
Learning to Optimize Combinatorial Functions

Nir Rosenfeld 1 Eric Balkanski 1 Amir Globerson 2 Yaron Singer 1

Abstract
Submodular functions have become a ubiquitous

tool in machine learning. They are learnable

from data, and can be optimized efficiently and

with guarantees. Nonetheless, recent negative

results show that optimizing learned surrogates

of submodular functions can result in arbitrarily

bad approximations of the true optimum. Our

goal in this paper is to highlight the source of

this hardness, and propose an alternative criterion

for optimizing general combinatorial functions

from sampled data. We prove a tight equivalence

showing that a class of functions is optimizable if

and only if it can be learned. We provide efficient

and scalable optimization algorithms for several

function classes of interest, and demonstrate their

utility on the task of optimally choosing trending

social media items.

1. Introduction
Submodular optimization is fast becoming a primary tool in

machine learning. The power of submodularity as a model

has been demonstrated in numerous applications, including

document summarization (Lin & Bilmes, 2011), cluster-

ing (Gomes & Krause, 2010), active learning (Golovin &

Krause, 2011; Guillory & Bilmes, 2011; Hoi et al., 2006),

graph and network inference (Gomez Rodriguez et al., 2010;

Rodriguez & Schölkopf, 2012; Defazio & Caetano, 2012),

and information diffusion in networks (Kempe et al., 2003).

Crucial to the success of these methods is the fact that op-

timizing submodular functions can be done efficiently and

with provable guarantees (Krause & Golovin, 2014).

In many cases, however, the true function cannot be ac-

cessed, and instead a surrogate function is learned from

data (Balkanski et al., 2017). To this end, PMAC learning
(Balcan & Harvey, 2011) offers a framework for analyzing

the learnability of submodular functions, as well as algo-

1Harvard University 2Tel Aviv University. Correspondence to:
Nir Rosenfeld <nirr@g.harvard.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

rithms for learning in practice. Encouraging results show

that in many cases submodular functions can be efficiently

learned from data (Balcan & Harvey, 2011; Iyer et al., 2013;

Feldman & Kothari, 2014; Feldman & Vondrak, 2016). A

natural approach in this setting is to first learn a surrogate

function from samples, and then optimize it, hoping that the

estimated optimum will be close to the true one. A recent

line of work has been devoted to this setting of optimization
from samples (OPS) (Balkanski et al., 2016; 2017).

The main result of OPS is unfortunately discouraging: for

maximizing a submodular function under a cardinality con-

straint, no algorithm can obtain a constant factor approxi-

mation guarantee given polynomially-many samples from

any distribution (Balkanski et al., 2017). Thus, optimizing

over learned surrogates does not provide any meaningful

guarantees with respect to the true function.

The hardness of OPS is, however, a worst-case result. The

hardness stems from the discrepancy between how the algo-

rithm gains access to information (via samples) and how it

is evaluated (globally). In contrast, machine learning objec-

tives are typically concerned with expected outcomes, and

are evaluated over the same distribution from which data is

acquired (Valiant, 1984). In this paper, we build on this moti-

vation and propose an alternative framework for optimizing

from samples. The objective we propose, called distribu-
tional optimization from samples (DOPS), circumvents the

above difficulties by considering a distribution-dependent

objective. In general, a function class F is in α-DOPS if an

α-approximation of the empirical argmax can be found with

arbitrarily high probability using polynomially many sam-

ples, for any distribution D and for any f ∈ F . Formally:

Definition 1 (α-DOPS). Let F = {f : 2[n] → R+} be a
class of set functions over n elements. We say that F is
α-distributionally optimizable from samples if there is an
algorithm A that, for every distribution D over 2[n], every
f ∈ F , and every ε, δ ∈ [0, 1], when A is given as input

a sample set S = {(Si, f(Si))}Mi=1 where Si iid∼ D, with
probability of at least 1− δ over S it holds that:

PT ∼Dm

[
f
(
A(T)

)
≥ 1

α
max
S∈T

f(S)

]
≥ 1− ε (1)

where T = {(Sj)}mj=1, A(T) ∈ T is the output of the
algorithm, and S is of size M ∈ poly(n,m, 1/ε, 1/δ, α).

Learning to Optimize Combinatorial Functions

The criterion in Eq. (1) relaxes the OPS objective to hold in

expectation over D. This is achieved by replacing the entire

combinatorial domain with a sampled subset T of size m,

allowing for a distribution-agnostic notion of approximation.

As m increases, satisfying Eq. (1) is expected to be harder.

When m → ∞, DOPS recovers OPS.

Our first goal in this paper is to establish the hardness of

DOPS. In general, classic approximation results do not nec-

essarily transfer to statistical settings (Balkanski et al., 2017).

Nonetheless, our main theoretical result establishes a tight

equivalence between DOPS and PMAC learning (Balcan &

Harvey, 2011), meaning that any F that is learnable is also

optimizable, and vice versa. This demonstrates an intriguing

link between learning and optimizing submodular functions,

which are known to be PMAC-learnable (Balcan & Harvey,

2011). The equivalence result is constructive, and gives a

general optimization algorithm which can utilize any PMAC
learner as a black box for DOPS, and vice versa. While our

main focus in this paper is on submodular functions, these

results hold for any family of combinatorial functions.

In practice, however, optimizing via PMAC algorithms has

several drawbacks (Balcan & Harvey, 2011; Feldman &

Kothari, 2014; Feldman & Vondrak, 2016). Our second

goal in this paper is hence to design an efficient and scal-

able DOPS algorithm for several classes of interest. Our

algorithm optimizes a loss function whose minimization

provides a sufficient condition for DOPS. We prove that the

minimizer of the empirical loss can be used for recovering

an approximate argmax. In this sense, the framework we

propose is one in which the algorithm “learns to optimize”.

