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Abstract
In machine learning, recourse refers to the ability

to achieve a desired outcome under a fixed pre-

diction model. In this paper, we present a new

approach to audit the recourse of linear classifi-

cation models. Given a linear classifier, we for-

mulate an optimization problem to find an action-

able set of changes that an individual can make

to achieve a desired outcome. We then solve our

problem to: (i) evaluate the cost and feasibility of

recourse of the classifier over a target population;

and (ii) generate a list of informative changes for

an individual to flip their assigned prediction. We

discuss the need to audit recourse through exper-

iments on a credit scoring problem, where we

show how common modeling practices can signif-

icantly alter the cost and feasibility of recourse of

a classifier without affecting its performance.

1. Introduction
In machine learning, recourse refers to the ability to achieve

a desired outcome under a fixed prediction model. Consider,

for example, a classifier built to automate lending decisions.

If this model does not provide recourse to a person who is

denied a loan, then this person cannot change any of the

input variables of the model to be approved for a loan, and

will be denied credit so long as the model is deployed.

A prediction model should provide all individuals with ac-

tionable recourse to all individuals when they are used to

allocate goods that should be universally accessible, such

as credit (Siddiqi, 2012), employment (Ajunwa et al., 2016)

and social services (Chouldechova et al., 2018). The po-

tential lack of recourse in such applications often motivates

calls for transparency in algorithmic decision-making (see

e.g., Citron & Pasquale, 2014; Wachter et al., 2017; Doshi-

Velez et al., 2017). However, transparency does not guar-

antee recourse. In practice, even simple transparent models
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such as linear classifiers can fail to provide an individual

with recourse due to common modeling decisions that are

difficult to regulate, including:

• Feature Selection: A model could use features that are

immutable (e.g. female), conditionally immutable (e.g.

has phd, which can only change from FALSE → TRUE),

or should not be considered actionable (e.g. married).

• Choice of Operating Point: A probabilistic classifier that

provides recourse at standard threshold (e.g., ŷi = 1 if

predicted risk ≥ 50%) could fail to do so at a more con-

servative threshold (e.g., ŷi = 1 if predicted risk ≥ 80%).

• Out-of-Sample Deployment: A feature needed for re-

course could be missing for individuals in the target pop-

ulation.

Without a formal procedure to audit recourse, we can easily

deploy a model that precludes individuals from achieving a

desired outcome.

In this paper, we present a new approach to audit recourse

for linear classification models (e.g., logistic regression mod-

els, linear SVMs, and linearizable boolean models such as

rule sets and decision lists). We formulate an optimiza-

tion problem to find an actionable set of changes that an

individual can make to flip the prediction of a given lin-

ear classifier. Our problem is specifically designed to find

changes that are are actionable, so they do not affect im-

mutable features or alter mutable features in an infeasible

way (e.g., n credit cards from 5 → 0.5 or −1, or has phd
from TRUE → FALSE). Since such constraints are often

discrete, we express our problem as an integer program (IP),

which can quickly recover a globally optimal set of actions

to attain a desired outcome or a certificate to state that the

model does not provide actionable recourse.

We solve our IP to design two auditing tools:

1. A procedure to evaluate the feasibility and cost of re-

course of the classifier for all individuals in a target

population (for model development, procurement, or 3rd

party audits such as algorithmic impact assessments, Dil-

lon Reisman, 2018). When our optimization problem

is infeasible, this certifies that there is no change that a

person to attain the desired outcome (i.e., the classifier

does not provide actionable recourse for this person). Ac-

cordingly, we can certify that a model provides recourse
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to individuals in a target sample by solving our problem

for each point in the sample. By comparing the cost of

recourse, we can assess the difficulty of changes required

for individuals to achieve a desired outcome.

2. A method to generate a list of actionable changes for an

individual to flip the prediction of the classifier. We refer

to this list as a flipset and show an example in Figure

1. In the United States, for example, the Fair Credit

Reporting Act (U.S. Congress, 2003) requires sending

an adverse action notice to individuals who are denied

credit from a prediction model to explain the principal

reason for the denial. By including a flipset in an adverse

action notice, an individual would know exact changes

to guarantee approval the future (see also Taylor, 1980;

Selbst & Barocas, 2018, for a discussion of how adverse

action notices fail to provide actionable information).

