
Title Here

Edited by

authors here

Contents

1 Computational Mechanism Design page 4

3

1

COMPUTATIONAL MECHANISM DESIGN

Abstract

Computational mechanism design brings together the concern in microeco-

nomics with decision making in the context of distributed private informa-

tion and self-interest and the concern in computer science with computa-

tional and communication complexity. In constructing mechanisms, with

application to the design of electronic markets and to protocols for au-

tomated negotiation, many new issues arise in resolving tensions between

incentive, computation and communication constraints.

1.1 Introduction

Mechanism design (MD) is a sub-field of microeconomics and game the-

ory which considers how to implement good system-wide solutions to prob-

lems that involve multiple self-interested agents, each with private infor-

mation about preferences and capabilities. In recent years mechanism de-

sign has found many applications within computer science and operations

research; e.g., in electronic market design [FGHK02, HKP04], distributed

planning [HG00, BGT03], and in solving many distributed combinatorial

optimization problems [dVV03, CSS06]. MD is becoming increasingly rele-

vant in distributed systems for commerce, computation, and information.

Mechanisms are protocols for decision making in multi-agent systems with

self-interested agents that have private information which, collectively, de-

termines the appropriate decision. It is often useful to conceptualize mech-

anism design as “inverse game theory.” One is starting with a model of

the beliefs and private information of agents, and a normative model that

4

Computational Mechanism Design 5

asserts that agents will play a Nash equilibrium of game, and designing

the “rules of the game” such that the equilibrium behavior of agents will

generate outcomes with desirable properties.

In computational MD (CMD) much of the focus has been on the design of

mechanisms that are truthful. Truthfulness can be thought of as a statement

about non-manipulability (at least in the absence of collusion): no agent can

do better for itself than by truthfully revealing private information in inter-

acting with the mechanism. Truthfulness extends to indirect mechanisms,

where mechanisms are designed such that agents follow “straightforward” or

“intended” strategies in equilibrium. Common computational goals in CMD

include making sure that the computation required by the protocol in de-

termining the outcome can be efficiently implemented, and also minimizing

the amount of information revelation from agents to the mechanism.

The need to simultaneously consider both computational and incentive

issues arises in a number of practical settings. On eBay, where search en-

gines, automated proxy agents, reputation mechanisms and ascending price

auctions combine to form an electronic marketplace. At search engines such

as Google, where automated proxy agents and machine learning techniques

to predict click-through rates combine to determine the adverts that are

co-located with search results. In expressive procurement auctions (e.g.

CombineNet, Emptoris), where suppliers can use volume discounts and ex-

press capacity constraints and buyers can include business rules to influence

winner determination (see Bichler et al. [CSS06, chapter23]).

Airline authorities such as the FAA in the U.S. have considered using

combinatorial auctions for the allocation of takeoff and landing slots. As

with other mechanisms for real world problems, determining the outcome

of a combinatorial auction can be a hard computational problem, and ex-

pressive and concise languages are important, in this case to allow airlines

to express values for different schedules. Markets have been deployed on

sensor networks and computational test-beds to arbitrate resource alloca-

tion amongst competing users with conflicting needs [CBA+05]. Auctions

are proposed as methods to coordinate multiagent planning where a joint

plan must be formed in order to best complete shared tasks in a distributed

environment [HG00, BGT03].

Table 1.1 provides a high-level comparison between the classic focus in

computer science and the classic focus in economics, in terms of the model

that is adopted for agents and the main concerns addressed (following Feigen-

baum [FS].) CMD brings together these concerns and resolves tensions be-

tween incentive, computation and communication constraints.

In recent years, CMD has significantly broadened the scope of mecha-

6 D. C. Parkes

Traditional Computer Science Microeconomics

Agents are cooperative, Agents are
sometimes adversarial self-interested

Main concerns Main concern is
are computation and incentives
communication costs

Table 1.1. Drawing an Analogy between Computer Science and Economics

nism design. For instance, new attention has been given to the problem

of distributed computation, in which the agents (as computational devices)

are used to perform some of the computation in making a decision and

determining payments. Preference elicitation has emerged as a significant

challenge in applying mechanisms to resource allocation in complex environ-

ments. Mechanisms have been proposed for dynamic environments, in which

a mechanism must make a sequence of decisions and the agent population

changes with time.

The goal of this chapter is to provide a broad, relatively self-contained,

introduction to mechanism design, and follow this with an introduction to

some of the problems studied in computational mechanism design. Sec-

tion 1.2 introduces the basic model of mechanism design, including the most

important game-theoretic solution concepts and some of the central possi-

bility and impossibility results. Section 1.3 focuses on the computational

complexity of centralized mechanisms, introduces the agenda of algorith-

mic mechanism design, and develops general characterizations for truthful

mechanisms. Section 1.4 considers the problem of preference elicitation, and

presents ascending price auctions and methods from learning theory in the

context of combinational auctions. Section 1.5 introduces the challenges of

distributed implementation, in which part of the computation in determin-

ing the outcome of a mechanism is performed by the agents. Section 1.6

extends mechanism design to dynamic environments, drawing connections

to work on online algorithms and Markov Decision Processes. We conclude

in Section 1.7.

1.1.1 Related Work

See Fudenberg and Tirole [FT91] and Osborne and Rubinstein [OR94] for

useful introductions to game theory. See McAfee and McMillan [MM96],

Klemperer [Kle00], and Krishna [Kri02] for introductions to auction theory.

Computational Mechanism Design 7

Milgrom [Mil04] provides a more advanced treatment. Jackson [Jac03] pro-

vides an accessible survey of mechanism design, Mas-Colell et al. [MCWG95]

a text book treatment, and Dasgupta et al. [DHM79] a comprehensive, tech-

nical survey.

The computational mechanism design topics covered in this chapter are

necessarily restricted in scope and biased in selection. Readers are encour-

aged to consult the books on Combinatorial auctions [CSS06], and Algo-

rithmic Game Theory [NRTV07], as well as the Proceedings of the ACM

Conference on Electronic Commerce and the International Conference on

Autonomous Agents and Multiagent Systems for a more complete view of

work in the area.1 Related work also appears in the main theoretical com-

puter science conferences.

For a sampling of papers in the artificial intelligence community, con-

sider the important early work of Ephrati and Rosenschein [ER91] and

Rosenschein and Zlotkin [RZ94]. More recent papers include those by Sand-

holm [San96], Monderer and Tennenholtz [MT99], Porter et al. [PRST02],

and Conitzer and Sandholm [CS02b, CS02a]. Numerous papers consider

more specialized topics, for instance combinatorial and sequential auctions [Nis00,

YSM04, LS04b, PU00, HKP04, e.g.]. For work in the theoretical computer

science community, consider the papers of Nisan and Ronen [NR00, NR01],

Lehmann et al. [LOS02] and Feigenbaum et al. [FKSS01].

1.2 Preliminaries

The decision to be made by a mechanism is formalized as the choice of

some alternative from a set of alternatives A = {a, b, . . .} and agents N =

{1, 2, . . .} with |N | = n. Agent i has private information (its type) θi ∈ Θi,

and a value vi(a; θi) ∈ R for alternative a ∈ A. Often times we will just

write vi(a). Agents are assumed to have quasilinear utility,

ui(a, p) = vi(a; θi) − p, (1.1)

for alternative a at price p.2 We will restrict attention to private value

models so that an agent’s value for an alternative depends only on its own

type.3

1The graduate class, “Topics at the Interface between Computer Science and Economics” at
Harvard University http://www.eecs.harvard.edu/˜parkes/cs286r is also a good place to find
papers and other information.
2Quasilinearity implies no budget constraints and risk neutrality, with agents indifferent between
a payment equal to the expected value of a lottery and the lottery itself. See Borgs et al. [BCI+05]
for a recent treatment of budget-constraints and other non-linearities in the utility function.
3Krishna [Kri02] provides an accessible treatment of mechanism design in interdependent value
domains. Interdependent value models can be important, for instance when allocating resources

8 D. C. Parkes

θ = (θ1, . . . , θn)
g(θ) ∈ A

p(θ) ∈ Rn

M =< g, p >

Fig. 1.1. The components of a direct-revelation mechanism.

The primary goal usually adopted in mechanism design can be expressed

in terms of a social choice function, which defines an alternative to be se-

lected for each possible private type vector θ = (θ1, . . . , θn). For instance,

one might be interested in implementing the value-maximizing alternative,

i.e. f(θ) = arg maxa∈A
∑

i vi(a; θi). Revenue-maximization is another com-

mon goal adopted in mechanism design, especially in auction settings. In an

allocation problem the alternatives represent allocations, and the transfers

represent payments to the auctioneer.

Example 1.1 In an auction for a single-item, the alternatives define the

possible allocations, i.e. which agent gets the item. Assuming that agent

1 has value v1(a; θ1) = 10 for the alternative a in which it wins, then its

utility for the alternative in which it is allocated the item at price p is

u1(a, p) = v1(a; θ1) − p = 10 − p, and the agent has positive utility as long

as p < 10.

1.2.1 Direct Revelation Mechanisms

We start by introducing the simple but important class of direct revelation

mechanisms. A direct revelation mechanism (DRM), M =<g, p>, is defined

in terms of an outcome rule g : Θ → A and a payment rule p : Θ → Rn,

where Θ = (Θ1 × . . . × Θn) denotes the joint type space.4 A mechanism

takes reports θ from agents and selects alternative g(θ) (the “outcome”)

and payment pi(θ) for each agent. (See Figure 1.1). Because agents are

self-interested the reports need not be truthful. A mechanism M defines a

situation of strategic interdependence, and thus a non-cooperative game.

in a competitive marketplace or when a better estimate of the value of an alternative can be
constructed with information about the types of other agents.
4The outcome rule and payment rule can also be randomized. Randomization is useful in achieving
competitive approximation guarantees in combinatorial auctions [DNS06] and auctions for digital
goods [GH03]. We adopt deterministic rules here for ease of presentation.

Computational Mechanism Design 9

The fundamental concept of agent choice in game theory is expressed as

a strategy. A strategy defines the action an agent will select in all possible

states of the world. For example, if the mechanism is an ascending price

auction then a strategy defines the bid an agent will submit in response to

all possible prices.

The basic model of agent rationality in game theory is that of an expected-

utility maximizer. An agent will select a strategy that maximizes its ex-

pected utility, given its preferences over alternatives, beliefs about the strate-

gies and types of other agents, and the structure of the game. The central

solution concept is that of a Nash equilibrium, which states that in equilib-

rium every agent will select a utility-maximizing strategy given the strategy

of every other agent. Thus, game theory allows a mechanism designer to

reason about the alternative that will be implemented by a mechanism in

equilibrium.

Mechanism design defines games of incomplete information because agents

are typically modeled as having uncertainty about the types of other agents.5

When necessary, agents can be modeled as having beliefs about the types

of other agents. In a DRM, strategies take a particularly simple form. A

strategy si : Θi → Θi, defines a reported type, si(θi), for every possible type

of an agent. All agents simultaneously and privately make a claim about

their type to the mechanism.

The most important solution concepts for DRMs are those of dominant

strategy equilibrium and Bayesian-Nash equilibrium. These both character-

ize particular kinds of Nash equilibrium of the incomplete information game

induced by a mechanism.

In defining these concepts we adopt the following standard short-hand no-

tation. Let s−i = (s1, . . . , si−1, si+1, . . . sn) and θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn)

denote the strategy profile and type profile without agent i. Given this,

let ui(si, s−i; θi, θ−i) = vi(g(si(θi), s−i(θ−i)); θi)−pi(si(θi), s−i(θ−i)), denote

the utility to agent i in the game defined by mechanism M =<g, p> when

agents adopt strategies (si, s−i) and have types (θi, θ−i).

Definition 1.2 Strategy profile s∗ is a dominant strategy equilibrium (DSE)

in mechanism M =<g, p> when:

ui(s
∗
i , s−i; θi, θ−i) ≥ ui(s

′
i, s−i; θi, θ−i), ∀i,∀θi,∀s′i 6= s∗i ,∀θ−i,∀s−i (1.2)

In words, strategy s∗i is a dominant strategy for agent i if the agent max-

5In contrast, the study of Nash implementation theory (as opposed to mechanism design theory)
considers agents that are informed about each others’ types and a center (or designer) that is
uninformed. See Jackson [Jac01] for a useful survey of the literature on implementation theory.

10 D. C. Parkes

imizes its utility with this strategy for all types θi, whatever the strategies

(and types) of other agents.

Example 1.3 In a sealed-bid second-price (Vickrey auction), a single item

is sold to the highest bidder for the second-highest price. Let type θi denote

the value of agent i for the item. Then, bidding strategy:

si(θi) = θi (1.3)

is a dominant strategy for agent i. To see this, consider some arbitrary θ−i

and s′−i and fix θi. Agent i’s utility for report si(θi) = θ̂i is:

ui(si, s
′
−i; θi, θ−i) =

{

θi − maxj 6=i s
′
j(θj) , if θ̂i > maxj 6=i s

′
j(θj)

0 otherwise

Agent i maximizes its utility by reporting θ̂i > maxj 6=i s
′
j(θj) (so that

it wins) if and only if θi > maxj 6=i s
′
j(θj), which it achieves with strategy

si(θi) = θ̂i = θi. This is a dominant bidding strategy because it holds for

any s′i, any θ−i and any θi.

Recognize that the fundamental reason for truthfulness in the Vickrey

auction is that every agent faces a price that is independent of its report

(i.e. maxj 6=i s
′
j(θj)) and wins the item at that price if its reported value is

greater than the price. We will revisit this idea of agent-independent prices

in the general MD setting in Section 1.3.3.