We show how the loss can be minimized efficiently and with

guarantees for several submodular function classes, includ-

ing coverage functions, cut functions, and unit demand.

An additional benefit of our approach is that it provides guar-

antees even when the output of the algorithm is restricted to

a set of sampled alternatives. This setting is especially preva-

lent in cases where both sets and their values are generated

by human users. For example, in the problem of influence

maximization (Kempe et al., 2003), the goal is to choose

a “seed” set of users such that, when exposed to certain

content, will maximize its expected propagation. However,

targeting arbitrary subsets of users is in most cases impos-

sible, and the algorithm must choose between the sets of

users sharing currently trending items. In the last part of the

paper we demonstrate the empirical utility of our approach

on this task using real data from Twitter.

2. Distributional optimization and learning
In this section we give a tight characterization of function

classes in DOPS by showing that a class F is in DOPS if

and only if it is PMAC-learnable. This involves two steps. In

the first, we show that if F is α-PMAC learnable with sam-

ple complexity MPMAC, then it is α-DOPS. We augment this

result with tight sample complexity bounds for α-DOPS. In

the second part, we show that PMAC learnability is not only

sufficient but also necessary for distributional optimization

from samples. We show that if F is not α-PMAC learnable,

then it is not (α− ε)-DOPS for any constant ε > 0, which is

tight. This result is obtained by constructing a novel PMAC
algorithm based on a DOPS black-box, and may thus be of

separate interest in PMAC analysis. Overall, our results de-

termine the hardness of DOPS by establishing a connection

between the approximability and learnability of function

classes.

We begin by reviewing the notion of PMAC learnability:

Definition 2 (PMAC, Balcan & Harvey (2011)). A class F
is α-PMAC-learnable if there is an algorithm such that for
every distribution D, every f ∈ F , and every ε, δ ∈ [0, 1],

PS∼D
[
f̃(S) ≤ f(S) ≤ αf̃(S)

]
≥ 1− ε (2)

where the input of the algorithm is a set S of size M ∈
poly(n, 1/ε, 1/δ, α), the output is a mapping f̃ : 2[n] →
R+, and Eq. (2) holds w.p. at least 1− δ over S .

Intuitively, PMAC generalizes the standard notion of PAC
learning by considering a loss which penalizes predictions

that are not within a factor of α of their true value.

We are now ready to prove our main theoretical results.

2.1. If F is PMAC-learnable then F is in DOPS

We show that if F is α-PMAC learnable with sample com-

plexity MPMAC(n, δ, ε, α), then it is α-DOPS with sample

complexity MPMAC(n, δ, 1− (1− ε)1/m, α), and this sample

complexity is tight. A PMAC algorithm learns a surrogate

function f̃ . In our reduction, the corresponding DOPS algo-

rithm simply outputs argmaxS∈T f̃(S). The technical part

of this result is in showing the sample complexity tightness.

Intuitively, the sample complexity is exactly the number of

samples that are needed so that, with high probability, f̃
obtains a good approximation on all S ∈ T . We begin by

showing that MPMAC(n, δ, 1 − (1 − ε)1/m, α) is sufficient,

which follows from the definition of PMAC.

Theorem 1. Assume F is α-PMAC-learnable with sample
complexity MPMAC(n, δ, ε, α), then F is α-DOPS with sam-
ple complexity at most MPMAC(n, δ, 1− (1− ε)1/m, α), i.e.,

MDOPS(n,m, δ, ε, α) ≤ MPMAC(n, δ, 1− (1− ε)1/m, α).

Proof. Let f ∈ F , D be some distribution, S =
{(Si, f(Si))}Mi=1 and T = {Si}mi=1 be the train and test

sets, and A be an algorithm that constructs f̃ which α-PMAC
learns f with sample complexity MPMAC(n, δ, ε, α).

Learning to Optimize Combinatorial Functions

The DOPS algorithm that we analyze constructs f̃ with

algorithm A using S and returns

S̃� = argmax
S∈T

f̃(S).

Fix ε, δ > 0 and α > 1 and consider M = MPMAC(n, δ, 1−
(1 − ε)1/m, α). By the definition of α-PMAC, we get that

with probability 1− δ over S ,

Pr
S∼D

[
f̃(S) ≤ f(S) ≤ α · f̃(S)

]
≥ (1− ε)1/m.

Next, we obtain

Pr
T

[
f̃(S) ≤ f(S) ≤ α · f̃(S) : ∀S ∈ T

]
=

(
Pr

S∼D

[
f̃(S) ≤ f(S) ≤ α · f̃(S)

])m

≥ 1− ε.

where the equality is due to the sets S ∈ T being drawn

i.i.d. from D, and the inequality holds with probability 1−δ
over S. We define S� = argmaxS∈T f(S) and obtain that

with probability 1− ε over T and 1− δ over S ,

f(S̃�) ≥ f̃(S̃�) ≥ f̃(S�) ≥ α−1f(S�).

We conclude that with M = MPMAC(n, δ, 1−(1−ε)1/m, α),

f(S̃�) ≥ 1

α
·max
S∈T

f(S)

with probability 1− ε over T and 1− δ over S .

For tightness, we give an information-theoretic lower bound

by constructing a difficult class F that cannot be in α-DOPS
with less than MPMAC(n, δ, 1− (1− ε)1/m, α) samples.