FEATURES TO CHANGE CURRENT VALUES REQUIRED VALUES

n credit cards 5 −→ 3

current debt $3,250 −→ $1,000

has savings account FALSE −→ TRUE
has retirement account FALSE −→ TRUE

Figure 1. Illustrative flipset for an individual who is denied credit

by a classifier. Each item (i.e. row) shows an actionable set of

changes to a subset of features to “flip” the prediction from ŷ = −1
to ŷ = +1. These changes guarantee that the individual will be

approved for credit so long as other features do not change.

RELATED WORK

Our work is a new application for inverse classification
(Aggarwal et al., 2010), which aims to determine how the

inputs to a prediction model can be manipulated to obtain a

desired outcome (see e.g., Chang et al., 2012; Yang et al.,

2012, for other applications).

Our work is broadly related to tools to explain the predic-

tions of machine learning models (see e.g., Ribeiro et al.,

2016). While such tools can provide valuable explanations

of how a model outputs a specific prediction, these expla-

nations do not correspond to actionable changes that can

be used to reliably attain a desired outcome. Moreover, the

tools do not provide a formal guarantee for an auditor to

certify that an actionable set of changes does not exist.

Our ideas are also related to seminal work on counterfac-

tual explanations by Wachter et al. (2017)1. In particu-

lar, our tools solve an optimization problem to recover

counterfactual explanations that are actionable and glob-

ally optimal with respect to a user-specified cost function.

Our problem is fundamentally different from the one pro-

posed by Wachter et al. (2017). Their approach can ex-

1Given a model and an example, a counterfactual explanation is
the smallest set of changes to features to obtain a desired outcome.

tract counterfactual explanations from black-box models,

but does not provide the feasibility or optimality guar-

antees to audit recourse because: (i) it cannot constrain

changes to be actionable; (ii) it restricts feasible changes

to differences between points in the training data (i.e.,

a ∈ {x− x′ for x,x′ in the training data}) 2.

Other concepts related to recourse include: anchors, which

are subsets of features that fix predicted the outcome

(Ribeiro et al., 2018); and strategic classification, which

considers the converse problem of training classifiers that

are robust to manipulation (Hardt et al., 2016).

2. Problem Statement
We consider a standard classification setting where each

individual is characterized by features x = [1, x1 . . . xd] ⊆
X0 ∪ . . . ∪ Xd ⊆ R

d+1 and a label y ∈ {−1,+1}.

We will audit a linear classifier f(x) = sign (〈w,x〉) where

w = [w0, w1 . . . wd] ⊆ R
d+1 is a coefficient vector and w0

is the intercept. We denote the desired outcome as ŷ = 1
and assume sign (0) = 1 so that ŷ = � [〈w,x〉 ≥ 0].

Given an individual such that f(x) = −1, we determine if

there exists an action a such that f(x+ a) = 1 by solving

an optimization problem of the form,

min cost(a;x)

s.t. f(x+ a) = 1

a ∈ A(x).

(1)

Here:

• A(x) is a set of feasible actions a = [0, a1 . . . ad] from

x. We constrain each element of a to produce a feasible

feature aj ∈ Aj(xj) ⊆ {aj ∈ R | aj + xj ∈ Xj}. We let

Aj(xj) = {0} if feature j is immutable.

• cost( · ;x) : A(x) → R+ is a user-specified cost

function that satisfies the following properties: (i)

cost(x;x) = 0 (no action ⇔ no cost); (ii) cost(a;x) ≤
cost(a+ ε1j ;x) (larger actions ⇔ higher cost).

If (1) is infeasible, then no action can achieve a desired

outcome from x, and thus we have certified that the model

does not provide actionable recourse for this person. If (1) is

feasible, then its optimal solution is the minimal-cost action

to flip the prediction of x. In this case, we use the solution

to create the first item in a flipset and enumerate additional

items as described in Section 3.2.

2To illustrate some practical consequences of (i) and (ii): the
proposed approach could output an explanation that states that a
person can flip their prediction by changing an immutable feature,
due to (i). If so, an auditor could not conclude that the model
did not provide recourse, as there could exist a way to flip the
prediction that was not reflected in the training data, due to (ii).
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3. Integer Programming Approach
We consider a discrete version of the optimization problem

in (1), which we express as an integer program (IP) and

solve with an IP solver (see Mittleman, 2018, for a list).

