
Incentivizing Deep Fixes in Software Economies
Malvika Rao , David F. Bacon, David C. Parkes, and Margo I. Seltzer

Abstract—An important question in a software economy is how to incentivize deep rather than shallow fixes. A deep fix corrects the

root cause of a bug instead of suppressing the symptoms. This paper initiates the study of the problem of incentive design for open

workflows in fixing code. We model the dynamics of the software ecosystem and introduce subsumption mechanisms. These

mechanisms only make use of externally observable information in determining payments and promote competition between workers.

We use amean field equilibriummethodology to evaluate the performance of these mechanisms, demonstrating in simulation that

subsumption mechanisms perform robustly across various environment configurations and satisfy important criteria for market design.

Index Terms—Market design, mean field equilibrium, software engineering, payment mechanisms

Ç

1 INTRODUCTION

RATHER than the Turing machine “input tape to output
tape” model of computation, today’s software systems

have evolved to be those of continuous interaction with
other large systems and with the physical world. The size
and complexity of software systems have increased to such
an extent that it is straining our ability to effectively manage
them. This is illustrated by Fig. 1 which depicts the depen-
dency graph of an open source software.1

In the meantime, traditional software engineering techni-
ques have failed to scale accordingly, leading to increased
inefficiencies and errors. A study commissioned by the U.S.
National Institute of Standards and Technology concluded
that software errors alone cost the U.S. economy approxi-
mately $59.5 billion annually [1]. What is more, software is
often deployed with discovered bugs (as well as undiscov-
ered ones) because there are simply not enough resources to
address all issues [2], [3], [4]. Through an empirical study of
277 coding projects in 15 companies, Wright and Zia [5]
determine that software maintenance actually introduces
more bugs: each subsequent iteration of fixes has a 20-50
percent chance of creating new bugs. All of this points to
the need for a new paradigm in creating and evolving such
systems.

In fact software systems have come to resemble economic
systems, where behaviour is decentralized, interdependent,
and dynamic. This suggests that the principles of market

design and mechanism design have an important role in
complementing traditional engineering techniques. We see
this in market-based platforms such as Bountysource [6]
and TopCoder [7]. Markets enable us to directly target
incentives issues as well as elicit valuations from users so
that they can influence the direction of software develop-
ment. Moreover markets can aggregate supply and
demand, thereby providing the scale needed to solve long
neglected engineering problems, with prices guiding the
efficient allocation of resources.

Software economies refer to a vision for a software devel-
opment process in which supply and demand drive the allo-
cation of work and the evolution of the system [8]. The idea
of a software economy is to promote equilibria in which all
fixes and features for which there is enough value have
been implemented. A private software economy deals with
the internal incentives of managers and employees [9]. A
public software economy involves end users, who are able
to express value for bug fixes as well as missing features. A
public software economy must contend with a much larger
scale than a private economy, including a large user base, a
large number of potential workers, and conceivably a large
number of bugs and missing features.

We are interested in a specific question arising in the
public software economy. We want to understand how to
design incentives to obtain deep rather than shallow fixes to
bugs, at least where the disutility of users warrants a deep
fix. A deep fix attempts to correct the root cause of the prob-
lem so that another bug with the same root cause is found
only after a long time or not at all. In contrast a shallow fix
suppresses the symptoms of a bug at a superficial level and
other bugs with the same root cause may appear soon after.
While this presents a known problem in software engineer-
ing, there has been little prior work on improving incentives
in the literature. This paper initiates the first study of this
problem, proposing subsumption mechanisms, where deeper
fixes can subsume or replace shallower fixes, and where
a worker’s payoff increases if a fix subsumes other fixes.
A subsumption mechanism employs an installment-based
payment rule that stops paying the worker when a fix is
subsumed, transferring the remaining reward to the

1. Austin Meyer and Adil Yalcin created this network visualization
using NodeXL (www.nodexlgraphgallery.org) for a graduate computer
science class project “Analyzing Open Source Project Networks” at the
University of Maryland College Park taught by Prof. Ben Shneiderman
during Spring 2011, https://wiki.cs.umd.edu/cmsc734_11/index.php?
title=Analyzing_Open_Source_Project_Networks

� M. Rao, D. C. Parkes, andM. I. Seltzer are with the John A. Paulson School
of Engineering and Applied Sciences, Harvard University, Cambridge, MA
02138. E-mail: {malvika, parkes, margo}@eecs.harvard.edu.

� D. F. Bacon is with Google. E-mail: dfb@google.com.

Manuscript received 27 May 2017; revised 31 Jan. 2018; accepted 4 May 2018.
Date of publication 13 June 2018; date of current version 9 Jan. 2020.
(Corresponding author: Malvika Rao.)
Recommended for acceptance by T. Zimmermann.
Digital Object Identifier no. 10.1109/TSE.2018.2842188

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 1, JANUARY 2020 51

0098-5589� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2080-2006
https://orcid.org/0000-0002-2080-2006
https://orcid.org/0000-0002-2080-2006
https://orcid.org/0000-0002-2080-2006
https://orcid.org/0000-0002-2080-2006
https://wiki.cs.umd.edu/cmsc734_11/index.php?title=Analyzing_Open_Source_Project_Networks
https://wiki.cs.umd.edu/cmsc734_11/index.php?title=Analyzing_Open_Source_Project_Networks
mailto:
mailto:

contributor of a deeper fix. The idea is that deeper fixes are
less likely to be subsumed and more likely to subsume prior
fixes, thereby enabling the worker to earn a higher payment
and promoting competition for deep fixes.

We study a stylized, dynamic model of the software engi-
neering ecosystem comprising workers, users, root causes
of bugs, bugs and fixes, user values, and worker costs. The
user base reports bugs and offers money for suitable fixes.
Workers are tentatively matched to bugs, and decide which
fix to submit given considerations about cost, payment, and
market dynamics. The market design determines how
money from users is allocated to fixes. Crucially, we insist
for practical reasons that the market process can only use
information that is externally observable. For example, we
allow for regression tests on code that has been corrected
with submitted fixes, without allowing the possibility of
code inspection. Some examples of externally observable
information include the time taken for the next bug to
appear, and the number of bug reports that are addressed
by a fix. Our model is flexible and its elements can be
viewed as building blocks that can be reconfigured to
encode different issues in the software economy.

Current practice in software testing is consistent with our
paradigm. For example, black box testing tests the functional-
ity of the software without examining its internal workings.
Regression testing tests whether a new fix addresses bug
reports without reintroducing old bugs. Tools such as SVN
andGithub provide operations such as forking, merging, and
syncing. In a similar spirit, a subsumption test in our work
requires that past versions of the software are merged with
the newfix and tested to seewhich bugs are fixed.

Examples of market-based platforms for software devel-
opment include Bountysource, which is a funding platform
for open-source software with 39,699 community members.
Here users post bounties on issues they want solved while
developers devise solutions and claim rewards. The mini-
mum reward that can be contributed is $5 and a reward
paid for a solution can amount to over $5000. Once a bounty
is posted, a developer chooses the issue and begins work on
it. Upon completion the developer submits a claim. During
a two week verification period, backers vote to accept or
reject the claim. If the claim is accepted the developer is
paid the bounty. If an issue is closed without any resolution
the bounty is refunded. Bountysource also organizes fund-
raisers to raise money for new features or costly issues
requiring a significant amount of work.

A somewhat different type of platform, based on crowd-
sourcing contests, is Topcoder with over a million active
members. Here companies that require software solutions
are matched to a global community of programmers, and the
latter compete in a contest with cash awards to provide the
best solution that can address a specific client request. The
Topcoder communityworks on a variety of products, includ-
ing web and mobile application development, user experi-
ence design, predictive analytics, algorithm optimization,
technical prototyping, as well as regular coding tasks (e.g.,
bug fixes, feature requests, testing, etc.). Bountify [10] is also
a platform based on crowdsourcing contests. It focuses on
coding tasks and questions–the website states, “The best
tasks to post on Bountify are those with verifiable solutions.
Clearly define your problem and specify the deliverables. Be
specific about what you want and ensure that you can verify
the correctness of the possible solutions you receive.” [11].
The reward range that can be offered is $1 to $100. A client
posts the task and the attached bounty which expires after a
week. Programmers must submit solutions within this time-
frame. The client then chooses the best solution and awards
the bounty to the winner. The client pays the full amount of
the bounty to Bountify immediately upon posting the task.
Interestingly the client is not refunded if none of the solu-
tions submitted is acceptable. Instead the bounty is awarded
to charity. Rather than providing fixes or features, Bug-
crowd [12] is a security platform that has at its disposal a
crowd of workers that includes security researchers and
hackers. The crowdworks to discover vulnerabilities in a cli-
ent’s software. The client only pays for those vulnerabilites
judged to be valid, and not for the effort expended to find
them. Further, clients can specify a budget and reward range
for continuous testing of their software. Bugcrowd helps cli-
ents set reward ranges by offering a pricing model assem-
bled from historical data. For a comprehensive survey of
crowdsourced platforms for software development as well
as the associated literature, see [13].

The aforementioned platforms and practices are natural
precursors to the market-based system proposed in this
paper. Although we are inspired by these platforms, our
design departs from them in several ways. Current platforms
tend to address software tasks that are small and modular.
The solutions tend to be human-verified and payment
schemes consist of simple one-shot payments. As the growth
in crowdfunded and crowdsourced models of production
continues, it seems likely that platforms will become more
sophisticated, addressing complex design issues such as
incentivizing high quality work, handling inter-dependent
tasks, and automating the market. In this paper we take that
next step and design a system that incentivizes deep fixes
using externally observable information only.

Open source development underlies billions of dollars in
software production [14]. However, it is becoming increas-
ingly clear that more resources are needed to support open
source infrastructure. A recent study [15] points out that the
boom in startups relies on digital infrastructure made possi-
ble by open source software. A lack of adequate funding
and support can result in security breaches and interrup-
tions in service. This real-world problem was anticipated in
earlier economics research. Kooths et al. [16] argue that the
lack of price signals in open source software production

Fig. 1. Dependency graph of an open source software.

52 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 1, JANUARY 2020

means that developers do not know users’ valuations.
Therefore the supply of open source goods does not fully
align with users’ needs. This raises the question of what are
ways to design market mechanisms to fund digital infra-
structure. These issues are further motivating factors for the
line of research in the present paper.

In studying software economieswe adopt amean field equi-
librium (MFE) methodology, which is an approximation
methodology that is useful for analyzing the behaviour of
large systems populated with self-interested participants. In
large markets, it is intractable and implausible for individu-
als (in this case workers) to best-respond to competitors’
exact strategies [17]. Instead the MFE approach assumes that
in the long run the temporal patterns in agents’ actions aver-
age out. Hence, agents can optimize with respect to long run
estimates of the marginal distribution of other agents’
actions. Using thismethodology, we study the software engi-
neering ecosystem under different parameterizations of the
environment and different incentive designs. Our simulation
results demonstrate that the basic premise in this work has
merit: by using externally observable comparisons we can
drive competition and get deeper fixes and higher utility.We
conclude by drawing lessons for market design.