Theorem 2. For all α > 1 and ε, δ > 0, for m sufficiently
large, there exists a family of functions F and a function
MPMAC(·) such that

• for all ε′, δ′ > 0: F is α-PMAC-learnable with sample
complexity MPMAC(n, δ

′, ε′, α), and

• given strictly less than MPMAC(n, δ, 1− (1− ε)1/m, α)
samples, F is not α-DOPS, i.e.,

MDOPS(n,m, δ, ε, α) ≥ MPMAC(n, δ, 1−(1−ε)1/m, α).

Proof Sketch (see supp. material for full proof). For each

f in the difficult F , only a single set S� has a high value,

while all others have low values. We consider a uniformly

random function f ∈ F and the corresponding randomized

subclass F ′ ⊆ F which consists of all functions f ′ such

that S� is in the test set but not in the train set.

Informally, an algorithm which aims to optimize f ∈ F ′

cannot use the train set to learn which S ∈ T is S�. More

precisely, if f ∈ F ′, the decisions of the algorithm are

independent of the randomization of f , conditioned on f ∈
F ′. Thus, if f ∈ F ′, the algorithm does not obtain an α-

approximation because of the gap between the value of S�

and the other sets.

We construct F and D such that S� is in the test set w.p.

greater than 1 − ε. This implies that to satisfy DOPS, the

algorithm must observe enough samples so that S� is in the

train set w.p. at least 1− δ. We then argue that this number

of samples is at least MPMAC(n, δ, 1− (1− ε)1/m, α).

2.2. If F is not PMAC-learnable then F is not in DOPS

A simple intuition for Theorem 1 is that if one can accu-

rately predict the values of all S ∈ T , then it is possible

to find the empirical argmax. The main result in this sec-

tion, which is perhaps less intuitive, shows that the reverse

implication also holds. Namely, if one can find the the em-

pirical argmax, then it is possible to infer the values of all
sets in T . The contrapositive of this result is that if F is

not PMAC-learnable, then F is not in DOPS. Combining

both results provides a full characterization of distributional

optimization in terms of learnability.

To construct a PMAC learner from a DOPS algorithm, we

first randomly partition S into “train” and “test” sets. We

then train the DOPS algorithm on the train set, and use it

to generate pairwise comparisons with test elements. The

learned value for S is given by the maximum value of a test

sample that S “beats” (via the inferred comparisons). At

a high level, the analysis uses the DOPS guarantees and a

bucketing argument to satisfy the PMAC requirements.

Theorem 3. Let μ = maxS f(S)/minS:f(S)>0 f(S),
c be any constant such that 1 ≤ c ≤ α, and
Mμ = 8 log μ

ε log c

(
1
ε + 2 log

(
1
δ

))
. If a class F is in α/c-

DOPS with sample complexity MDOPS(n,m, ε, δ, α/c), then
it is α-PMAC-learnable with sample complexity Mμ +
MDOPS(n, 2, ε/Mμ, δ/Mμ, α/c), i.e.,

MPMAC(n, ε, δ, α) ≤ Mμ+MDOPS(n, 2, ε/Mμ, δ/Mμ, α/c).

Proof. Fix ε, δ > 0 and α > 1. Let S = {(Si, f(Si))}Mi=1

be the samples from D that are given as input. We partition

the samples in S uniformly at random into S1 and S2 of

sizes M1 and M2, respectively. For some S ∼ D, the goal

is to predict f̃(S) such that f̃(S) ≤ f(S) ≤ α · f̃(S).
For each Si ∈ S2, define S2,i := {Si, S}. Since F is

in DOPS, with M1 = MDOPS(n, 2, ε/M2, δ/M2, α/c) sam-

ples, the algorithm outputs S�
i ∈ S2,i such that with proba-

bilities 1− δ/M2 over S1 and 1− ε/M2 over S2,i,

f(S�
i) ≥

c

α
max(f(S), f(Si)).

By a union bound, this holds for all i ∈ M2 with probability

1− δ over S1 and probability 1− ε over S and S2.

Learning to Optimize Combinatorial Functions

We say that S “beats” Si if the α-DOPS algorithm outputs

S when given S2,i. Let S−
2 be the collection of sets Si in

S2 such that S beats Si. The learning algorithm is

f̃(S) =
c

α
· max
Si∈S−

2

f(Si).

Let fmin = minS f(S) and fmax = maxS f(S). We parti-

tion the sets into buckets defined as follows:

Bi := {S : fmin · ci−1 ≤ f(S) < fminc
i}

for i ≥ 1 and B0 = {S : f(S) = 0}. With β :=
logμ/ log c buckets, all sets S are in a bucket since fmin ≤
f(S) ≤ fmax. We define a bucket Bi to be dense if a ran-

dom set S ∼ D has non-negligible probability to be in

Bi, otherwise it is sparse. More precisely, Bi is dense if

PrS∼D [S ∈ Bi] ≥ ε/2β.

The set S is in a dense bucket Bi with probability at least

1 − ε
2 since there are at most β buckets that are not dense

and S is in each of them with probability at most ε
2β by the

definition of dense bucket. With m samples, the expected

number of samples in Bi is at least m ε
2β and by a standard

concentration bound,

Pr

[
|Bi| ≤

m

2

ε

2β

]
≤ e−

mε
16β

We assume that |Bi| ≥ m
2

ε
2β for the remainder of the proof.

There is at most one set in bucket Bi that is beaten by all

the other sets. Since the set S has equal probability to be

any of the sets in Bi,
1 there is at least one other set S− in

Bi which S beats with probability 1/|Bi| ≤ 4β/mε.