Sometimes a mechanism with more desirable properties can be constructed

by relaxing the solution concept to a Bayes-Nash equilibrium. Assume that

types are distributed according to probability distribution function Pr(θ).

Definition 1.4 Strategy profile s∗ is a Bayes-Nash equilibrium (BNE) in

mechanism M =<g, p> when:

Eθ−i

[

ui(s
∗
i , s

∗
−i; θi, θ−i)

]

≥Eθ−i

[

ui(s
′
i, s

∗
−i; θi, θ−i)

]

, ∀i,∀θi,∀s′i 6= s∗i ,

(1.4)

where the expectation is taken with respect to the conditional distribution

θ−i sampled from conditional distribution, Pr(θ−i|θi), given type θi.

In a BNE, every agent is assumed to share a common prior about the

distribution of agent types. Moreover, both this prior belief and the ratio-

nality of agents must be common knowledge. In equilibrium, each agent

plays a strategy that maximizes its expected utility given the distribution

over types of other agents.

Computational Mechanism Design 11

Example 1.5 In a sealed-bid first-price auction, a single item is sold to the

highest bidder for its bid price. Let type θi denote the value of agent i for

the item. Suppose that values are i.i.d. θi sampled uniformly on [0,1]. Then,

bidding strategy

si(θi) =

(

n − 1

n

)

θi

is the unique symmetric BNE.6

Definition 1.6 Mechanism M =<g, p> implements social choice function

f : Θ → A in DSE (or BNE) if f(θ) = g(s∗(θ)) for some DSE (or BNE)

strategy profile s∗, for all types θ.

Mechanisms that implement a social choice function in a DSE are more

robust than those which implement a social choice function only in a BNE

because no assumptions are made about the knowledge that agents have

about the types or rationality of other agents. Mechanisms with DSE are

also preferred computationally because they free agents of the need to reason

about the strategies of other agents.

An important subclass of DRMs are the incentive-compatible DRMs. In

an incentive-compatible (IC) mechanism it is an equilibrium for every agent

to report its true type.

Definition 1.7 Mechanism M =< g, p > is dominant-strategy incentive-

compatible (DSIC) for type space Θ if strategy s∗(θi) = θi is a dominant

strategy equilibrium.

DSIC mechanisms are often called strategy-proof or truthful because

they are non-manipulable in the sense that an agent can do no better than

simply reporting its true type.

Definition 1.8 Mechanism M =<g, p> is Bayes-Nash incentive-compatible

(BNIC) for type space Θ if strategy s∗(θi) = θi is a Bayes-Nash equilibrium.

The social choice function implemented by an IC mechanism is defined by

the outcome rule g; an IC mechanism M =<g, p> is said to be a dominant-

strategy (or Bayes-Nash) implementation of social choice function g.

By the revelation principle [Gib73] it is without loss of generality to focus

on the space of incentive-compatible mechanisms. The revelation principle

states that any mechanism M ′ can be transformed into an equivalent IC

6See the Appendix in Klemperer [Kle00] for a proof of this result via the revenue equivalence
theorem and Krishna [Kri02] for a proof from first principles.

12 D. C. Parkes

and DRM mechanism M that implements the same social choice function.

See Mas-Colell et al. [MCWG95] for a text book treatment. The revelation

principle holds for both dominant-strategy and Bayes-Nash equilibrium.7

Note that the revelation principle does not say that truth-revelation is

“easy” to achieve, but simply that if some mechanism solves a problem in

equilibrium then it can also be solved in a truth-revealing equilibrium of

another mechanism. It is achieving a desired outcome in an equilibrium

that is difficult, not making that equilibrium a truth-revealing equilibrium.

The revelation principle is useful in focusing goals and delineating what

is and is not possible in MD (and thus also delineating impossibility results

of relevance in computational MD). For instance, if there is no BNIC imple-

mentation of a social choice function with a set of desired properties then no

mechanism (however complex) can succeed in implementing a social choice

function with these properties.

Note, though, that the revelation principle puts computational consid-

erations to one side. The revelation principle should not be construed as

stating that direct mechanisms are the only mechanisms of practical rele-

vance. On the contrary, indirect mechanisms can often enable more efficient

preference elicitation and also distribute computation to agents.8 Moreover,

the possibility results of MD ignore computational constraints and although

possible from the perspective of incentive constraints, the computational

complexity of a problem may also preclude implementation. We will con-

sider the computational requirements placed on the center in Section 1.3

and the computational requirements placed on agents, for instance through

the cost of preference elicitation, in Section 1.4.

1.2.2 Indirect Mechanisms

Indirect mechanisms define games with a more complicated information

structure than direct mechanisms. Indirect mechanisms, which include

ascending-price auctions and distributed mechanisms, are of great interest

in many computational domains.

Indirect mechanisms differ from DRMs in two ways. First, the message

7The intuition behind the revelation principle is a reduction argument, and goes as follows. Mech-
anism M will simulate the entire system (the equilibrium bidding strategies s∗ of agents and the

outcome rule) of mechanism M ′, given reports θ̂ from agents. Thus, if strategy s∗ is an equilib-

rium in mechanism M ′ then an agent should report its true type θ̂i = θi in mechanism M so that
the mechanism simulates its correct equilibrium strategy. For a BNE, this simulation argument
requires that the mechanism designer has access to the distribution over agent types.
8Conitzer and Sandholm [CS04] also provide an interesting construction that shows that compu-
tational complexity can be used to overcome some impossibility results, by shifting the complexity
to agents.

Computational Mechanism Design 13

space in an indirect mechanism does not correspond with reports about an

agent’s type. For instance, in an ascending-price auction the message space

may instead allow an agent to report a bundle of items that maximizes its

utility at the current prices, which provides indirect and partial information

about an agent’s type. Second, agents can typically send multiple messages

while participating in a mechanism and can condition the messages that

they send on information provided by the mechanism.

A strategy si(θi) ∈ Σi in an indirect mechanism defines the message(s)

that an agent will send to the mechanism for all types θi and all possible

information states. An indirect mechanism, M =<Σ, g, p>, defines a space

of feasible joint strategies Σ = Σ1×. . .×Σn and an outcome rule, g : Σ → A,

and payment rule p : Σ → Rn. An information state delineates a possible

state of the indirect mechanism, and a fully specified strategy should define

a message to send for all possible information states.

Example 1.9 Consider a single-item ascending-price auction, in which type

θi denotes the value of agent i for the item. In each round an agent can bid or

stop. Once an agent stops it cannot bid in a later round. The price increases

by some bid increment ǫ > 0 while two or more agents bid. The winner is

the last agent still bidding, and pays the final price. The information state

pt in round t defines the current price pt ≥ 0. A strategy defines the bid,

si(p, θi), that an agent will place in every state p, and for every type θi. The

straightforward bidding strategy,

s∗i (p, θi) =

{

bid , if p ≤ θi

stop , otherwise

is a DSE. All strategies are characterized by a threshold value, θ̂i, such that

the agent will stop for prices above this value. (This is because the auction

constrains an agent to stop for all subsequent rounds to its first stop.) Fix

threshold values θ̂−i. The auction is now strategically equivalent for agent

i to a second-price auction in which the highest bid from another agent is

ǫ⌈
maxj 6=i θ̂j

ǫ ⌉, and s∗i is agent i’s dominant strategy. Note that it is without

loss of generality to fix θ̂−i because the threshold values selected by other

agents are conditionally independent of agent i’s strategy, when conditioned

on the case that agent i wins.

A more typical solution concept adopted in the analysis of indirect mech-

14 D. C. Parkes

anisms is that of an ex post Nash equilibrium.9 This is a concept of inter-

mediate strength, in between that of DSE and BNE.

Definition 1.10 Strategy profile s∗ is an ex post Nash equilibrium (ex post

NE) in mechanism M =<Σ, g, p> when:

ui(s
∗
i , s

∗
−i; θi, θ−i) ≥ ui(s

′
i, s

∗
−i; θi, θ−i), ∀i,∀θi,∀s′i 6= s∗i ,∀θ−i (1.5)

In words, strategy s∗ is an ex post NE if no agent can improve its utility by

deviating, whatever the type of other agents, as long as the other agents are

rational and play the equilibrium strategy. It is instructive to compare the

definition of ex post Nash equilibrium with the definition of BNE (Eq. 1.4);

an ex post NE is also a BNE, it is a BNE for any distribution on types. In

DRMs, an ex post NE is equivalent to a DSE,10 but this need not be the

case in indirect mechanisms. This is illustrated in the following example.

Example 1.11 Consider a single-item ascending-price auction with jump

bids. Again, type θi denotes agent i’s value for the item. Bids are associated

with a bid price. In each round, t, the auctioneer announces an ask price,

pt, which is ǫ > 0 above the highest bid received so far from an agent. Any

agent can bid in any round, as the long as the bid is at some price at or

above pt. The provisional winner is the agent with the current highest bid

(breaking ties at random). The auction terminates when no agent bids at

the current price, and the item is then sold to the provisional winner at its

final bid price. The information state (pt, xt) defines the current ask price

pt and xt ∈ {1, . . . , n} to indicate the provisional winner. A straightforward

bidding strategy is:

s∗i (p, x, θi) =

{

p , if p ≤ θi and x 6= i

no bid , otherwise

This is an ex post NE but not a DSE. To see that it is an ex post NE, fix

straightforward strategies s∗−i by agents other than i. Each agent’s strategy

is completely characterized by a threshold value, that of its own value for the

item. The analysis then follows essentially as in the previous example. On

the other hand, straightforward bidding is not a DSE. To see this suppose

there are two agents and agent 1’s value is 20, agent 2’s value is 15, the bid

9Ex post IC was discussed as “uniform incentive compatibility” by Holmström and Myer-
son [HM83]. See also Jehiel and Moldovanu [JM01] and Bergemann and Morris [BM07].
10This equivalence is true in private value but not interdependent value models where an agent’s
best-response depends on whether other agents will report their true types and thus allow correct
conditioning of value on the types of other agents. See Krishna [Kri02].

Computational Mechanism Design 15

increment ǫ = 1, and agent 2 follows the following bidding strategy:

s2(p, x, θ2) =







p , if p ≤ θ2 and x 6= 2 and p 6= 10

10000 , if p = 10

no bid , otherwise

This is not a rational bidding strategy for agent 2, but nevertheless a feasible

strategy given the rules of the auction. If agent 1 bids straightforwardly the

price will reach 10, triggering agent 2’s “crazy” bid of 10000 and agent 1

will lose. If agent 1 bids a jump bid of 16 from the start then it will win for

16. Thus, this response to the specific “crazy” strategy is better than the

straightforward strategy.

This example illustrates the role of ex post NE in the design of indirect

mechanisms: the presence of multiple information states allows one agent to

condition its messages (“reports”) on the messages of another agent, thus

leading to richer strategic interactions.

The following limitation should be kept in mind in designing indirect

mechanisms with ex post NE:

Theorem 1.12 Any social choice function f(θ) that is implementable in

an ex post NE of an indirect mechanism is implementable in the dominant

strategy equilibrium of a truthful DRM.

This is an immediate consequence of the arguments that underlie the

revelation principle.11 Thus, only dominant-strategy implementable social

choice functions can be implemented in the ex post Nash equilibrium of an

indirect mechanism.

Before continuing, we make some brief comments about Bayes-Nash equi-

librium in the context of indirect mechanisms. Great care is required in this

analysis because one must allow for the possibility that agents can usefully

update their beliefs about the types of other agents as they interact with the

mechanism and observe information states. The most convenient solution

concept is a refinement called perfect Bayesian-Nash equilibrium in which

agents use Bayes rule to update their belief states along the equilibrium

path, and are required to follow an equilibrium strategy from all informa-

tion states. In practice, this gets difficult because one must also define belief

updates off the equilibrium path when probability zero events occur. See

11In simulating the ex post NE of the indirect mechanism M ′ when constructing the corresponding
IC and DRM mechanism M one “locks down” the strategies of all agents and thus ensures that
all (simulated) agents will follow the ex post NE strategy of the indirect mechanism, albeit for
some (perhaps untruthful) reported type.

16 D. C. Parkes

Osborne and Rubinstein [OR94] and Fudenberg and Tirole [FT91] for a

detailed discussion.

1.2.3 Possibility Results

Given the framework of MD one can ask what properties of social choice

functions can be implemented in the equilibrium of a mechanism, given the

constraints implied by agents’ private information and self-interest. MD

provides a number of interesting possibility and impossibility results. These

are important to understand in the context of computational MD, which

will layer on top additional constraints, i.e. those related to computational

and communication considerations.12

Here are some possible desiderata for the social choice functions and pay-

ments implemented in the equilibrium of a mechanism M=<g, p>:

(EFF) The outcome is (ex post) efficient, i.e. g(s∗(θ)) ∈

arg maxa∈A
∑

i vi(a; θi), for all θ and equilibrium s∗.

(WBB) The payments are (ex post) weak budget balanced, i.e.
∑

i pi(s
∗(θ)) ≥ 0 for all θ and equilibrium s∗.

(IR) The outcome and payments satisfy (ex post) individual rationality,

i.e. vi(g(s∗(θ)); θi)−pi(s
∗(θ)) ≥ 0 for all i, all θ, and equilibrium s∗.