1.1 Main Contributions

� We contribute a dynamic model of the software eco-
system. In addition, we introduce the bit string lan-
guage, a mathematical language that encodes the
relationship between bugs and fixes. This is the first
work to study incentives design for deep fixes.

� We introduce subsumption mechanisms–mecha-
nisms that incentivize deep fixes by using externally
observable information only. We design and analyze
variants on subsumption mechanisms, namely eager
subsumption, lazy subsumption, and eager with reuse.
These mechanisms are all based on the underlying
principle of checking whether submitted fixes sub-
sume prior fixes, but with variations in the timing of
checks and in whether replaced fixes are kept
around, checked again later and possibly reused.

� We frame the problem in the context of themean field
methodology and obtain convergence computation-
ally under different parameterizations of the environ-
ment. This work is the first to apply the mean field
equilibrium concept to the software economy.

� We develop models of worker and user utility. The
expected worker utility is estimated by look-ahead
sampling and by using the mean field distribution to
understand how other workers may act in the future.
User utility is a metric that unifies several perfor-
mance measures, such as a user’s cost, wait time for
a fix, and the depth of a fix.

� Our main result via the simulation study is that
subsumption mechanisms perform robustly across a
variety of environment configurations and satisfy
important criteria for market design. In contrast, this
is not the case for mechanisms without subsumption.
In general, we find that installment-based payment
schemes (including subsumption mechanisms) create
incentives for deep fixes. Installment-based payment
schemes that allow transfers, that is, unpaid

installments from a fix are added to the reward for a
later fix, perform even better. Transfers augment a low
payment for a fix, making deeper fixes more profit-
able. Subsumption mechanisms pay in installments
and allow transfers conditional on subsumption. The
use of subsumption and fix-to-fix comparisons intro-
duces competition amongst workers and produces
deeper fixes and higher user utility. Subsumption
mechanisms that reuse fixes achieve higher user utility
because they allow for fixes without new payments.
Surprisingly, mechanisms without installment pay-
ments are also able to produce deep fixes, but at low
rewards only andwith a highwait time.

� In conclusion we draw lessons for market design,
both from the simulation study as well as from quali-
tative analysis of the mechanisms, and make recom-
mendations regarding the suitability of the different
mechanisms for various market design criteria.

2 RELATED WORK

Prior literature has considered economic approaches
towards related aspects of the software engineering indus-
try, but with a different focus from this paper. For instance,
the use of market-based approaches in improving vulnerabil-
ity-reporting systems has been explored. Schechter [18]
describes a vulnerability market where a reward is offered to
the first tester that reports a specific security flaw. The reward
grows if no one claims it. At any point in time the product can
be considered secure enough to protect informationworth the
total value of all such rewards being offered. Ozment [19] lik-
ens this type of vulnerability market to an open first price
ascending auction. While vulnerability markets as well as
existing bug bounty programs (e.g., the Mozilla security bug
bounty, and the recently launched “Hack the Pentagon” bug
bounty program [20]) motivate testers to report flaws, such
systems do not capture users’ valuations for fixes. In particu-
lar this literature does not consider how to incentivize deep
fixes–our work is the first to study this problem. Other papers
examine the role of incentives in information security and pri-
vacy, and propose policies to improve the level of security
and privacy [21], [22], [23], [24], [25], [26], [27], [28]. None of
the aforementioned papers study large market dynamics or
use theMFEmethodology.

Hosseini et al. [29] address the problem of efficient bug
assignment. They model the bug triager as an auctioneer
and programmers as bidding agents in a first-price sealed
bid auction. Agents bid on bug reports, where a bid value is
based on the developer’s past history of fixing bugs, the
developer’s expertise and speed, severity of the bug, and so
forth. The bug is allocated to the agent with the highest bid.
Le Goues and colleagues [3], [30], [31] share our view of
software as an evolving, dynamic process. However where
we approach software engineering from a market design
perspective, they are influenced by biological systems and
apply genetic programming for automated code repair. Sev-
eral papers [32], [33], [34], [35] have studied open-source
movements from the perspective of community formation
and contribution. For instance, Athey and Ellison [32] look
at the dynamics of how open-source projects begin, grow,
and decline, addressing issues such as the role of altruists,
the evolution of quality, and the pricing policy. In contrast,

RAO ET AL.: INCENTIVIZING DEEP FIXES IN SOFTWARE ECONOMIES 53

our work focuses on solving incentives problems that arise
in the production of fixes. Other research has examined soft-
ware from the point of view of technological innovation [36],
[37], as well as from the point of view of the design and
modularity of software [38], [39].

Mean field equilibrium derives its name from mean field
models in physics, where large systems display macroscopic
behaviour that is easier to analyze than their microscopic
behaviour. MFE have been studied in a variety of settings in
economics [40], [41], [42], [43] and control theory [44], [45], [46].

Our work is most closely related, from a methodological
perspective, to a series of recent papers that analyze MFE in
various market settings. Motivated by sponsored search,
Iyer et al. [47] consider a sequence of single-item second price
auctions where bidders learn their private valuations as they
win auctions. The authors show that the agent’s optimal
strategy in anMFE is to bid truthfully according to a function
of the expected utility. In a related paper, Gummadi et al. [48]
examine both repeated second price and generalized second
price auctions when bidders are budget constrained. The
authors show that the effect of long-term budget constraints
is an optimal bidding strategy where agents bid below their
true valuation by a shading factor. Other settings have also
been analyzed in the mean field context [17], [49], [50], [51].
These papers present a theoretical analysis whereas we take
a computational approach and study a richer domainmodel.

The structure and performance of different contest archi-
tectures have been widely studied [52], [53], [54]. A series of
papers [55], [56], [57] model crowdsourcing contests as all-
pay auctions. However crowdsourcing contests are an alto-
gether different scenario to ours. In our model, submissions
are not simultaneous, and nor can we directly observe the
quality of submissions and judge which submission is best.
Instead the incentives in place ensure that the system
evolves over time based only on competition and externally
available information in a way that retains deeper fixes.

This work is a significantly extended version of a prelimi-
nary contribution presented at a workshop [58].

3 THE MODEL OF THE SOFTWARE ECOSYSTEM

The model of the software ecosystem consists of two parts
that interact with each other: a model of software bugs and
fixes and a model of the world (see Fig. 2). We first describe
the system of bugs and fixes, before presenting the dynam-
ics of the entire ecosystem.

3.1 Modeling Bugs and Fixes

We consider an abstract model of software as a set R of
independent root causes of some fixed cardinality, where
each root cause generates a series of related bugs (see

Fig. 3). To draw an analogy with a real world scenario, a
root cause may be thought of as a specific component or
functionality of a software; for example, one root cause
might be a synchronization error in the user interface com-
ponent, while another root cause might be a buffer overflow
in the graphics component. We develop a bit string model
that captures how a particular root cause can generate bugs,
and that encodes the relationships amongst bugs and fixes.

Each root cause is associated with a bit string length l > 0.
The set of bugs belonging to this root cause are modeled
through the set of 2l � 1 non-zero bit strings of length l. The
set of permissible fixes for this set of bugs is modeled as the
set of 2l bit strings, including the 2l � 1 non-zero bit strings
that address the bug as well as the zero bit string that mod-
els a worker who chooses not to submit a fix (referred to as
the null fix). Each bit string encodes a different bug, and sim-
ilarly a different fix (see Fig. 4). A larger length l signifies a
root cause that generates more bugs.

The bit string representation of bugs and fixes combined
with the rules defining their relationships gives us a com-
pact mathematical language that we can use to capture a
complex, interdependent phenomenon such as the one
studied in this work. In our model, fixes pertaining to a par-
ticular root cause cannot be used to fix bugs generated by
other root causes. Thus all relationships and properties are
relevant for only those bugs and fixes that belong to the
same root cause. In what follows, we refer to a bit whose
value is 1 as an ON-bit.

Definition 1 (Valid fix). A fix f 2 f0; 1gl is valid for bug
b 2 f0; 1gl if it includes all the ON-bits in b, i.e., f � b bit-
wise. Thus an AND operation between f and bmust result in b.

We refer to the set of valid fixes for a bug plus the null fix
as the set of feasible fixes for the bug. Different bugs can
have different numbers of feasible fixes. Bug 1,110 has only
3 feasible fixes. In contrast bug 0001 has 23 þ 1 feasible fixes.

Example 1. A root cause with l ¼ 4 can generate the set of
bugs f0001; 0010; . . . ; 1111g. Consider bug b ¼ 1110. Bug b
is fixed by two fixes: f1 ¼ 1110 and f2 ¼ 1111. Fix 0111
cannot fix b. The set of feasible fixes for b is
f1110; 1111; 0000g.

Definition 2 (Fix depth). The fix depth of fix f refers to the
number of ON-bits in the bit string of f 2 f0; 1gl, and is
denoted jf j.
Continuing with the above example, f1 and f2 have fix

depths equal to 3 and 4 respectively. We can now define, in

Fig. 2. Overview of our model of the software ecosystem.

Fig. 3. Each root cause in set R generates bugs b, which in turn may
receive fixes f.

54 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 1, JANUARY 2020

the context of the bit string representation, what constitutes
a shallow or deep fix with respect to a given bug.

Definition 3 (Shallow fix). Given a bug b, a shallow fix f is a
valid fix for which jfj ¼ jbj.

Definition 4 (Deep fix). Given a bug b, a deep fix f is a valid
fix with jfj > jbj.
In other words, a shallow fix is the fix that meets the min-

imal requirement of having the same ON-bits as the bug
being fixed and no more. A deep fix is a valid fix that is not
a shallow fix. The deepest fix not only fixes the bug in ques-
tion but all bugs of that root cause.

Example 2. Consider bug b ¼ 1100 generated by a root
cause with bit string length l ¼ 4. A shallow fix for b is
f1 ¼ 1100. A deep fix for b is f2 ¼ 1101 or f3 ¼ 1110. The
deepest possible fix is f4 ¼ 1111.

Next we define an ordering relationship between fixes.
This will be crucial for reasoning about subsumption
mechanisms.

Definition 5 (Ordering relation). A fix fk is deeper than a
fix fi, written fk � fi, if fk � fi interpreted bitwise, with
fk½j� > fi½j� for at least some j 2 f0; . . . ; l� 1g.
The ordering relation provides a partial order, as shown

in Example 2, where we have f4 � ff2; f3g � f1. Here f2 and
f3 are incomparable.

The bit string language is an abstraction of the ways in
which bugs and fixes may relate and interact with one
another in our setting. There are several plausible practical
interpretations of the bit string model. For example, one
interpretation may consider each ON-bit as corresponding
to a location in code, and therefore a fix with more ON-bits
would fix more code locations than one with fewer ON-bits.
In this interpretation, a bug with a particular ON-bit could
imply that a problem has occurred in that specific location
and the stipulation that a valid fix must at least include the
same ON-bits as the bug it addresses makes sense–a fixmust
at least fix the code locationwhere the problem has occurred.