Our approach has several key benefits: (i) it can directly

constrain actions for discrete-valued features (e.g., binary,

categorical, ordinal); (ii) it can minimize non-linear and non-

convex cost functions (as we can precompute costs and pass

them to our IP via the cjk parameters in (2a)); (iii) it allows

users to customize the set of feasible actions; (iv) it can

quickly recover a globally optimal solution or certify that

actionable recourse does not exist. The main shortcoming of

this approach is that it requires discretizing changes to real-

valued features. To ensure discretization does not affect the

cost or feasibility of recourse, we must therefore discretize

the actions for such features over a suitably fine grid.

3.1. IP Formulation

Our IP has the form:

min cost

s.t. cost =

d∑

j=1

mj∑

k=1

cjkvjk (2a)

d∑

j=1

wjaj ≥
d∑

j=0

wjxj (2b)

aj =

mj∑

k=1

ajkvjk j = 1...d (2c)

1 = uj +

mj∑

k=1

vjk j = 1...d (2d)

aj ∈ R j = 1...d
uj , vjk ∈ {0, 1} j = 1...d k = 1...mj

Here, constraint (2a) sets the cost of a feasible action via the

precomputed cost parameters cjk := cost(xj + ajk;xj).
Constraint (2b) ensures that any feasible action will flip the

prediction of a linear classifier with coefficients w. Con-

straints (2c) and (2d) restrict aj to a grid of mj + 1 feasible

values aj ∈ {0, aj1 . . . ajmj} via the indicator variables

uj = 1[aj = 0] and vjk = 1[aj = ajk].

Customization: We can customize the feasible action set

by adding logical constraints to (2). Many such constraints

can be expressed with the uj indicators. To limit actions to

change ≤ R features, we can add the constraint
∑d

j=1(1−
uj) ≤ R. To ensure actions only change feature p or q not

both, we can add the constraint (1− up) + (1− uq) ≤ 1.

Speedups: Although modern IP solvers can quickly solve

instances of (2) (≤ 1s with CPLEX 12.8), we can further

reduce the solution time (i.e. for auditing procedures) by:

(i) dropping constraints (2c) and (2d) for non-actionable

features; (ii) dropping vjk indicators for actions ajk that do

not agree in sign with wj ; (iii) declaring {vj1 . . . vjmj} as a

special ordered set, which allows the solver to use a more

efficient branch-and-bound algorithm for these variables.

3.2. Building Flipsets

The optimal solution to (2) can be used to create the first

item in a flipset (i.e., by listing the values of xj and xj + a∗j
for all j such that a∗j �= 0). In order to effectively provide an

individual with recourse, however, a flipset should contain

multiple items. This is because each item may be infeasible

in a way that is only known to the individual.

To build a flipset with multiple items, we use an enumer-
ation procedure that repeatedly solves (2). Our proposed

procedure recovers T ≥ 2 actions that use distinct sub-

sets of features by repeating the following steps T times:

(i) solve (2); (ii) use the optimal action a∗ to add a new

item to flipset; (iii) add a constraint to eliminate the active

set of changes S = {j : a∗j �= 0} from the feasible set∑
j∈S(1− uj) +

∑
j �∈S uj ≤ d− 1.

3.3. Choosing a Cost Function

While users can design their own cost functions, we pro-

pose two generic functions for auditing and building flipsets.

Both functions measure costs using the percentiles of xj and

xj + aj in the target population; that is, Qj(xj + aj) and

Qj(xj) where Qj(·) is the CDF of xj . This standardizes

the cost of changes across features and ensures that costs

reflect the distribution of features in the target population.

For auditing applications, we propose optimizing the maxi-
mum percentile shift

cost(x+ a;x) = max
j=1...d

|Qj(xj + aj)−Qj(xj)| . (3)

Our choice is motivated by the interpretation of the optimal

cost under (3). If the optimal cost is 0.25, for example, then

this means that all feasible action must change a feature by

at least 25 percentiles (i.e., no feasible action can flip the pre-

diction without changing a feature by < 25 percentiles). To

use (3), one must replace constraint (2a) with the constraints

cost ≥ ∑mj

k=1 cjkvjk for j = 1...d.

