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ABSTRACT
Cluster-based randomized experiments are popular designs for mit-

igating the bias of standard estimators when interference is present

and classical causal inference and experimental design assumptions

(such as SUTVA or ITR) do not hold. Without an exact knowledge

of the interference structure, it can be challenging to understand

which partitioning of the experimental units is optimal to minimize

the estimation bias. In the paper, we introduce a monotonicity con-

dition under which a novel two-stage experimental design allows

us to determine which of two cluster-based designs yields the least

biased estimator. We then consider the setting of online advertising

auctions and show that reserve price experiments satisfy the mono-

tonicity condition and the proposed framework and methodology

apply. We validate our findings on an advertising auction dataset.

CCS CONCEPTS
• Mathematics of computing → Probability and statistics; •
Computing methodologies → Machine learning;

KEYWORDS
Causal inference; potential outcomes; violations of SUTVA

ACM Reference Format:
Jean Pouget-Abadie, Vahab Mirrokni, David C. Parkes, and Edoardo M.

Airoldi. 2018. Optimizing Cluster-based Randomized Experiments under

Monotonicity. In KDD ’18: The 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, August 19–23, 2018, London,
United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3219819.3220067

1 INTRODUCTION
Randomized experiments — or A/B tests — are at the core of many

product decisions at large technology companies. Under the com-

monly assumed Stable Unit Treatment Value Assumption (SUTVA),

these A/B tests serve to estimate unbiasedly the effect of assigning
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all units to a particular intervention over an alternative condition

[12]. The SUTVA assumption is one of no interference between

units: a unit’s outcome in the experiment does not depend on the

treatment assignment of any other unit.

In many A/B tests however, this assumption is not tenable. Con-

sider an intervention on a user of a messaging platform: the (poten-

tial) resulting change in her behavior (e.g. increase in time spent on

the platform, in number of messages sent, a decrease in response

time) would affect the friends on the platform she chooses to com-

municate with. The same cascading phenomenon can also occur in

more subtle ways in a social feed setting. Changes to a feed rank-

ing algorithm, and the resulting behavioral changes (e.g. a higher

click-through rate, feedback, or interaction time with the content

on the feed) will invariably affect the content on that unit’s friends’

social feeds [10, 11].

In particular, the same is true in an advertiser auction setting,

where modifications to the ecosystem can impact bidders not orig-

inally assigned to the intervention [5]. Suppose that one bidder

changes her strategy as a result of being assigned to a higher re-

serve price, or her usual bid no longer meets the reserve — she is

more competitive if she increases her bid to meet the new reserve,

or less competitive if she fails to meet the reserve. The bidders she

competes with now face a different bid distribution. These bidders

might react to this new bid distribution by updating their own

bidding strategy, even though they were not originally assigned to

the intervention.

When SUTVA does not hold, we say there is interference be-

tween units, and many fundamental results of the causal inference

literature no longer hold. For example, the difference-in-means

estimator under a completely randomized assignment is no longer

unbiased [12]. When the estimand is the difference of outcomes

under two extreme assignments — one assigning all units to the in-

tervention, and the other assigning none — a common approach to

mitigating the bias of standard estimators in the face of interference

is to run cluster-based randomized designs [9, 22, 25]. These ran-

domized designs assign units to treatment or control in groups to

limit the amount of interaction between different treatment buckets.

If it can be shown that there is no interaction across treatment

buckets, we recover many of the results stated under SUTVA. In

practice, however, such a grouping of units may not exist and A/B

test practitioners often settle to find the best possible clustering.

In particular, a perfect clustering of units cannot be found in an
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ad auction context due to large advertisers bidding on very large

fraction of keywords. Hence, the problem is often formulated as the

balanced clustering of a weighted graph on the experimental units,

where an edge is drawn between two units that are liable to interfere

with one another. This is a challenging task, both algorithmically

and empirically: clustering a graph into balanced clusterings is

known to be NP-hard, even if we tolerate some unevenness between

clusters [2]; furthermore, the correct graph representation of the

interference mechanism is not always clear.

While the literature on finding balanced clustering of weighted

graphs and analysing cluster-based randomized designs is exten-

sive [8, 9, 13], there are relatively few prior works that tackle the

following question: can we determine which of two balanced clus-

terings produces less biased estimates of the total treatment effect,

without assuming that the exact structure of interference is known?

The objective of this paper is to show that we can in fact identify

the better of two clusterings through experimentation under an

assumption on the interference mechanism, which we call mono-
tonicity.

Even when the exact structure of interference is not known,

monotonicity can be established under a theoretical model. For

example, some interference mechanisms are self-exciting — if as-

signing any unit to the intervention will boost the outcomes of any

neighboring units. Examples range from vaccination campaigns to

social feed ranking algorithms. In both cases, the units in the vicin-

ity of a unit assigned to the intervention tend to benefit over those

surrounded by units in the control bucket. Interference mechanisms

that exhibit this self-exciting property are a particular example of

monotone mechanisms (cf. Section 2.2). When monotonicity holds,

we show that it is feasible to compare two balanced clusterings of

the experimental units by running a straightforward modification

of an experiment-of-experiments design [15, 18].

We make the following contributions: we present an experiment-

of-experiments design for comparing cluster-based randomized

designs. We define a monotonicity assumption under which we can

determine which clustering induces the least biased estimates of the

total treatment effect using this comparative design. We prove that

pricing experiments in the context of ad exchanges are monotone,

and thus our framework applies to this illustrative example. In par-

ticular, we state results for the welfare of a single-item second-price

auction and the Vickrey-Clarke-Groves auction in the positional

ad setting. Finally, we report an empirical simulation study of our

algorithms for a publicly-available dataset for online ads. While

pricing experiments are done in the context of ad exchanges [1],

we note that our paper is a theoretical study of the subject and does

not include any real treatments of ad campaigns.