So far we have described how bugs and fixes relate to one
another in the context of the bit string model. Moving on, we
consider those properties that are externally observable, and
to that end, introduce a key concept, that of subsumption.

Definition 6 [Subsumption relation]. A fix fk subsumes
another fix fi with respect to a set of bugs B, written fk% fi, if

the set of bugs fixed in B by fk strictly contains the set of bugs
fixed in B by fi.

Continuing with Example 2, suppose bug b receives fix
f2. Now suppose the root cause generates another bug
b0 ¼ 0110 which receives the fix f 0 ¼ 1; 110. Fix f 0 subsumes
f2, since f 0 fixes all the bugs fixed by f2 as well as b0. How-
ever f 0% f2 does not imply f 0 � f2. Clearly, we have f2cf 0.
But it may be that f 0 � f2 or that f

0 and f2 are incomparable,
as is the case here.

3.2 Temporal Dynamics

We study a setting with discrete time periods, and a large
population of workers who submit fixes. Users discover
and report bugs, and may offer payment for fixes.

In each time period and for a given root cause, we ran-
domly sample from all 2l � 1 bugs associated with the root
cause, regardless of whether some of those bugs might be
already fixed (i.e., sampling with replacement). A new bug
enters the system only if the sampled bug is as yet unfixed
and unreported. Note that an un-reported bug may be pre-
emptively fixed by a fix already submitted for a different
reported bug. This reflects a natural situation where a root
cause may generate several bugs initially, but fewer and
fewer as fixes accumulate because an increasing number of
bugs are preemptively fixed.

Example 3. Consider a fix 1001, which fixes the set of bugs
f1001; 1000; 0001g. Any bug that is not fixed by fix 1001
may appear after this fix is submitted on a particular root
cause, such as a bug 1110.

Upon generation, a bug is associated with a total amount
of reward that is provided by the user or users who report
the bug (see Section 3.3.) A root cause x 2 R that has not gen-
erated a new bug in some period of time (this time period is a
parameter of the model) is called inactive and is regenerated
with probability bx 2 ð0; 1�. When a root cause is regener-
ated, it is removed and replaced with a new root cause (i.e.,
one with all bugs yet to be generated) of the same bit string
length. This removal and replacement models the root cause
as having received deep enough fixes that it is now unlikely
to generate more bugs, and that the user base shifts its atten-
tion to a new set of bugs. Moreover it may be that certain
modules are no longer the focus of the user base and there-
fore retired, eliminating that root cause, and allowing for
newmodules and root causes to be created.2

The market dynamics are simulated through a sequence
of fix-verify cycles that occur over time (see Fig. 5). Each fix-
verify cycle takes place in a single time period t at a given
root cause. Thus at each time period t we go round-robin

Fig. 5. A sequence of fix-verify cycles.

Fig. 4. Root causesR generate bugs, which may receive fixes. Bugs and
fixes are represented as bit strings.

2. The presence of multiple, regenerating root causes ensures an infi-
nite stream of bugs, also supports the stationarity in long-run statistics
that motivate the MFE approach.

RAO ET AL.: INCENTIVIZING DEEP FIXES IN SOFTWARE ECONOMIES 55

through root causes, executing fix-verify cycles at each root
cause. A fix-verify cycle for a particular root cause proceeds
as follows:

1) The root cause is queried once to see if it generates a
new bug, this bug also associated with a total avail-
able payment as provided by the associated user.

2) A worker is selected at random and tentatively
assigned to an unfixed or newly generated bug.

3) The worker submits a feasible fix, maximizing
expected utility given a model of the future.

4) The fix is verified by the market infrastructure in
regard to the assigned bug.

5) The total amount to be paid to the worker over some
time horizon is calculated. The worker is paid in a
single step, or in installments, depending on the spe-
cifics of the payment rule.

We make four main modeling assumptions. First, a total
payment amount is associated with a bug at the time the
bug is generated. No further payments are added to this
bug later in time. This is a reasonable modeling assumption
since different payments can be flexibly associated with a
bug when generated, capturing user base disutility. Second,
only one new bug is introduced per root cause per period
and only one worker is matched to a bug for any given root
cause. These two assumptions simplify the analysis, avoid-
ing the possibility of two fixes being submitted on the same
root cause in any one period. While work within a particular
root proceeds in sequential order, work across different
roots may happen in parallel. Third, a matched worker sub-
mits a fix in the same time period that the worker is
assigned the bug. This is a reasonable modeling assumption
given that time periods are long enough. Fourth, the likeli-
hood that the same worker is repeatedly assigned bugs
belonging to the same root cause is low, hence the worker
considers only those scenarios where future work on the
same root cause is performed by other workers. In settings
with a large number of workers and root causes, this
assumption is sound.

3.3 Users and Workers

The users in our model are not strategic. Rather, users are
modeled as being willing to make a payment that corre-
sponds to a disutility for a bug or a value for a fix. This dis-
utility is associated with a specific bug and thus associated
with a root cause that the user cares about. A user may rep-
resent the aggregate utility of the user base for a fix but for
simplicity we refer to a single user.

Let r 2 ½rmin; rmax� denote a user’s instantaneous disutility
associated with a bug. A user’s realized value for the
sequence of fixes that occur following the report of a bug is
a function vðr; t̂Þ of the disutility r and the wait time t̂, where
v is decreasing in t̂ and vðr; 0Þ ¼ r, and is given by
vðr; t̂Þ ¼ dt̂r for discount factor d < 1. Thus the longer a user
must wait for a fix, the lower the realized value. A user’s
realized value is at most r.

If disutility r ¼ rmin then the user is called a short-term
user, whereas if r > rmin then the user is a long-term user.
In the time period that a fix is first submitted, both short-
term and long-term users get an initial installment of real-
ized value, defined as vðrmin; t̂Þ. This represents the value of

any fix, even a shallow fix. This is also the total value of a
short-term user, modeling the idea that the user was only
interested in a shallow fix. A long-term user receives the
remaining value vðr; t̂Þ � vðrmin; t̂Þ in h� equal installments,
or fewer since payments are halted if an additional bug
appears on this root cause subsequent to t̂.

The utility of a user is the total value net the cost of pay-
ment. Since users are not strategic payment is assumed to
equal the amount of the instantaneous disutility r. The max-
imum utility a user can get is zero (representing realized
value r, net payment r), and the utility is generally negative.

The utility model has the following properties:

1) If the fix never occurs, the user utility is �r.
2) If the fix occurs right away and all installments are

received, the user utility is �rþ r ¼ 0.
3) Fixes that occur after a user’s bug report have some

associated disutility, and thus the user utility is
negative.

In this way, the user utility is a metric that unifies several
performance measures, including the wait time for a fix, the
side-effects of a fix (a deep fix pre-empts future bugs), and
the loss in value in any given period without a fix. In our
model the user commits to a payment even if the work is
not done.

A worker, chosen at random, is given the option of work-
ing on a bug, in what is referred to as a tentative assignment
(or tentative match). The worker’s decision problem is to
determine which fix to submit, if any. A decision about
whether or not to invest effort now does not foreclose the
ability to work in the future because we assume that a fix (if
any) is produced within the current period and because we
assume a worker ignores the possibility of being matched to
the same root cause in the future.

To produce a fix, worker wj incurs cost cjðjfkjÞ, which is a
non-decreasing function of the number of ON-bits in fk. A
simple example is a linear cost function, with cj ¼ jfkj. We
assume the worker discounts any future payments accord-
ing to discount factor, d < 1, indicating a preference for ear-
lier payments over later ones. The utility derived by a
worker from submitting a fix on a bug is equal to the dis-
counted sum of the payments received, starting from the
time period in which the fix is submitted, net the worker’s
cost for the fix fk.

Given a model of the behaviour of other workers, a
model of the environment by which bugs and user pay-
ments are generated, and a particular design for an incen-
tive mechanism, a worker chooses a fix (perhaps null) to
maximize total expected, discounted utility. In what fol-
lows, we describe the principal mechanisms that we study,
and make explicit the way in which the worker computes
the expected utility.

4 SUBSUMPTION MECHANISMS

Consider an instantiation of the model where Step 4 of the
fix-verify cycle involves a specific kind of correctness check.
In a subsumption mechanism, this step involves a check for
whether the current fix subsumes any previous fixes. If so,
the subsumed fixes are replaced by the current fix. In addi-
tion, the worker’s payment may increase if the fix subsumes
previous fixes. In this way, a worker now competes with

56 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 1, JANUARY 2020

other workers who fix subsequent bugs on the same root
cause. Thus the model captures indirect competition
because a later worker might produce a deeper fix for a sub-
sequent bug k, that not only fixes k but also subsumes some
other worker’s fix for an earlier bug on the same root cause.
To allow for this take-over of earlier payment, the payments
in a subsumption mechanism occur over a fixed number of
installments over time.

Generally, a subsumption mechanism is defined as a
mechanism that uses subsumption relations in at least one
of two ways:

i to make externally observable comparisons between
fixes, where one fix may subsume another;

ii to determine payments according to the subsump-
tion ordering of fixes.

We focus on three variations on subsumption mechanism
design, referred to as eager, lazy, and eager with reuse.

4.1 Eager Subsumption

Eager subsumption performs externally observable checks
for subsumption using only the bugs and fixes seen so far.
Consider a fix fk for bug k at time t. Fix fk subsumes a prior
fix fi if it fixes all bugs fixed by fi from the set of bugs seen
until time t. If fix fi is subsumed then it is discarded. Since
subsumption is concluded without waiting to see the entire
range of bugs and fixes, eager subsumption only approxi-
mates the ordering relationship between fixes.

For eager subsumption, we use a simple payment rule that
pays out equal installments of the total payment over a fixed
number of time periods, h�. Let i < k be the index into all
fixes fi that occurred at a time prior to fk on this root cause.
Let QðtÞ represent the set of all bugs at time t on this root
cause that were generated, remained unfixed, and are now
fixed by fk. Let r̂iðtÞ denote the total payment still to be made
to theworker associatedwith fix fi in periods t and forward.

The total payment remaining to be made for a fix fk for
bug k submitted at time t is,

r̂kðtÞ ¼
Xk�1

i¼1

r̂iðtÞIffk% fig þ
X
q2QðtÞ

rq þ rk; (1)

where r̂iðtÞ is the remaining unpaid payment (if any) at time
t of a previous fix fi subsumed by fk, rq is the payment asso-
ciated with an unfixed bug q that fk fixes, and rk is the pay-
ment associated with bug k. This total payment is made in
installments over h� periods. The payment in period t0, with
t � t0 � tþ h�, is,

pkðt0Þ ¼ r̂kðtÞ
h� : (2)

In particular, the worker is paid an installment each time
period until all h� installments are exhausted or until the
worker’s fix is subsumed by a new fix, whichever occurs
sooner. In the latter case, the remainder of the worker’s pay-
ment is transferred to the subsuming fix. Hence if the work-
er’s fix is only subsumed after h� time periods have passed,
or not subsumed at all during the lifetime of the root cause,
the worker is paid r̂k in its entirety. If a root cause is regener-
ated while a worker still has outstanding payments, the
worker is paid the remainder in full.