Efficiency (EFF) is termed allocative efficiency when applied in a re-

source allocation domain. Budget balance (WBB) can be relaxed to ex

ante WBB when it is only required to holds in expectation given a distribu-

tion on agent types, i.e. Eθ [
∑

i pi(s
∗(θ))] ≥ 0, and can be strengthened to

strong budget balance (BB) when payments must exactly balance to zero,

i.e.
∑

i pi(s
∗(θ)) = 0.

Individual-rationality (IR) corresponds to a participation constraint be-

cause it asserts that all agents receive non-negative utility from partic-

ipating in the mechanism. IR can be relaxed to interim IR, meaning

non-negative expected utility for any type θi given the distribution across

other types, i.e. Eθ−i

[

vi(g(s∗i (θi), s
∗
−i(θ−i)); θi) − pi(s

∗
i (θi), s

∗
−i(θ−i))

]

≥
0, and can be further relaxed to ex ante IR, where the expec-

tation is also taken with respect to an agent’s own type, i.e.

Eθi
Eθ−i

[

vi(g(s∗i (θi), s
∗
−i(θ−i)); θi) − pi(s

∗
i (θi), s

∗
−i(θ−i))

]

≥ 0. The appropri-

ate variation of IR depends on the commitment power of the mechanism.

12Computational complexity can sometimes be used to reverse negative results by designing pro-
tocols in which desirable strategies are computable (or given) but undesirable strategies are hard
to compute. See Conitzer and Sandholm [CS04] and Sanghvi and Parkes [SP04a] for a discussion.

Computational Mechanism Design 17

Name Utility Solution Possible Valuation
concept environment

Groves QL DSE EFF & (IR or WBB) general
VCG QL DSE EFF, IR & WBB no positive externalities

d’AGVA QL BNE EFF, BB & ex ante IR general
Myerson QL BNE OPT, WBB & IR single-item

(DSE) (symmetric priors)

Table 1.2. Mechanism Design Possibility Results.

However, as a rule of thumb, ex ante IR is hard to justify and ex post IR is

the usual standard that is adopted.13

An additional desiderata for a mechanism in some environments is to max-

imize the expected utility of a particular agent, most commonly formulated

as that of maximizing the expected revenue of the seller in an auction:

(OPT) Mechanism M is revenue optimal if the expected revenue,

Eθ[
∑

i pi(s
∗(θ))], is maximal across all possible mechanisms, where

s∗ is an equilibrium strategy.

Table 1.2 summarizes four of the most well known possibility results.14

The possibility results are delineated by the form of the agent utility function

(i.e. quasilinear (QL) in all of these cases), the equilibrium solution concept,

and the “valuation environment,” which describes the assumptions made

about the valuation functions of agents. General value environments allow

arbitrary (private) values on alternatives. No positive externalities requires

that each agent’s presence in the economy has a negative effect on the value

of other agents in the efficient solution. We return to this requirement below.

Single item environments are those for which agents have a private value for

a single item to be allocated.

The celebrated Groves [Gro73] family of mechanisms, which are truthful

DRMs (i.e. DSIC), are defined with outcome rule:

g(θ) = arg max
a∈A

∑

i

vi(a; θi) (1.6)

13If a mechanism can make an agent commit before it even learns its own type then ex ante IR can
be reasonable. This is possible, for instance, if a population of agents (such as the U.S. Congress)
chooses a mechanism for decision making some time ahead of when their individual preferences
are realized. If a mechanism can make an agent commit after it learns its own type but before
learning the outcome of the mechanism then interim IR is reasonable.
14Dasgupta et al. [DHM79], Jackson [Jac03] and Mas-Colell et al. [MCWG95] provide additional
examples.

18 D. C. Parkes

and payment rule:

pi(θ) = hi(θ−i) −
∑

j 6=i

vj(g(θ); θj) (1.7)

where hi : Θ−i → R is an arbitrary function on the reports of all agents

except i. This freedom in selecting hi leads to the description of a “fam-

ily” of mechanisms. Different choices make different tradeoffs between the

desiderata of WBB and IR.

A Groves mechanism selects an alternative that maximizes the reported

values of all agents and then makes a payment to each equal to the total

reported value to the other agents for the decision, with an agent also paying

the mechanism some amount that is independent of its own report.

To see that Groves mechanisms are strategy-proof, consider an agent with

utility ui(a, p) = vi(a; θi) − p for alternative a at price p ∈ R. Now, fixing

the reports from other agents, θ̂−i, the utility to agent i given report, θ̂i, is:

πi(θ̂i) =vi(g(θ̂i, θ̂−i); θi) +
∑

j 6=i

vj(g(θ̂i, θ̂−i); θ̂j) − hi(θ̂−i) (1.8)

Ignore the final term, which is independent of the agent’s report.15 Then,

the only effect that agent i’s report has on its utility in Eq. (1.8) is via

the choice by the center of alternative a∗ = g(θ̂i, θ̂−i). Agent i max-

imizes Eq. (1.8) by reporting θ̂i = θi so that in choosing a∗ to solve

arg maxa
∑

i vi(a; θ̂i) the center will maximize Eq. (1.8), i.e. choose an al-

ternative to maximize agent i’s true value and the total reported values of

the other agents.

Thus, the payment term in a Groves mechanism is defined to align the

incentives of every agent with that of maximizing the total value to all

agents. This simple idea provides truthfulness. Groves mechanisms are

EFF for all environments by definition of outcome rule g and from their

DSIC property.

The first term in the Groves payment rule can be used to achieve IR while

also maximizing the total payments made to the center. This corresponds

to the Vickrey-Clarke-Groves [Cla71, Gro73, Vic61] mechanism.

Definition 1.13 The Vickrey-Clarke-Groves (VCG) mechanism is a Groves

mechanism with:

hi(θ−i) =
∑

j 6=i

vj(g(θ−i); θj), (1.9)

15Note that it does not even depend on the agent’s report via the strategies of other agents since
they cannot condition on agent i’s report in a DRM.

Computational Mechanism Design 19

where g(θ−i) = arg maxa∈A
∑

j 6=i vj(a; θj), i.e. an efficient alternative with-

out agent i.

The total payment by agent i in the VCG mechanism is the marginal

negative effect that agent i has on the total value to the other agents by its

presence.

Example 1.14 The special case of VCG mechanism for the allocation of a

single item is the familiar second-price sealed-bid auction, or Vickrey [Vic61]

auction. In this case, with bids θ̂1 and θ̂2 to denote the first- and second-

highest bids, the item is sold to the agent with the highest bid (agent 1),

for a price computed as p1(θ̂) =
∑

j 6=1 vj(g(θ̂−1); θ̂j) −
∑

j 6=1 vj(g(θ̂); θ̂j) =

θ̂2−0 = θ̂2, i.e. the second-highest bid. Notice that we have IR here because

θ̂2 ≤ θ̂1 = θ1 in equilibrium and WBB because θ̂2 ≥ 0 and all other payments

are zero.

Let V (N) = maxa∈A
∑

i∈N vi(a; θi), i.e. the total value from the efficient

choice. Simple algebraic manipulation establishes that the VCG mechanism

satisfies IR whenever the environment satisfies the following non-negative

marginal product condition:

V (N) ≥ V (N \ i), (1.10)

for all types θ and all agents i. Introducing an agent should never reduce

the total value available from the maximal alternative. This is reasonable,

holding in market environments such as exchanges because all trades remain

feasible when introducing additional agents.16

The VCG mechanism also satisfies WBB when each agent’s payment is

non-negative, for which we need the following no positive externalities con-

dition:
∑

j 6=i

vj(g(θ̂−i); θ̂j) ≥
∑

j 6=i

vj(g(θ̂); θ̂j) (1.11)

Removing agent i should allow the remaining agents to achieve at least

as much value from the maximal alternative as they achieve when agent i is

present. This holds, for instance, in an auction setting with a seller with no

intrinsic value for the goods, but not in an exchange because agent i could

be a seller and facilitate new trades and thus have a positive externality

on the other agents. The VCG mechanism also satisfies WBB in a public

16This also holds in public choice problems, when introducing a new agent cannot change the
range of public projects that can be implemented and no agent has negative value for any public
project (in relation to no choice being made). It may not hold in environments with physical
congestion, for instance when introducing an additional robot can block the paths of all robots.

20 D. C. Parkes

project choice problem because the set of choices available is static however

many agents are in the system.

The VCG mechanism is especially useful when EFF is a primary goal but

revenue optimality a secondary goal.

Theorem 1.15 [KP00] The VCG mechanism maximizes the expected rev-

enue (and thus comes the closest to satisfying BB) amongst all EFF, IR and

BNIC mechanisms.

Other than having practical importance, for instance to the designer of

an efficient marketplace that nevertheless wishes to drive as much revenue

as possible to sellers, this result is also useful in establishing some of the

central impossibility results in MD. See Krishna and Perry [KP00] for an

extended discussion.

In many environments the fact that the VCG mechanism runs at a sur-

plus to the center may be undesirable. Consider, for instance, a group of

friends using a Vickrey auction to decide who should use a shared car for

the evening. They would rather not “burn” the proceeds of the auction

(or, for the sake of argument, give the proceeds to charity), but cannot

blindly return the collected payment to the participants without compro-

mising truthfulness. In addressing this loss of utility by the participants,

one approach is to sacrifice some efficiency in return for strong BB [Fal04].

Another approach is to leverage structure in agent valuations and redis-

tribute payments back to agents in a way that maintains truthfulness and

full efficiency (but necessarily without achieving strict BB) [Cav06, GC07].

Continuing, we make some brief remarks about the d’AGVA [Arr79, dG79]

mechanism, often referred to as the expected externality mechanism (see

also Mas-Colell et al. [MCWG95]) because of its connection with the VCG

mechanism.

The d’AGVA mechanism is interesting because it achieves EFF and strong

ex post (strong) BB by relaxing ex post IR to ex ante IR and DSIC to BNIC.

The outcome rule is the same as for the Groves mechanism but d’AGVA is

not a Groves mechanism and the payment rule is instead defined as:

pi(θ) =





1

n − 1
·
∑

j 6=i

SW−j(θj)



 − SW−i(θi), (1.12)

where

SW−i(θi) = Eθ−i





∑

j 6=i

vj(g(θi, θ−i); θj)



 (1.13)

Computational Mechanism Design 21

Note that SW−i(θi) only depends on the report of agent i and is inde-

pendent of the reports of all agents j 6= i. This term is the expected total

value, in equilibrium, for agents j 6= i when agent i announces type θ̂i. For

this reason, the d’AGVA mechanism is BNIC instead of DSIC, with the

incentive-compatibility requiring that the other agents bid truthfully and

according to the distribution that defines the payment. In Groves, this term

would be the actual value to the rest of the agents. Similarly, d’AGVA is ex

ante IR (in environments such as exchanges, that satisfy positive marginal

product), which is a critical weakness in many domains.17

The possibility results available for revenue optimality are less general

but extremely interesting. While the VCG mechanism is revenue optimal

across all EFF and IR mechanisms, it is typically possible to achieve better

(expected) revenue by sacrificing some efficiency. In seminal work, Myer-

son [Mye81] constructs a revenue optimal single-item auction. See Klem-

perer [Kle00] for a more recent treatment. For agents with i.i.d. types (i.e.

symmetric priors), the optimal auction is equivalent to a Vickrey auction

with a reserve price. The item is sold to the highest bidder if the bid price

is greater than the reserve price, and sold at the reserve price or second-

highest bid, whichever is greater. By setting a reserve price the auction

will sometimes sell the item for more than the Vickrey price, however the

auction will sometimes forfeit a sale and is generally inefficient.

More generally, the optimal auction allocates the item with the highest

“virtual valuation.” The virtual valuation is determined as an adjustment

from the reported value of an agent and depends on the prior distribution

for that agent’s value [Mye81]. In this case the optimal auction is Bayes-

Nash IC, such an auction an auction can achieve more revenue than a DSIC

mechanism. Revenue-optimal auctions are not known for general valuation

environments, such as combinatorial auctions in which bidders want to buy

bundles of items and have complements (“I only want A if I also get B”)

and substitutes (“I only want A or B”) values. See [JtVM07, Led07, Ü06,

IK06, MV04] for recent progress in restricted settings, and Likhodedov and

Sandholm [LS04b, LS05, Voh07, CHK07] for a computational approach.

17The first term in Eq. (1.12), as in Groves mechanisms, is agent independent. Here, it represents
the average (over agents j except i) of the estimated total “without j” value given report θj and
the distribution on types. Taken together, this gives strong ex post (strong) BB, with each agent
except i making a payment back to the mechanism equal to a 1/(n − 1) share of the payment
made by the mechanism to agent i.

22 D. C. Parkes

1.2.4 Impossibility Results

The impossibility results in MD appeal to the revelation principle and work

with incentive-compatibility conditions to establish combinations of desider-

ata that cannot be achieved in any mechanism. These negative results arise

entirely as a result of the private information in multi-agent systems; this

coupled with agent self-interest has a cost in terms of properties that can

be achieved.

Table 1.3 describes some important impossibility results. Results are de-

lineated by agent utility (e.g. unrestricted utilities, or quasilinear (QL)),

the equilibrium solution concept, and by any structure allowed in the value

environment. The “Impossible” column lists the combinations of desirable

mechanism properties that cannot be achieved in each case. Impossibility

for restricted preferences and structured environments implies impossibility

for more general settings; similarly, impossibility for weak solution concepts

such as BNE imply impossibility for stronger solution concepts such as DSE.