With δ ≥ e−
mε
16β (and hence m ≥ log(1/δ)16β

ε), with prob-

ability of at least 1− δ, the number of samples in Bi is at

least m ε
4β . With ε/2 ≥ 4β/mε (and hence m ≥ 8β/ε2),

with probability of at least 1− ε over S ∼ D, S is in a dense

bucket and beats at least one other S− ∈ S−
2 in that bucket.

We get that:

f̃(S) =
c

α
· max
Si∈S−

2

f(Si) ≥
c

α
· f(S−) ≥ 1

α
· f(S)

where the equality is by the definition of f̃(S), the first

inequality is since S− ∈ S−
2 , and the last is since S and S−

are in the same bucket. We also have

f(S) ≥ c

α
· max
Si∈S−

2

f(Si) = f̃(S)

where the inequality is by the definition of S−
2 and the equal-

ity by definition of f̃(S). Thus, f̃(S) ≤ f(S) ≤ αf̃(S) and

with M2 = m ≥ 8 log μ
ε log c

(
1
ε + 2 log

(
1
δ

))
= Mμ, the sample

complexity is Mμ +MDOPS(n, 2, ε/Mμ, δ/Mμ, α/c).

1We assume that the DOPS algorithm breaks ties in a consistent
manner, i.e., it cannot be adversarial and break ties depending on
whether S is the set we wish to learn or if S ∈ S2.

Algorithm 1 DOPS(S = {(Si, zi)}Mi=1, m, α)

1: Randomly partition [M] into N = �Mm � sets A1, . . . , AN

2: Create m-tuple sample set S = {(Si, zi)}Ni=1 from S
where Si = {Sj}j∈Ai

and zi = {zj}j∈Ai

3: Compute α(zi) = {y ∈ [m] : ziy ≥ 1
α max zi} ∀ i ∈ [N]

4: θ̂ = argmin
θ∈Θ

N∑
i=1

max
y

[1{y �∈α(zi)} + fθ(S
i
y)− ψθ(S

i, zi)]+

where ψθ(S, z) = 1
|α(z)|

∑
y∈α(z) fθ(Sy)

5: Return h
θ̂
(T) = argmax

S∈T
f
θ̂
(S)

3. Learning to Optimize at Scale
In this section we give an efficient DOPS algorithm that

applies to several interesting parametric submodular sub-

classes FΘ = {fθ : θ ∈ Θ}. Our general technique

includes two steps. First, we identify a loss function whose

minimization provides a sufficient condition for DOPS (Eq.

(1)), but is in general hard to optimize. Then, we show that

for the function classes we consider, a transformation of the

inputs reveals structure which can be exploited for efficiently

optimizing a convex surrogate loss. Note that in principle,

due to Thm. 1, any PMAC algorithm can be used for DOPS.

This, however, has several practical disadvantages, which

we comment on in Sec. 3.5.

We begin by illustrating our approach for coverage functions

with parametric weights. We then describe our algorithm,

prove its correctness, and show how it can be applied to

other classes such as graph cuts, unit demand, and coverage

functions with parametric cover sets.

3.1. Learning to optimize coverage functions

Coverage functions are a simple but important class of sub-

modular functions, and have been used in applications such

as computational linguistics (Sipos et al., 2012), algorith-

mic game theory (Dughmi & Vondrák, 2015), and influence

maximization in social networks (Kempe et al., 2003). Let

U be a ground set of d items, and C = {C1, . . . , Cn} a col-

lection of subsets where Ci ⊆ U . For a set of non-negative

item weights θ = {θ1, . . . , θd}, a function fθ : 2[n] → R is

a coverage function if:

fθ(S) =
∑

u∈C(S)

θu, C(S) =
⋃
i∈S

Ci (3)

While apparently simple, coverage functions are quite ex-

pressive, and optimizing them from samples is known to

be hard (Balkanski et al., 2017). One reason is that, as a

Learning to Optimize Combinatorial Functions

function of their inputs S, coverage functions can be highly

non-linear. Meanwhile, as a function of their parameters,

they become linear via a simple transformation of the inputs:

fθ(S) = 〈φ(S), θ〉, φu(S) = 1{∃ i∈S s.t. u∈Ci} (4)

This structure allows our algorithm to efficiently find the

approximate empirical argmax of any given T with high

probability. The output of the algorithm is a function h ∈ H
for choosing one S out of the m candidates in T , where:

H = {hθ(T) = argmax
S∈T

fθ(S) : θ ∈ Θ} (5)

In this sense, our algorithm learns an ”empirical optimizer”

that is guaranteed to correctly optimize collections of size

m drawn from Dm.

3.2. Algorithm

Pseudocode of our algorithm is given in Algorithm 1.

The following theorem establishes its correctness for any

parametric class of functions F that can be made linear

in their parameters using some transformation φ, namely

FΘ = {fθ(S) = 〈φ(S), θ〉 : θ ∈ Θ}. As we show, this

holds for several interesting submodular sub-classes, includ-

ing the coverage functions in Sec. 3.1 as well as all other

classes presented in Sec. 3.3.

Theorem 4. Let m ∈ N and ε, δ ∈ [0, 1], and let f = fθ∗

with θ∗ ∈ Θ. For a given α > 0, let h be the output of
Algorithm 1 when given S = {(Si, zi)}Mi=1, m, and α as

input, where z = fθ(S) and S
iid∼ D. Then, with probability

of at least 1− δ over S , it holds that:

PT ∼Dm

[
f
(
h(T)

)
≥ 1

α
max
S∈T

f(S)

]
≥ 1− ε (6)

for M ≥ Õ(m(RB/ε)2), R = maxS ‖φ(S)‖, B = ‖θ∗‖.