Eager subsumption can give false positives in regard to
the ordering of fixes.

Example 4. Suppose bug b1 ¼ 0001 is reported, attracting
fix f1 ¼ 0011. Next suppose bug b2 ¼ 1000 comes along
on the same root cause, with fix f2 ¼ 1001. The eager
mechanism concludes that f2 subsumes f1 as it fixes all
bugs seen so far. Thus f1 is discarded and replaced by f2.
f2 receives payments from the reward on b2 plus transfer
from f1. Now suppose bug b3 ¼ 0010 arrives. f1 can fix b3
but not f2. Had f1 been retained it would have precluded
the appearance of b3. Instead b3 enters the market and
awaits a new fix.

4.2 Lazy Subsumption

Lazy subsumption decreases the number of false positives
by delaying judgement. Although a check for subsumption
is performed when a new fix is submitted by a worker, sub-
sumption relations are finalized only when a root cause regen-
erates. Thus, given the same instance, the partial ordering of
fixes ultimately obtained with lazy subsumption may be dif-
ferent than the one obtained with eager subsumption.

To illustrate, let us consider a single fix fk for bug k sub-
mitted at time t. Suppose fk fixes all bugs fixed by a prior
fix fi that have appeared until time t. At this point eager
subsumption would decide that fk has subsumed fi,
whereas with lazy subsumption this decision is deferred.
Continuing, assume that fi has not subsumed any fixes.
Payments towards fi are stopped and fi is replaced by fk,
whose payments begin. But in contrast to eager subsump-
tion, fi is not discarded permanently, but is instead
removed from the system and placed on a waiting list. More-
over fk’s payments do not yet include the transfer of the
remaining unpaid amount r̂iðtÞ from fi.

The total payment with lazy subsumption is also given
by Equation (1). At time t the worker responsible for fk
begins to receive installments of the portion of the total pay-
ment represented by the second and third terms in Equa-
tion (1), that is,

P
q2QðtÞ rq þ rk. However while installments

for the rest of the payment begins, the payments associated
with the first term in Equation (1) are frozen until the root
cause regenerates at time t�. Only then does the mechanism
determine, based on all bugs generated and fixes submitted
up until time t�, whether fix fk subsumes fi. At that point
only, the lazy subsumption scheme redistributes the pay-
ment r̂iðtÞ to the right party: if fk is found to have subsumed
fi at the time the root is regenerated, then r̂iðtÞ is transferred
to the worker who submitted fk, otherwise it is retained by
the worker who submitted fi.

Example 5. Suppose bug b1 ¼ 0001 is reported, attracting fix
f1 ¼ 0011. Next suppose bug b2 ¼ 1000 arrives, attracting
fix f2 ¼ 1001. The lazy mechanism considers that f2 may
have subsumed f1. Thus f1 is placed on a waiting list. Pay-
ments to f1 are frozen and f2 receives payments from the
reward on b2 but not the transfer from f1. Now suppose that
bug b3 ¼ 0010 arrives. f1 is reused to fix b3. At the end of the
root’s lifetime, lazy determines that f2 did not subsume f1
and f1 gets the remaining payments that were frozen.

An interesting feature of lazy subsumption is that it
reuses fixes that are on the waiting list. In Example 5, lazy

RAO ET AL.: INCENTIVIZING DEEP FIXES IN SOFTWARE ECONOMIES 57

subsumption would attempt to reuse f1 when b3 appears. If
f1 can be successfully reused, then it is simply reinstated
into the current, working set of fixes and the bug does not
enter into the economy and no new payment amount is
brought into the market. Hence, only if none of the fixes on
the waiting list can fix b3 does the mechanism revert to the
standard scenario where the bug is listed and a new pay-
ment is associated with it. It is via reuse that subsumption
relations, and consequently the partial ordering of fixes, are
updated during a root’s lifetime.

Thus, the process of determining subsumption in the
lazy mechanisms proceeds in two stages, consisting of an
eager check followed by a lazy check:

1) When a new fix is submitted a check is done, as in
eager subsumption, to ascertain if the new fix sub-
sumed any prior fixes based on the bugs and fixes
seen so far. The purpose of this check is to freeze
payments that may be subsumption transfers–if the
new fix has subsumed prior fixes then their pay-
ments are frozen. Although any subsumption trans-
fers (the first term in Equation (1)) are frozen, the
new fix starts to receive installments from payments
associated with any previously unfixed bugs (the
second and third terms in Equation (1)).

2) When a root regenerates, subsumption relations are
finalized by examining the final partial ordering of
fixes. The purpose of this check is to determine how
to distribute the frozen payments. This step is carried
out by retrospectively stepping through the arrival
times of fixes and computing payments according to
the subsumption relations revealed by the final, par-
tial ordering across fixes.

The difference with the eager mechanism, given the same
system state, is twofold: i) the stricter criteria of judging sub-
sumption means that the first term in Equation (1) might
lead to a smaller payment, and ii) there is a delay in paying
out subsumption transfers, thus the per time period payment
does not include the first term in Equation (1) until the root
regenerates. Note that subsumption checks are performed
only in the case where a new fix is submitted by a worker.
No such checks are performed when a fix from the waiting
list is reused to fix a bug and reinstated into the current,
working set of fixes. The goal here is simply to alleviate the
mistakes that can be made by eager subsumption in deter-
mining subsumption without having seen more of the set of
bugs that a root cause may generate. More than one fix in the
waiting list may be able to fix a new bug– in this instance we
use a tie-breaking rule, giving priority to the most recent
waiting fix. Because lazy subsumption finalizes subsump-
tion relationswhen a root cause regenerates, whichmay hap-
pen before all bugs are generated, the subsumption relations
concluded by the lazy approach remain an approximation of
the true ordering relation amongst fixes.

4.3 Eager with Reuse

This hybrid mechanism works in a similar way to the eager
subsumption mechanism and uses the eager payment rule,
with total payments given by Equation (1). However it devi-
ates from the eager mechanism in that subsumed fixes are
not discarded. Instead they are kept on a waiting list and

reused as is done in lazy subsumption. What this means is
that there are time periods when a new bug is fixed via a
reused fix and the bug does not enter the market or get asso-
ciated with a new payment amount. The effect is as if a new
bug was not generated at all, and instead was preemptively
fixed by an existing fix in the system (which would have
been the case had the reused fix not been removed from the
set of current fixes in the first place). Accordingly, any eager
installments that are being paid out proceed as if a bug was
not generated in this time period.

Example 6. Continuing with Example 4, f2’s payments
include the remaining unpaid payment of f1 as well as
the payment for b2. Payments are made as per the eager
subsumption rule. However in eager with reuse, fix f1 is
not discarded, instead it is reused when b3 appears and
therefore a new payment is not associated with bug b3.

4.4 Baseline, Non-Subsumption Mechanisms

In this section, we present instantiations of the fix-verify cycle
that do not involve subsumption. These provide baselines
against which to compare the subsumptionmechanisms.

� Myopic mechanism. The worker is paid in full as soon
as submitting a valid fix. Let QðtÞ represent the set of
all generated bugs at time t on this root cause that
are now fixed by fk. The total payment for a fix fk for
bug k submitted at time t is,

r̂mk ðtÞ ¼
X
q2QðtÞ

rq þ rk; (3)

where rq is the payment of a formerly unfixed bug q
that fk has now fixed, and rk is k’s reward.

� Installment mechanism. The total payment available to
be paid for a fix is described by Equation 3. However
the worker is paid in a fixed number, h�, of equal
installments that stop as soon as a new bug of the
same root cause appears. Any remaining payment
goes unused and can be considered to be “wasted”.
The payment in time period t0, where t � t0 � tþ h�,
is equal to r̂mk ðtÞ=h�.

� Installment with transfer. This mechanism functions
like the installment mechanism, but takes one step
closer to eager subsumption by allowing transfers of
payments from one fix to another. Installments that
remain unpaid when a new bug appears are not
thrown away. Rather, they are added to the payment
for the new bug. The total payment available to be
paid for a fix fk for bug k submitted at time t is,

r̂nkðtÞ ¼ r̂iðtÞ þ
X
q2QðtÞ

rq þ rk; (4)

where r̂iðtÞ is the remaining unpaid payment at time
t of the previous fix fi whose installments were inter-
rupted by k, and the other terms are as defined in
Equation (3). Because bugs appear in sequence, and
payments are interrupted as soon as the next bug
appears, there can only be one such earlier fix that is
currently receiving payments. The payment in time
period t0, where t � t0 � tþ h�, is equal to r̂nkðtÞ=h�.

58 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 1, JANUARY 2020

4.5 Discussion

Recall that a new, unreported bugmay be preemptively fixed
by a fix already existing in the system for a reported bug. We
refer to the set of submitted fixes that are currently present in
the system as the set of active fixes. The composition of the set
of active fixes differs amongst the different mechanisms.

Because the myopic and installment mechanisms do not
perform fix-to-fix comparisons and thus do not eliminate
any submitted fixes from the system, the set of active fixes
comprises all fixes submitted so far on a root cause. Hence
at time t all fixes submitted at a root cause up until time t
are used to preemptively fix new bugs in the myopic and
installment mechanisms.

In the case of eager subsumption, subsumed fixes are
permanently deleted from the system. Therefore the set of
active fixes at time t is equal to the set of all fixes submitted
so far minus those fixes that have been subsumed by time t.
As a result, the preemptive power of eager subsumption
may be lower than that of the myopic and installment mech-
anisms, specifically when there are false positives as shown
in Example 4.

Turning to eager with reuse and lazy subsumption,
although subsumed fixes are removed from the system, they
are not permanently deleted as they are in eager subsump-
tion. Rather, subsumed fixes are stored in a waiting list. The
set of active fixes at time t is the same as in eager subsump-
tion: it comprises the set of all fixes submitted so far minus
those fixes that have been subsumed by time t. However,
when a new bug is generated that could not be preemptively
fixed by any active fix, the eager with reuse and lazy mecha-
nisms check whether any fixes stored in the waiting list may
be reused. The effect is that new bugs are introduced into the
market at time t only if no fix in the set of all fixes submitted
at a root up until time t (i.e., the set of active fixes and the set
of subsumed fixes) has already fixed them.

5 MEAN FIELD EQUILIBRIUM

In a subsumption mechanism, workers must contend with
competing workers who may subsume their fixes, thereby
curtailing their payment installments. Thus the worker faces
a naturally strategic situation. The deeper the fix submitted
the less likely it is to be subsumed and payments curtailed.
But, deeper fixes cost the worker more. A worker in this
market must decide how to best-respond to competitors’
play in order to maximize expected utility.

