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Abstract

Designing an auction that maximizes expected revenue is an intricate task. Despite
major efforts, only the single-item case is fully understood. We explore the use of
tools from deep learning on this topic. The design objective is revenue optimal,
dominant-strategy incentive compatible auctions. For a baseline, we show that
multi-layer neural networks can learn almost-optimal auctions for a variety of
settings for which there are analytical solutions, and even without encoding charac-
terization results into the design of the network. Our research also demonstrates
the potential that deep nets have for deriving auctions with high revenue for poorly
understood problems.

A fundamental result in auction theory is the characterization of revenue optimal auctions as virtual
value maximizers [21]. We know, for example, that second price auctions with a suitably chosen
reserve price are optimal when selling to bidders with i.i.d. values, and how to prioritize one bidder
over another in settings with bidder asymmetry. Myerson’s theory is as rare as it is beautiful. In
a single item auction, a bidder’s type is a single number (her value for the item), making this a
single-dimensional mechanism design problem. The design of optimal auctions for multiple items
has proved much more difficult, and defied a thorough theoretical understanding.

Tracing the contours of analytical results reveals the difficulty of this problem of multi-dimensional
mechanism design. Decades after Myerson’s result, we do not have precise descriptions of optimal
auctions with two or more bidders and more than two items. Even the design of the optimal auction
for selling two items to a single buyer is not fully understood.1 For a single additive buyer with
item values i.i.d. U(0, 1), Manelli and Vincent [20] handle two items, and Giannakopoulos and
Koutsoupias [14] up to six items. Yao [27] provides the optimal design for any number of additive
bidders and two items, as long as item values can take on one of two possible values.

A promising alternative is to use computers to solve problems of optimal economic design. The
framework of automated mechanism design [8] suggests to use algorithms for the design of optimal
mechanisms. Early approaches required an explicit representation of all possible type profiles, which
is exponential in the number of agents and does not scale. Others have proposed to search through
a parametric subfamily of mechanisms, and are not fully general [17, 18, 25, 22]. In recent years,
efficient algorithms have been developed for the design of optimal, Bayesian incentive compatible
(BIC) auctions in multi-bidder, multi-item settings [2, 5, 1, 3, 6, 4, 9]. But despite this, many
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important questions remain unsolved. For instance, while there is a characterization of optimal
mechanisms as virtual-value maximizers [4, 7], relatively little is known about the exact structure
of these mechanisms. Similar progress has not been made on the design of optimal, dominant-
strategy incentive compatible (DSIC) mechanisms (rather, there has been emphasis to the design of
approximate, DSIC mechanisms; e.g. Hart and Nisan [19]).

The disruptive developments in machine learning suggest an opportunity to use machine learning for
the design of optimal economic mechanisms. The use of machine learning for mechanism design was
earlier pioneered by Dütting et al. [11], who use support vector machines to design payment rules for
a given allocation rule (which can be designed to be scalable). But their framework need not provide
incentive compatibility when the rule is not implementable and does not support design objectives
stated on payments.2

We have initiatied our research into the use of deep learning for optimal design on the problem
of multi-item, optimal auction design [10]. Subsequently, we have also investigated problems
with private budgets [12], as well as problems of mechanism design without money [16] (with
N. Golowich). We give here only a brief overview of the methodology and results from Dütting et al.
[10]. For type profile v = (v1, . . . , vn) (for N = {1, . . . , n} agents), parametrized allocation rule
gw and payment rule pw (mapping reported types to an allocation and payments, respectively), with
weights w, and with loss function L(v; gw, pw) = −∑

i∈N pwi (v), the machine learning problem of
interest for optimal auction design can be stated as:

min
w

Ev∼FV
[L(v; gw, pw)] (1)

s.t. [IC] rgt i(w) = 0, ∀i ∈ N

[IR] irpi(w) = 0. ∀i ∈ N

The type profile is sampled from n agents for some value distribution FV . The expected ex post regret
for agent i, given parameters w, is

rgt i(w) = Ev∼FV

[
max
v′
i∈Vi

ui(v
′
i, v−i; vi, g

w, pw)− ui(vi, v−i; vi, g
w, pw)

