 1
P a
i -3 -1 -1

The defender only has 1 security guard, which can be allo-
cated to protect any target. We use (x1, x2, x3) to denote a
defender mixed strategy where xi is the probability of allocat-
ing the guard to target i. Our model assumes that the attacker
payoffs are unknown to the defender, and attacker can imitate
any other payoff structure if that is beneficial to him.

If the attacker were honest, then the SSE is (1/3, 1/3, 1/3).
The attacker will be induced to attack target 3, resulting in
defender utility 1/3 and attacker utility 1/3.

According to Theorem 1, under optimal attacker imitative
deception, the defender will be misled to play the Maximin
strategy which is (2/3, 1/3, 0). The attacker will attack target
arg maxj∈[3]

[
xmmj P

a
j +(1−xmmj )Ra

j

]
, which is target 3 in this

example. This results in defender utility 0 and attacker utility
1 (larger than the utility of an honest attacker). The optimal
deceptive attacker payoff constructed in Theorem 1 is

R̂a
i 3 2 1/3

P̂ a
i -1 -3 -2/3

It is easy to verify that this deceptive payoff — though make
the game non-zero sum at target 3 — indeed makes the
Maximin strategy (2/3, 1/3, 0) the SSE.

In this example, through deception, the attacker was able to
completely “shift” the defender’s resource away from target
3 (i.e., from x3 = 1/3 in honest SSE to x3 = 0 in xmm) and
achieve utility 1 by attacking the unprotected target 3. One
might wonder whether the attacker can instead completely

shift the defender’s resource away from target 1 and then at-
tack it, resulting in even higher utility 2. It turns out that this
is not possible because (0, x2, x3) and i∗ = 1 can never form
an SSE — shifting some protection from target 2, 3 to target 1
will surely increase the defender’s expected utility.

Some intuitions about why Maximin. In the proof of Theo-
rem 1, we will give a full characterization about what kind
of (x, i∗) could be a (deceptive) SSE, and identify some
“consistency” condition. Intuitively, the expected defender
utility at i∗ should be no worse any other target j with non-
zero protection probability (the “Max” part) since otherwise
she can move some protection from j to i∗ to improve her
SSE utility. Now, among all consistent (x, i∗)’s, which is the
best for the attacker? It shall be the one minimizing the de-
fender’s utility (the “Min” part) since it minimizes xi∗ and
thus maximizes the attacker utility. This is the intuition of why
the Maximin defender strategy shows up at the equilibrium
regardless of what the attacker’s true payoffs are.

Example 2 (Failure of Theorem 1 in normal-form games).
Consider a Stackelberg version of the battle of the sexes
Game, with payoffs as follows, where row player is the leader.

Opera Basketball
Opera (2,1) (0,0)

Basketball (0,0) (1,2)

Without deception, the leader should commit to Opera deter-
ministically, resulting in follower best response Opera and
utility 1. If the leader plays Maximin strategy (1/3, 2/3), the
imitative follower payoff specified by Theorem 1 is to make
the game zero-sum in this case. The follower shall take ac-
tion Basketball, resulting in follower utility 4/3. How-
ever, this is not optimal for the follower — at optimal imi-
tative deception, the follower pretends to not “care about”
the leader at all, and always have utility 2 for Basketball
and 1 for Opera. In this case, the leader will commit to
Basketball, resulting follower utility 2. In fact, the fol-
lower deception essentially served as a way of commitment.

Proof of Theorem 1
The main challenge here is that the attacker’s deception is to
manipulate the space of his payoffs whereas our analysis has
to examine the space of (deceptive) SSEs. Unfortunately, the
relation between the space of attacker payoffs and the space
of SSEs does not admit a clean analytical form. To prove
the theorem, we establish various characterizations of SSEs,
which we believe might be of independent interest.

Our proofs are divided into three main steps.