We study subsumption mechanisms in a mean field equi-
librium. MFE is an approximation methodology suited to
large market settings, where keeping track of the strategies
of individual agents becomes prohibitive. As the number of
agents grows large, it is reasonable to assume that agents
optimize instead with respect to long run estimates of the
marginal distribution of other agents’ actions. In particular,
each worker best-responds as if in a stationary environment.
The equilibrium aspect of MFE is that it insists on a consis-
tency check: the statistics of the marginal distribution must
arise as a result of agents’ optimal strategies.

5.1 Adapting MFE to Our Setting

Recall that a worker assigned a bug must decide which fix
to submit, if any. In a subsumption mechanism this strategic

decision amounts to estimating the subsumption time of
each valid fix, since this affects the distribution over future
payments as a result of submitting a fix now.

Each worker models the future as though there is an i.i.d.
distribution D of fix depths submitted by others, where the
set of possible fix depths is f0; . . . ; lg (including null fixes).
In addition, a worker assumes that all fixes associated with
a particular fix depth occur with equal probability. This
induces a probability distribution over the set of all 2l possi-
ble fixes. Finally, a worker infers the conditional distribu-
tion on feasible fixes for a specific bug (noting that only
some fixes can be valid).

For concreteness, we can consider eager subsumption,
and normalize time, so that a fix is considered to be submit-
ted in period t0 ¼ 0. Let yjk denote a worker’s utility for sub-
mitting fk to fix bug k. The worker’s expected utility is

E½yjk� ¼ Eh

Xh
t0¼0

dt
0
pkðt0Þ � cjðjfkjÞ

" #
; (5)

where pkðt0Þ is the payment in time period t0, and
h ¼ minðh�; HÞ where H is a random variable representing
subsumption time, defined as the number of time periods
before fk is subsumed.

Subsumption times vary amongst the fixes submitted,
because each fix precludes a different set of bugs, which
affects the time till the next bug (and its fix) appears. More-
over each fix permits a different set of future fixes that can
subsume the fix. For any particular system state, the worker
chooses a fix f� such that,

f� ¼ arg max
fk

Eh

Xh
t0¼0

dt
0
pkðt0Þ � cjðjfkjÞ

" #
: (6)

The fix that maximizes the worker’s expected utility is
determined by estimating the distribution on subsumption
time, and thus estimating Equation (5). To estimate the util-
ity of each feasible fix, a worker samples possible future tra-
jectories assuming that workers behave according to belief
D, given the environment model that dictates how bugs and
new root causes are generated, and arrives at a sample over
possible subsumption times and thus an estimated, total
expected discounted utility.

In particular, given a fix f� submitted in the current time
period, bugs not fixed by f� might appear in future time
periods. A future fix to one of these bugs might subsume f�,
thereby curtailing the number of payment installments. In
order to estimate the expected utility of a fix f�, the worker
simulates the software economy environment according to
the MFE a number of times. Several trajectories are sampled
in order to realize subsumption time and arrive at an esti-
mate of the utility the worker can expect when submitting
fix f� (see Fig. 6). We stop sampling trajectories once the
worker’s estimated utility converges to within a confidence
interval. This look-ahead sampling technique is inspired by
the sparse sampling algorithm for estimating optimal poli-
cies in Markov decision processes [59].

Let FðDÞ be the long-term, empirical distribution given
that workers assume model D, and apply their optimal
strategy, given the dynamic model of the root cause and
bug environment.

RAO ET AL.: INCENTIVIZING DEEP FIXES IN SOFTWARE ECONOMIES 59

Definition 7. An MFE in the software economy is a distribution
D on fix depths such that FðDÞ ¼ D.

Continuing, for a given environment and mechanism, we
estimate the MFE following the approach described in the
algorithm in Fig. 7. To determine convergence of the system
to a MFE we compare distributions using a likelihood
ratio test (details are in the Appendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSE.2018.2842188). The
test for convergence is performed once after letting the algo-
rithm run for a long period. This period of time is deter-
mined at design time, where we look for a number of
periods such that reliably, over and over again when we
rerun the experiment, the test passes. This avoids the multi-
ple testing problem.

6 SIMULATION STUDY

The goal of the simulation is to understand the characteris-
tics of the model and mechanisms proposed in this paper.
We hope to draw lessons for market design and distill use-
ful insights for practitioners. Some questions that motivate
our study are as follows: How do the simple mechanisms of
myopic and installment fare relative to eager subsumption?
Does reuse improve performance? What is the relative per-
formance of the three subsumption mechanisms?

Because there are several parameters in the model of the
software ecosystem, where each can take on a range of val-
ues, and because any combination of parameter settings
yields a different environment, there are a large number of
environments that can be used for simulations. We hope to
study a more comprehensive set of environments in future
work. For the present paper, we consider the following
environment parameters: Root causes are associated with
bit string length 4. Bugs are generated from a uniform or
geometric distribution. The worker uses either a linear or
exponential cost function, and the worker’s cost c for the
first ON-bit is sampled uniformly at random from different
ranges. The number of installments h� is either 5 or 10.
Unless otherwise stated, the discount factor is 0.8. Users are
either all short-term, or a mixture of short-term and long-
term with user disutility sampled uniformly at random
from different ranges.

The performance of the mechanisms is measured accord-
ing to the following metrics, which are averaged over all

observations for each root cause over a number of periods
after the system has converged in simulation to an approxi-
mate MFE:

� Percentage of immediate fixes: percentage of all bugs
generated at a particular root cause that receive any
non-null fix in the same time period that they appear;

� Percentage of immediate deep fixes: percentage of all
generated bugs that receive a deep fix in the same
time period that they appear;

� User cost: total payment (equivalent to instantaneous
disutility r) paid out towards fixes by all users of a
particular root cause;

� User utility: average user utility per bug generated,
averaged over all bugs seen during a length of time;

� Variance in worker utility: variance in the worker util-
ity per bug fixed, averaged over all bugs seen during
a length of time.

A good mechanism produces a high percentage of imme-
diate and deep fixes, provides high user utility, involves
low levels of instantaneous disutility, and exhibits low vari-
ance in worker utility which guarantees that the utility
workers get from participating is stable.

6.1 Simple Mechanisms

We first compare the performance of eager subsumption,
which is the simplest subsumption mechanism, against the
myopic and the installment mechanisms. In this simulation,
we adopt the following Environment I:

Bugs are generated uniformly at random, the number of
installments is 10, and the worker cost function is linear,
with each worker randomly sampling cost for initial bit,
c 	 uniformð1; 2Þ. This environment is parameterized
by the instantaneous disutility r for users.

To understand the ratio of the instantaneous disutility to
cost in this environment, suppose the disutility is 10. Then,
for an average initial bit cost of 1.5, we have a ratio of
10=1:5 ¼ 6:67.

Fig. 6. Look-ahead sampling to compute an approximately optimal, best
response given a worker is matched with bug b. Fixes f1 through fk are
possible fixes by this worker, and for each one the worker rolls out possi-
ble futures.

Fig. 7. Algorithm to estimate MFE.

60 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 1, JANUARY 2020

http://doi.ieeecomputersociety.org/10.1109/TSE.2018.2842188
http://doi.ieeecomputersociety.org/10.1109/TSE.2018.2842188

At relatively low levels of instantaneous disutility (and
thus low payments), the eager and installment mechanisms,
which make payments for a valid fix over time, do not cover
the worker’s cost. This is because installments are dis-
counted over time, and because payments may be inter-
rupted early due to a new bug appearing or when a fix is
subsumed. Bugs accumulate until the combined payment
for covering multiple bugs with a single fix is high enough.
That bugs linger is seen in Fig. 8, which shows that less than
100 percent of bugs receive immediate fixes at lower pay-
ment values. In comparison, myopic pays the entire

payment when a valid fix is submitted. This leads to more
immediate fixes.

On the other hand, the equilibrium strategy of a worker
in the myopic mechanism is to produce the shallowest pos-
sible fix. This is a best response because the worker is paid
in full as soon as he submits any valid fix. Because of this,
the performance of the mechanism levels off once fixes are
affordable, and remains unresponsive to a further increase
in payment (see Figs. 9 and 10). The installment mechanism
fares better than the myopic mechanism when the payment
is high but lags behind eager subsumption at lower

Fig. 8. The percentage of immediate fixes in simple mechanisms in Environment I, for different instantaneous disutility ranges.

Fig. 9. The percentage of immediate deep fixes in simple mechanisms in Environment I, for different instantaneous disutility ranges.

Fig. 10. The user utility in simple mechanisms in Environment I, for different instantaneous disutility ranges.

RAO ET AL.: INCENTIVIZING DEEP FIXES IN SOFTWARE ECONOMIES 61

payments. Without transfers, the installment mechanism
cannot augment the low payment for a current fix with any
remaining unpaid payment from a past fix. These results
show the need for something more than the basic myopic
and installment mechanisms.

6.2 Installment with Transfer and Eager with Reuse

Fig. 11 shows the results when we include installment with
transfer in place of myopic. Installment with transfer pro-
vides higher user utility than the installment mechanism.
This is as expected, because the amount transferred can
accumulate for bugs appearing later on a root cause. For the
parameter settings considered here, the performance of
installment with transfer bridges the gap between that of
installment and eager subsumption.

In order to create opportunities for the reuse of sub-
sumed fixes, we modify the environment. Environment II is
defined as:

Bugs are generated according to a geometric distribution,
and worker cost is an exponential function in the depth of
a fix. When bugs are generated uniformly at random and
worker cost is linear, reuse is often precluded because we
get bugs of a high bit string value, receiving deeper fixes,
arising earlier in a root’s lifetime. For reuse to occur, we
require fixes that are deep enough to be reused, but not so
deep that they are hard to subsume. The worker’s cost for

the first ON-bit is c ¼ 1, and we set the number of install-
ments to be h� ¼ 10. Bug generation is sped up, so that a
root cause is queried five times, to see if it generates a new
bug in a time period, instead of just once. This captures a
scenario where a technology is newly adopted and may
contain a large quantity of bugs initially. This environ-
ment is parameterized by the instantaneous disutility
range for users.

See Figs. 12 and 13. Installment with transfer produces a
lower percentage of deep fixes than the other mechanisms.
Like the installment mechanism, installment with transfer
stops paying a worker as soon as the next bug appears. It
follows that the portion of the payment that the worker can
expect to keep is partly influenced by the rate of arrival of
bugs. Moreover submitting the deepest possible fix on a
root cause may not be profitable given the worker’s cost
and available payment. Hence the worker’s expected payoff
for submitting deeper fixes is reduced.

Environment III is defined as:

Workers have an exponential cost function, with each
worker’s cost c 	 uniformð2:5; 3Þ, bugs generated from
a geometric distribution, and the number of installments
is 10. In this environment we consider a higher worker
cost than heretofore. This environment is parameterized
by the instantaneous disutility range for users.

Fig. 11. User utility in Environment I for the eager, installment, and installment with transfer mechanisms.

Fig. 12. The percentage of immediate deep fixes in Environment II, for different instantaneous disutility ranges, and comparing eager with reuse,
instalment with transfer, and eager.