In Section 2, we establish the theoretical framework by defining

themonotonocity assumption, describing the suggested experiment-

of-experiments design, and proposing a test for interpreting its

results. In Section 3, we explain how this framework can be applied

to a real-world setting, by showing that reserve-price experiments

on advertising auctions are monotone. Finally, we validate these

findings on a Yahoo! ad auction dataset in Section 4.

2 THEORY
In this section, we set the notation for the estimand, estimates,

and cluster-based randomized designs that we study. We then

define the monotonicity assumption, introduce our experiment-

of-experiments design, and suggest an approach to analysing its

results.

2.1 Cluster-based randomized designs
Let N be the number of experimental units, let vector Y denote

the outcome metric of interest, and let vector Z denote the assign-

ment of units to treatment (Zi = 1) or control (Zi = 0). Recall
that under the potential outcomes framework, Y(Z) denotes the
potential outcomes of the N units under assignment Z. Under the
Stable Unit Treatment Value Assumption (SUTVA), this simplifies

to (Yi (Zi ))
N
1
. The estimand of interest here is the Total Treatment

Effect (TTE), defined as the difference of outcomes between one

assignment assigning all units to treatment, and another assigning

none:

TTE =
1

N

N∑
i=1

Yi (Z = 1⃗) − Yi (Z = 0⃗) (1)

A completely randomized (CR) design assigns NT units chosen

completely at random to treatment and the remainingNC = N −NT
units to control. A clustering C is a partition of the N experimental

units intoM groups or “clusters”. A cluster-based randomized (CBR)
design is a randomized assignment of units to treatment and control

at the cluster level: if cluster j is assigned to treatment (resp. control),

then all units in cluster j are assigned to treatment (resp. control).

We will use the notation EZ∼C[X ] to denote the expected value of

estimatorX under a C-cluster-based randomized design. Recall that

Z ∼ C represents the assignment of units to treatment and control,

resulting from assigning the clusters of C uniformly at random to

treatment or control.

Let MT (resp. MC ) be the number of clusters assigned to treat-

ment (resp. control). Let z ∈ {0, 1}M be the assignment vector

over clusters, where M = MT + MC . In practice, we will use the

Horvitz-Thompson (HT) estimator, defined below:

τ̂ =
M

N
*.
,

1

MT

M∑
j=1

zj
∑
i ∈Cj

Yi (Z) −
1

MC

M∑
j=1

(1 − zj )
∑
i ∈Cj

Yi (Z)
+/
-

(2)

Under SUTVA, the HT estimator is an unbiased estimator of the

total treatment effect under any C-CBR assignment [13]:

EZ∼C[τ̂ ] = TTE

When SUTVA does not hold, this property is no longer guaran-

teed, and τ̂ may be biased. Our objective is to minimize the bias,

defined below, with respect to the clustering, without assuming

any explicit knowledge of the interference mechanism or the value

of the estimand TTE:

min

C
|EZ∼C[τ̂ ] −TTE | (3)

2.2 A monotonicity assumption
Choosing the clustering of our experimental units in a way that

minimizes the bias of our estimators (cf. Eq. 3) when running a

cluster-based experiment is a difficult task: without the ground
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truth, we cannot observe the bias directly. However, under a spe-

cific monotonicity property— common to many randomized experi-

ments —the task of choosing the better of two clusterings becomes

straightforward.

Definition 2.1. For a domain P of clusterings of our N units, we

say that the interference model is P-increasing if and only if

∀C ∈ P, EZ∼C[τ̂ ] ≤ τ ,

and it is P-decreasing if and only if

∀C ∈ P, EZ∼C[τ̂ ] ≥ τ

A model that is either P-increasing or P-decreasing for all cluster-

ings of P is P-monotone.

A P-monotone model is one for which the expectation of the

HT estimator τ̂ is either always a lower bound or always an upper-

bound of the estimand under any C-CBR design for C ∈ P. If a

model is P-increasing, P-decreasing, or P-monotone for the trivial

set of all possible clusterings P, then we simply say that the model

is “increasing”, “decreasing”, or “monotone” without specifying

P. Before delving into examples of monotone interference mecha-

nisms, we introduce the following proposition, which highlights

why monotonicity is useful for reasoning about bias.

Proposition 2.2. If the interference model is P-increasing, then
for all C1,C2 ∈ P, it holds that

EZ∼C1
[τ̂ ] ≤ EZ∼C2

[τ̂ ] =⇒ |EZ∼C1
[τ̂ ] − τ | ≥ |EZ∼C2

[τ̂ ] − τ |

If the interference model is P-decreasing, then for all C1,C2 ∈ P, it
holds that

EZ∼C1
[τ̂ ] ≤ EZ∼C2

[τ̂ ] =⇒ |EZ∼C1
[τ̂ ] − τ | ≤ |EZ∼C2

[τ̂ ] − τ |

Proof. If the model is P-increasing, for k ∈ {1, 2}, and Ck ∈ P ,

EZ∼Ck [τ̂ ] − τ = −|EZ∼Ck [τ̂ ] − τ |

Hence, the inequality sign is flippedwhen themodel isP-increasing.

A similar reasoning applies for P-decreasing models. □

Proposition 2.2 is a simple consequence of Definition 2.1: if we

know that two cluster-based estimates are both lower bounds of

the estimand, then the greater of the two must be less biased. The

same reasoning applies if they both upper-bound the estimand. It is

sufficient to compare the expectation of our estimators to determine

which is less biased.

The crux of our framework therefore relies on reasoning about

monotonicity. Many commonly studied parametric models of inter-

ference are in fact monotone. Consider the following linear model
of interference (e.g. studied in [9]):

Yi (Z) = αi + βiZi + γ ρi + ϵi , (4)

where for all i , (αi , βi ,γ ) ∈ R
3
, ϵi ∼ N (0, 1) is independent of

ρi , and ρi =
1

|Ni |

∑
j ∈Ni Z j is the proportion of i’s neighborhood

Ni that is treated. This expresses each unit’s outcome as a linear

function of a fixed effect, a heterogeneous treatment effect, and a

network effect proportional to the fraction of i’s neighborhood that
is treated. As shown in the following proposition, this is monotone.