Proof. We begin with some notation. Let S =
{S1, . . . , Sm} be a set of m examples with corresponding

values z = {z1, . . . , zm} where zy = f(Sy). Algorithm 1

returns a function h that chooses a set Sy ∈ S. It will be

convenient to instead view h as a mapping from S to indices

y ∈ [m]. Denote the set of α-approximate solutions by:

α(z) = {y ∈ [m] : zy ≥ 1

α
max z} (7)

Our analysis makes use of the following loss function:

Δα(z, y) = 1{y ∈ α(z)} (8)

Eq. (8) is useful since L(h) := E[Δα(z, h(S))] ≤ ε im-

plies that h satisfies Eq. (6). We therefore focus on bounding

L(h). As we do not have access to D, our algorithm chooses

an h ∈ H which instead minimizes the empirical loss. Note

that while Δα is defined over m-tuples, S contains individ-

ual sets. To ensure a consistent empirical loss, we randomly

partition [M] into N = M/m distinct sets A1, . . . , AN ,

and define an m-tuple sample set S = {(Si, zi)}Ni=1, where

Si = {Sy}y∈Ai
and zi = {zy}y∈Ai

. The loss is now:

L̂(h;S) =
1

N

N∑
i=1

Δα(z
i, ŷi), ŷi = h(Si) (9)

Since Δα is not convex, the algorithm instead optimizes a

surrogate convex upper bound. There are many ways to do

this; here we use an average hinge surrogate:

max
y∈[m]

[Δα(z
i, y) + fθ(S

i
y)− ψθ(S

i, zi)]+ (10)

where [a]+ = max{0, a} and:

ψθ(S, z) =
1

|α(z)|
∑

y∈α(z)
fθ(Sy) (11)

Eq. (10) is similar in spirit to the loss in (Lapin et al., 2015),

and is tight w.r.t. Eq. (9) whenever L̂ = 0, Intuitively,

minimizing Eq. (10) pushes θ towards values for which the

true argmax is scored higher than all others by a margin.

Note that the average in Eq. (11) can be replaced with a

max to attain a tighter (though no longer convex) surrogate.

Since S is labeled by some fθ∗ ∈ FΘ, we have that

L(hθ∗) = 0. This means that there is some θ ∈ Θ such

that with L̂(hθ;S) = 0, and due to the tightness of Eq. (10),

L̃(hθ;S) = 0 as well. This is sufficient for applying the

following generalization bound (Collins, 2004):

L(h) ≤ O

(√
m

M

(
(RB logM)2 + log

1

δ

))
(12)

Plugging in M gives L(h) ≤ ε, concluding the proof.

Eq. (10) is convex whenever fθ is linear in θ for some repre-

sentation φ. This holds for coverage functions (Eq. (4)) as

well as for the other classes we consider in Sec. 3.3. Eq. (10)

can then be optimized using standard convex solvers, or with

highly efficient and scalable solvers such as the cutting plane

method of Joachims et al. (2009).

3.3. Other submodular classes

We now discuss how our method can be extended to other

submodular function classes. For each class, we give a

transformation φ of the inputs under which the function

becomes linear in its parameters. Thm. 4 and Algorithm 1

can then be applied with the appropriate fθ(S) = 〈φ(S), θ〉.

Learning to Optimize Combinatorial Functions

Graph k-cuts: Let G = (V,E) be an undirected graph,

and let θ ∈ R
|E|
+ be edge weights. For a partition P ∈ [k]|V |

of the nodes into k groups, its value is given by:

fθ(P) =
1

2

∑
(u,v)∈E
Pu �=Pv

θuv

While k-cut functions are known to be hard to optimize over

P , they become linear in θ with the transformation:

φuv(P) = 1{Pu = Pv} ∀ (u, v) ∈ E

Unit demand: Let θ ∈ Rn
+ be a set of item weights. The

value of a subset S ⊆ [n] is given by:

fθ(S) = max
u∈S

θu

Although it is possible to write fθ = 〈θ, φ(S)〉 with

φu(S) = 1{θu≥θv ∀v∈S}, this representation requires θ,

which is unknown. Nonetheless, a similar data-dependent

construction can still be used to obtain some θ′ which min-

imizes the loss. To see why, let S̄ ∈ S be the set with the

highest value fθ(S̄) in S. For this S̄, there must exist some

u ∈ S̄ that is not in any other S ∈ S with fθ(S) < fθ(S̄).
By setting φv(S̄) = 1{u=v} and θ′u = fθ(S̄), we ensure

that fθ(S̄) = 〈θ′, φ(S̄)〉. Note that this does not necessarily

imply that θ′u = θu. In a similar fashion, by setting:

φu(Si) = 1{u ∈ Si ∧ � j = i s.t. u ∈ Sj ∧ zj < zi}

for every i ∈ M , we get that fθ(S
i) = 〈θ′, φ(Si)〉 for some

θ′, which guarantees L̂ = 0. Note that generalization here

concerns φ as applied to examples in both S and T .

Coverage with parametrized cover sets: Let U = [N]
be a ground set of items with unit weights. The parameters

are a collection item subsets {C1, . . . , Cn} with Ci ⊆ U .