62 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 1, JANUARY 2020

See Figs. 14 and 15. In this setting, eager with reuse does
best with regard to user utility, whereas the eager mecha-
nism performs better in terms of percentage of deep fixes. By
deleting fixes that turn out to be false positives, eager reduces
its ability to preemptively fix new bugs instead of generating
them. This places eager subsumption at a disadvantage with
respect to metrics such as user utility. Eager with reuse
enhances the eager mechanism’s performance with the abil-
ity to reuse subsumed fixes instead of discarding them.

6.3 Lazy Subsumption

For this simulation we work with environment IV:

Bugs are generated from a geometric distribution, the
number of installments is 10, and the worker cost model is
an exponential function, with each worker randomly sam-
pling c 	 uniformð3; 4Þ. To compare the three subsump-
tion variants, we consider an environment with relatively
high worker cost. This environment is parametrized by the
user instantaneous disutility range.

Fig. 13. The user utility in Environment II, for different instantaneous disutility ranges, and comparing eager with reuse, instalment with transfer, and
eager.

Fig. 14. The percentage of immediate deep fixes in Environment III, varing the instantaneous disutility range, and comparing eager, installment with
transfer, and eager with reuse.

Fig. 15. User utility in Environment III, varying the instantaneous disutility range, and comparing eager, installment with transfer, and eager with reuse.

RAO ET AL.: INCENTIVIZING DEEP FIXES IN SOFTWARE ECONOMIES 63

See Figs. 16 and 17. As a consequence of reusing sub-
sumed fixes, the eager with reuse and lazy subsumption
mechanisms achieve lower user cost, resulting in higher
user utility. Recall that the lazy mechanism finalizes sub-
sumption relations only when a root cause regenerates, and
then redistributes payments. In order to better understand
the performance of lazy subsumption, we adjust for the
effect of discounting on later payments (by increasing redis-
tributed amounts by a small quantity), thereby levelling the
playing field. In general lazy subsumption performs as well
as eager with reuse for the metrics examined in this study.
Because the lazy mechanism uses more conservative checks,
it is harder to subsume fixes and likewise harder to be
subsumed. As a result lazy subsumption exhibits a smaller
variance in worker utility than eager with reuse. For instan-
taneous disutility ranges 4-9, 6-11, and 8-13, lazy subsump-
tion has variance 0.3, 0.4, and 0.29 while eager with reuse
has variance 1.0, 1.75, and 2.18 respectively.

6.4 Robustness Across Environments

We also conducted a test of the robustness of the different
designs across ten different environments, E1, E2,..., E10,
ordered from simple to more complicated environments.
These environments can be viewed in the context of different
software engineering scenarios. For instance, environment
E1 might represent academic researchers who need help
with issues in a scientific software that they use for experi-
ments. They are short term users, as fixes are only needed for
a specific set of experiments. The workers may be research

assistants who have fixed low salaries. Moreover the dis-
utility of bugs is low compared to safety critical systems.
Environments E2 and E3, involving higher user disutility
and variable worker cost respectively, might represent
short-term or seasonal needs of businesses. One example of
this is web compatibility issues where, for example, retailers
would like their websites to appear the sameway in different
web browsers. To this end they might need bugs to be fixed
but are not concerned with the long-term evolution of the
web browser code. Environment E6, with a fast rate of bug
generation, might represent the scenario where a new tech-
nology is adopted. Initially the technology gets a lot of atten-
tion and many issues are uncovered. Over time most of the
bugs are fixed, the technology matures, and is eventually
overtaken by competition, leading to decreased activity.
Environments E8, E9, and E10 might represent large-scale,
critical systems with high cost workers. Examples include
medical visualization software where patients’ health is at
stake, airline booking software where a bug could leave
thousands stranded, banking and financial software where a
glitch could affect millions across the world, and so forth.
The environment settings are as follows:

E1. Short-term users, fixed instantaneous disutility
chosen in the range ½2; 5�, same cost workers with
c ¼ 1, h� ¼ 5.

E2. Short-term users, fixed instantaneous disutility
chosen in the range ½11; 15�, same cost workers with
c ¼ 1, h� ¼ 5.

Fig. 16. User utility in Environment IV, varying the instantaneous disutility range, and comparing the lazy, eager, and eager with reuse mechanisms.

Fig. 17. User cost in Environment IV, varying the instantaneous disutility range, and comparing the lazy, eager, and eager with reuse mechanisms.

64 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 1, JANUARY 2020

E3. Short-term users, fixed instantaneous disutility cho-
sen in the range ½5; 7�, worker randomly samples
c 	 uniformð1; 2Þ, h� ¼ 5.

E4. Long-term as well as short-term users, with instanta-
neous disutility sampled according to r 	 uniform
ð4; 8Þ, worker randomly samples c 	 uniformð1; 2Þ,
h� ¼ 10.

E5. Long-term as well as short-term users, with instanta-
neous disutility sampled according to r 	 uniform
ð25; 29Þ, worker randomly samples c 	 uniform
ð1; 2Þ, h� ¼ 10.

E6. Faster rate of bug generation.
E7. Low cost workers, where each worker randomly

samples c 	 uniformð1; 1:5Þ, long-term and short-
term users with instantaneous disutility sampled
according to r 	 uniformð5; 11Þ, h� ¼ 5.

E8. High cost workers, where each worker randomly
samples c 	 uniformð2; 2:5Þ, long-term and short-
term users with instantaneous disutility sampled
according to r 	 uniformð8; 14Þ, h� ¼ 5.

E9. High cost workers, where each worker randomly
samples c 	 uniformð2:5; 3Þ, long-term and short-
term users with instantaneous disutility sampled
according to r 	 uniformð11; 17Þ, h� ¼ 5.

E10. High cost workers, where each worker randomly
samples c 	 uniformð3; 4Þ, long-term and short-term

users with instantaneous disutility sampled accord-
ing to r 	 uniformð9; 13Þ, h� ¼ 10.

See Figs. 18 and 19. As the environments get more com-
plex we see a shift in the kinds of mechanisms that domi-
nate with respect to percentage of immediate deep fixes as
well as user utility. The myopic mechanism performs well
in the first few environments, but later the installment with
transfer and the subsumption mechanisms take over. The
utility of long-term users depends on receiving both imme-
diate and deep fixes. As we have seen, simple mechanisms
such as myopic and installment do not provide the right
incentives. Hence mechanisms that permit transfers, and
reuse subsumed fixes, perform best in environments 5-10,
in particular the eager with reuse mechanism.

6.5 Myopic Mechanism and Short-Term Users

In a counterintuitive result, the myopic mechanism gives
deep fixes at low payments. For this, we consider Environ-
ment V:

Bugs are generated uniformly at random, the worker cost
function is linear with c 	 uniformð1; 2Þ for all workers,
the number of installments is 10, and the instantaneous
disutility is a constant (and varied in different trials).
In this regime all users are short-term. This environment
is parameterized by the fixed instantaneous disutility of
users.

Fig. 18. Robustness check: Percentage of deep fixes across the ten different environments.

Fig. 19. Robustness check: User utility across the ten different environments.

RAO ET AL.: INCENTIVIZING DEEP FIXES IN SOFTWARE ECONOMIES 65

See Figs. 20, 21 and 22. In these figures, we “zoom in”
to observe what happens at low payments with short-
term users. Because the myopic mechanism pays the
entire payment at once it promotes immediate fixes (see
Fig. 20). Because this environment has only short-term
users, the myopic mechanism achieves the maximum
user utility when all bugs receive immediate fixes (see
Fig. 22).

Further, accumulated payments from cases where the fix
remains too costly provide an incentive for the worker to

produce a deep enough fix in order to collect the accumu-
lated amount. Thus, we also see deep fixes with the myopic
mechanism. However, as the payment increases and
completely covers the worker’s cost for a fix, the incentives
for deep fixes go away. The worker simply gives the shal-
lowest possible fix to claim the payment, and there is no
accumulation. In particular, as the payment increases
beyond the amount shown in these figures, we revert to the
case examined earlier in Figs. 8, 9 and 10, where the eager
mechanism was dominant.

Fig. 20. Percentage of immediate fixes in Environment V, varying the fixed instantaneous disutilities, comparing the eager and myopic mechanisms.

Fig. 21. Percentage of immediate deep fixes in Environment V, varying the fixed instantaneous disutilities, and comparing the eager and myopic
mechanisms.

Fig. 22. User utility in Environment V, varying the fixed instantaneous disutilities, and comparing the eager and myopic mechanisms.

66 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 1, JANUARY 2020

7 CONCLUSION

A market mechanism for bug fixes must take into consider-
ation some important design criteria. These are:

1) Robustness of performance in regard to user utility
and percentage of deep fixes, submitted quickly,
across different software environments.

2) Selecting a small, good set of fixes, and eliminating
redundant fixes.

3) Making judgments about the relative quality of dif-
ferent contributions with minimum knowledge
about the domain.

Subsumption mechanisms satisfy all three design criteria.
Table 1 compares themechanism designs according to the set
of submitted fixes that are checked when determining
whether a new bug already has a fix. Table 2 orders themech-
anisms from simple designs without competition between
workers for payments to the subsumption mechanisms,
which promote competition. Table 3 compares the different
designs according to whether there is a transfer of payments,
andwhether fixes are compared against one another.

In regard to performance, the eager subsumption mecha-
nism is of particular merit if we care primarily about the
percentage of bugs that receive immediate and deep fixes.
On the other hand, if user utility is more important, then
eager with reuse and the lazy mechanism are good choices.
At low reward levels, and with short-term users, the myopic
mechanism performs best with respect to the metrics, per-
centage of immediate fixes, percentage of immediate deep
fixes, and user utility.

As described in Table 1, subsumption mechanisms
identify and remove fixes that have been judged to be sub-
sumed, thereby striving to eliminate redundant submissions.
As a result, a system evolves under the subsumption designs
to a minimal yet good set of fixes. By comparison, the install-
ment mechanisms do not identify and remove redundant

fixes. This can have a negative side effect of leading to a
bloated system that keeps around all fixes ever submitted.

The different mechanisms give rise to different types of
competition dynamic, as shown in Table 2. Workers in the
myopic mechanism produce deep fixes at low payment lev-
els only. Beyond these levels workers are unresponsive and
simply submit the shallowest possible fix since no competi-
tion is involved. The installment and installment with trans-
fer mechanisms stop paying when the next bug appears.
Hence workers in these mechanisms must contend with
aspects of the environment such as bug generation rate.
Because subsumption mechanisms involve competition
amongst workers as well as transfers and fix-to-fix compari-
sons (Table 3), their performance is robust across different
environments.

Regarding knowledge requirements, the check forwhether
one fix subsumes another in the subsumption mechanisms
does not strictly require the assumption of different underly-
ing root causes–rather, it relies on making externally observ-
able comparisons. In contrast, the installment mechanisms
have a high knowledge requirement because they need to
know that a set of bugs belongs to the same root. Curtailing
workers’ payments without a priori knowledge that a set of
bugs belongs to the same root cause does not seem reasonable
in practice.