Proposition 2.3. For a given clusteringC, letθC = 1

N
∑
i
|Ni∩C (i ) |
|Ni |

be the average proportion of a unit i’s neighborhood Ni included in
its assigned cluster C (i ). Then,

τ − EZ∼C[τ̂ ] =
γM

M − 1

(1 − θC )

It follows that if γ ≥ 0, the interference model is increasing, otherwise
it is decreasing.

We can also extend the above for heterogeneous network effect

parameters γi . A proof can be found in Section 6.

Proposition 2.4. For a clustering C, let θC,i =
|Ni∩C (i ) |
|Ni |

. For all
possible clusterings C,

τ − EZ∼C[τ̂ ] =
M

N (M − 1)

∑
i
γi (1 − θC,i )

It follows that if
∑
i γi (1 − θi ) ≥ 0, then the interference model is

increasing, otherwise it is decreasing.

It follows that if γi ≥ 0,∀i , then the interference mechanism is

increasing, and if γi ≤ 0,∀i , then it is decreasing. If the sign of γi is
not consistent, then the monotonicity depends on the clustering: if

all units with a given sign are perfectly clustered (θC,i = 1), e.g. all
units with γi ≥ 0, then the mechanism is once again monotone.

For complex interference mechanisms, it can be easier to estab-

lish the following sufficient (but not necessary) condition:

Proposition 2.5. We say an interference mechanism verifies the
self-excitation property for a set of clusterings P, if for all units i
and clustering C ∈ P,

EZ∼C[Yi (Z) : Zi = 0] ≥ Yi (⃗0)

EZ∼C[Yi (Z) : Zi = 1] ≤ Yi (⃗1)

A P-self-exciting process is P-increasing. A P-self-deexciting mech-

anism, with flipped inequalities, is P-decreasing.

The proof is included in Section 6. The two inequalities capture

the following phenomenon: conditioned on i’s treatment status, if

i’s outcome is greatest when i’s neighborhood is entirely in treat-

ment, and lowest when i’s neighborhood is entirely in control, then

an experiment always under-estimates the true treatment effect.

This only needs to be true in expectation over the assignments Z.
For example, we show that the interference mechanism present in

certain reserve price experiments in an advertiser auction setting

is self-exciting. See Section 3 for more details.

We say the interference mechanism is self-exciting because these

inequalities are verified when units benefit from being surrounded

by units in treatment. A successful messaging feature launch is a

straightforward example of a self-exciting process, as is any pricing

mechanism that penalizes any treated bidders and boosts the utility

of their competitors.

2.3 An experiment-of-experiments design
Under monotonicity, Proposition 2.2 states that we can determine

the least-biased of two P-increasing or P-decreasing cluster-based

designs, without knowledge of the estimand, by comparing the

expectation of their estimates. However, only one cluster-based

design can ever be applied to the set of experimental units in its
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C1 C2

Treatment
(Z = 1)

Control
(Z = 0)

Arm 1
(W = 1)

Arm 2
(W = 0)

Treatment
(Z = 1)

Control
(Z = 0)

CR

τ1 2
W τW

Figure 1: A hierarchical experimental design, which assigns the experimental units to one of two cluster-based randomized
designs, C1 and C2, completely at random (CR). τ̂W

1
and τ̂W

2
represent the treatment effect estimates under each design respec-

tively.

entirety, and the comparison of EZ∼C1
[τ̂ ] with EZ∼C2

[τ̂ ] cannot be

done directly.

This resembles the fundamental problem of causal inference,

which states that units cannot be placed both in treatment and

control buckets, and is solved through randomization. Inspired

by [15, 18], we suggest to randomly assign different units to either

clustering, resulting in a 2-step hierarchical randomized design. The

procedure, described in pseudo-code in Algorithm 1, is as follows:

• Assign units completely at random to two design buckets,

one for each clustering. LetW ∈ {1, 2}N be the vector repre-

senting that assignment.

• Within each design bucket, cluster the remaining units to-

gether according to the appropriate cluster: ifWi =Wj = k
and Ck (i ) = Ck (j ), then i and j belong to the same cluster in

design bucket k ∈ {1, 2}. The resulting clusterings are CW
1

and CW
2
.

• Within each design bucket, assign the resulting clusters to

treatment and control. Let Z be the resulting assignment

vector. This is possible because no unit belongs to both CW
1

and CW
2
.

Algorithm 1 provides us with two estimates, τ̂W
1

and τ̂W
2
, of the

causal effect, one from each design arm. The resulting clusterings

CW
1

and CW
2

may be unbalanced. This is of minor importance as the

HT estimator (cf. Eq. 2) is unbiased (under SUTVA) for unbalanced

clusterings, and balancedness is required only to control its variance.

In practice, C1 and C2 are not required to have the same number

of clusters, but we expect the clusters sizes to be large enough for

each cluster to have at least one unit in each design arm after the

first stage with high probability.

From the comparison of τ̂W
1

and τ̂W
2
, we seek to order EZ∼C1

[τ̂1]

and EZ∼C2
[τ̂2]. Under arbitrary interference structures, these proxy

estimates are not guaranteed to have the same ordering, the key

Algorithm 1: Experiment of experiments design

Input: Clusterings C1, C2 of the N units intoM1, M2 clusters.

Output: Z ∈ {0, 1}N encoding the assignment of each unit to

a treatment or control bucket.

Choose W ∈ {1, 2}N uniformly at random, encoding the

assignment of units to design arms 1 and 2;

for k ∈ {1, 2} do
LetCW

k be the clustering on {i ∈ [1,N ] : Wi = k } such that

CW
k (i ) = CW

k (j ) iff Ck (i ) = Ck (j );

Assign units in treatment arm k to treatment and control

with a CWk -cluster-based design;

end
return the resulting assignment vector Z;

condition for Proposition 2.2. Intuitively, τ̂W
1

and τ̂W
2

represent the

treatment effect estimates for two “weakened” versions of each

clustering C1 and C2. Because the assignment of units to design

arms is done completely at random, it affects each clustering in the

same way, and we expect the ordering to stay the same. For the

linear model of interference in Prop. 2.4, we have:

Property 1. An interference mechanism is said to be P-transitive
if ∀C1,C2 ∈ P,

EW,Z∼CW
1

[
τ̂W

1

]
≤ EW,Z∼CW

2

[
τ̂W

2

]
⇔ EZ∼C1

[τ̂ ] ≤ EZ∼C2
[τ̂ ]

If an interference mechanism is transitive for all possible cluster-

ings P, we simply say that it is “transitive” without specifying P.