We use ξiu = 1{u ∈ Ci} and denote the maximal overlap

by d = maxu
∑

i ξiu. For a subset S ∈ [n], its value is:

fC(S) =
∣∣∣⋃

i∈S
Ci

∣∣∣
While fC is not linear over C, it can be linearized over a

different parameterization. For xi = 1{i ∈ S}, we have:

fC(S) =
∑
u∈Ω

(
1−

n∏
i=1

(1− xiξiu)
)

Since fC is a polynomial of degree at most d, the explicit

size of φ (and hence of the corresponding θ) is nd. For

computational efficiency, we can consider the dual form and

implicitly define φ via the kernalized inner product:

〈φ(S), φ(S′)〉 =
(
〈xS , xS′〉+ 1

)d

3.4. Reducing the sample-complexity cost of m

Interestingly, at the cost of a small additional additive error,

the dependence of the generalization bound on m can be

removed by considering an alternative loss function. Fix

some q ∈ [0, 1]. Given S, define Q to be the set of ex-

amples in the top q-quantile. The idea here is to learn θ
so that fθ will score top-quantile examples S ∈ Q above

low-quantile examples S ∈ Q. The corresponding loss is

therefore defined over example pairs:

Δq(S, S
′, fθ) =

{
1{fθ(S)<fθ(S′)} if S ∈ Q ∧ S′ ∈ Q

0 otherwise

(13)

Note that, in a similar fashion to Δα, the empirical loss

L̂q over Δq can be optimized efficiently, and the optimal θ

gives L̂q = 0. For any S ∈ S, the probability of having at

least one S ∈ S ∩Q is 1− qm. Applying the generalization

bound in Agarwal & Niyogi (2009) gives:

ε ≤ qm + Õ

(
B

λMq
+

(
B2

λ
+ Z

)√
ln(1/δ)

Mq

)
(14)

where Z = supS f(S) and λ controls an additional regular-

izer. In Sec. 4 we use a stricter variant of this formulation,

in which high-quantile items are binned separately.

3.5. Using PMAC algorithms in practice

In principle, the reduction in Sec. 2.1 shows that any PMAC
algorithm can be used for DOPS. Practically, however, this

approach has several disadvantages. The root cause of this

is that most current PMAC algorithms are designed for gen-

eral submodular functions.2 As such, they must adhere to

demanding lower bounds (Balcan & Harvey, 2011; Feldman

& Vondrak, 2016) which hold even for simple distributions

(e.g., uniform). When considering specific submodular sub-

classes, these algorithms can therefore be suboptimal (and

in fact quite costly) in terms of runtime, sample complexity,

and/or approximation ratio. Additionally, virtually all cur-

rent PMAC algorithms provide guarantees for either uniform

or product distributions. Even in this setting, PMAC algo-

rithms either guarantee a fixed approximation ratio, or are

exponential in α (Feldman & Vondrak, 2016), making them

difficult to use for α-DOPS with arbitrarily small α. The

only known result for arbitrary distributions is the
√
n+ 1-

PMAC algorithm of Balcan & Harvey (2011), which give a

matching Ω̃(n1/3) lower bound on α.

2 A notable exception to this is Feldman & Kothari (2014)
which specifically considers PMAC learning of coverage functions
with unknown cover sets.

Learning to Optimize Combinatorial Functions

time

nu
m

be
r

of
 a

do
pt

io
ns

Figure 1. Demonstrating the power of a coverage model. The

true diffusion curves of a focal hashtag ω (black) and an additional

hashtag ω′ with an initially similar (but eventually very different)

diffusive pattern (orange). Diffusion-curve extrapolations (Bauck-

hage & Kersting, 2014) are generated based on Sω alone (dashed

blue) and on both Sω and C(Sω) (dashed green), with dashed

lines marking the times of the corresponding last observations.

This shows how conditioning on C(Sω) can boost performance by

providing a probabilistic “glimpse” into the near future. Markers

in the zoomed inlaid plot indicate active users.

4. Experiments
In this section we evaluate the performance of our method

on the task of optimally choosing trending items in social

media platforms. Of the countless items that are continu-

ously created and shared by users in such platforms, only a

handful will become widespread (Goel et al., 2012). A key

challenge faced daily by platform administrators is that of

identifying potential trending content as early as possible.

Trending items can then be marked, used for generating

recommendations, or promoted to the public front page.

4.1. Optimizing trending items

For a given social platform, let n be the number of users,

and Ω be the set of spreading content items. When a user

u ∈ [n] is observed to have been exposed to an item ω ∈ Ω,

we say that u adopted ω. This can happen, for instance,

when u views, shares, comments, or votes on ω. A crucial

factor in the successful spread of an item is the identity of

its early adopters (Rogers, 1962; Goldenberg et al., 2002).

We therefore represent each content item ω at a certain time

point by the set of users that have adopted it up to that time,

which we denote by Sω ⊆ [n]. We will be interested in

the final number of adopters zω as a function of the set

of adopting users, namely zω = f(Sω). For simplicity

we assume that all items are considered at the time when

adopted by exactly k users, so that |Sω| = k for all ω ∈ Ω.

Under the above representation, targeting a successful item

can be thought of as optimizing over the set of adopting

users under a cardinality constraint. The task is therefore to

choose the set Sω for which f(Sω) is maximal.

The above optimization task has two clear restrictions. First,

f cannot be accessed or queried, and any information re-

garding the value of subsets is available only via samples,

namely past items and their adopting users. Second, an algo-

rithm cannot output any user subset S ⊆ [n], but must rather

choose from a set of currently available items. In addition,

the task of choosing the top trending item is performed re-

peatedly, each time over a different collection of content

items. For example, for a front page that is updated hourly, a

new trending item must be selected from the set of currently

propagating content items for each update. Note that in such

systems, the available subsets and their eventual value are

primarily determined by the system’s users. Online social

platforms are therefore a prime example of a setting where

an optimization algorithm has only statistical access to data.