Step 1: A Characterization of SSE
As the first step, we provide a characterization of the SSE
in security games, which will be crucial for us to analyze
what defender mixed strategies can possibly arise in decep-
tive SSE. Since this characterization may be of independent
interest, we state it as Theorem 2. Intuitively, Theorem 2
shows that a strategy profile is an SSE if and only if it is re-
ducible to {x∗, i∗} such that: (1) all targets in the attack set
have equal attacker utility; (2) i∗ has the highest defender util-
ity among all targets in the attack set; (3) any target outside



the attack set is covered with a probability of zero; (4) either
all the resources are used up or one of the target is covered
with a probability of one. We remark that the crucial condi-
tions here are Condition (3) and (4), which are specific to the
security game setting, whereas Condition (1) and (2) follow
naturally from the definition of SSE.
Theorem 2. Given any security game, a strategy profile is an
SSE if and only if it is reducible to {x∗, i∗} s.t.
1) For any j ∈ Γ(x∗), P a

i∗x
∗
i∗ + Ra

i∗(1 − x∗i∗) = P a
j x
∗
j +

Ra
j (1−x∗j ); 2) For any j ∈ Γ(x∗), Rd

i∗x
∗
i∗ +P d

i∗(1−x∗i∗) ≥
Rd

jx
∗
j + P d

j (1 − x∗j ); 3) For any j /∈ Γ(x∗), x∗j = 0 and
P a
i∗xi∗ + Ra

i∗(1 − x∗i∗) > Ra
j ; and 4) either (i)

∑
j x
∗
j = K

or (ii)
∑

j x
∗
j < K and x∗k = 1 for some k ∈ Γ(x∗).

The full proof of Theorem 2 can be found in the full ver-
sion. A useful corollary of Theorem 2 is its instantiation to
zero-sum games. In particular, we can view the Maximin
strategy as the Stackelberg equilibrium of a zero-sum secu-
rity game. Therefore, Theorem 2 gives rise to the following
characterization of the defender’s Maximin strategy, which
we denote as xmm. Here, Umm is the defender’s Maximin util-
ity and Γ(xmm) denotes the attack set of the Maximin strategy.
Lemma 1 (Characterization of Maximin). Any Maximin de-
fender strategy is reducible to xmm such that: 1) for all j ∈
Γ(xmm), xmmj R

d
j + (1−xmmj )P d

j = Umm; 2) for all j /∈ Γ(xmm),
xmmj = 0 and Umm < P d

j ; and 3) either (i)
∑

j x
mm
j = K or

(ii)
∑

j x
mm
j < K and xmmk = 1 for some k ∈ Γ(xmm).

Note that the first two conditions in Theorem 1 are com-
bined as one condition due to P a

j = −Rd
j and Ra

j = −P d
j .

Step 2: Characterizing the Set of All Deceptive SSE
Our second main step is to characterize the space of all the
possible deceptive SSE {x, i∗}’s that can possibly arise due
to the attacker’s imitative deception. Besides revealing useful
insights about the SSE, this characterization is also an impor-
tant step towards analyzing the attacker’s imitative deception
since the optimal deception strategy is essentially to pick the
deceptive SSE that maximizes the attacker’s expected utility.

Our characterization of SSE in Theorem 2 will play a key
role in this analysis. Naturally, x must satisfy Condition (4)
of Theorem 2 since this condition is out of the attacker’s con-
trol. Additionally, the i∗ cannot be arbitrary. In particular,
Condition (3) implies that any j such that xj > 0 must be-
long to the attack set Γ(x). In other words, supp(x) ⊆ Γ(x)
where supp denotes the support of x. As a result, Con-
dition (2) then implies that ∀j ∈ supp(x), we must have
Rd

i∗xi∗ + P d
i∗(1 − xi∗)≥Rd

jxj + P d
j (1 − xj). This leads to

the following definition of consistency between x and i∗.
Definition 3.1. We say {x, i∗} is consistent if Rd

i∗xi∗ +
P d
i∗(1− xi∗) ≥ Rd

jxj + P d
j (1− xj),∀j ∈ supp(x).

Note that xi∗ may equal 0 when {x, i∗} is consistent. In-
terestingly, it turns out that consistency is essentially the only
requirement to make {x, i∗} a deceptive SSE.

Lemma 2. For any (x, i∗), there exists {R̂a
j , P̂

a
j }Nj=1 to make

{x, i∗} a deceptive SSE if and only if {x, i∗} is consistent and
x satisfies Condition (4) of Theorem 2.

Proof. We have argued about “only if” direction (i.e., the ne-
cessity) previously. Here we prove sufficiency.

Given any consistent (x, i∗) where x satisfies Condition (4)
of Theorem 2, we construct the following deceptive payoff of
the attacker: (i) ∀j, if xj > 0, let R̂a

j = 2 and P̂ a
j = 2 − 1

xj
;

(ii) ∀j, if xj = 0 and j 6= i∗, let R̂a
j = 0 and P̂ a

j = −1; and
(iii) if xi∗ = 0, set R̂a

i∗ = 1 and P̂ a
i∗ = −1.