As a sanity check, we can also confirm that the property holds for

SUTVA. The property can also be shown for the linear interference

mechanisms introduced in Prop. 2.4:
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Proposition 2.6. Under SUTVA, for all C1,C2 and k ∈ {1, 2}, it
holds that

EW,Z∼CWk

[
τ̂Wk

]
= EZ∼Ck [τ̂ ] = τ .

Hence, the no-interference case is trivially transitive. Furthermore,
the linear model of interference in Prop. 2.4 is transitive if the same
number of units is assigned to each design arm in the first stage of
the experiment-of-experiment design:

∑
[Wi = 1] = N

2
.

A full proof can be found in Section 6. For more complex mecha-

nisms of interference, as is the case for reserve price experiments,

we use simulations to confirm the intuition that transitivity holds.

See Section 4 for more details.

As is common with A/B tests, we do not have access to the

expectation of our estimators, and rely on approximations to the

variance, such as Neyman’s variance estimator. In order to meaning-

fully compare the estimates we obtain, we must apply our method

of choice to determine when their ordering is significant. For ex-

ample, we can make a normal approximation to the distribution

of the estimates— using Neyman’s estimator to upper-bound the

variance —to estimate the probability that one estimate is greater

than the other with a certain significance level:

Proposition 2.7. Let C1,C2 be two clusterings inP. Fork ∈ {1, 2},
recall the definition of the Neymanian variance estimator for cluster-
based randomized designs:

σ̂W
k =

Mk
Nk

*
,

Ŝk,t
Mk,t

+
Ŝk,c
Mk,c

+
-
, (5)

where Mk (resp. Nk ) is the number of clusters (resp. units) in CWk ,
Ŝk,t = var {Y ′j,k : zj = 1} and Ŝk,c = var {Y ′j,k : zj = 0}, and
Y ′j,k =

∑
CWk (i )=j Yi . Assume that the interference mechanism is

transitive and P-increasing. If α is the level of significance chosen, we
state that C1 is a significantly better clustering than C2 if and only if

Φ
*..
,

τ̂W
1
− τ̂W

2√
σ̂W

1
+ σ̂W

2

+//
-
< α ,

where Φ is the cdf of the normal distribution.

A similar reasoning applies to P-decreasing mechanisms. If the

Gaussian approximation is not appropriate, the distribution of the

estimators can equally be approximated by a bootstrap analysis, or

a more sophisticated model-based imputation method [12]. More

details can be found in Section 6.

3 APPLICATION TO RESERVE PRICE
EXPERIMENTS

Online advertising exchanges provide an interface for bidders to

participate in a set of auctions for advertising online. These ads can

appear within the company’s own content, in a social feed, below

a search query, or on the webpage of an affiliated publisher. These

auctions provide the vast majority of revenue to these platforms,

and are thus the subject of experimentation and optimization. Plat-

forms run experiments and monitor different metrics including of

revenue and estimates of bidders’ welfare.

One possible parameter subject to optimization is the method

of determining reserve prices. Online marketplaces can choose to

implement a reserve price, which sets the minimum bid required

for a bid to be valid and compete with others. It may vary from

bidder to bidder, and from auction to auction. A higher reserve

may improve revenue, but if it is too high, then too many bids are

discarded and ad opportunities can go unsold.

Modifications to a reserve price rule are prime examples of exper-

iments where SUTVA does not hold. A change in reserve price to

one bidder affects the bidding problem facing another bidder, even

when her reserve is unchanged (e.g., reducing competition when

the reserve to the first bidder is higher). We establish conditions

under which the resulting interference mechanism within reserve

price experiments is monotone, both in the case of a single-item sec-

ond price auction setting and in the Vickrey-Clarke-Groves auction

setting for positional ads. See [24] for a reference.

3.1 Single-item second price auctions
We consider a single-item second-price auction with N bidders

B = {Bi }i ∈N without budget constraints: the highest bidder wins

the auction and is charged the maximum of her reserve price and

the second-highest bid. The second price auction is truthful (bidding

true values is a dominant-strategy equilibrium), and we will assume

that the bidders are rational.

Consider two reserve price mechanisms (ri )i ∈B (control) and

(r ′i )i ∈B (treatment). Suppose that the reserve price mechanism

corresponding to treatment always sets a higher reserve price than

the reserve price mechanism corresponding to control: ∀i, r ′i > ri .
By symmetry, the following argumentation would also work if the

treatment and control labels were switched.

We suppose the bidders have values (vi ) for winning the auction.
We randomly assign bidders to either the treatment or control

reserve price mechanism, with Z the resulting assignment. The

chosen metric of interest is a bidder’s utility, denoted by Yi (Z). For
a second-price auction, Yi = 0 if bidder i does not win the auction,

and Yi = vi − p when she wins the auction and pays price p. The
bidder welfare of an auction is the sum of each bidder’s utility,∑
i Yi (Z), and the estimand is given by: S =

∑
i Yi (⃗1) −

∑
i Yi (⃗0)

Tthe reserve price experiment for second price auctions verifies

the self-excitation property (cf. Prop. 2.5). The idea is that assigning

a unit to the intervention can only make them less competitive by

discarding their bid from the auction. Thus, the higher the number

of treated units, the lower the competition for the remaining bidders,

and the higher their utility.

Theorem 3.1. Consider a set of rational agents with no budget-
constraints. Let the outcome of interest be each agent’s welfare. The in-
terference mechanism of a reserve price experiment, assigning treated
units to a higher personalized reserve price, for a single-item second-
price auction is self-exciting, and thus monotone.