]
, (2)

where Vi is the set of possible valuations for agent i, and ui(v
′
i, v−i; vi, g

w, pw) is the utility (value
minus price) to agent i with valuation vi when reporting v′i, when others report v−i, and with allocation
and payment rule gw, pw, respectively. Zero expected ex post regret corresponds to a mechanism
that is, except with measure zero, dominant-strategy incentive compatibile (or strategy-proof). The
expected violation of individual rationality for agent i, given parameters w, is

irpi(w) = Ev∼FV

[
max{0,−ui(v; vi, g

w, pw)}]. (3)

Zero expected violation of individual rationality corresponds to a mechanism that ensures, except
with measure zero, that the utility from participation is non-negative.

We use multi-layer, feed-forward neural networks to represent the parametrized economic mecha-
nism. These networks provide differentiable, non-linear function approximations, where the training
problem is optimized through stochastic gradient descent together with augmented Lagrangian op-
timization. Our fully agnostic approach proceeds without the use of characterization results and,
because of this, holds the most promise in discovering new economic designs. The input layer of the
REGRETNET architecture represents bids, and the network has two logically distinct components:
the allocation network and payment network (see Figure 1). Each network is a fully-connected,

feed-forward network with multiple hidden layers (denoted h(r) and c(t)) and an output layer. In our
experiments these networks make use of two hidden layers, each with 100 units. Each hidden unit
has a sigmoidal activation function applied to a weighted sum of outputs from the previous layer.
These weights form the parameters of the network.3

2Procaccia et al. [24] studied the learnability of voting rules, but without considering incentives.
3For a given bid profile b, illustrated here as providing a number for each agent for each of m items, the

allocation network outputs a vector of allocation probabilities z1j(b), . . . , znj(b), for each item j ∈ [m],
through a softmax activation function, with

∑n
i=1 zij(b) ≤ 1 for each item j ∈ [m]. Bundling of items is

possible because the value on output units corresponding to allocating each of two different items to the same
agent can be correlated. In another variation, we handle unit-demand valuations by using an additional set of
softmax activation functions, one per agent, and taking the minimum of these item-wise and agent-wise softmax
components in defining the output layer. The output layer of the payment network defines the payment for each
agent for a given type profile, and makes use of ReLU activation units (relu(s) = max{s, 0}).
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Figure 1: REGRETNET: The allocation and payment networks for a setting with multiple agents
(1, . . . , n) and multiple items (1, . . . ,m) [10].

In practice, the loss, regret and IR penalty involved in formulating (1) are estimated from samples of
valuation profiles (with regret, for example, estimated for a given profile as the maximum utility gain
over a set of additional samples of possible deviations). Augmented Lagrangian optimization handles
the IC and IR constraints through a weighted penality in the objective, with stochastic gradient
descent on this unconstrained problem interleaved with updates to Lagrangian multipliers. Through
this approach, almost optimal auctions with almost zero expected ex post regret and almost zero
expected IR penalty can be obtained across a number of different economic environments.

Figure 2: Two items, a single unit-demand agent, item values x1, x2 ∼ U [2, 3]. Comparing the
alloc. rules of REGRETNET and the optimal design [23], for item 1 and 2 respectively, varying the
agent’s value. The design of the optimal rule is superimposed, with different alloc. regions separated
by dashed lines and numbers in each region indicating the prob. with which the item is allocated.

See Figure 2 for just one illustrative comparison between an allocation rule in the learned mechanism
and that of an optimal rule (in the case where an analytical result exists). In this case, the network
attains the optimal expected revenue of 0.387 (at truthful bidding) and with per-agent expected ex
post regret of 0.01. We have also used this approach to design essentially incentive-aligned auctions
with high revenue for economic environments out of reach of theoretical analysis [10]. These include
the single, additive bidder environment with ten items (there is no analytical solution with more
than six items), as well as a setting with two items and two additive bidders, where item values
are i.i.d. uniform on {0.5, 1.0, 1.5} (analytical results are known only for supports of size two). In
this case, we learn an auction with effectively zero regret and IR penalty, and expected revenue of
1.868 (compared with 1.818 for an optimal item-wise Myerson auction, and 1.697 for an optimal
bundle-wise Myerson auction).
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