Therefore, ∀j 6= i∗, if xj > 0, the attacker’s deceptive util-

ity at target j is xjP̂ a
j + (1− xj)R̂a

j = xj

(
2− 1

xj

)
+ 2(1−

xj) = 1; if xj = 0, the attacker’s deceptive utility is R̂a
j = 0.

For the special target i∗, if xi∗ = 0, the third step in the above
construction sets the deceptive payoff to make the attacker’s
expected utility at i∗ also 1 = R̂a

i∗ . Consequently, we have
Γ(x) = supp(x) ∪ {i∗}. One can easily verify that the con-
structed {x, i∗} satisfies all the four conditions in Theorem
2: Condition 1 and 2 are satisfied due to the construction of
{P̂ a

j , R̂
a
j }nj=1 and Condition 3 is satisfied due to consistency

assumption. Thus, {x, i∗} is a deceptive SSE.

Step 3: Completing the Proof
The main part of our final step is to invoke previous charac-
terization results to prove that that under optimal imitative at-
tacker deception, the defender strategy in the deceptive SSE is
precisely the Maximin strategy xmm. As a result, by definition
of Maximin, for any target iwe haveRd

i x
mm
i +P d

i (1−xmmi ) ≥
Rd

jx
mm
j + P d

j (1− xmmj ),∀j ∈ supp(xmm). So (xmm, i) is con-
sistent for any i ∈ [N ]. By Lemma 2, (xmm, i) can be a de-
ceptive SSE and the optimal target i∗ for the attacker is then
i∗ = arg maxj∈[N ]

[
xmmj P

a
j + (1− xmmj )Ra

j

]
. In this case, the

imitative attacker payoff has an even easier construction due
to the special property of xmm. In particular, we simply let
P̂ a
j = −Rd

j and R̂a
j = −P d

j for all j ∈∈ [N ]. If xmmi∗ = 0, re-
set R̂a

i∗ = −Umm, i.e., the negative of the defender’s Maximin
utility, and P̂ a

i∗ = −Umm − 1. It is easy to verify that in this
case the attack set is τ(xmm) ∪ {i∗}.

What remains is to argue that the defender strategy is pre-
cisely xmm, as summarized in the following lemma, whose
proof is deferred to the full version. These all together con-
cludes the proof of Theorem 1.

Lemma 3. Let xmm be the defender’s Maximin strategy. For
any i∗ ∈ [N ] such that (xmm, i∗) is consistent, (xmm, i∗)
maximizes the attacker’s utility among all consistent (x, i∗)’s
where x satisfies Condition (4) of Theorem 2.

4 Constrained Imitative Deception
In the constrained attacker deception scenario, the attacker
can pretend his payoff to be different from his true one with
some predetermined constraints on his potential lies. For ex-
ample, the attacker’s deceptive rewards and penalties are con-
strained within some intervals. In this work, we consider two
cases: (i) there are value constraints of the attacker’s payoff;
and (ii) there is a limited number of targets the attacker can
report untruthful rewards and penalties.

In value-constrained deception, the attacker can only report
its payoff from a deceptive payoff space Ω ⊂ RN

+ × RN
− and



the defender follows the corresponding deceptive SSE to play.
As a corollary of Theorem 1, the following proposition shows
that if imitating a strictly competitive opponent is feasible for
the attacker, then doing so is always optimal.

Proposition 1. If the deceptive payoff space Ω includes R̂a
j =

−P d
j , P̂

a
j = −Rd

j ,∀j, then the attacker’s optimal deceptive
strategy is still to make the deception game zero-sum and the
defender strategy in the deceptive SSE is Maximin.

Next we describe a general framework for computing the
optimal imitative deception under arbitrary value constraints,
and then show how to instantiate this framework for two con-
crete (and natural) types of value constraints.