We further consider the performance of our mechanisms
in environments (E1, E2, . . ., E10) that can bemapped to real-
istic software engineering settings. Our results show that as
environments get more complicated, involving more critical
systems and higher development costs, there is a shift in the
types of mechanisms that function well according to metrics
such as percentage of immediate deep fixes and user utility.
In these more complex environments, mechanisms that per-
mit transfers and reuse subsumed fixes perform best.

In conclusion, subsumption mechanisms satisfy all three
market design criteria and perform robustly across all envi-
ronment configurations examined in the empirical analysis.

7.1 Limitations and Future Work

This work initializes the study of how to incentivize deep
fixes. The present paper evaluates subsumption mecha-
nisms by comparing their performance in simulation with
respect to a set of metrics. It would be interesting to con-
sider, for a simpler model, the design of the optimal mecha-
nism, where optimality is defined with respect to a suitable
measure or a specific class.

We make several simplifying assumptions to obtain a
minimal, tractable model and to focus on capturing the
essence of the problem. Building on this work, an interest-
ing direction would be to relax these assumptions. For

TABLE 1
Comparing Mechanisms by the Set of Fixes Used

to Preempt Bugs from Entering the Market

All fixes submitted so far
(equal the set of active fixes)

Myopic
Installment
Installment with transfer

All fixes submitted so far
(subsumed fixes are reused)

Eager with reuse
Lazy subsumption

Set of active fixes
(subsumed fixes are deleted)

Eager subsumption

TABLE 2
Comparing Mechanisms by the Kind

of Competition Dynamic That They Create

No competition Myopic

Environment as adversary Installment
Installment with transfer

Competition and MFE Eager subsumption
Eager with reuse
Lazy subsumption

TABLE 3
Comparing the Essential Features of the Payment

Rule in Each Mechanism

Fix to fix comparisons No fix comparisons

Transfers Eager subsumption
Eager with reuse Installment with transfer
Lazy subsumption

No transfers N/A Myopic
Installment

RAO ET AL.: INCENTIVIZING DEEP FIXES IN SOFTWARE ECONOMIES 67

instance a worker might be allowed to choose what bug to
fix instead of being assigned one at random. Making users
strategic and allowing payments to change over time would
also be an interesting path to pursue. Another experiment
could treat the length of time for which payments are
deferred as a parameter, thereby characterizing a tradeoff
between the eager mechanism at one end and the lazy
mechanism at the other end of the spectrum. Future work
might consider a family of subsumption mechanisms
parameterized by time period, and such that subsumption
relations are concluded after t time periods.

Because of the complexity of the design space, we have
evaluated the model and mechanisms in simulation. One of
us [60] has also carried out theoretical analysis of a simpli-
fied variation of the computational model presented here. It
would be fruitful to further explore a theoretical approach
in order to derive theoretical characterizations regarding
the properties of the equilibrium, the performance of the
mechanisms, market conditions, and so forth.

Equally interesting would be to take the abstract model
presented in this paper to a more practical context. For
example, future work might try to apply subsumption
mechanisms to an existing system or use real-world data to
validate our model. This would shed light on what are use-
ful settings for the parameters in our model as well as high-
light instances of the problem that might arise more
frequently in practice. The model of the software ecosystem
consists of several parameters and each of these parameters
can take on a range of values. Various combinations of
parameter settings can produce a large number of environ-
ments to use for simulations. Building on the foundation
laid in this paper, we hope to conduct a wide-ranging series
of simulations in future work, focusing on those parameter
settings inferred through real-world data.

Because the problem addressed and the system designed
in this paper depart from existing systems in several ways,
obtaining relevant real-world data would require that we
adapt and deploy subsumption mechanisms to work in
practice. Deployment raises several interesting challenges.
For instance, fixes addressing various reported issues may
not always be completely independent and may build on
one another in layers of work carried out over time [61].
How to adapt subsumption mechanisms to take into
account different contributions that comprise a single solu-
tion is an interesting problem left to future work. Another
consideration is a fast-changing code base which might
make it difficult to compare the effect of a new fix on past
versions. In addition a real-world implementation would
need to map the parameters in this abstract model to equiv-
alent concrete values. For example, the lazy mechanism
defers payments until the end of a root cause’s lifetime. In
reality this period of deferral could be interpreted in differ-
ent ways with different consequences: it could be a prede-
termined period of time such as two weeks, or when the
rate of bug generation in the relevant module falls below a
certain threshold indicating that the root cause has been
mostly addressed and alternatively is no longer much in
use, or when the next version of the software is released,
and so forth. Preliminary experiments with real users and
workers might help to inform what values to set in a final
deployment.

In practice bug reports consist of reproducible steps and
test cases. If a bug report describes a specific bug then a
developer might not realize that a deeper fix is possible in
this instance. Incentivizing testers to write failing test cases
for more general bugs would help to shift attention to the
possibility of deeper fixes. That is, if bug X is a subset of
bug Y then we would like developers to focus efforts on
bug Y . This would create a test-driven environment where
subsumption mechanisms might be implemented more
effectively.

In this work we have focused on financial incentives.
However in peer production environments, such as that of
open source software, volunteers self-organize and contrib-
ute to projects without being paid. Studies have shown the
open source developers are driven by a diverse set of moti-
vations, monetary and non-monetary in nature [62]. In fact
it has been argued that it is the presence of these diverse
motivations that results in peer production communities
successfully completing complex projects [63]. It would be
interesting to consider the implications for the incentives
design presented in this paper in the context of peer produc-
tion. How can financial incentives be introduced without
affecting the characteristics of peer production? How can
we adapt our model to work with non-monetary incentives,
or otherwise to work with a mix of monetary and non-mon-
etary incentives? A reconciliation of the different types of
incentives is left to future work.

In general, the problem of incentivizing deep, or equiva-
lently high quality and lasting, fixes is not unique to soft-
ware engineering. Subsumption mechanisms may also find
application in settings other than software engineering that
share the aspect of a modular and open design structure,
where the quality of the system may evolve over time.

ACKNOWLEDGMENTS

The authors thank Edo Airoldi, Eric Balkanski, Yiling Chen,
Thibaut Horel, John Lai, Benjamin Lubin, Hongyao Ma,
Don Marti, Greg Stoddard, Ming Yin, the participants of
AAAI WIT-EC 2014, the participants of the 5th Workshop
on Dynamic Games in Management Science 2014, and the
anonymous reviewers for useful feedback on this work.

REFERENCES

[1] NIST, The economic impacts of inadequate infrastructure for soft-
ware testing. Planning report 02–3. 2002. [Online]. Available:
http://www.nist.gov/director/planning/upload/report02–3.pdf

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”
in Proc. 28th Int. Conf. Softw. Eng., 2006, pp. 361–370.

[3] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A sys-
tematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 3–13.

[4] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation
via remote program sampling,” in Proc. ACM SIGPLAN Conf. Pro-
gram. Language Des. Implementation, 2003, pp. 141–154.

[5] C. S. Wright and T. A. Zia, “A quantitative analysis into the eco-
nomics of correcting software bugs,” in Proc. 4th Int. Conf. Comput.
Intell. Security Inf. Syst., 2011, pp. 198–205.

[6] Bountysource inc. website, 2013. [Online]. Available: https://
www.bountysource.com

[7] Topcoder inc. website, 2001. [Online]. Available: https://www.
topcoder.com

[8] D. F. Bacon, E. Bokelberg, Y. Chen, I. A. Kash, D. C. Parkes,
M. Rao, and M. Sridharan, “Software economies,” in Proc. FSE/
SDPWorkshop Future Softw. Eng. Res., 2010, pp. 7–12.

68 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 1, JANUARY 2020

http://www.nist.gov/director/planning/upload/report02--3.pdf
https://www.bountysource.com
https://www.bountysource.com
https://www.topcoder.com
https://www.topcoder.com

[9] D. F. Bacon, Y. Chen, I. A. Kash, D. C. Parkes, M. Rao, and
M. Sridharan, “Predicting your own effort,” in Proc. 11th Int. Conf.
Auton. Agents Multiagent Syst., 2012, pp. 695–702.

[10] Bountify inc.website, 2012. [Online]. Available: https://bountify.co
[11] Bountify inc. faq website, 2012. [Online]. Available: https://

bountify.co/faq
[12] Bugcrowd inc. website, 2012. [Online]. Available: https://

bugcrowd.com
[13] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of

crowdsourcing in software engineering,” J. Syst. Softw., vol. 126,
pp. 57–84, Apr. 2017.

[14] The linux foundation releases first-ever value of collaborative
development report, 2015. [Online]. Available: https://www.
linuxfoundation.org/press-release/the-linux-foundation-
releases-first-ever-value-of-collaborative-development-report/

[15] N. Eghbal, Roads and Bridges: The Unseen Labor Behind Our Digital
Infrastructure. New York, NY, USA: Ford Foundation, 2016.

[16] S. Kooths, M. Langenfurth, and N. Kalwey, “Open-source
software—An economic assessment,” MICE Econ. Res. Stud.,
vol. 4, 2003.

[17] S. Adlakha, R. Johari, and G. Y. Weintraub, “Equilibria of dynamic
games with many players: Existence, approximation, and market
structure,” J. Economic Theory, vol. 156, pp. 269–316, Mar. 2015.

[18] S. E. Schechter, “How to buy better testing: Using competition to
get the most security and robustness for your dollar,” in Proc.
Infrastructure Security Conf., 2002, pp. 73–87.

[19] A. Ozment, “Bug auctions: Vulnerability markets reconsidered,”
in Proc. 3rd Workshop Econ. Inf. Security, 2004.

[20] Statement by pentagon press secretary peter cook on dod’s part-
nership with hackerone on the hack the pentagon security initia-
tive, 2016. [Online]. Available: http://www.defense.gov/News/
News-Releases/News-Release-View/Article/709818/statement-
by-pentagon-press-secretary-peter-cook-on-dods-partnership-
with-hacke

[21] R. Anderson, “Why information security is hard–An economic
perspective,” in Proc. 17th Annu. Comput. Security Appl. Conf.,
2001, pp. 358–365.

[22] R. Anderson, R. Bohme, R. Clayton, and T. Moore, “Security eco-
nomics and the internal market,” Tech. Report Eur. Netw. Inf. Secu-
rity Agency, 2008.

[23] R. Anderson and T. Moore, “The economics of information
security,” Sci., vol. 314, pp. 610–613, 2006.

[24] I. Cofone, “The value of privacy: Keeping the money where the
mouth is,” in Proc. 14th Annu. Workshop Econ. Inf. Security, 2015.

[25] K. Kannan and R. Telang, “Market for software vulnerabilities?
think again,”Manage. Sci., vol. 51, no. 5, pp. 726–740, 2005.

[26] S. Laube and R. Bohme, “The economics of mandatory security
breach reporting to authorities,” in Proc. 14th Annu. Workshop
Econ. Inf. Security, 2015.