Proof. Consider bidder i’s outcome under Z = 0⃗ and under any

assignment Z′ such that Zi = 0. There are three possible cases:

• Bidder i wins the auction in neither assignment. Her utility

is therefore constant.

• Bidder i wins the auction in only one assignment. It must be

that bidder i wins under Z′ but not Z. Her utility is 0 under

Z and greater than 0 under Z′.
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Figure 2: The average click-through rate (CTR) observed in
theYahoo! SearchAuction dataset, described in Section 4, can
be observed to be an approximately decreasing and convex
function of the slot rank. The confidence intervals were too
small to be meaningfully reported in the figure.

• Bidder i wins the auction under both assignments. If the sec-

ond highest bid is the same under both assignments, bidder

i’s utility is constant. Otherwise, the second highest bid un-

der Z′ can only be lower than the second highest bid under

Z. Thus bidder i’s payment is lower and her utility is higher

under assignment Z′ than under assignment Z.

By symmetry, we reach a similar conclusion when comparing as-

signments Z = 1⃗ and any assignment Z′ such that Z ′i = 1. □

It follows that the reserve price experiment is increasing, and

any cluster-based randomized design underestimates the bidder

welfare estimand.

3.2 Positional ad auctions
In practice, ad auctions are multi-item, used for selling more than

one ad position on a user’s view. We now extend the previous

results to a multi-item setting, withm items (or “slots”). We assume

the common positional ad setting, where each slot has an inherent

click-through rate posj , which we can suppose is ordered: pos1 >

pos2 > · · · > posm [23]. Each bidder i is only ever allocated at

most one item, with value vi for getting a click. We assume for

simplicity that all bidders have the same ad quality, and thus the

same click-through rate for a given ad slot. As a result, bidder i’s
utility for winning slot j is vi · posj − pi , where pi is the required
payment of bidder i .

The Vickrey-Clarke-Groves (VCG) auction takes place in two

parts. First, a value-maximising allocation is chosen (based on

bids). Here, the highest bids win the highest slots. Bidders are

then charged the externality they impose on all other bidders. In

other words, assuming that bidder k obtains the kth slot, bidder k
pays:

pk =
m∑

j=k+1

(posj−1 − posj ) · vj · 1[vj ≥r j ]

where r j is the reserve imposed on bidder j with value vj . We can

prove that the self-excitation property holds under a convexity

assumption.

Theorem 3.2. Consider a set of rational agents with no budget-
constraints. Let the outcome of interest be each agent’s welfare. The in-
terference mechanism of a reserve price experiment, assigning treated
units to a higher personalized reserve price, for a VCG auction in the
positional ad setting with no quality effects is self-exciting, and thus
monotone if the click-through rate function pos : i 7→ posi is convex:

∀i > j, posi+1 − posi ≤ posj+1 − posj ,

This convexity assumption is verified empirically in the literature

and in the Yahoo! auction dataset
1
introduced in Section 4 (cf.

Figure 2). The intuition behind the proof is similar to the single-item

setting: for a bidder i , the greater the number of i’s competitors

are treated, the fewer are able to compete, and thus the higher i’s
utility. We prove this through a case-by-case analysis. Let rZi be the

reserve that bidder k faces under assignment vector Z : rZi = ri if
Zi = 0 and r ′i otherwise.

Proof. Consider the outcomes of bidder i and j under Z and Z′

such that for all k , j, Zk = Z ′k , Zi = Z ′i = 0, and Z j = 0 < Z ′j = 1.

By transitivity, if we can show Yi (Z ) ≤ Yi (Z
′), then it follows that

Yi (⃗0) ≤ EC[Yi (Z) : Zi = 0]. There are three possible cases:

• The allocation of bidders to slots does not change and thus

prices do not change. Bidder i’s utility is constant.

• Bidder i is allocated to slot i for both Z and Z′ assignments,

but bidder j’s (j < i) bid is discarded when j is treated

(Z ′): r ′j > vj > r j . The difference of bidder i’s outcome

under the two treatment assignments is: Yi (Z) − Yi (Z′) =
−

∑
k≥j (posk−1

− posk ) (vk1vk>rZk
− vk+1

1vk+1
>rZk+1

). This

quantity is always negative, hence Yi (Z) ≤ Yi (Z′).
• Bidder j’s (j < i) bid is discarded when j is treated and

thus bidder i is allocated to slot i − 1. In that case, bidder

i’s utility under Z is: Yi (Z) = posivi −
∑
k≥i+1

(posk−1
−

posk )vk1vk>rZk
. The same bidder i ′s utility underZ′ is:Yi (Z′) =

posi−1vi −
∑
k≥i+1

(posk−2
− posk )vk1vk>rZk

.

It follows that the difference of bidder i’s outcomes is equal

to: Yi (Z) − Yi (Z′) = (posi − posi−1)vi −
∑
k≥i+1

(posk−2
+

posk − 2posk−1
)vk , where the 1vk>rZk

terms are implicit.

Note that each individual term of the sum is positive by

convexity, such that Yi (Z) ≤ Yi (Z′).
□

4 EXPERIMENTAL VALIDATION
In this section, we validate our design strategy for comparing two

given graph clusterings for the purpose of experimentation under

interference to an advertising auction dataset. For this purpose, we

make use of a Yahoo! auction dataset.

4.1 The Yahoo! Search Auction dataset
The Yahoo! Search Marketing Advertiser Bid-Impression-Click data on
competing Keywords dataset is a publicly-available dataset released
by Yahoo!

2
, containing bid, impression, click, and revenue data

between advertiser-keyphrase pairs over a period of 4 months.

1
Our own dataset could potentially suffer from endogeneity, where weaker bidders are

consistently assigned to lower slots. The assumption is, however, supported elsewhere

in the literature [7, 16].