As stated previously, the utility of the attacker in the SSE
is a decreasing function of the defender’s coverage probabil-
ity at the attacked target. Therefore, our idea is to divide the
attacker’s deceptive payoff space into N sub-spaces such that
for all the attacker payoffs from the same sub-space, the at-
tacker attacks the same target in the deceptive SSE. Based on
Theorem 2, the problem of computing the optimal deceptive
SSE in each sub-space can then be represented as the two
Mixed Integer Non-Linear Programs (MINLPs); each corre-
sponds to either Condition 4(i) or 4(ii):

The following MINLP is with respect to the Condition 4(i):
min xi s.t. (4)

xiP̂
a
i + (1− xi)R̂a

i ≥ xjP̂ a
j + (1− xj)R̂a

j ,∀j (5)

xiP̂
a
i +(1−xi)R̂a

i≤xjP̂ a
j +(1−xj)R̂a

j+(1−hj)M,∀j (6)

xiP̂
a
i + (1− xi)R̂a

i ≥ R̂a
j − hjM + ε,∀j (7)

xiR
d
i+(1−xi)P d

i ≥xjRd
j+(1−xj)P d

j −(1−hj)M, ∀j (8)

hi = 1, hj ∈ {0, 1}, xj ≤ hj ,∀j (9)∑
j
xj = K,xj ∈ [0, 1],∀j (10)

{P̂ a
j , R̂

a
j } ∈ Ω (11)

where P̂ a
j , R̂

a
j , xj , hj are variables. This MINLP is non-

linear because it has product of variables, i.e., xjP̂ a
j . The

MINLP minimizes the defender’s coverage probability at the
attacked target i, or equivalently, to maximize the attacker’s
true expected utility. In particular, hj is a binary variable
which indicates if target j belongs to the attack set (hj = 1)
or not (hj = 0). Constraint (5) ensures that target i has the
highest deceptive expected utility for the attacker. Constraint
(8) forces the defender’s utility at i to be the highest among
targets in the attack set. In other words, constraints (5) and
(8) guarantee that i is the attacked target. Constraints (5) and
(6) force the deceptive expected utility for the attacker at ev-
ery target in the attack set to be equal to the one at i. Con-
straints (7) and (9) force xj = 0 and the attacker deceptive
utility at i is strictly greater than Ra

j if j /∈ Γ(x). Constraint
(10) satisfies Condition 4(i) of Theorem 2. In summary, con-
straints (5–10) guarantee that the outcome of this MINLP is
a deceptive SSE. Finally, constraint (11) forces the attacker’s
deceptive payoff to be in the space Ω. Note that, M and ε are
very large and small constants, respectively.

A similar MINLP with respect to Condition 4(ii) of The-
orem 2 can be formulated, simply by substituting Constraint

(10) by the following constraints, with additional binary vari-
able qj indicating whether xj = 1 (qj = 1) or not (qj = 0).∑

j
xj ≤ K,

∑
j
qj = 1, xj ≥ qj , qj ∈ {0, 1},∀j (12)

Value-bound constraints. We now instantiate the above
framework with value-bounded constraints. That is, the space
Ω can be represented as a set of separate lower and upper
bound constraints on the attacker’s rewards and penalties. We
can convert the aforementioned non-linear optimization prob-
lems into Mixed Integer Linear Programs (MILPs). In partic-
ular, assume that Ω can be represented as follows:

Ωj = {(P̂ a
j , R̂

a
j ) : lpj ≤ P̂

a
j ≤ u

p
j , l

r
j ≤ R̂a

j ≤ urj},∀j

where (lrj , u
r
j , l

p
j , u

p
j ) are constants. We introduce new vari-

ables ypj = P̂ a
j xj and yrj = R̂a

j (1 − xj). We now can refor-
mulate the problem (4–11) as the following MILP:

min xi (13)

s.t. ypi + yri ≥ y
p
j + yrj ,∀j (14)

ypi + yri ≤ y
p
j + yrj + (1− hj)M (15)

ypi + yri ≥ y
p
j + yrj − hjM + ε (16)

Constraints (8–10)

lpjxj ≤ y
p
j ≤ u

p
jxj ,∀j (17)

lrj (1− xj) ≤ yrj ≤ urj(1− xj),∀j (18)

where constraints (14–16) correspond to (5–7). Con-
straint (17–18) correspond to (11). Similarly, we also obtain
a MILP w.r.t. Condition 4(ii). These two MILPs compute the
optimal deceptive payoff given that i is the attacked target in
the corresponding deceptive SSE. Finally, the best deceptive
payoff is chosen as to provide the highest true expected utility
for the attacker among all these choices of the attacked target.