[27] T. Maillart, M. Zhao, J. Grossklags, and J. Chuang, “Given enough
eyeballs, all bugs shallow? revisiting Eric Raymond with bug
bounty markets,” J. Cybersecurity, vol. 3, no. 2, pp. 81–90, Jun. 2017.

[28] S. E. Schechter, “Toward econometric models of the security risk
from remote attack,” IEEE Security Privacy, vol. 3, no. 1, pp. 40–44,
Jan./Feb. 2005.

[29] H. Hosseini, R. Nguyen, and M. W. Godfrey, “A market-based
bug allocation mechanism using predictive bug lifetime,” in Proc.
16th Eur. Conf. Softw. Maintenance Re-Eng., 2012, pp. 149–158.

[30] C. L. Goues, S. Forrest, and W. Weimer, “The case for software
evolution,” in Proc. FSE/SDP Workshop Future Softw. Eng. Res.,
2010, pp. 205–210.

[31] W. Weimer, S. Forrest, C. L. Goues, and T. Nguyen, “Automatic
program repair with evolutionary computation,” Commun. ACM,
vol. 53, no. 5, pp. 109–116, 2010.

[32] S. Athey and G. Ellison, “Dynamics of open source movements,” J.
Econ. Manage. Strategy, vol. 23, no. 2, pp. 294–316, 2014.

[33] J. Johnson, “Open source software: Private provision of a public
good,” J. Econ. Manage. Strategy, vol. 11, no. 4, pp. 637–662, 2002.

[34] J. Johnson, “Collaboration, peer review and open source
software,” Inf. Econ. Policy, vol. 18, no. 4, pp. 477–497, 2006.

[35] J. Lerner, P. Pathak, and J. Tirole, “The dynamics of open source
contributors,” Amer. Econ. Rev. Paper Proc., vol. 96, no. 2, pp. 114–
118, 2006.

[36] K. J. Boudreau, N. Lacetera, and K. R. Lakhani, “Parallel search,
incentives and problem type: Revisiting the competition and
innovation link. working paper,” Harvard Business School,
Boston, MA, HBS Working Paper Number: 09-041,Sep. 2008.

[37] K. R. Lakhani and J. A. Panetta, “The principles of distributed
innovation,” Innovations: Technol. Governance Globalization, vol. 2,
no. 3, pp. 97–112, 2007.

[38] C. Y. Baldwin and K. B. Clark, The Power of Modularity. Vol. 1,
Design Rules. Cambridge, MA, USA: MIT Press, 2000.

[39] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the
structure of complex software designs: An empirical study of
open source and proprietary code,” Manage. Sci., vol. 52, no. 7,
pp. 1015–1030, 2006.

[40] D. Acemoglu and M. K. Jensen, “Aggregate comparative statics,”
Games Econ. Behaviour, vol. 81, pp. 27–49, 2013.

[41] A. Bodoh-Creed, “Approximation of large dynamic games,”
Working Paper, 2012.

[42] G. Y. Weintraub, C. L. Benkard, and B. V. Roy, “Markov perfect
industry dynamics with many firms,” Econometrica, vol. 76, no. 6,
pp. 1375–1411, 2008.

[43] G. Y. Weintraub, C. L. Benkard, and B. V. Roy, “Industry dynam-
ics: Foundations for models with an infinite number of firms,” J.
Econ. Theory, vol. 146, pp. 1965–1994, 2011.

[44] M.Huang, P. E. Caines, and R. P.Malhame, “Social optima inmean
field LQG control: Centralized and decentralized strategies,” IEEE
Trans. Autom. Control, vol. 57, no. 7, pp. 1736–1751, Jul. 2012.

[45] M. Huang, R. P. Malhame, and P. E. Caines, “Large population
stochastic dynamic games: Closed-loop McKean-Vlasov systems
and the nash certainty equivalence principle,” Commun. Inf. Syst.,
vol. 6, no. 3, pp. 221–251, 2006.

[46] J.-M. Lasry and P.-L. Lions, “Mean field games,” Japanese J. Math.,
vol. 2, pp. 229–260, 2007.

[47] K. Iyer, R. Johari, and M. Sundararajan, “Mean field equilibria of
dynamic auctions with learning,” Manage. Sci., vol. 60, no. 12,
pp. 2949–2970, 2014.

[48] R. Gummadi, P. Key, and A. Proutiere, “Optimal bidding strate-
gies and equilibria in repeated auctions with budget constraints,”
in Proc. Allerton Annu. Conf. Commun. Control Comput., 2011.

[49] S. Adlakha and R. Johari, “Mean field equilibrium in dynamic
games with complementarities,” in Proc. IEEE Conf. Decision
Control, 2010, pp. 6633–6638.

[50] N. Arnosti, R. Johari, and Y. Kanoria, “Managing congestion in
decentralized matching markets,” in Proc. Extended Abstract ACM
Conf. Econ. Comput., 2014, pp. 451–451.

[51] R. Gummadi, R. Johari, and J. Y. Yu, “Mean field equilibria of mul-
tiarmed bandit games,” in Proc. ACM Conf. Electron. Commerce,
2012, pp. 655–655.

[52] B. Moldovanu and A. Sela, “The optimal allocation of prizes in
contests,” Amer. Econ. Rev., vol. 91, no. 3, pp. 542–558, 2001.

[53] B. Moldovanu and A. Sela, “Contest architecture,” J. Econ. Theory,
vol. 126, no. 1, pp. 70–97, 2006.

[54] G. Tullock, “Efficient rent seeking,” in Towards a Theory of the Rent
Seeking Society. James M. Buchanan, Robert D. Tollison, Gordon
Tullock Eds., College Station, Texas, USA: Texas A&M University
Press, 2001, pp. 97–112.

[55] N. Archak and A. Sundararajan, “Optimal design of crowdsourc-
ing contests,” in Proc. Int. Conf. Inf. Syst., 2009.

[56] S. Chawla, J. D. Hartline, and B. Sivan, “Optimal crowdsourcing
contests,” in Proc. 23rd Annu. ACM-SIAM Symp. Discr. Algorithms,
2012, pp. 856–868.

[57] D. DiPalantino and M. Vojnovic, “Crowdsourcing and all-pay
auctions,” in Proc. 10th ACM Conf. Electron. Commerce, 2009,
pp. 119–128.

[58] M. Rao, D. C. Parkes, M. Seltzer, and D. F. Bacon, “A framework
for incentivizing deep fixes,” in Proc. AAAI Workshop Incentives
Trust E-Communities, 2014.

[59] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algo-
rithm for near-optimal planning in large Markov decision proc-
esses,” in Proc. Int. Joint Conf. Artif. Intell., 1999, pp. 1324–1231.

[60] M. Rao, “Incentives design in the presence of externalities,”
PhD Dissertation, The School Eng. Appl. Sci., Harvard Univ.,
Cambridge, MA, 2015.

[61] J. Howison and K. Crowston, “Collaboration through open super-
position: A theory of the open source way,” MIS Quart., vol. 38,
no. 1, pp. 29–50, 2014.

[62] J. A. Roberts, I.-H. Hann, and S. A. Slaughter, “Understanding the
motivations, participation, and performance of open source soft-
ware developers: A longitudinal study of the apache projects,”
Manage. Sci., vol. 52, no. 7, pp. 984–999, 2006.

[63] Y. Benkler, “Coases penguin, or, linux and the nature of the firm,”
Yale Law J., vol. 112, no. 3, pp. 369–446, 2002.

RAO ET AL.: INCENTIVIZING DEEP FIXES IN SOFTWARE ECONOMIES 69

https://bountify.co
https://bountify.co/faq
https://bountify.co/faq
https://bugcrowd.com
https://bugcrowd.com
https://www.linuxfoundation.org/press-release/the-linux-foundation-releases-first-ever-value-of-collaborative-development-report/
https://www.linuxfoundation.org/press-release/the-linux-foundation-releases-first-ever-value-of-collaborative-development-report/
https://www.linuxfoundation.org/press-release/the-linux-foundation-releases-first-ever-value-of-collaborative-development-report/
http://www.defense.gov/News/News-Releases/News-Release-View/Article/709818/statement-by-pentagon-press-secretary-peter-cook-on-dods-partnership-with-hacke
http://www.defense.gov/News/News-Releases/News-Release-View/Article/709818/statement-by-pentagon-press-secretary-peter-cook-on-dods-partnership-with-hacke
http://www.defense.gov/News/News-Releases/News-Release-View/Article/709818/statement-by-pentagon-press-secretary-peter-cook-on-dods-partnership-with-hacke
http://www.defense.gov/News/News-Releases/News-Release-View/Article/709818/statement-by-pentagon-press-secretary-peter-cook-on-dods-partnership-with-hacke

Malvika Rao received the PhD degree in com-
puter science from Harvard University, in 2015.
Her research considers the design of incentives
in systems that exhibit both computational and
economic characteristics. Currently, she is study-
ing the incentives in peer production.

David F. Bacon received the PhD degree in
computer science from the University of California,
Berkeley, in 1997. His research lies in the areas
of programming languages, parallel computing,
garbage collection, and hardware compilation.
At present he is with Google. Previously, he was
a principal research staff member with IBM’s
Thomas J. Watson Research Center. He took a
sabbatical, in 2009 as a visiting professor of
computer science with Harvard. In 2009 he was
inducted as an ACM fellow for contributions to real-
time systems and to object-oriented language
design and implementation.

David C. Parkes received the PhD degree in com-
puter science from the University of Pennsylvania,
in 2001. He is George F. Colony professor of com-
puter science and co-director of the Harvard Data
Science Initiative with Harvard University, where
he founded the EconCS research group and leads
research with a focus on market design, artificial
intelligence, and machine learning. He is fellow of
the Association for the Advancement of Artificial
Intelligence (AAAI), and recipient of the 2017 ACM/
SIGAI Autonomous Agents Research Award.

Margo I. Seltzer received the PhD degree in
computer science from the University of Califor-
nia, Berkeley, in 1992. She is the Herchel Smith
professor of computer science and the faculty
director of the Center for Research on Computa-
tion and Society (CRCS) in Harvard’s John A.
Paulson School of Engineering and Applied
Sciences. Her research interests are in systems
for capturing and accessing data provenance, file
systems, databases, transaction processing sys-
tems, storage and analysis of graph-structured

data, new architectures for parallelizing execution, and systems that
apply technology to problems in healthcare. She was a founder and
CTO of Sleepycat Software, the makers of Berkeley DB and is now an
architect for Oracle Corporation. She is the USENIX representative to
the Computing Research Association Board of Directors, a member of
the Computer Science and Telecommunications Board of the National
Academies, and a past president of the USENIX Assocation. She is a
Sloan Foundation fellow in computer science, an ACM fellow, a Bunting
fellow, and was the recipient of the 1996 Radcliffe junior faculty fellow-
ship, and the University of California Microelectronics Scholarship. She
is recognized as an outstanding teacher and won the Phi Beta Kappa
Teaching award in 1996 and the Abrahmson Teaching Award in 1999.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

70 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 1, JANUARY 2020

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