The Gibbard [Gib73] and Satterthwaite‘[Sat75] impossibility theorem

(GibSat) states that for unrestricted preferences and at least 3 alternatives

only dictatorial social choice functions can be implemented in DSE. See Mas-

Colell et al. [MCWG95] for a proof. A mechanism is dictatorial if there is

some agent i, defined independently of agent strategies s (although perhaps

at random), that always receives one of its most-preferred alternatives (from

the alternatives in the range of the outcome rule given the strategies of the

other agents.) Although Pareto efficient, a dictatorial social choice func-

tion is undesirable for other reasons since it does a poor job of aggregating

preference information.

The Gibbard-Satterthwaite impossibility result at first appears very neg-

ative. However the assumption of unrestricted preferences is a strong one.

Most real environments will impose some structure. For instance, in alloca-

tion problems it is common to assume free disposal (weakly-increasing value

for allocations of more goods) and no-externalities (indifference to the dis-

tribution of goods across other agents). In a voting setting, positive results

are available again when values are “single-peaked” (e.g. candidates fall on

a spectrum from the political left to the political right) [Jac03].

The Hurwicz [Hur75] and Myerson-Satterthwaite [MS83] impossibility re-

sults are significant, then, because they hold even with quasi-linear utility.

Hurwicz (see Groves and Ledyard [GL77b] for a discussion) precludes EFF

and (strong) BB mechanisms in DSE. The result holds in a simple exchange

environment, for instance in which a single unit of a resource is to be allo-

cated amongst a group of agents. Myerson-Satterthwaite further strengthens

Computational Mechanism Design 23

Name Utility Solution Impossible Valuation
concept environment

GibSat unrestricted DSE Non-Dictatorial ≥ 3 alternatives
Hurwicz QL DSE EFF & BB simple-exchange
MyerSat QL BNE EFF, WBB simple-exchange

& interim IR
Roberts QL DSE non linear affine no structure

Holmström QL DSE EFF & non-Groves smoothly-connected
LMN QL DSE non linear affine & IIA order-based

Table 1.3. Mechanism Design Impossibility Results.

the result by establishing that EFF and (weak) BB (and thus also strong

BB) is impossible even with BNIC, if one also requires interim (and thus

also ex post) IR.18 An immediate consequence of these results is that we

can only hope to achieve at most two of EFF, IR and WBB in many market

settings.19

Kevin Roberts [Rob79] showed, for unrestricted valuations but quasi-

linear utilities, that the only social choice functions that can be implemented

in a dominant strategy equilibrium are the affine maximizers,

f(θ) = arg max
a∈A

∑

i

αivi(a; θi) + γ(a), (1.14)

for αi ∈ R≥0 and γ(a) ∈ R. The affine maximizers contain the EFF social

choice function, which is an affine maximizer for which αi = 1 for all i ∈ N

and γ(a) = 0 for all a ∈ A.

Groves mechanisms easily generalize to implement linear-affine maximiz-

ers, and so it would seem from Roberts’ result that Groves mechanisms are

the only DSIC mechanisms available with quasilinear preferences. Not so!

Roberts’ result crucially relies on the assumption that valuations are unre-

stricted. In fact, many domains impose considerable structure on agent val-

uations, for example with free disposal and no-externalities. To paraphrase

Lavi-Mu’alem-Nisan [LMN03] (LMN), “the assumption of unrestricted val-

uations is not without restriction.” LMN extend Roberts to hold in value

environments that can be described as order-based domains. This provides

additional structure and includes, for example, the domain of combinato-

18The centrality of the Groves mechanisms can be used to establish the Myerson-Satterthwaite
impossibility result; see Krishna and Perry [KP00].
19See Babaioff and Walsh [BW05] for a recent discussion of mechanisms for two-sided markets.

24 D. C. Parkes

rial auctions.20 LMN also requires independence of irrelevant alternatives

(IIA)21 and two other technical conditions.

In fact, Holmström [Hol79] (see also Green and Laffont [GL77a]) shows

that Groves mechanisms are the only available DSIC mechanisms when EFF

is required and when the valuation environment is smoothly connected.22

We defer to Holmström for the technical definition of a smoothly connected

domain. It suffices for our purposes to note that the primary example of

a smoothly connected domain is a convex domain. Valuation domain Θi

is convex if for any θi, θ
′
i ∈ Θi, and corresponding valuations vi(a; θi) and

vi(a; θ′i), then type θ′′i ∈ Θi such that

vi(a; θ′′i = λvi(a; θi) + (1 − λ)vi(a; θ′i), (1.15)

for all λ ∈ [0, 1]. This should not be confused with a statement that an

agent’s valuation function is convex. This is a property on the domain of

valuations, not on the valuations themselves.

Order-based domains are convex, and thus this characterization result en-

compasses CAs and multi-unit auctions, as well as other domains outlined

in Saks and Yu [SY05]. Single-minded combinatorial auctions (CAs)23 pro-

vide a domain that is smoothly-connected but not convex [CP05], and thus

Holmström’s result is also relevant here.

Remark: It is instructive to compare the possibility and impossibility re-

sults and understand the tradeoffs that are made. For instance, one can see

that BNIC is sometimes more useful than DSIC by contrasting the d’AGVA

positive result with the Green-Laffont impossibility result.

1.2.5 Exact Characterizations

In the light of the many possibility and impossibility results, it is also in-

teresting to note the kinds of exact characterizations that are available for

implementation in a dominant-strategy equilibrium. We will briefly sum-

marize some of what is known in this regard. All of what follows is for

quasilinear preferences.

20An order-based valuation domain is one in which ordinal constraints on agent valuations can be
used to characterize the domain of types. For example, free disposal says that any alternative a
in which agent i gets more goods than some alternative b has more value to agent i.
21A social choice function satisfies IIA if for any θ, θ′ ∈ Θ, if f(θ) = a and f(θ′) = b 6= a there
exists an agent i such that vi(a; θi) − vi(b; θi) 6= vi(a; θ′i) − vi(b; θ′i).
22Holmström’s result is incomparable with that of Roberts. Holmström is imposing the require-
ment of EFF while working with a more general set of valuations.
23In a single-minded CA each agent has a value for some particular bundle of items, with both
this value and the bundle in which it is “single-mindedly” interested, private to the agent.

Computational Mechanism Design 25

Unrestricted Valuation Domains From Roberts [Rob79], the only so-

cial choice functions that can be implemented in DSE are affine maximizers.

Moreover, we know that any affine maximizer can be implemented by a

simple modification to the Groves mechanism. Therefore, with this (restric-

tive) assumption of an unrestricted valuation domain the affine maximizers

provide an exact characterization of the social choice functions that can be

truthfully implemented.

Convex Valuation Domains Saks and Yu [SY05] establish that the

property of weak monotonicity (W-MON) (see also Bikhchandani et

al. [BCL+06]) is an exact characterization of the truthful social choice func-

tions when the valuation domain is convex.

Definition 1.16 A social choice function f satisfies W-MON if whenever

f(θi, θ−i) = a, and f(θ′i, θ−i) = b then vi(b; θ
′
i)−vi(a; θ′i) ≥ vi(b; θi)−vi(a; θi).

If the alternative changes from a to b for a change in agent i’s type then

alternative b should not be less preferred relative to a. It is straightforward

to show that W-MON is always necessary for a social choice function to

be truthfully implementable, irrespective of the valuation domain.24 The

contribution of Saks and Yu [SY05] is to show that W-MON is sufficient for

truthfulness in a convex domain. As noted above, this domain subsumes

the order-based preference domain [LMN03] and includes many practical

economic environments, including CAs, multi-unit auctions, and auctions

with marginal-decreasing values.

Single-Minded Valuation Domains A valuation domain is single-

minded if agents have single-minded valuations. If an agent has a single-

minded valuation, then its type, θi = (Li, wi) ∈ (A, R≥0), defines a valuation

function:

vi(a; θi) =

{

wi , if a �A,i Li

0 , otherwise
(1.16)

This valuation is defined with respect to a partial-order �A,i on alterna-

tives A, where a �A,i b if alternative a is at least as preferred to agent i as

alternative b. For example, in the setting of a single-minded CA, then the

alternatives {a : a �A,i Li} correspond to those allocations in which agent i

gets some bundle of items that she demands (and perhaps additional items

24To see this, suppose g(θi, θ−i) = a and g(θ′i, θ−i) = b and g is truthful, and has corresponding
agent-independent and admissible price function πi(a, θ−i). By admissibility, we have vi(a; θi) −
πi(a, θ−i) ≥ vi(b; θi) − πi(b, θ−i) and vi(b; θ′i) − πi(b, θ−i) ≥ vi(a; θ′i) − πi(a, θ−i). Combining,
this gives vi(b; θ

′
i) − vi(a; θ′i) ≥ vi(b; θi) − vi(a; θi), which is W-MON.

26 D. C. Parkes

as well, and irrespective of the allocation to other agents.) Define a partial-

order, �Θ,i on types, with

(θ′i �Θ,i θi) ⇔ (w′
i ≥ wi) ∧ (Li �A,i L′

i) (1.17)

Adopt fi(θi, θ−i) ∈ {0, 1} as shorthand for whether or not agent i is “sat-

isfied” (i.e. has value) for the allocation chosen by social choice function f .

Given this, we can define

Definition 1.17 A social choice function f is monotonic in a single-minded

domain if whenever fi(θi, θ−i) = 1 and θ′i �Θ,i θi, then fi(θ
′
i, θ−i) = 1.

This simplified form of monotonicity is necessary and sufficient for a truth-

ful social choice function (see Lehmann et al. [LOS02] for an early treat-

ment). The corresponding payment, that makes a mechanism with a mono-

tonic outcome rule truthful, is the critical value payment; where a satisfied

agent makes payment pi(θ) = minw′
i
s.t. fi(θ

′
i, θ−i) = 1, where θ′i = (Li, w

′
i).

One can also cast this result into a one-dimensional domain in which each

agent’s private information is a single number that defines its value for some

(known) set of alternatives.25 In such domains, the notion of monotonicity

simplifies to value-monotonicity [Mye81, AT01]. Writing f(w) for w ∈ Rn to

emphasize that the type profile is now a vector of numbers, a social choice

function f is value-monotonic if whenever fi(wi, w−i) = 1 and w′
i ≥ wi then

fi(w
′
i, w−i) = 1 (where fi(w) = 1 if and only if agent i is satisfied by the

outcome). This is necessary and sufficient for truthfulness.

Arbitrary Valuation Domains A generalized form of monotonicity,

known as cycle monotonicity, is necessary and sufficient for truthfulness

in discrete, but otherwise arbitrary, valuation domains. This early result

due to Rochet [Roc87] is fully general, and holds whatever the structure on

the domain (i.e. in all of the aforementioned settings).26 Rather than state

the condition formally we refer the interested reader to Gui et al. [GMV04]

and Lavi and Swamy [LS07] for a useful exposition. The generality of cycle

monotonicity comes at some cost: the concept can be quite unwieldy to

work with, and only recently has cycle monotonicity been used for practical

mechanism design [MV04, Voh07, LS07].

25An example of such a setting is the so-called “known single-minded CA” [MN02], where the
bundle in which an agent is interested in is known and only its value is private.
26By Roberts [Rob79], we know that cycle monotonicity is equivalent to affine-maximization
for unrestricted domains. On the other hand, as we shall see in the next section, when the
valuation domain imposes structure on agent valuations (e.g. in single-minded CAs), then cycle
monotonicity does not imply affine-maximization.

Computational Mechanism Design 27

1.3 Computation by the Center

Computational MD seeks to apply MD to a variety of real-world domains

and, in constructing actual mechanisms, needing to integrate the concerns

of computation and communication efficiency from computer science with

the incentives concern of economics. In this section we restrict our attention

to direct-revelation mechanisms, and consider the computational complex-

ity of the problem of computing the outcome of a mechanism. Nisan and

Ronen [NR01] introduced this agenda, requiring useful economic properties

as well as polynomial-time computability. Computational considerations are

especially interesting because they interact with incentive considerations.

For example, naively adopting an approximation algorithm within the VCG

mechanism leads to the unraveling of incentives.

1.3.1 Combinatorial Auctions

A canonical problem in CMD is that of implementing an efficient alloca-

tion in combinatorial auctions. CAs are of practical interest with many

applications (see Chapters 20–23 in Cramton et al. [CSS06]), and of theo-

retical appeal because the efficient allocation problem is NP-hard and also

inapproximable (under reasonable assumptions).

Before continuing we give a very brief introduction to complexity theory,

as it applies to optimization problems such as the winner determination

problem (WDP) in a CA. This exposition is based on that in Lehmann et

al. [LMS06]. An algorithm solves a problem in polynomial time if the run

time (measured in basic arithmetic operations) is bounded above by some

polynomial function of the size of the input. Complexity theory is applied

to decision problems, in which some instance is presented and the algorithm

must decide whether the instance has a particular property. For example,

“is there a feasible allocation with value at least $100” would be a decision

problem in the context of the WDP.

P is the class of decision problems that have a polynomial time algorithm.

It is common to consider problems in P to be tractable while problems

outside of P to be intractable. NP is the class of decision problems for

which there exists a polynomial time algorithm that can check the validity

of a property, when given as input the instance and a certificate for the

validity. Clearly NP⊇P. A decision problem is NP-hard if a polynomial

time algorithm would imply a polynomial time algorithm for all problems

in NP; the special case of a decision problem that is NP-hard and also

in NP is said to be NP-complete. Finally, an optimization problem whose

decision version is NP-complete is NP-hard. It is generally believed, but

28 D. C. Parkes

never proven, that P6=NP. The implication is that it is thought unlikely

that an NP-hard optimization problem can be solved in polynomial time.