For building flipsets, we propose optimizing the total log-
percentile shift:

cost(x+ a;x) =
∑

j:aj �=0

log

(
1−Qj(xj + aj)

1−Qj(xj)

)
. (4)

In this case, our choice aims to select items that may reflect

“easy” changes with respect to the target population. In

particular, (4) ensures that the cost that changing feature j
by aj increases exponentially as Qj(xj) → 1. This captures

the notion that changes become harder at higher percentiles

(e.g., changing income from percentiles 50 → 55 is easier

than 90 → 95).
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4. Demonstration
We now demonstrate how our tools could be used to audit

the recourse of linear classifiers in a hypothetical credit

scoring problem. We provide a software implementation of

our tools and scripts to reproduce the analysis in this section

at http://github.com/ustunb/actionable-recourse.

Setup

Data: We consider a processed version of credit dataset

from the UCI Repository (Yeh & Lien, 2009). Here, yi =
−1 if person i will default on an upcoming credit card

payment. Our dataset contains n = 30 000 individuals and

d = 16 features related to spending and payment patterns,

education, credit history, age, and marital status. We assume

spending and payment patterns and education are actionable,

and consider all other variables to be immutable.

Model Training and Auditing: We train �1-penalized logistic

regression (LR) models for values of the �1-penalty in the set

{1, 2, 5, 10, 20, 50, 100, 500, 1000} and estimate their test

error via stratified 10-fold CV. We audit the recourse of each

classifier using the training data as our target sample by solv-

ing (2) for each individual i such that ŷi = −1. Our IP uses

the cost function in (3) and include the following constraints

to ensure changes are actionable: (i) changes for discrete

features must be discrete (e.g. MonthsWithLowSpendingIn-
Past6Months ∈ {0, 1 . . . 6}); (ii) EducationLevel can only

increase; (iii) immutable features cannot change.

Results

We summarize our audit in Figure 3 and present a flipset for

an individual who was denied credit in 2.

As shown, tuning the �1-penalty has a minor effect on test

error, but significantly affects the cost and feasibility of

recourse. Here, classifiers with small �1-penalties provide

all individuals with recourse. As the �1-penalty increases,

however, the % of individuals with recourse falls as the co-

efficients for actionable features are more heavily penalized

in comparison to those for immutable features. Among the

individuals who retain recourse, we observe that increasing

the �1-penalty almost doubles the median cost of recourse

from 0.20 to 0.39. Since we have used the cost function in

(3), a cost of q implies an individual must change a feature

by at least q percentiles to attain a desired outcome.

Our aim is not to suggest a relationship between recourse

and �1-regularization, but to show how seemingly innocu-

ous practices such as parameter tuning can impact the cost

and feasibility of recourse. Here, a practitioner who is pri-

marily interested in performance could deploy a classifier

that precludes individuals from achieving a desired outcome

(e.g., the one that minimizes mean 10-CV test error), even as

there exists a classifier that attains similar performance but

provides all individuals with recourse. Other practices that

affect recourse include preprocessing, using a more conser-

vative decision point, or evaluating recourse on a hold-out

set. In practice, it is unlikely that such practices can be

effectively regulated.

FEATURE SUBSET CURRENT VALUES REQUIRED VALUES

MostRecentPaymentAmount $0 −→ $790

MostRecentPaymentAmount $0 −→ $515

MonthsWithZeroBalanceOverLast6Months 1 −→ 2

MonthsWithZeroBalanceOverLast6Months 1 −→ 4

MostRecentPaymentAmount $0 −→ $775

MonthsWithLowSpendingOverLast6Months 6 −→ 5

MostRecentPaymentAmount $0 −→ $500

MonthsWithLowSpendingOverLast6Months 6 −→ 5

MonthsWithZeroBalanceOverLast6Months 1 −→ 2

Figure 2. Flipset for a person who is denied credit by the most

accurate classifier. Each item describes a set of actionable minimal-

cost changes for the individual to attain the desired outcome. We

enumerated all 5 items in ≤ 1 second using the cost function in 4

and the enumeration scheme in Section 3.2.