4.2. Experimental setup

We evaluate the performance of our method on a benchmark

dataset of propagating Twitter hashtags (Weng et al., 2013).

Data was gathered by monitoring the sharing (tweeting and

retweeting) of hashtags across users over the course of a

month. The dataset includes 612,355 users who shared

226,488 distinct hashtags, with a total of 1,687,704 sharing

activities. For each hashtag, the data describes the sequence

of adopting users and the corresponding timestamps. These

are used to construct a “retweet” social network G = (V,E)
where (u, v) ∈ E if v retweeted u. A user is considered to

be active if she shared at least 20 hashtags. We focus on the

11,815 active users and on the 4,155 hashtags that include

at least one active user. If a user retweeted the same hashtag

more than once, we consider only the first tweet.

Samples were generated in the following manner. For each

hashtag ω, the user set Sω was defined to include the first

k ∈ {5, . . . , 15} active adopting users, and zω was set to

be the number of eventual adopters. All pairs (Sω, zω)
were randomly partitioned into a train set S and a global

test set T ′ using a 90:10 split. All methods were given

S as input, and were evaluated on 1,000 random subsets

T ⊆ T ′ of size m, where m ∈ {100, . . . , 500}. This was

repeated 100 times, and average results are reported. All

methods we consider return an element Ŝ ∈ T by com-

puting argmaxS∈T g(S) for some score function g, which

is typically learned from the data. Hyper-parameters were

tuned using cross validation for all relevant methods.

DOPS model: We implement the DOPS algorithm using

coverage functions as the base class. Specifically, given the

social network graph G = (V,E), we use V as the ground

set, and construct a cover set Cv = u : (v, u) ∈ E) for

every v ∈ V . The coverage function we learn is:

fθ,η(S) =
∑
v∈S

θv +
∑

u∈C(S)

ηu (15)

Learning to Optimize Combinatorial Functions

100 200 300 400 500
0

50

100

150

200

av
g.

 n
um

. a
do

pt
er

s

Slope
OPS
PMAC
LinReg
DOPS

5 7 9 11 13 15
0

50

100

150

200

av
g.

 n
um

. a
do

pt
er

s

Slope
OPS
PMAC
LinReg
DOPS

Figure 2. Comparison different methods for the task of optimally choosing trending hashtags on Twitter.

where C(S) =
⋃

v∈S Cv . The idea behind this model is that,

given that user v adopted, each of her neighbors can also

adopt (with some probability). Figure 1 illustrates this idea.

Thus, the two terms in Eq. (15) quantify the contributions

of the adopting nodes and of their neighbors, respectfully,

to the overall score. The coverage formulation takes into ac-

count the potential overlap in neighboring nodes, which can

often be considerable (Holland & Leinhardt, 1971; Watts &

Strogatz, 1998). We note that G is constructed using train-

ing data alone, and incoming edges were only considered

for nodes with at least 10 shares. Eq. (10) was optimized

using the cutting-plane method of Joachims et al. (2009).

Baselines: We compare to the following methods:

• SLOPE: A first-order extrapolation where we first esti-

mate the slope of the diffusion curve, and then choose

the subset with the highest value.

• LINREG: We first run linear regression with 2 regu-

larization, and then choose the subset with the highest

predicted value.

• OPS: A variant of the OPS (Balkanski et al., 2016),

where instead of returning a global argmax, a given

subset is scored based on the sum of marginal estimates.

Note that under certain conditions, this algorithm is

optimal for the setting of optimization from samples.

• PMAC: A soft version of the distribution-independent

PMAC algorithm of Balcan & Harvey (2011). Since the

original algorithm assumes separability (which does

not hold here), we instead use an agnostic classifier.

Results: Figures 2(a) and 2(b) compare the value (number

of adopters) for the chosen output of each method. As can be

seen, DOPS clearly outperforms other methods by a margin.

Note that when k increases, average output values are likely

to increase as well, since the algorithms are given more

information as input. When m increases, however, it is not

clear a-priori how the average output values should change.

This is because larger test sets are more likely to include

higher-valued items, but at the same time have more low-

valued alternatives. Interestingly, while the performance of

most baselines does not improve (or even degrades) as m
increases, the performance of DOPS improves steadily.

5. Conclusions
In this work, we proposed an optimization criterion for

settings where the algorithm is limited to statistical access of

the objective function. We argue that this setting is pervasive,

and in fact, believe that in most applications it is the common

rule rather than the exception. Previous results have been

generally negative, but mostly due to demanding worst-case

requirements. Drawing inspiration from learning theory, our

solution relaxes these requirements to hold in expectation.

Our main theoretical result shows an equivalence between

optimization in this setting and learning. This highlights

intriguing connections between the computational and statis-

tical structure of function classes. An interesting corollary is

that analyzing hardness of computation and approximation

can now be done using statistical tools, and vice versa.

Several of the functions classes we explored are notoriously

hard to optimize, but have a surprisingly simple structure

as a function of their parameters. This allowed us to use

simple learning strategies to produce powerful optimization

mechanisms. We hypothesize that there are many other

classes that posses these properties. An additional avenue

for further exploration, hinted by our equivalence result, is

the reverse: are there classes that are seemingly hard-to-

learn, but due to their optimizational properties, can actually

be learned efficiently? We leave this for future work.

Learning to Optimize Combinatorial Functions

Acknowledgements
This research was supported by a Google PhD Fellowship,

NSF grant CAREER CCF-1452961, BSF grant 2014389,

NSF USICCS proposal 1540428, ISF Centers of Excellence

grant, a Google research award, and a Facebook research

award.