Before stating the complexity result for the WDP in CAs we need to be

precise about the representation of the input. In a CA there is a set of

goods G, |G| = m, and each alternative a ∈ A corresponds to an allocation

of goods, denoted S = (S1, . . . , Sn), so that agent i receives bundles of goods

Si ⊆ G. An allocation is feasible if

Si ∩ Sj = ∅, ∀i, j ∈ N (1.18)

Let F(G) denote the set of feasible allocations. Since an agent’s value for

alternative a depends only on its own allocation we write vi(S; θi) to denote

agent i’s value for bundle S. Valuations are normalized, with

vi(∅; θi) = 0, (1.19)

for the empty bundle ∅ and satisfy free disposal, with

vi(S; θi) ≤ vi(T ; θi), (1.20)

for all S ⊆ T . The efficient allocation maximizes the total value to all agents,

i.e.

V (N) = max
S∈F(G)

∑

i

vi(Si; θi) (1.21)

The representation of the input to the WDP corresponds to the choice

of bidding language. Many bidding languages have been proposed; see

Nisan [Nis06] for a recent survey.

We consider the exclusive-or (XOR) bidding language. An agent’s valua-

tion vi(S; θi) is represented in the XOR language as a set of (bundle,value)

pairs,

θi = {(L1, w1), . . . , (Lk, wk)} ⊆ 2G × R≥0. (1.22)

The XOR semantics of the bidding language define valuation function,

vi(S; θi) = max[w : (L,w) ∈ θi, L ⊆ S], (1.23)

so that an agent’s value for a bundle S is the maximal value of all bundles

contained in L that are explicitly stated in the XOR bid.

Example 1.18 For instance, an XOR valuation {(AB, 10), (ABC, 15),

(D, 20)} indicates that an agent has value 10 for AB, 15 for any bundle

containing ABC that does not contain D, and 20 for any bundle containing

D. Note that an agent has value 20 and not 35 for ABCD.

Computational Mechanism Design 29

Given an XOR representation the problem of solving the WDP is NP-

hard. This can be established from its equivalence to the NP-hard weighted

set packing problem [RPH98]. This is true even if we restrict instances to

single-minded valuations (described in detail below), and even if every bid

has a value equal to 1 and every bidder only bids on bundles of size at

most 2 [LOS02, LMS06]. The winner determination problem is also inap-

proximable, meaning that no polynomial algorithm can have a competitive

ratio27 better than min(l1−ǫ,m1/2−ǫ) unless NP=ZPP,28 where l denotes the

total number of bundles in the XOR value representation across all agents,

and m is the number of items [H9̈9, San02, LOS02].

On the other hand, the picture is not all negative. The following three

kinds of computational results exist for the WDP in CAs:

• There exist polynomial-time algorithms for the WDP for restricted prob-

lems; e.g., for sub-classes of agent valuations such as substitutes valuations,

or when all bidders demand bundles of items that have a single-ordering

property, where there is a circular order can be imposed so that all bundles

contain a contiguous sequence of items [M0̈6, dVV03, RPH98]. There are

also better worst-case approximation guarantees for problems with valu-

ations that do not exhibit complements [DNS05, DS06].

• Heuristic algorithms, for instance local search algorithms or LP-rounding

approaches, can provide good empirical performance on some problem

distributions [HB00, ZN01].

• Algorithms have been developed that can solve large problems (with

tens of thousands of bids and items) to optimality in economically fea-

sible times. These exploit structure in bid representations, and lever-

age new advances in branch-and-cut technology for solving integer pro-

grams [NW99, dVSV07, ATY00, San06, SSGL05].

1.3.2 Case Study: Single Minded CAs

Despite the progress that has been made on the WDP in CAs, the problem

remains NP-hard and combinatorial auctions provide a nice setting in which

to understand some of the tensions that exist between DSIC and compu-

27The competitive ratio of an optimization algorithm B over a set of inputs X is defined as
minx∈X VB(x)/V ∗(x) where VB(x) denotes the value of the solution computed by B on input x
and V ∗(x) denotes the value of the optimal solution.
28ZPP is a sub-class of NP that consists of those decision problems for which there exists an
algorithm that can check the validity of a property, when given as input the instance and a
certificate for validity, in expected polynomial time. The question of whether NP=ZPP is also an
open problem, although it is generally believed that NP 6=ZPP.

30 D. C. Parkes

tational tractability in CMD. To illustrate these tensions we consider the

special case of CAs with single-minded valuations.

In defining these valuations we follow the outline for single-minded valu-

ations introduced in Section 1.2.5. In a single-minded CA, an agent’s type

θi = (Li, wi) defines a single interesting bundle, Li, such that:

vi(S; θi) =

{

wi , if S ⊇ Li

0 , otherwise.
(1.24)

As noted above, the WDP with single-minded bids remains NP-

hard [LOS02]. It is interesting, then, to consider a simple greedy approxima-

tion algorithm. The algorithm sorts the bids in decreasing order of wi/|Li|
and then performs a single pass in rank order, allocating a bid when it is

feasible given the bids already accepted. This algorithm is “greedy” because

it accepts bids in order of their per-item value, without consideration of how

these bids might fit with other bids.

Example 1.19 Given types θ1 = {(A, 10)}, θ2 = {(AB, 19)}, θ3 =

{(B, 8)}. The greedy algorithm orders the bids (1,2,3) and implements al-

location (A, ∅, B), with bid 2 not allocated because item A is allocated to

bid 1, which has a higher rank.

In what follows we consider a slight generalization to this algorithm, in

which the bids are ordered by wi/|Li|
b for some b > 0. Let gb(θ) denote the

allocation computed by a greedy algorithm, where b > 0 is the parameter

that defines the ranking function (with b = 1 above).

It is instructive to consider the effect of defining a VCG-based mechanism

in which this outcome rule gb is used to determine the outcome and also the

payments:

pi(θ) =
∑

j 6=i

vj(gb(θ−i); θj) −
∑

j 6=i

vj(gb(θ); θj) (1.25)

The payments defined so that agent i pays the negative externality that

it imposes on agents 6= i by its presence, given that decisions are made

according to the greedy algorithm.

Example 1.20 Consider again types θ1 = {(A, 10)}, θ2 = {(AB, 19)}, θ3 =

{(B, 8)}, and greedy algorithm with b = 1. We have gb(θ) = (A, ∅, B). Now

remove agent 1 to determine gb(θ−1) = (∅, AB, ∅), and remove agent 3 to

determine gb(θ−3) = (A, ∅, ∅). Agent 1’s payment is 19 − 8 = 11 and agent

3’s payment is 10−10 = 0. The mechanism is not IR for agent 1. Moreover,

it is not truthful. Suppose agent 2 bids 30 instead of 19. Then the outcome

Computational Mechanism Design 31

is (∅, AB, ∅) and its payment is 18 − 0 = 18 since g)b(θ−2) selects outcome

(A, ∅, B).

We see the tension between truthful and tractable mechanisms. One can-

not just naively substitute an approximation algorithm into the VCG mech-

anism. More generally, an approximation algorithm must be maximal in

range for truthfulness to be retained [NR00], meaning that it must be opti-

mal for some a priori restricted range of alternatives.

In this case there is a simple solution to the apparent conundrum. Rather

than use a VCG-based method to define the payment we can collect as

payment from a winning agent the smallest bid that the agent could have

made and still won [LOS02]. This is the critical-value payment introduced

in Section 1.2.5.

Let gb,i(θ) = 1 when agent i is successful given type reports θ and gb,i(θ) =

0 otherwise. The payment is defined as:

Definition 1.21 (critical value payment) Given agent i’s report is

(Li, wi), reports θ−i from agents 6= i, and greedy allocation rule gb, the

critical value payment collected from a winning agent i is

pi(Li, θ−i) = min{w′
i ≥ 0 : θ′i = {(w′

i, S)}, gb,i(θ
′
i, θ−i) = 1} (1.26)

Example 1.22 In the earlier example, with θ1 = {(A, 10)}, θ2 =

{(AB, 19)}, θ3 = {(B, 8)}, and parameter b = 1, we implement outcome

(A, ∅, B) and collect payments p1(θ) = 19/2 = 9.5 (since bid 1 must rank

above bid 2 to win) and p3(θ) = 0 (since bid 3 would be allocated for any

bid value.)

It is easy to check for this example that the new payment rule removes

any incentive for any of the agents to deviate and misreport their private

type. In particular, agent 2 can no longer do better by over-reporting his

value because if he wins then he pay 20 (since this is the smallest bid value

at which his bid will be ranked above that of agent 1).

The LOS mechanism is truthful because the greedy allocation rules are

monotonic, with gb,i(θi, θ−i) = 1 ⇒ gb,i(θ
′
i, θ−i) = 1, ∀θ′i ≻ θi, where

θ′i = (L′
i, w

′
i) ≻ θi = (Li, wi) if and only if L′

i ⊆ Li and w′
i > wi.

Theorem 1.23 [LOS02] The LOS mechanism is truthful for all monotonic

greedy outcome rules. When parameter b = 1/2 then the mechanism achieves

competitiveness m1/2 with respect to efficiency, which is the best achievable

across all polynomial-time mechanisms for this problem (unless P=NP), and

when m ≤ n2.

32 D. C. Parkes

Proof Fix θ−i and consider agent i with type (Li, wi). Case (a): agent i

wins. First, fix some report L̂i. Agent i does not want to misreport wi

because its payment is independent of wi. Second, fix report ŵi = wi and

consider a misreport L̂i 6= Li. A report L̂i + Li is not useful because the

agent is single-minded. But then, a report L̂i ⊃ Li only leads to a higher

payment. This is because of monotonicity. If pi(L̂i, θ−i) < pi(Li, θ−i) for

some L̂i ⊃ Li then allocation rule gb fails monotonicity because agent i would

win with report (L̂i, pi(L̂i, θ−i)+ ǫ) but lose with report (Li, pi(L̂i, θ−i)+ ǫ),

for pi(L̂i, θ−i) < pi(L̂i, θ−i) + ǫ < pi(Li, θ−i). Case (b): agent i loses. The

only interesting misreports are (L̂i, ŵi) with L̂i ⊇ Li and it is again WLOG

to focus on L̂i = Li because of monotonicity, since the critical-value payment

increases with larger bundles. Fixing L̂i = Li, agent i cannot win with a bid

ŵi < wi by monotonicity, and will pay more than its true value if it wins

because the critical value pi(Li, θ−i) > wi.

The proof that the competitive ratio is m1/2 when b = 1/2, and that this

is tight, is omitted in the interest of space.

Remark. The LOS mechanism stands in contrast to the characterization

result of Roberts [Rob79], which holds that in unrestricted valuation do-

mains the only social choice functions that can be truthfully implemented

are affine maximizers. The greedy allocation rules gb for b > 0 are not

linear-affine maximizers.

1.3.3 Price-Based Characterization

Price-based characterizations provide another way to understand why a

mechanism is truthful, and provide a nice complement to the approaches

based on monotonicity in that the characterization is simple to state and

fully general. The following result is something of a “folk theorem” (and is

recently stated, e.g. in [Seg03, BGN03, LMN03, Yok03]):

Theorem 1.24 A direct revelation mechanism, M =<g, p>, is truthful (or

strategy-proof) if and only if there is a corresponding (agent-independent)

price function πi : A × Θ−i → R, with the property that:

(i) (agent-independent prices) the mechanism collects payment, pi(θ) =

πi(g(θ), θ−i), i.e. the price defined by some agent-independent price

on the alternative selected by the outcome rule.

(ii) (admissible outcome rule) the alternative selected by the mechanism

maximizes the utility to every agent given the price function, i.e.

g(θ) ∈ arg maxa∈A[vi(a; θi) − πi(a, θ−i)], for all i and all θ.

Computational Mechanism Design 33

Proof (⇐) Agent i cannot change prices πi and maximizes its utility

vi(a; θi) − pi(θ) by reporting its true type θi by admissibility. (⇒) Given

truthful M =<g,p >, construct πi(a, θ−i) = pi(θ
′
i, θ−i) where g(θ′i, θ−i) = a

for some θ′i and πi(a, θ−i) = ∞ otherwise. For agent-independence, suppose

towards a contradiction that g(θ) = g(θ′i, θ−i) = a, but pi(θ) 6= pi(θ
′
i, θ−i),

for some θ′i 6= θi. Without loss of generality, suppose pi(θ) > pi(θ
′
i, θ−i).

Then agent i should declare θ′i. This is a contradiction with truthful-

ness. For admissibility, suppose towards a contradiction that g(θ) = a and

vi(a; θi)− πi(a, θ−i) < vi(b; θi)− πi(b, θ−i) for some θ and some b 6= a. Then

agent i should declare θ′i for which g(θ′i, θ−i) = b, which is a contradiction

with truthfulness.

The sufficiency of an agent-independent price function and an admissible

allocation rule for truthfulness is easy to see. The intuition is that of the

familiar act of shopping in a supermarket: the mechanism fixes a price

on all alternatives a ∈ A based on the reports of other agents, and then

promises to choose the alternative that maximizes an agent’s utility based

on the reported valuation function vi(a, θ′i) of the agent. The agent should

report its true valuation so that the mechanism selects an alternative that

maximizes its utility.