2
Available for download at https://webscope.sandbox.yahoo.com/

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2095 

https://webscope.sandbox.yahoo.com/


Per keyphrase

nbr of bids min 1

median 2

max 7041

bid value min .3¢

median 66¢

max $320

impressions min 1

median 3

max 5 · 10
6

clicks min 0

cdf (1) 91.4

max 7041

Per bidder

nbr of bids min 1

median 9

max 2.1 · 10
4

bid value min .5¢

median 60¢

max $4700

impressions min 1

median 31

max 1.4 · 10
6

clicks min 0

cdf (1) 93.3

max 1.1 · 10
4

Table 1: Summary statistics for the Yahoo! dataset, aggre-
gated by keyphrase or by bidder, per day for the entire 4
month period. Bid values are given in USD unless specified
otherwise. cd f (1) is the value of the cumulative distribution
function of impressions for a single impression.

The advertiser and keyphrase are anonymized, represented as a

randomly-chosen string. A sample line of the dataset is reproduced
3

below:

day id rank keyphrase bid impress. clicks

1 a3d2 2 f3e4,j6r3,. . . 100.0 1.0 0.0

The dataset contains 77, 850, 272 bidding activities of 16, 268

different bidders. There are a total of 75, 359 keywords represented,

for a total of unique 648, 515 keyphrases (or list of keywords). Table 1

contains a series of summary statistics computed over keyphrase-

day pairs and bidder-day pairs, namely the total number of bids,

the total bid value, the total number of impressions, and the total

number of clicks per keyword (or per bidder) and per day.

We can represent the Yahoo! dataset by a set of bipartite graphs

between bidders, identified by their account_id, and the keyphrases.
The bid bipartite graph on day t draws a weighted edge of weight

wi j between every bidder-keyphrase pair such that bidder i bids
wi j on keyphrase j on day t . We can aggregate these graphs over

the entire time period (4 months) by summing their edge weights

together. We can also consider the impression, rank, and clicks

graphs, where the weight of the edge is given by the number of

impressions, the rank, or the number of clicks respectively received

by bidder i on keyphrase j.
The dataset only provides data aggregated at the granularity

of a single day, reporting the average bid and total number of

impressions and clicks for each bidder, keyphrase day triplet. Hence,

we define a keyphrase-day pair as a single auction, where each

bidder’s bid is set to the reported average bid for that keyphrase-

day pair. For the sake of simplicity, we will only consider a setting

with the top four ad positions, which account for the majority of

clicks.
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Figure 3: Weighted ratio of edges across clusters for succes-
sive runs of the R-LDG algorithm on the weighted bid graph
into 50 clusters and 400 clusters respectively.

4.2 Simulating a reserve price experiment
While the Yahoo! Search Auction dataset provides us with a set of

bidders, keyphrases, and the bids, impressions, and clicks that link

them, it does not provide us with an actual intervention on the

auction ecosystem. We must therefore simulate the impact of a

change in the reserve price given to each bidder.

While many possible units of randomization exist for an auction

experiment (keyphrases, bidders, browsers, users, various pairings

of these units, etc.), the reserve price experiment we consider ran-

domizes on bidders. On large auction platforms, the reserve price

might be set through the application of machine learning methods.

In our context, we choose a random non-zero reserve price for each

bidder, calibrating the spread of the distribution such that some

bidders will not be able to match the reserve price for all auctions.

All bidders assigned to the intervention will face their non-zero

reserve price, fixed for every auction for simplicity. All bidders

assigned to the control bucket will not face a reserve price.

Within the same auction for a given keyphrase, two participating

bidders may face distinct reserves and be assigned to different

treatment buckets. A bidder-cluster-based randomized experiment

is thus used to mitigate the possible interference between bidders,

our units of randomization, within a single auction.

To validate our experiment-of-experiments design, we must find

candidate balanced graph clusterings to compare, a problem known

to be NP-hard — even when we slightly relax the balancedness as-

sumption [2]. In the last several years, there has been good progress

in developing scalable distributed balanced clustering algorithms

for graphs with billions of edges [3, 20]. These algorithms have

enabled practitioners to apply these large-scale graph mining algo-

rithms for large-scale randomized experimental studies [17, 18, 21].

Of the numerous heuristic algorithms for finding such clusterings,

the Restreaming Linear Deterministic Greedy (R-LDG) algorithm [14]

is a popular choice. It consists of repeatedly applying a greedy al-

gorithm, originally proposed in [19], which assigns each node u to

3
The account ID and keyword ID’s have been shortened for the sake of exposition in

this sample line. The bid value is given in 1/100¢.
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Figure 4: We compare the distribution of the expectation of our Horvitz-Thompson estimator for the total treatment effect (in
red) under several cluster-based randomized assignments. In each plot, the solid and dotted lines represent the expectation of
the estimator under C1 and C2 respectively — the two estimate distributions we wish to compare but cannot simultaneously
observe. The shaded distributions correspond to the observed distributions of the expectation of the estimator under the in-
duced clusterings CW

1
and CW

2
, resulting from our Experiment-of-Experiments design. The red segment represents the total

treatment effect estimand. Each plot establishes a comparison of two different clusterings: (a) C1 is a R-LDG clustering, C2 is
a random clustering (M1 = M2 = 50); (b) C1 is a R-LDG clustering with 10 clusters, C2 is a R-LDG clustering with 400 clusters;
(c) C1 a R-LDG clustering of the bid graph, whereas C2 is a R-LDG clustering of the impressions graph. (M1 = M2 = 50). Mono-
tonicity is verified because every distribution is on the same side of the estimand; transitivity is verified because the ordering
of the solid and dotted distributions is preserved when going from the unshaded plots to the shaded plots. The loss of power
is quantified by the increase in overlap between the solid and dotted distributions, when comparing the unshaded plots with
the shaded plots.

.

one of k clusterings according to the following objective:

arg max

i ∈{1, ...k }
|P ti ∩ N (u) | *

,
1 −
|P ti |

Hi
+
-
, (6)

where P ti is the set of nodes assigned to cluster i at step t of the
algorithm, Hi is the maximum capacity of cluster i ∈ {1, . . .k }, and
N (u) is the set of neigbhors of node u in the graph.