Target-limited constraints. Now we show how the above
framework can be applied to target-limited constraints. That
is, the attacker can lie for up toL < T targets. Here, we intro-
duce a binary variable zj which indicates if the attacker lie at
target j (zj = 1) or not (zj = 0). We now can then formulate
a new program with the following additional constraints:

Ra
j − zjM ≤ R̂a

j ≤ Ra
j + zjM,∀j (19)

P a
j − zjM ≤ P̂ a

j ≤ P a
j + zjM,∀j (20)∑

j
zj ≤ L, zj ∈ {0, 1} (21)

where {Ra
j , P

a
j }j∈[N ] is the true payoff of the attacker.

When we additionally have value-bound constraints, then
the corresponding target-limited constraints for ypj and yrj are:

Ra
j (1− xj)− zjM ≤ yrj ≤ Ra

j (1− xj) + zjM (22)

P a
j xj − zjM ≤ y

p
j ≤ P

a
j xj + zjM (23)

5 Experiments
We evaluate the solution quality of our proposed deceptive al-
gorithm. We aim at empirically analyzing the benefit [loss] of
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Figure 1: Solution evaluation

the attacker [defender] in terms of expected utility in the pres-
ence of the attacker’s deception. In our experiments, the play-
ers’ rewards and penalties are generated in the ranges [1, 10]
and [−10, 1] using the covariance game generator, GAMUT
(http://gamut.stanford.edu/). The covariance value r governs
the correlation between the players’ payoffs. If r = −1.0, the
generated games are zero-sum. Since the attacker always play
truthfully in zero-sum games (Corollary 1), we only choose
r within [−0.8, 0.0] with a step size of 0.2. Each data point
in our results is averaged over 250 different games (50 games
per covariance value). Finally, we consider two scenarios: (i)
small deceptive payoff space with an interval size of I = 1.0;
and (ii) large space with I = 2.0. Our evaluations are based
on various game settings with varying number of deceivable
targets, number of targets, and number of defender resources.

In Figure 1, we evaluate the attacker and the defender’s
average expected utility in two cases: (i) the attacker
plays truthfully; and (ii) the attacker is rationally deceptive.
We name the attacker and defender’s utilities (trueAttU,
trueDefU) and (decAttU, decDefU), respectively. In the
deception case, decAttU is computed based on the optimal
deceptive SSE and the attacker’s true payoff.

In Figures 1(a,d), the x-axis represents the number of tar-
gets and the y-axis is the average expected utility of the at-
tacker [defender]. Overall, when the attacker is rationally
deceptive, the attacker’s [defender’s] utility is roughly an in-
creasing concave [decreasing convex] function of the num-
ber of targets, which is similar to the case of a truthful at-
tacker. This makes sense, as when the number of target
increases, the defender has less protection on the targets,
leaving targets more vulnerable to attacks. Furthermore, the
decAttU [decDefU] is quantitatively higher [lower] than the
trueAttU [trueDefU]. This result shows a significant ben-
efit [loss] of the attacker [defender] in the presence of the
attacker’s deception. We also see an increase [decrease] in
decAttU [decDefU] when the interval size increases (I =
1.0 vs I = 2.0). This reflects the growth in options for de-
ception (i.e., deceptive payoff space), as well as increased po-
tential benefit for the attacker to play deceptively.

Figures 1(e,f) show that the attacker’s [defender’s] utility
in both cases is decreasing [increasing] in the number of de-
fender resources K, reflecting the increased coverage prob-
abilities of the defender over the targets. In Figures 1(g,h),
the target ratio is the proportion of the target set at which the
attacker can lie about his payoff. When the ratio is 0, the at-
tacker plays truthfully. When the ratio is 1.0, the attacker can
manipulate the whole target set. The attacker’s [defender’s]
utility is shown to be roughly an increasing concave [decreas-
ing convex] function of the target ratio. Similar to the in-
crease in the interval size, this result reflects the growth in
options for deception of the attacker, and increased benefit
[increased loss] for the attacker [defender].
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Our last experiment
evaluates the runtime per-
formance of our proposed
algorithm. In Figure 2,
the x-axis represents the
number of targets. The
y-axis is the average run-
time in seconds. Figure 2
shows that the runtime
grows exponentially when
N increases. Neverthe-
less, the algorithm can easily scale up to N = 160 targets
and interval size I = 2.0 (solved within ≈ 455 seconds). We
also see an increase in the runtime when I = 2.0 compared
to I = 1.0, reflecting an increased deceptive payoff space to
search for an optimal deceptive SSE.