Example 1.25 The VCG mechanism can be interpreted as a price-based

mechanism. For instance, in the case of CAs, the agent-independent price

function that is admissible with respect to the efficient outcome rule g is:

πi(S, θ−i) = V (N \i,G) − V (N \i,G\Si). (1.27)

Where V (N \ i,G) = maxS∈F(G)

∑

j 6=i vj(Sj ; θj) and V (N \ i,G \ Si) =

maxS∈F(G\Si)

∑

j 6=i vj(Sj; θj). We leave it is an exercise to verify that this

price function corresponds to the payment made by an agent in the VCG

mechanism (i.e., with pi(θ) = πi(S
∗
i , θ−i) where S∗ is the efficient alloca-

tion), and that it maximizes the utility of an agent (i.e., with allocation S∗

maximizing each agent’s utility given this price function).29

This price-based approach has been quite useful in developing tractable

and truthful mechanisms in other domains.

Consider the following examples:

Multi-item CAs. Bartal et al. [BGN03] consider the multi-item CA prob-

lem in which there are multiple copies of each item and each bid is for a

29Yokoo [Yok03] refers to this framework, in the context of CAs, as the “price-oriented rationing
free” (PORF) approach.

34 D. C. Parkes

small number of items. A random ordering is imposed on agents and each

agent faces prices on items that are defined in terms of reports from pre-

ceding agents. In the case of agents that demand at most one unit of an

item and a supply with k duplicates of each item, they design a polynomial-

time and truthful mechanism with a worst-case km1/(k−2)-approximation for

efficiency.

Digital goods. Price-based methods have led to the development of prior-

free revenue-competitive auctions for digital goods (i.e. with unlimited sup-

ply). The results stand in contrast to those in optimal auction design that

leverage prior information on type distributions. A particularly influential

idea is that of using some subset of agents (randomly sampled) to define

prices (or alternatively a revenue target) for another subset of agents. As

long as no agent in the sample set faces the prices constructed from its own

set then the prices are agent-independent. Fiat et al. [FGHK02] and Gold-

berg et al. [GHK+06] have pioneered this approach; see also Segal [Seg03]

and Baliga and Vohra [BV03].

Truthful CAs. Dobzinski et al. [DNS06] develop a truthful polynomial-

time mechanism for the general CA problem with an m1/2-approximation for

efficiency. The idea of sampling a subset of agents to define prices is adopted

for this purpose, and agent valuations are queried via “demand queries”

(see Section 1.4). The randomized mechanism constructs a partition of

agents into three sets. The first set of agents is used to estimate the (agent-

independent) prices that are first used to parameterize the reserve price in

a second-price auction on the master bundle G of goods to the second set of

agents, and then within a fixed-price auction with random ordering to the

third set of agents.

Budget constraints. Price-based methods have also been adopted to

achieve competitive efficiency and revenue results in the presence of budget

constraints [BCI+05, Abr06], where the truthfulness of the VCG mechanism

breaks down because utility functions are no longer quasilinear.

1.3.4 Working with Cycle Monotonicity

Cycle monotonicity is necessary and sufficient for the truthfulness of a social

choice function. Gui et al. [GMV04] (and recently Vohra [Voh07]) demon-

strate that this can be used to reduce the problem of truthful MD to one of

Computational Mechanism Design 35

optimization on a network. This opens up the possibility of applying com-

binatorial optimization algorithms in the purpose of automated mechanism

design (see Conitzer and Sandholm [CS03]). Lavi and Swamy [LS07] provide

a general construction, in a scheduling domain, for adapting an approxima-

tion algorithm to make it satisfy cycle monotonicity and also to compute

the required payments. Although there are as yet just a few results, it seems

that working with this general notion of cycle monotonicity (and its graph

theoretic interpretation) may hold promise for CMD.

1.4 Efficient Preference Elicitation

The direct revelation mechanisms that we have studied so far, such as

the VCG mechanism and the LOS mechanism, are completely centralized.

Agents report all of their private information to the center. The center

computes an outcome and reports the outcome (and payments) back to the

agents.

This computational architecture is unappealing in domains for which it

is costly for agents to report their complete type to a center. Consider, for

instance, the use of a VCG mechanism to auction the right to operate bus

lanes in London [CP06]. An agent would be required to report its value

for every possible combination of possible bus lanes, with each combination

potentially entailing a new business plan. This is unreasonable, not only

for reasons of communication complexity but also because of the cost of de-

termining valuations. Similar observations can be made in many business

settings: although fitting within the private values model (so that informa-

tion about the values of other firms may be irrelevant in determining a firm’s

own value), it can be a costly process to determine value for different out-

comes; e.g., requiring business meetings, information gathering, or solving

complex optimization problems [San93, CJ07, Par05].

In this section, we consider indirect mechanisms, such as ascending price

auctions, and mechanisms that interact with agents through multiple rounds

of preference elicitation. The problem of CAs, paradigmatic in CMD, will

continue to attract much of our attention. Indirect mechanisms, such as

ascending price CAs, have two main computational advantages over direct

mechanisms:

(i) They can allow agents to avoid unnecessary valuation effort and are

often able to implement a social choice function without agents re-

porting (or even needing to know) their exact value for all possible

alternatives. For instance, the winning agent in a single-item ascend-

36 D. C. Parkes

ing auction does not need to know its exact value for the item, only

that its value is greater than the ask price in the last round of the

auction. Similarly, the losers do not need to know their exact value,

but only that their value is less than the price in the round in which

they drop out.

(ii) They can distribute some computation to agents. We see this most

clearly with ascending auctions that can be interpreted as primal-dual

or subgradient algorithms: in responding to prices in each round of

the auction, agents are performing part of the computation that is

required to check for complementary-slackness between primal and

dual solutions and thus for the correct implementation of the social

choice function [Par01].

We first identify the central role of competitive equilibrium (CE) prices in

characterizing the minimal information that must be elicited from agents

in CAs for the center to determine the efficient allocation, and also VCG

payments. This leads to two main paradigms for the design of useful, indirect

CAs: (a) ascending price auctions that support “straightforward bidding”

in an ex post NE and terminate with CE prices; (b) an approach in which

learning theory is adopted to provide polynomial query complexity, with

demand and value queries used to elicit agent preferences.

1.4.1 Case Study: Role of Competitive Equilibrium in CAs

Consider indirect mechanisms for CAs, and let EFF(θ) denote the set of

efficient allocations for type profile θ. We are interested in indirect mech-

anisms, M =< Σ, g, p >, that implement f(θ) ∈ EFF(θ), for all θ, in an

ex post Nash equilibrium. That is, we require g(s∗(θ)) ∈ EFF(θ) for all

θ ∈ Θ, where s∗ is an ex post Nash equilibrium strategy profile. Call such

an indirect mechanism an efficient mechanism.

In the equilibrium of an efficient mechanism, the messages sent by agents

in strategy s∗(θ), for any θ, must provide enough information about types to

define an efficient allocation. Consider message space W . Following Nisan

and Segal [NS06], let µ : Σ × θ → W define the messages µ(s∗, θ) ∈ W sent

by agents to the mechanism for strategy profile s∗ and type profile θ. Let

µ−1(s∗(θ)) ⊆ Θ denote the set of types that are consistent with messages

µ(s∗, θ), defined as:

µ−1(s∗(θ)) = {θ′ : µ(s∗, θ′) = µ(s∗, θ)} (1.28)

An efficient mechanism must have the property that, for all θ ∈ Θ, there

Computational Mechanism Design 37

is some feasible allocation T ∗ ∈ F(G), for which:

∀θ̂∈µ−1(s∗(θ)) =⇒ T ∗ ∈ EFF(θ̂) (1.29)

In words, there must always be at least one feasible allocation that is

efficient for all types that are possible given the messages reported by agents

in equilibrium.

In fact, given that our interest is in implementing the efficient allocation

in an ex post Nash equilibrium, and also introducing the goal of maximizing

revenue subject to IR constraints, we know from Theorem 1.12 that we must

terminate with VCG payments. Thus, an efficient and revenue-maximal and

IR mechanism must have the property that, for all θ ∈ Θ, there is some

feasible allocation T ∗ ∈ F(G) and payments p ∈ Rn, for which:

∀θ̂∈µ−1(s∗(θ)) =⇒ (T ∗, p) ∈ VCG(θ̂), (1.30)

where VCG(θ) ⊆ F(G) × Rn denotes the set of efficient allocations and

corresponding VCG payments for types θ.

The following simple example illustrates that it is possible to design in-

direct mechanisms that terminate with the VCG outcome without learning

complete information about agent types.

Example 1.26 Consider a “staged Vickrey auction” (reminiscent of the

eBay proxy auction). In each round an agent can refine a lower and up-

per bound on its value, which is maintained by the center. The auction

maintains an ask price equal to the current second-highest lower bound and

the agent with the highest lower bound (breaking ties at random) as the

provisional winner. In each round, an agent must increase its lower bound

above the ask price or decrease its upper bound to be no greater than the

ask price. Suppose all values are integers. The auction terminates when

only one agent is still bidding, that agent pays the final ask price. An ex

post Nash equilibrium is for each agent to increase its lower bound by 1

while its value is greater than the current ask price but not the provisional

winner, and stop bidding by lowering its upper bound otherwise. Consider

an instance with 3 bidders, and types that define their values for the item.

When θ1 = 10, θ2 = 6, θ3 = 4 the mechanism might terminate with bounds

[7, 12], [6, 6] and [4, 4] for agents 1, 2 and 3 respectively. This is the infor-

mation set µ−1(s∗(θ)) in this example. Agent 1 wins for 6, which is the

outcome of the Vickrey auction. The mechanism never learns the true value

of agent 1.

A natural goal that arises in indirect mechanism design is to characterize

38 D. C. Parkes

the minimal amount of information that must be elicited by any mechanism

to determine the efficient allocation. This question can be asked both in

the context of cooperative agents and self-interested agents. Competitive

equilibrium (CE) price theory will provide a nice response to this question

and lead, in turn, to natural algorithms for indirect mechanisms.

Let qi(S) ∈ R≥0 define the price to agent i on bundle of goods S ⊆ G.

Each agent can face individualized (non-anonymous) prices, so that qi(S) 6=

qj(S) for i 6= j, and non-linear prices, so that qi(S) 6= qi(T) + qi(T
′) where

(T, T ′) partition the goods in S. We require that prices are normalized, so

that qi(∅) = 0 and monotone, so that qi(T) ≥ qi(S) for T ⊇ S. The language

adopted to define prices is a separate issue. Note that it is not necessary to

explicitly enumerate the price on all bundles.30

Let E(N) = {θ1, . . . , θn;G} denote an economy, comprised of a set of

agents N = {1, . . . , n} and a single seller with G goods.

Definition 1.27 (Demand set) Given prices q = (q1, . . . , qn), define

agent i’s demand set as:

Di(q; θi) = {S : vi(S; θi) − qi(S) ≥ max
T⊆G

[vi(T ; θi) − qi(T)]}, (1.31)

where Di(q; θi) = {∅} if vi(S; θi) < qi(S) for all ∅ 6= S ⊆ G.

Definition 1.28 Prices q = (q1, . . . , qn) are competitive equilibrium (CE)

prices for economy E(N) if there is an efficient allocation, S∗, for which:

(i) Bundle S∗
i ∈ Di(q; θi) for all i ∈ N

(ii) Allocation S∗ ∈ arg maxS∈F(G)

∑

i∈N qi(Si)

Condition (1) states that the bundle is in the demand set of each agent

at the prices. Condition (2) states that the allocation is in the supply set of

the seller at the prices, i.e. it maximizes the seller’s revenue at the prices.

Thus, supply equals demand.

Given that prices can be both non-anonymous and non-linear it is easy

to see that CE prices always exist. For instance, the (trivial) prices qi(S) =

vi(S; θi) for every agent i are CE prices [BO02].

Definition 1.29 Prices q = (q1, . . . , qn) are universal competitive equi-

librium (UCE) prices if they are CE prices and if prices q−i =

(q1, . . . , qi−1, qi+1, . . . , qn) are CE prices for marginal economy E(N \ i), for

every agent i.

30For example, an XOR language is adopted for prices in the iBundle auction [PU00] and the
representation of prices is no larger than the number of bundles on which agents have placed bids.

Computational Mechanism Design 39

agent ∅ {A} {B} {A, B}

1 0 3 0 3
2 0 0 6 6
3 0 0 2 4

Table 1.4. Example valuations to illustrate UCE prices.

UCE prices always exist. For instance, the (trivial) prices qi(S) = vi(S; θi)

for every agent i are UCE prices.

Example 1.30 In the single item example, with θ1 = 10, θ2 = 6, θ3 = 4, a

price q ∈ [6, 10] is an (anonymous) CE price because agent 1 will demand

the item, agents 2 and 3 will have ∅ in their demand sets, and the seller will

want to sell the item. However, only prices q ∈ [4, 6] are CE for the marginal

economy E({2, 3}). Thus, the only (anonymous) UCE price in the example

is q ∈ [6, 10] ∩ [4, 6] = {6}.

Example 1.31 Consider an example in which there are two goods A,B

and three agents with valuations defined as in Table 1.4, A UCE price vec-

tor is the following: q1(∅) = q2(∅) = q3(∅) = 0, q1({A}) = 2, q1({B}) =

0, q1({A,B}) = 2, q2({A}) = 0, q2({B}) = 4, q2({A,B}) = 4, q3({A}) = 0,

q3({B}) = 2 and q3({A,B}) = 4. CE price conditions can be verified for

the efficient allocation (A,B, ∅) in E({1, 2, 3}), allocation (∅, B,A) at prices

q−1 = (q2, q3) in E({2, 3}), allocation (A, ∅, B) at prices q−2 = (q1, q3) in

E({1, 3}) and allocation (A,B, ∅) in E({1, 2}) at prices q−3 = (q1, q2).