References
Agarwal, Shivani and Niyogi, Partha. Generalization bounds

for ranking algorithms via algorithmic stability. Journal
of Machine Learning Research, 10(Feb):441–474, 2009.

Balcan, Maria-Florina and Harvey, Nicholas JA. Learning

submodular functions. In Proceedings of the forty-third
annual ACM symposium on Theory of computing, pp.

793–802. ACM, 2011.

Balkanski, Eric, Rubinstein, Aviad, and Singer, Yaron. The

power of optimization from samples. In Advances in
Neural Information Processing Systems, pp. 4017–4025,

2016.

Balkanski, Eric, Rubinstein, Aviad, and Singer, Yaron. The

limitations of optimization from samples. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pp. 1016–1027, 2017.

Bauckhage, Christian and Kersting, Kristian. Strong regular-

ities in growth and decline of popularity of social media

services. arXiv preprint arXiv:1406.6529, 2014.

Collins, Michael. Parameter estimation for statistical pars-

ing models: Theory and practice of distribution-free meth-

ods. New developments in parsing technology, 23:19–55,

2004.

Defazio, Aaron and Caetano, Tiberio S. A convex formu-

lation for learning scale-free networks via submodular

relaxation. In Advances in Neural Information Processing
Systems, pp. 1250–1258, 2012.

Dughmi, Shaddin and Vondrák, Jan. Limitations of random-

ized mechanisms for combinatorial auctions. Games and
Economic Behavior, 92:370–400, 2015.

Feldman, Vitaly and Kothari, Pravesh. Learning coverage

functions and private release of marginals. In Conference
on Learning Theory, pp. 679–702, 2014.

Feldman, Vitaly and Vondrak, Jan. Optimal bounds on ap-

proximation of submodular and XOS functions by juntas.

SIAM Journal on Computing, 45(3):1129–1170, 2016.

Goel, Sharad, Watts, Duncan J, and Goldstein, Daniel G.

The structure of online diffusion networks. In Proceed-
ings of the 13th ACM conference on electronic commerce,

pp. 623–638. ACM, 2012.

Goldenberg, Jacob, Libai, Barak, and Muller, Eitan. Riding

the saddle: How cross-market communications can create

a major slump in sales. Journal of Marketing, 66(2):1–16,

2002.

Golovin, Daniel and Krause, Andreas. Adaptive submod-

ularity: Theory and applications in active learning and

stochastic optimization. Journal of Artificial Intelligence
Research, 42:427–486, 2011.

Gomes, Ryan and Krause, Andreas. Budgeted nonparamet-

ric learning from data streams. In ICML, pp. 391–398,

2010.

Gomez Rodriguez, Manuel, Leskovec, Jure, and Krause,

Andreas. Inferring networks of diffusion and influence.

In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp.

1019–1028. ACM, 2010.

Guillory, Andrew and Bilmes, Jeff A. Simultaneous learning

and covering with adversarial noise. In ICML, volume 11,

pp. 369–376, 2011.

Hoi, Steven CH, Jin, Rong, Zhu, Jianke, and Lyu, Michael R.

Batch mode active learning and its application to medical

image classification. In Proceedings of the 23rd inter-
national conference on Machine learning, pp. 417–424.

ACM, 2006.

Holland, Paul W and Leinhardt, Samuel. Transitivity in

structural models of small groups. Comparative Group
Studies, 2(2):107–124, 1971.

Iyer, Rishabh K, Jegelka, Stefanie, and Bilmes, Jeff A. Cur-

vature and optimal algorithms for learning and minimiz-

ing submodular functions. In Advances in Neural Infor-
mation Processing Systems, pp. 2742–2750, 2013.

Joachims, T., Finley, T., and Yu, Chun-Nam. Cutting-plane

training of structural SVMs. Machine Learning, 77(1):

27–59, 2009.

Kempe, David, Kleinberg, Jon, and Tardos, Éva. Maxi-

mizing the spread of influence through a social network.

In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp.

137–146. ACM, 2003.

Krause, Andreas and Golovin, Daniel. Submodular function

maximization., 2014.

Learning to Optimize Combinatorial Functions

Lapin, Maksim, Hein, Matthias, and Schiele, Bernt. Top-

k multiclass svm. In Advances in Neural Information
Processing Systems, pp. 325–333, 2015.

Lin, Hui and Bilmes, Jeff. A class of submodular functions

for document summarization. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1,

pp. 510–520. Association for Computational Linguistics,

2011.

Rodriguez, Manuel Gomez and Schölkopf, Bernhard. Sub-

modular inference of diffusion networks from multiple

trees. arXiv preprint arXiv:1205.1671, 2012.

Rogers, E.M. Diffusion of innovations. Free Press of Glen-

coe, 1962.

Sipos, Ruben, Shivaswamy, Pannaga, and Joachims,

Thorsten. Large-margin learning of submodular summa-

rization models. In Proceedings of the 13th Conference
of the European Chapter of the Association for Computa-
tional Linguistics, pp. 224–233. Association for Compu-

tational Linguistics, 2012.

Valiant, Leslie G. A theory of the learnable. Communica-
tions of the ACM, 27(11):1134–1142, 1984.

Watts, Duncan J and Strogatz, Steven H. Collective dy-

namics of small-worldnetworks. nature, 393(6684):440,

1998.

Weng, Lilian, Menczer, Filippo, and Ahn, Yong-Yeol. Viral-

ity prediction and community structure in social networks.

Scientific reports, 3:2522, 2013.