6 Summary
We studied a basic attacker deception strategy termed imita-
tive deception motivated by security contexts where the de-
fender needs to learn the unknown attacker payoffs from ob-
served attack data. We show that the optimal unconstrained
attacker deception is to make the defender play Maximin in
the deceptive game. We also present a general optimization
framework to solve the game under constrained deception.
Our experiments illustrate the significant benefit [loss] of the
attacker [defender] in the presence of the imitative deception,
suggesting potential side effects of learning from the attacker.
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A Proof of Theorem 2
Observe that the attacker’s [defender’s] expected utility at any
target i is a strictly decreasing [increasing] function of the
coverage probability at that target due to the natural assump-
tion Rd

i > P d
i and Ra

i > P a
i .

Proof of Necessity. Let (x∗, i∗) be an SSE. Based on
the properties of SSE, Condition (1) and (2) always hold.
For Condition (3), if there exists some j /∈ Γ(x∗) such that
x∗j > 0, then we can gradually reduce x∗j until either x∗j = 0
or j ∈ Γ(x∗). Note that this will not change the attacker’s
optimal utility as the attacker’s utility on target j increases
(as x∗j decreases) to at most his optimal utility, in which case
j ∈ Γ(x∗). This will not change the defender’s utility nei-
ther since the attack set Γ(x∗) did not shrink. As a result,
the original x∗ is reducible to the one with x∗j = 0 for all
j /∈ Γ(x∗). In addition, for any j /∈ Γ(x∗), based on the def-
inition of the attack set, we have P a

i∗x
∗
i∗ + Ra

i∗(1 − x∗i∗) >
P a
j x
∗
j + Ra

j (1− x∗j ) = Ra
j . The resulting strategy of the de-

fender and the corresponding attacker best response remains
an SSE which satisfies the three conditions (1), (2), and (3).

For Condition (4), let us assume that
∑

j x
∗
j < K. In this

case, there must exist a target j ∈ Γ(x∗) such that x∗j = 1.
Indeed, if x∗j < 1 for all j ∈ Γ(x∗), then we can strictly in-
crease x∗j for all j ∈ Γ(x∗) and thus obtain a strictly higher
defender utility, which contradicts the optimality of SSE de-
fined in Equation (3). Thus, (x∗, i∗) satisfies Condition (4).
Proof of Sufficiency. Consider any (x, i) satisfying all the
four conditions. We first show that Γ(x∗) = Γ(x) for any
SSE (x∗, i∗). We denote by w and w∗ the attacker’s utili-
ties at targets in corresponding attack sets against x and x∗,
respectively. We prove by contradiction.

(i) Assume Γ(x∗) 6⊆ Γ(x), for the sake of contradiction.
Then there exists a target k ∈ Γ(x∗) \ Γ(x). Thus, the at-
tacker’s expected utility at k with respect to x is Ra

k, satisfy-
ingRa

k < w by Condition (3), whereas his utility with respect
to x∗ is w∗ = x∗kP

a
k + (1 − x∗k)Ra

k ≤ Ra
k. These together

imply w > w∗. Note that for all target j ∈ Γ(x), we have
w ≤ Ra

j . This implies w∗ < Ra
j and thus j must also be-

long to Γ(x∗) — otherwise, w∗ has to be strictly greater than
Ra

j due to the above necessity proof and Condition (3). Since
w > w∗, then xj < x∗j for all j ∈ Γ(x), and thus:∑

j
xj =

∑
j∈Γ(x)

xj <
∑

j∈Γ(x)
x∗j ≤ K

According to Condition (4), there exists some k ∈ Γ(x) such
that xk = 1, which means w = P a

k > w∗, contradicting the
fact thatw∗ ≥ P a

j for any target j. Therefore, Γ(x∗) ⊆ Γ(x).
(ii) Assume Γ(x) 6⊆ Γ(x∗) for the sake of contradiction.

Similarly, we have w∗ > w. Since Γ(x∗) ⊆ Γ(x) (according
to (i)) and w∗ > w, then x∗j < xj for all j ∈ Γ(x∗). This im-
plies that the defender’s utility of playing x is strictly higher
than that of playing x∗, which contradicts the optimality of
(x∗, i∗) as the SSE. Therefore, we must have Γ(x) ⊆ Γ(x∗).