We can apply this clustering algorithm to any of the bipartite

graphs introduced in Section 4.2, aggregated over the entire time

period, resulting in a set of mixed bidder-keyphrase clusters. The

bidder-only clusters are obtained from the previous clustering

by simpling removing the keyphrase nodes from consideration.

The algorithm’s objective must be slightly modifed to accomodate

weighted graphs, by replacing |P ti ∩N (u) |with
∑
i, j wi j1i ∈N (u )1j ∈P ti .

Furthermore, we must also modify the balance requirement, since

only the bidder side of the bipartite graph clustering is required to be

balanced!We therefore replace

(
1 − |P ti |/Hi

)
with

(
1 − |P ti,c |/Hi,c

)
where P ti,c is the set of bidder nodes in cluster P ti and Hi,c is the

maximum number of allowed bidder nodes in cluster P ti . The final
objective is given by:

arg max

i ∈{1, ...k }

��������

∑
i ∈N (u ), j ∈P ti

wi j

��������

*
,
1 −
|P ti,c |

Hi,c
+
-

(7)

Figure 3 plots the proportion of edges cut, weighted by the bid

amount, over consecutive runs of the R-LDG algorithm for 50 and

100 clusters. We adopt three main vectors of comparison between

candidate clusterings to determine the efficacy of our proposed

experiment-of-experiment design:

• Quality: comparing clusterings of the graph that differ in

their estimated quality, for example by looking at the number

of edges cut, for a fixed number of clusters: we compare a

random graph clustering to a clustering obtained by running

the R-LDG algorithm to convergence.

• Number of clusters: comparing two clusterings of the graph

obtained by running the same clustering algorithm for a

different number of clusters: we consider a R-LDG clustering

with 10 clusters and a R-LDG clustering with 400 clusters.

• Metric: comparing clusterings of the graph that are obtained

by applying the same algorithm on different bipartite graphs:

we compare a R-LDG clustering of the bid graph with an

R-LDG clustering of the impressions graph.

The dataset does not provide the budgets of the bidders or their

perceived ad quality, hence we will adopt the same simplifying

assumptions as Section 3 of no quality effects between bidders and

no budget constraints. Furthermore, we assume bids are unchanged

as a result of the experiment (which would be valid for rational,

non budget-limited bidders).

4.3 Validating the empirical optimization
We first compare a clustering of the graph obtained by running the

modified R-LDG algorithm (cf. Section 4.2) against a completely

random balanced clustering of the graph.We fix a subset of auctions

with few bidders per auction, in order to showcase the framework
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and establish the monotonicity and transitivity properties by allow-

ing a setting for which there is a clear difference between the two

clusterings. The reduction in cut size — measured by the ratio of

the weighted sum of edges inter-clusters over the sum of all edge

weights — over the iterations of the algorithm is shown in Figure 3.

While the weighted cut of the graph for a random clustering is

around 98%, the clustering obtained with the R-LDG algorithm

approaches 66% within a few iterations.

We validate the monotonicity assumption, as well as the transi-

tivity assumption, for reserve price experiments. In Figure 4 (a), we

plot four distributions as well as the Total Treatment Effect estimand

(cf. Eq. 1), obtained by taking the difference between assigning all

units to a higher reserve price and assigning none. Namely, we plot

the distribution of the HT estimator’s expectation (cf. Eq 2) under

each cluster-based design: EZ∼Ck [τ̂ ] where k = 1 for the R-LDG

clustering and k = 2 for the random clustering. We also plot the

distribution of the expectation of the experiment-of-experiments

(EoE) estimators: EW,Z∼CWk
[τ̂Wk ].

We find that they all under-estimate the true treatment effect,

as expected from the increasing property. As expected, the HT

estimator is more biased under a random clustering than under

the R-LDG clustering. Furthermore, we find that the property of

transitivity holds (cf. Eq. 1), namely the EoE estimate of the “random

estimator” under-estimates the total treatment effect more severely

than the EoE estimate of the “R-LDG estimator”.

We repeat the experiment to compare a R-LDG clustering with

10 clusters with another R-LDG clustering with 400 clusters (cf.

Figure 4 (b)). We find that the clustering with 10 clusters is less

biased but exhibits higher variance, and that the transitivity prop-

erty holds. Finally, in Figure 4 (c), we compare a clustering of

the impressions bipartite graph with a clustering of the bid bi-

partite graph. The transitivity property is again verified. More-

over, we see that clustering the bid bipartite graph may be a bet-

ter heuristic in this setting, but the difference in the two cluster-

ings is very slight. The code is available for download at https:
//jean.pouget-abadie.com/kdd2018code.html.

5 FUTUREWORK
We have introduced two properties, monotonicity and transitivity,

under which the estimation of causal effects in the presence of inter-

ference can be improved by selecting the least-biased of two cluster-

ings. We proved that certain parametric models of interference are

monotone and transitive. A more exhaustive examination of other

parametric models of interference (e.g. [4, 6]) for these properties

was beyond the scope of this work. Furthermore, while we were

able to prove monotonicity for certain reserve price experiments,

transitivity was established only in simulations. A natural question

arising from this work is whether monotonicity and transitivity

can be established through empirical means, using an observational

method or through a randomized experiment.

Furthermore, while our Experiment-of-Experiment design can

improve the bias of subsequent randomized experiments — by se-

lectingwhich of two clusterings should be used for the cluster-based

randomized assignment, the reduction in bias comes at a cost of

reduced power in the current experiment: half the units belonging

to the more biased clustering are discarded in the final analysis.

Hence, an important direction of future work is quantifying and

bounding this loss of power, as well as exploring alternate means

of choosing a clustering with a smaller power reduction, either

through observational data or a less intrusive experimental design.