Theorem 1.32 [LCP05] Any mechanism that implements the efficient al-

location, and satisfies IR while maximizing revenue to the seller (i.e. an

indirect VCG mechanism) also elicits enough information to determine uni-

versal CE prices.

Thus, although it is not necessary to elicit exact and complete type infor-

mation from agents to determine the outcome of the VCG mechanism in an

indirect mechanism, one must elicit enough information to determine a set

of UCE prices.3132

31Nisan and Segal [NS06] (and Parkes [Par02] for a more restricted setting) first showed that CE
prices are necessary for EFF. See Lahaie et al. [LCP05] and Segal [CSS06, chapter 11] for a more
detailed treatment of this result.
32This is not to say that price-based indirect mechanisms, which query agents by asking them
to respond to prices with best-response bundles, are optimal for elicitation. For example, Nisan
and Segal [NS05] demonstrate that there are CA instances that require an exponential number

40 D. C. Parkes

A universal price equilibrium is also sufficient to compute VCG payments.

Given UCE prices q and an efficient allocation S∗, the VCG payments can

be computed as:

pi(θ) = qi(S
∗
i) − [Πs(q) − Πs(q−i)], (1.32)

where Πs(q) = maxS∈F(G)

∑

i qi(Si) (i.e., the maximal possible revenue

to the seller given goods G to sell, prices q, and matching demand) and

Πs(q−i) = maxS∈F(G)

∑

j 6=i qj(Sj) (i.e. the maximal possible revenue to

the seller given goods G to sell, prices q−i = (q1, . . . , qi−1, qi+1, . . . , qn), and

matching demand).

Example 1.33 In the single item example with θ1 = 10, θ2 = 6 and θ3 = 4

and UCE price q1 = q2 = q3 = 6, the VCG payment to agent 1 is 6−[Πs(q)−
Πs(q−1)] = 6− (6−6) = 6 since q = (6, 6, 6) and q−1 = (6, 6) and the seller’s

maximal revenue is 6 for both sets of prices.

Example 1.34 In the two good, three seller example in Table 1.4, with

UCE prices as defined above we compute the VCG payments as p1(θ) =

q1({A}) − [Πs(q) − Πs(q−1)] = 2 − (6 − 4) = 0, p2(θ) = q2({B}) − [Πs(q) −
Πs(q−2)] = 4−(6−4) = 2 and p3(θ)({∅})−[Πs(q)−Πs(q−3)] = 0−(0−0) = 0.

The impact of this result is to identify price-based indirect mechanisms

as a particularly interesting class of indirect mechanisms to implement the

efficient allocation in CAs. There is by now a large literature on ascend-

ing price CAs and a smaller literature on the use of price-based queries in

more general elicitation mechanisms. We will discuss each in turn. For

a more complete survey on work in elicitation for CAs see Sandholm and

Boutilier [CSS06, chapter10].

1.4.2 Ascending Price CAs

An ascending price CA maintains (non-anonymous, non-linear) prices pt in

each round and a provisional allocation St. A typical ascending price auction

maintains prices qt = (qt
1, . . . , q

t
n) in each round, and proceeds as follows:

(i) Collect (perhaps untruthful) demand sets Di(q
t) ⊆ 2G from each

agent.

(ii) Solve the winner determination problem to maximize revenue given

bids.

of demand queries to determine the efficient allocation while there is a fast efficient elicitation
protocol.

Computational Mechanism Design 41

(iii) Check termination conditions. Increase prices if the termination con-

ditions are not met.

Some important design questions in formulating an ascending price auc-

tion include: the method used to increase prices, the method used to de-

termine termination, and the activity rules that are imposed to restrict the

feasible strategy space, e.g. by requiring active participation of bidders

across rounds. See Parkes [CSS06, chapter2] for a recent survey.

It has proved very useful to adopt an optimization-based approach to the

design of rules for increasing prices and checking termination. With this

view, an ascending price auction– when coupled with equilibrium bidding

strategies –corresponds to a primal-dual algorithm to solve the efficient al-

location problem [dVSV07, PU00].33

Straightforward bidding, in which an agent truthfully reports its demand

set in each round of the auction given current prices, can be made an ex

post Nash equilibrium by terminating with VCG payments.

In some problems there is a correspondence between minimal CE prices

(the prices that generate the smallest revenue to the seller across all possible

prices) and the VCG payments; e.g., when agents have substitutes but not

complements valuations [AM02] the minimal CE prices, q
i

are such that

q
i
(S∗

i) = pi(θ) for all type profiles, θ, where pi(θ) is the VCG payment by

agent i. In such an environment, one can design an efficient, ascending-price

CA by defining “minimal price increases” so that the auction terminates at

this minimal CE price vector. The ascending-price (single item) auction in

Section 1.2.2 provides a simple example of such an auction.

Alternatively, one can modify the dynamics of the auction to ensure termi-

nation with UCE prices, from which VCG payments can then be determined

via the adjustment defined in Eq. (1.32). Thus the idea is slightly differ-

ent: the price dynamics can overshoot the minimal CE price vector but the

auction can nevertheless terminate with the VCG payments by computing

discounts from the final prices.

To illustrate this approach we describe the class of uQCE-invariant auc-

tions [MP07], which maintain universal quasi-CE prices (uQCE) in every

round. Informally, prices qt are uQCE when demand is at least supply in the

main economy and also in each of the marginal economies. uQCE-invariant

auctions work as follows:

33First one formulates a linear program for the allocation problem. An auction is then interpreted
as a primal-dual or subgradient algorithm. The auction maintains a feasible primal and dual solu-
tion in each round: the allocation, and the current prices. Prices are increased until termination
conditions are satisfied, which establish complementary slackness conditions and demonstrate that
the primal and dual solutions are optimal. On termination, the primal solution defines an efficient
allocation and the dual solution defines CE prices.

42 D. C. Parkes

(i) In round t:

(a) collect demand sets at prices qt

(b) if qt are UCE, then stop

(c) else, select some set of buyers U t ⊆ B+(qt), from the set of

buyers still bidding, that will see price increases

(d) qt+1
i (S) := qt

i(S) + ǫ for all i ∈ U t, and all S ∈ Di(q
t)

(ii) On termination in round T ,

(a) implement the final allocation

(b) collect payments qT
i (Si) − [Πs(q) − Πs(q−i)] from each agent.

Proposition 1.35 [MP07] uQCE-invariant auctions terminate with UCE

prices, and thus the VCG outcome, when agents follow straightforward

strategies.

Together with appropriate activity rules this makes straightforward bid-

ding an ex post NE of any uQCE-invariant auction. Activity rules must

be defined to restrict the feasible strategy space to that which supports

straightforward bidding (for some, perhaps untruthful type θ̂i 6= θi) but no

other strategies.

A canonical example is given by the subgradient-based adjustment dy-

namics of iBundle, Extend and Adjust [MP07] (iBEA), which builds on the

iBundle [PU00] auction. In iBEA, the auction chooses in each round a

“pivot” marginal economy (or main economy) that is not yet in CE. The

WDP for this economy is solved, and the adjusted bidders defined as the

losing bidders that are still bidding. The auction terminates when there are

no pivot economies, with the adjusted price giving the VCG outcome.

Example 1.36 [MP07] As an example we illustrate the progress of iBEA

on the CA problem in Table 1.4. In Table 1.5, each row provides the prices

on each bundle to each buyer, and the seller revenue in the main economy

and in each marginal economy. The bid of each buyer is indicated with

parentheses. Comments in each round indicate which allocation is selected

to solve the WDP. The main economy E(N) is adopted as the initial pivot

economy, and retained as the pivot economy until round 7 at which point

the prices are CE for E(N). They are also CE for E({1, 3}) and E({1, 2}) in

this round. So, pivot economy E({2, 3}) is adopted for the final two rounds,

at which point iBEA terminates with a UCE price vector.

One might wonder whether non-anonymous and non-linear prices are nec-

essary to implement an efficient allocation. Blumrosen and Nisan [BN05]

Computational Mechanism Design 43

Buyer 1 Buyer 2 Buyer 3 Revenue
{1} {2} {1, 2} {1} {2} {1, 2} {1} {2} {1, 2} in all

Values → 3 0 3 0 6 6 0 2 4 economies

1 (0) 0 (0) 0 (0) (0) 0 0 (0) {0,0,0,0}
Pivot: E(N). WD selects {{1}, {2}, ∅}.

2 (0) 0 (0) 0 (0) (0) 0 0 (1) {1,1,1,0}
Pivot: E(N). WD selects {∅, ∅, {1, 2}}.

3 (1) 0 (1) 0 (1) (1) 0 0 (1) {2,1,1,2}
Pivot: E(N). WD selects {{1}, {2}, ∅}.

4 (1) 0 (1) 0 (1) (1) 0 (0) (2) {2,2,2,2}
Pivot: E(N). WD selects {{1}, {2}, ∅}.

5 (1) 0 (1) 0 (1) (1) 0 (1) (3) {3,3,3,2}
Pivot: E(N). WD selects {∅, ∅, {1, 2}}.

6 (2) 0 (2) 0 (2) (2) (0) (1) (3) {4,3,3,4}
Pivot: E(N). WD selects {{1}, {2}, ∅}.

7 (2) 0 (2) 0 (2) (2) (0) (2) (4) {4,4,4,4}
CEs of economies E(N), E(N−2), and E(N−3) are reached.
Note: Buyer 3 also demands ∅ from this round onwards.
{{1}, {2}, ∅} is an efficient allocation of E(N).
Pivot: E(N−1). WD selects {∅, ∅, {1, 2}}.
Buyer {2} is unsatisfied.

8 (2) 0 (2) 0 (3) (3) (0) (2) (4) {5,4,4,5}
Pivot: E(N−1). WD selects {∅, ∅, {1, 2}}.
Buyer {2} is unsatisfied.

9 (2) 0 (2) 0 (4) (4) (0) (2) (4) {6,4,4,6}
An UCE price vector is reached.
Final allocation: {{1}, {2}, ∅}; Final payment: (0, 2, 0).

Table 1.5. Progress of iBEA for an example

show that they are necessary for general CA instances, although there

are classes of problems (such as additive valuations) for which an auction

such as iBEA needs an exponential price space while auctions with lin-

ear prices (q(S) =
∑

j∈S qj) need only m prices. In addition, Mishra and

Parkes [MP07] show that non-anonymous and non-linear prices are required

for “natural” ascending auctions even for substitutes valuations. See also

Gul and Stacchetti [GS00].

44 D. C. Parkes

1.4.3 Price-Based Elicitation via Learning Theory

Elicitation for CAs can also be addressed by drawing an analogy with meth-

ods in computational learning theory (CLT) [ZBS03, BJSZ04].

We will consider a general method to convert learning algorithms into

elicitation algorithms [LP04]. Whereas learning can posed as the problem

of determining the exact valuation function of an agent, the problem of

elicitation is different. The goal in elicitation is to learn just enough about

the valuations of agents to be able to determine the efficient allocation, and

(in order to provide incentive properties) the VCG payments.

The use of learning algorithms provides another benefit in application

to elicitation, and even if exact valuations are eventually learned. This is

because learning algorithms work with simple “oracle” models of the ques-

tions that an agent can answer and do not assume that an agent already

knows how to represent its valuation in a given representation class, such as

a bidding language. The relevant measure of this is the “query complexity,”

which is often stated in terms of the minimal representation of a valuation

function, given a language.

We first summarize the model of exact query learning. In exact query

learning from membership and equivalence queries, the goal is to identify

an unknown target function h : X → Y , from some class, via queries to

an oracle. A representation class C is adopted to encode the functions.

For instance, the function could be a monotone Boolean function and the

representation class the monotone DNF formulae.

The two kinds of queries in the learning context are:

• Membership query. The learner presents some x and the oracle replies

with h(x).

• Equivalence query. The learner presents its current estimate, the manifest

hypothesis h̃ and the oracle either replies ‘YES’ if h̃ = h, or returns a

counterexample x such that h̃(x) 6= h(x).

Definition 1.37 (efficient learnability) Representation class C can be

polynomial-query exactly learnable from membership and equivalence

queries if there is an algorithm that can determine a representation h̃ ∈ C,

for which h̃(x) = h(x) for all x ∈ X, in a number of queries that is polynomial

in m = dim(X) and size(h), which is the minimal size of h in representation

class C.

Thus, a class can be efficiently learned if, for all possible functions that

can be represented in the class, there is an algorithm that asks a small (i.e.

Computational Mechanism Design 45

Learning Elicitation

Function class C Valuation classes, V1, . . . , Vn

e.g. monotone Boolean functions e.g. free disposal
Representation class C Bidding languages L1, . . . , Ln

e.g. monotone DNF formulae e.g. XOR bids
Target function h : X → Y Valuations vi : 2G → R≥0

boolean X , dim(X) = m m goods
boolean or real Y

Membership query Value query
query: x, resp.: h(x) ∈ Y query: S ∈ 2G, resp.: vi(S) ∈ R≥0

Equivalence query Demand query

query: hypothesis h̃ query: S ∈ 2G, prices qi : 2G → R≥0

resp.: ‘YES,’ if resp.: ‘YES,’ if

h̃(x) = h(x), ∀x ∈ X Si ∈ arg maxS∈2G [vi(S) − qi(S)]

else, some x′ s.t. h̃(x′) 6= h(x′) else, some S′ s.t.
vi(S

′) − qi(S
′) > vi(Si) − qi(Si)

Table 1.6. Computational Learning Theory vs. Elicitation

polynomial) number of queries in the size of the minimal possible represen-

tation of the function. If the function is simple to represent then it should

be simple to learn. Learning theory is interested in understanding the query

complexity of representation classes and developing efficient algorithms.