Based on (i) and (ii), we conclude that Γ(x∗) = Γ(x).
Since x∗ belongs to an SSE, thus w∗ ≤ w. Indeed, if w∗ >
w, then x∗j < xj ,∀j which implies that the defender obtains a
strictly higher utility for playing x than for playing x∗ which

is contradictory. Therefore, we have w∗ ≤ w, which means
x∗j ≥ xj ,∀j. Now, regarding Condition (4), if

∑
j xj = K,

then we must have xj = x∗j ,∀j ∈ Γ since
∑

j x
∗
j ≤ K and

x∗j ≥ xj ,∀j. If
∑

j xj < K and xk = 1 for some k ∈ Γ(x),
then we must have x∗k also equal 1 since 1 ≥ x∗k ≥ xk = 1.
Thus, w∗ = w = P a

k and therefore xj = x∗j ,∀j.

B Proof of Lemma 3
Let (x∗, i∗) be the optimal deceptive SSE, i.e., maximizing
the attacker’s true expected utility. We are going to prove
xmmi∗ ≤ x∗i∗ . Since (x∗, i∗) is an SSE, x∗ satisfies Condition
(4) of Theorem 2. Our argument follows a case analysis, de-
pending on which of Condition (4) is satisfied.

First, consider x∗ satisfies Condition 4(i) which means∑
j x
∗
j = K. Assume, for the sake of contradiction, xmmi∗ >

x∗i∗ ≥ 0. Then i∗ must be in Γ(xmm) (otherwise, xmmi∗ has to be
zero according to Condition (2) of Lemma 1). As a result, the
defender’s Maximin utility Umm equals xmmi∗ R

d
i∗ +(1−xmmi∗ )P d

i∗

by Condition (1) of Lemma 1, which is strictly greater than
x∗i∗R

d
i∗ + (1 − x∗i∗)P d

i∗ . In addition, since i∗ is the attacked
target with respect to x∗, the defender’s expected utility at
i∗ is the highest among all targets in the attack set Γ(x∗) by
Condition (2) of Theorem 2. That is, x∗jR

d
j + (1− x∗j )P d

j ≤
x∗i∗R

d
i∗ + (1− x∗i∗)P d

i∗ for any j ∈ Γ(x∗). Therefore, for any
target j ∈ Γ(x∗), we obtain the inequality:

x∗jR
d
j + (1− x∗j )P d

j < Umm ≤ xmmj Rd
j + (1− xmmj )P d

j

which implies x∗j < xmmj . This inequality leads to∑
j∈[N ]

x∗j =
∑

j∈Γ(x∗)

x∗j <
∑

j∈Γ(x∗)

xmmj ≤ K

which contradicts the fact that
∑

j∈[N ] x
∗
j = K. Therefore,

in this case we must have xmmi∗ ≤ x∗i∗ .
Second, consider x∗ satisfies Condition 4(ii) which means

there is some k such that x∗k = 1. We denote by Rd
min =

minj∈[N ]R
d
j . Since the defender’s expected utility at i∗ is the

highest among the set Γ(x∗), we have (Rd
i∗−P d

i∗)x∗i∗ +P d
i∗ ≥

Rd
k ≥ Rd

min. In addition, observe that Umm ≤ Rd
min because

Umm ≤ xmmj Rd
j + (1− xmmj )P d

j ≤ Rd
j ,∀j. Therefore,

x∗
i∗ ≥ max

{
0,

Rd
min − P d

i∗

Rd
i∗ − P d

i∗

}
≥ max

{
0,

Umm − P d
i∗

Rd
i∗ − P d

i∗

}
≥ xmmi∗ ,

The last “≥” based on Conditions (1) and (2) of Lemma 1.
Finally, observe that (xmm, i∗) is consistent since the de-

fender’s expected utility at i∗ for playing xmm is no less than
Umm which is the defender’s expected utility at targets in the
attack set Γ(xmm). Additionally, xmm satisfies Condition 4 of
Lemma 2. According to Lemma 2, there exists a deceptive
payoff of the attacker such that (xmm, i∗) is the corresponding
deceptive SSE. Since the attacker’s expected utility at target
i∗ is a decreasing function of the defender’s coverage proba-
bility at i∗ and (x∗, i∗) is the optimal deceptive SSE for the
attacker, thus we must have x∗i∗ ≤ xmmi∗ .

These imply xmmi∗ = x∗i∗ , which means (xmm, i∗) is an opti-
mal deceptive SSE. This concludes our proof of the lemma.