6 PROOFS
6.1 Proof of Proposition 2.3 and 2.4
Assume that ∀Z, Yi (Z) = αi + βi · Zi + γi

1

|Ni |

∑
j ∈Ni Z j + ϵi ,

where ϵi ∼ N (0,σ 2). Recall the definition of the estimand: τ =
1

N
∑
i Yi (⃗1)−Yi (⃗0). Plugging in the expression forYi (Z⃗ ), we obtain:

τ = 1

N
∑
i βi +

1

N
∑
i γi . The estimator is given by:

τ̂ =
M

N

∑
i

(−1)1−Zi

MZi
t M

(1−Zi )
c

Yi (Z),

whereMt (resp.Mc ) is the number of clusters in treatment (resp. con-

trol). Plugging in the expression for Yi (Z⃗ ), we obtain:

EZ∼C[τ̂ ] =
1

N

∑
i

βi +
1

N

∑
i
γi

(
|Ni ∩C (i ) |

|Ni |
−

1

M − 1

|Ni\C (i ) |

|Ni |

)
We obtain the desired result by taking the difference between these

quantities. Prop. 2.3 follows by substituting γi = γ .

6.2 Proof of Proposition 2.5
The proposition can be established by rewritting the definition of

P-increasing interference mechanisms,

τ − EZ∼C[τ̂ ] =
1

N

∑
i

(
Yi (⃗1) − EZ∼C[Yi (Z) |zC (i ) = 1]

)
+

(
EZ∼C[Yi (Z) |zC (i ) = 0] − Yi (⃗0)

)
,

such that a sufficient condition of themodel to beP-increasing is for

Yi (⃗1) > EZ∼C[Yi (Z) |zC (i ) = 1] and Yi (⃗0) < EZ∼C[Yi (Z) |zC (i ) =

0]. If increasing the number of treated units in that unit’s neighbor-

hood increases that unit’s outcome — holding that unit’s treatment

assignment constant — then the two previous inequalities hold.

6.3 Proof of Proposition 2.6
Recall that for k ∈ {1, 2}, our estimator can be written as:

τ̂Wk =
Mk
Nk

∑
i
WiYi (Z)

(−1)1−Zi

MZi
k,tM

1−Zi
k,c

,

where Mk,t (resp. Mk,c ) is the number of treated (resp. control)

clusters in design arm k and Nk is the number of units in design

arm k . We begin by first considering the no-interference case. We

have that

EZ∼CW
k

[τ̂k |W] =
1

Nk

∑
i
Wi (Yi (1) − Yi (0)).

By the law of iterated expectations, we have EW,Z∼CW
k

[τ̂Wk ] =

τ . We now consider the linear model suggested in Eq. 4, where

we assume heterogeneous network effects (γi ). From the proof of

Proposition 2.4, we have that

EZ∼CWk
[τ̂Wk |W] = ¯β +

Mk
Mk − 1

1

Nk

∑
i
Wiγi

(
θCW

k ,i − 1

)
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Note that we have

EW[WiθCW
k ,i ] =

Nk (Nk − 1)

N (N − 1)
θCk ,i .

It follows that, ifM1 >> 1,M2 >> 1, and N1 = N2 =
N
2
,

EW,Z∼CW
1

[τ̂W
1

] − EW,Z∼CW
2

[τ̂W
2

] ≈
1

2N

∑
i
γiθi

≈ EZ∼C1
[τ̂ ] − EZ∼C2

[τ̂ ]

We conclude that the linear model of interference is transitive.

6.4 Discussion for Proposition 2.7
Under unspecified models of interference, theoretical bounds on

the power of even the simplest randomized experiment are hard

to come by. While the joint assumption of monotonicity and tran-

sitivity allow us to design a sensible test for detecting the better

of two partitions, they are not sufficient to bound its power with-

out stronger assumptions. We thus rely on simulations, like the

ones run in Section 4, or theoretical approximations, like the ones

suggested in Prop. 2.7. It approximates EW,Z[τ̂Wk ], for k ∈ {1, 2}

by two independently-distributed Gaussian variables of mean τ̂Wk
and variance σ̂W

k , given in Eq. 5. Their difference therefore has the

distributionN (τ̂W
1
−τ̂W

2
, σ̂W

1
+σ̂W

2
). Recall that Neyman’s variance

estimator is an upper-bound of the true variance, under SUTVA,

in expectation over the assignment Z (cf. [12]). We prove in the

lemma below that this still holds true for a hierarchical assignment.

Lemma 6.1. Under SUTVA, Neyman’s variance estimator is an
upper-bound in expectation of the true variance of the HT estimator:

EW,Z[σ̂W
k ] ≥ varW,Z[τ̂Wk ]

Proof. By Eve’s law,

varW,Z[τ̂Wk ] = EW[varZ∼CWk
[

ˆτWk |W]] +varW[EZ∼CWk
[τ̂Wk ]].

From [12], the first term can is equal to:

Mk
Nk

(
var (Y ′(1))

Mk,t
+
var (Y ′(0))

Mk,c
−
var (Y ′(1) − Y ′(0))

Mk

)
,

where Y ′j (Z ) =
∑
i ∈CWk (j ) Yi (Z ), the cluster-level outcomes. The

second term can be shown to be equal to
var (Y (1)−Y (0))

N . Since we

have that:

EW,Z[σ̂ 2

k ] =
Mk
Nk

(
var (Y ′(1))

Mk,t
+
var (Y ′(0))

Mk,c

)
,

we must prove:

var (Y ′(1) − Y ′(0))

Nk
≥

var (Y (1) − Y (0))

N
.

This follows from an application of the Cauchy-Schwarz inequality

for balanced clusters:

∑
j (

∑
i Yi )

2 ≤
∑
j |Cj |

∑
i Y

2

i , where Cj are

the cluster sizes, equal to
N
Nk

in the balanced case. □

In order to determine the greater of two clusterings, we can

perform two one-sided t-tests. The Bayesian approach is to compute

the posterior distribution of the difference of the two estimates,

using a conjugate Gaussian prior. In order to assess the impact of

assuming the two estimates are independent Gaussians, we suggest

running a sensitivity analysis, by considering the result of the test

for different values of the correlation coefficient.
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