Figure 3. Model performance and recourse over the training sam-

ple for �1-penalized LR classifiers. We show the mean 10-CV

test error (top left), # of non-zero coefficients (top right), % of

individuals with recourse (bottom left), and the distribution of the

cost of recourse (bottom left) for all classifiers.

5. Discussion
We have presented a new approach to study recourse in

machine learning. Our approach allows regulators to certify

that a linear classifier provides actionable recourse within

a target population, and produce informative lists to help

individuals achieve a desired outcome. In future work, we

aim to extend our framework to audit non-linear classifiers

and derive out-of-sample guarantees for a classifier will

provide actionable recourse.



Actionable Recourse in Linear Classification

References
Aggarwal, Charu C, Chen, Chen, and Han, Jiawei. The

inverse classification problem. Journal of Computer Sci-
ence and Technology, 25(3):458–468, 2010.

Ajunwa, Ifeoma, Friedler, Sorelle, Scheidegger, Carlos E,

and Venkatasubramanian, Suresh. Hiring by algorithm:

predicting and preventing disparate impact. Available at
SSRN, 2016.

Chang, Allison, Rudin, Cynthia, Cavaretta, Michael,

Thomas, Robert, and Chou, Gloria. How to reverse-

engineer quality rankings. Machine learning, 88(3):369–

398, 2012.

Chouldechova, Alexandra, Benavides-Prado, Diana, Fialko,

Oleksandr, and Vaithianathan, Rhema. A case study of

algorithm-assisted decision making in child maltreatment

hotline screening decisions. In Conference on Fairness,
Accountability and Transparency, pp. 134–148, 2018.

Citron, Danielle Keats and Pasquale, Frank. The scored

society: due process for automated predictions. Wash. L.
Rev., 89:1, 2014.

Dillon Reisman, Jason Schultz, Kate Crawford Mered-

ith Whittaker. Algorithmic impact assessments: A practi-

cal framework for public agency accountability. AI Now

Technical Report, April 2018.

Doshi-Velez, Finale, Kortz, Mason, Budish, Ryan, Bavitz,

Chris, Gershman, Sam, O’Brien, David, Schieber, Stuart,

Waldo, James, Weinberger, David, and Wood, Alexan-

dra. Accountability of ai under the law: The role of

explanation. arXiv preprint arXiv:1711.01134, 2017.

Hardt, Moritz, Megiddo, Nimrod, Papadimitriou, Christos,

and Wootters, Mary. Strategic classification. In Pro-
ceedings of the 2016 ACM conference on innovations in
theoretical computer science, pp. 111–122. ACM, 2016.

Mittleman, Hans. Mixed integer linear programming bench-

mark (miplib2010). http://plato.asu.edu/ftp/milpc.html,

2018.

Ribeiro, Marco Tulio, Singh, Sameer, and Guestrin, Carlos.

Why should I trust you?: Explaining the predictions of

any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 1135–1144. ACM, 2016.

Ribeiro, Marco Tulio, Singh, Sameer, and Guestrin, Carlos.

Anchors: High-precision model-agnostic explanations. In

AAAI Conference on Artificial Intelligence, 2018.

Selbst, Andrew D and Barocas, Solon. The intuitive appeal

of explainable machines. 2018.

Siddiqi, Naeem. Credit risk scorecards: developing and
implementing intelligent credit scoring, volume 3. John

Wiley & Sons, 2012.

Taylor, Winnie F. Meeting the equal credit opportunity

act’s specificity requirement: Judgmental and statistical

scoring systems. Buff. L. Rev., 29:73, 1980.

U.S. Congress. The fair and accurate credit transactions act,

2003.

Wachter, Sandra, Mittelstadt, Brent, and Russell, Chris.

Counterfactual explanations without opening the black

box: Automated decisions and the gdpr. 2017.

Yang, Chen, Street, Nick W, and Robinson, Jennifer G.

10-year cvd risk prediction and minimization via inverse-

classification. In Proceedings of the 2nd ACM SIGHIT
International Health Informatics Symposium, pp. 603–

610. ACM, 2012.

Yeh, I-Cheng and Lien, Che-hui. The comparisons of data

mining techniques for the predictive accuracy of probabil-

ity of default of credit card clients. Expert Systems with
Applications, 36(2):2473–2480, 2009.