We now compare query learning with that of elicitation. See Table 1.6. To

enable as direct a comparison as possible we suppress the semantics of type

and deal directly with valuation classes, which correspond to type classes,

and valuation functions which correspond to valuations defined for some

particular type.

In efficient elicitation from value and demand queries, the goal is to iden-

tify an efficient allocation for some class of valuations vi : 2G → R≥0, via

queries to agents. In place of a representation class is a bidding language,

L, which describes an instance of the class.

The two kinds of queries in the elicitation context are:

• Value query. The elicitation algorithm presents some bundle S to an agent

and the agent is asked to reply with its value vi(S).

• Demand query. The elicitation algorithm presents a bundle Si and prices

qi to an agent and the agent is asked to reply ‘YES,’ if the bundle is in

its demand set at the prices, or return a counterexample S′ such that

vi(S
′) − qi(S

′) > vi(Si) − qi(Si) otherwise.

Definition 1.38 (efficient elicitation) The valuation classes V1, . . . , Vn

46 D. C. Parkes

are said to be polynomial-query elicited from value and demand queries

if there is an algorithm that can determine an efficient allocation S∗ ∈
arg maxS∈F(G)

∑

i vi(Si) for any (v1, . . . , vn) ∈ V1 × . . . × Vn in a number

of queries that are polynomial in the number of goods m, the number of

agents n, and maxi size(vi), which is the maximum size across all agents of

the minimum representation of each agent’s valuation function.

This definition differs from that for query learning in that the goal is to

determine the efficient allocation, which need not require learning the exact

valuation of every agent.

Membership queries are completely equivalent to value queries and equiv-

alence queries can be simulated as demand queries. Consider a manifest

hypothesis ṽi ∈ Vi for agent i’s value, and bundle Si that is in the demand

set for an agent with valuation ṽi at prices qi. Then, if agent i responds with

a preferred bundle S′ when presented with demand query demand(Si, qi) ei-

ther vi(Si) 6= ṽi(Si) or vi(S
′) 6= ṽ(S′). Value queries can then be issued to

determine which of the two bundles Si and S′ is the counterexample.

Based on this observation, Lahaie and Parkes [LP04] show how to convert

a learning algorithm to an elicitation algorithm.

Theorem 1.39 [LP04] The efficient allocation can be determined in

poly(n,m, maxi size(vi)) value and demand queries for valuation classes

V1, . . . , Vn, if they can each be polynomial-query exactly learned from mem-

bership and equivalence queries.

The idea is to simulate a separate learning algorithm for each agent. We

conceptualize this as occurring with an “proxy” for the agent. When the

learning algorithm requires a membership query, this is immediately issued

by the proxy as a value query to the agent. When the learning algorithm

requires an equivalence query, the proxy waits to issue a demand query to

the agent until CE prices have been updated. Only when every proxy (and

its corresponding learning algorithm) is at the point where it requires the

answer to an equivalence query are new CE prices computed. A provisional

allocation and CE prices are computed based on the current manifest val-

uations, as known to each proxy. This allocation and price tuple is then

issued to agents as demand queries. If all agents reply ‘Yes,’ we have found

an efficient allocation and the algorithm terminates. Otherwise, it is guar-

anteed that one or more proxies will find a counterexample to their current

manifest, and the relevant agent’s learning algorithm can proceed.

For equilibrium considerations we can again appeal to the VCG mech-

anism and to UCE prices. A straightforward strategy in the context of

Computational Mechanism Design 47

query-based elicitation is one in which an agent responds truthfully to ev-

ery query. For demand queries this means responding ‘YES’ if and only if

the proposed bundle is in the true demand set, and providing a preferred

bundle otherwise. Lahaie et al. [LCP05] extend demand queries to universal

demand queries,34 and generalize the elicitation algorithm to terminate with

UCE prices and adjust to VCG payments. This brings the straightforward

strategy into an ex post Nash equilibrium.

These query-learning based methods can be applied to the following rep-

resentation classes for CAs:

(i) Polynomial bidding language. For instance vi(S) = a0x1 +a1(x1x3)−
a2(x1x5), where xj ∈ {0, 1} indicates if good j is allocated to the

agent. These are concise for valuations that are almost substitutes

and fully expressive. A learning algorithm due to Schapire and

Sellie [SS93] leads to elicitation with O(nmt) demand queries and

O(nmt3) value queries, where t is the maximal size of the (minimally

represented) valuation of each agent for the particular instance under

consideration.

(ii) XOR bidding language. The XOR language is concise for valuations

that are almost complements and fully expressive. A generalization of

a learning algorithm due to Angluin [Ang87] for monotone DNF for-

mulae leads to elicitation in O(nt) demand queries and O(nmt) value

queries where t is the maximal size of the (minimally represented)

valuation of each agent for the particular instance under considera-

tion.

(iii) Atomic languages. The atomic languages generalize the XOR lan-

guage, for example defining a language that is concise for additive

valuations where XOR is not. Lahaie et al. [LCP05] provide a learn-

ing algorithm for this setting, and support elicitation in O(nmt) de-

mand queries and O(nt) value queries, where t is the maximal size of

the (minimally represented) valuation of each agent for the particular

instance under consideration.

It is interesting that an exponential number of demand queries are re-

quired to learn an XOR representation if queries are restricted to linear

prices [BJSZ04]; thus, we again see the power of non-linear price queries.

34A universal demand query presents an agent with prices p and n bundles, representing the
bundle allocated to agent i in the main economy and in each of the marginal economies in which
it is present. An agent is asked to respond ‘YES,’ if every bundle is in its true demand set and
otherwise provide a preferred bundle.

48 D. C. Parkes

1.5 Distributing the Computation to Agents

In a direct mechanism, the agents report their types and then wait for

the outcome and payments to be determined by the center. In an indirect

mechanism, such as an ascending price auction, the agents are also perform-

ing useful computation by computing their demand sets in response to the

current prices. Distributed algorithmic mechanism design (DAMD), as in-

troduced by Feigenbaum and colleagues [FPSS02, FS02], and extended to

Distributed Implementation (DI) by Parkes and Shneidman [PS04b, SP04b]

to better encompass equilibrium considerations, pushes this distribution one

step further.35 The ultimate goal is to be able to completely remove the

center and have the agents determine the outcome of a mechanism amongst

themselves, by distributing the required computation.

For instance, we might ask agents to communicate partial information

about their types with each other, and structure the problem solving

amongst themselves, before coming to a shared consensus about the ap-

propriate decision and payments. In addition to the benefits of robustness

and scalability that can accrue from distributed computation, this distribu-

tion may be necessary, for instance in an Internet-scale application in which

the dynamics and scale preclude one center having a full view of the entire

state of the system.

Because the same self-interested agents that care about the outcome of

the mechanism are now also involved in the computation, this distribution

necessitates expanding the strategic considerations from those of incentive-

compatibility (with its focus on truthful information revelation) to also in-

clude computation- and communication compatibility so that agents will

choose to faithfully follow the rules of the mechanism. What is possible will

also be constrained by physical considerations, for instance by the network

communication topology.

The primary objectives in DI are to couple good communication and com-

putational properties with faithfulness, so that the computation and mes-

sage passing actions required of nodes forms a game-theoretic equilibrium.

The earlier examples of ascending price auctions already provide a simple

version of this: the agents choose, in equilibrium, to determine their cor-

rect demand sets in response to the prices generated by the auction in each

round. DI equates a distributed algorithm with an agent strategy and the

35Distributed games [MT99] are also relevant, which provide a formalism to study the effect
of communication structures on the problem of implementing social choice functions in multi-
agent systems. Relevant work in distributed artificial intelligence (DAI), considers algorithms
for distributed constrained optimization (DCOP) in message-passing computational architec-
tures [ML04, MSTY05, PF05], but without considering incentive issues.

Computational Mechanism Design 49

algorithm must, itself, form an equilibrium. See Feigenbaum et al. [FSS07]

for a comprehensive survey.

1.5.1 DI: Preliminaries

In full generality, DI need not have a dedicated center. The traditional

center’s duties of deciding an outcome and payments are still done, just not

by a dedicated, trusted mechanism-designer introduced node. However, it

is most convenient in the current treatment to retain the notion of a center,

although it will play a much smaller role than in standard MD.36

An instance of DI, dM = (Σ, g, p; sm), is defined in terms of a strategy space

Σ = (Σ1 × . . . Σn), an outcome rule g : Σ → A, a payment rule p : Σ → Rn

and an intended strategy (or intended algorithm) sm = (sm
1 , . . . , sm

n) where

sm
i : Θi → Σi.

Formally, this definition augments that of an indirect mechanism (see

Section 1.2.2) with the intended strategy, sm. This strategy represents the

algorithm “intended” by the designer, i.e. that which the designer wishes the

agents to follow. But, hidden under the covers are some deeper differences:

(i) In DI, some agents may not be able to send messages directly to the

center and agents may be able to send messages directly to other

agents. This is captured within the strategy space Σ.

(ii) In DI, an agent’s strategy sm(θi) ∈ Σi can define messages that it will

send to one or more agents in addition to the center, and messages

that it will forward on behalf of other agents.

(iii) In DI, an agent’s strategy sm(θi) ∈ Σi can define computation that

it will perform in response to messages received.

(iv) In DI, the center (if one exists) need not receive enough information

about the types of agents to be able to compute for itself the outcome

and payments.

DI is best conceptualized as a distributed and asynchronous message-

passing algorithm on a communication graph with agents located on nodes

of the graph. The center is just viewed as another (trusted) node. There can

be limited connectivity between agents, and between agents and the center.

Rules g and p define the outcome and payments selected based on messages

36The subset of messages that are communicated between agents and the center ultimately deter-
mine the outcome. A fully distributed implementation would terminate with shared state that is
sufficient to define the outcome and also be self-enforcing, in that agents would not deviate from
the outcome, once computed. We are not aware of completely distributed implementations at this
time; for instance (at least) a trusted bank, able to receive messages from any agent and collect
payments, seems to be required in current work.

50 D. C. Parkes

that are received by the center. The computational agents asked to follow

the algorithm are self-interested and will deviate from the algorithm if this

is in their best-interest.

Agents have internal, computational actions, and external actions in which

they send (private) messages to other agents with which they are connected.

The feasible strategy space Σi constrains the external actions, in that the

center, and other agents when following the intended algorithm, will only re-

spond to “legal” messages. The expanded strategy space can allow an agent

to misrepresent the reported type of another agent when used as a relaying

node, or perform computation that affects the outcome of the mechanism.

Given that activities beyond information-revelation are now allowed we

extend the notion of IC from DRMs, and introduce the following solution

concept, which is central to DI:

Definition 1.40 Distributed implementation dM is ex post faithful if in-

tended strategy sm is an ex post Nash equilibrium for all types θ ∈ Θ.

Faithfulness can be defined for game-theoretic solution concepts other

than ex post NE. However, ex post NE seems especially useful and is adopted

in current work on DI.

For analysis, it is useful to logically partition the actions performed by the

intended strategy, sm
i , and thus the strategy itself, into three different com-

ponents. For a strategy to be partitioned into different components means

that in each information state, exactly one of the component strategies is

defined, and consulted to determine the action taken by the agent. Let

sm
−i(θ−i) = (sm

1 (θ1), . . . , s
m
i−1(θi−1), s

m
i+1(θi+1, . . . , s

m
n (θn)). The actions are

divided into the following components:

(rm
i) information-revelation actions. Let rm

i denote the component of

strategy sm
i that is equivalent, in equilibrium, to reporting informa-

tion about an agent’s type. Formally, for all strategies ŝi that differ

from sm
i only in component rm

i , and for all θ−i ∈ Θ−i, there exists

some θ̂i ∈ Θi, for which:

g(ŝi, s
m
−i(θ−i)) = g(sm

i (θ̂i), s
m
−i(θ−i)) (1.33)

p(ŝi, s
m
−i(θ−i)) = p(sm

i (θ̂i), s
m
−i(θ−i)). (1.34)

(pm
i) message passing actions. Let pm

i denote the component of strategy

sm
i that defines an action in which the agent sends a message received,

unchanged, to one or more neighbors or the center.

(cm
i) computation actions. Let cm

i denote the component of strategy that

Computational Mechanism Design 51

defines a computational action, which is an action that is not mes-

sage passing and whose effect cannot be simulated by following the

intended strategy for some alternate type θ̂i 6= θi.

By the definition of information-revelation actions, any strategy ŝi that

only deviates from the intended strategy in information states in which strat-

egy rm
i is defined will have an effect that can also be achieved by following the

intended strategy sm
i but for some type θ̂i ∈ Θi, possibly untruthful. This

is the sense in which this component of the strategy is the information-

revelation component.37 On the other hand, in an information state in

which the computational component cm
i of the intended strategy is defined,

the agent can have the effect of misrepresenting the information reported by

another agent, or changing the definition of the outcome or payment rules

of the mechanism, by deviating to another action. This aspect of an agent’s

strategy, as well as that of message-passing, is new to DI and can present

new opportunities for strategic behavior.

Given this decomposition into different strategy components, faithfulness

can be usefully decomposed into three corresponding components:

(IC) Incentive-compatible. A DI, dM , is incentive-compatible (IC) if every

agent will respond to all of its intended information-revelation actions

rm
i in an ex post NE, for all type profiles θ ∈ Θ.

(CC) Communication-compatible. A DI, dM , is communication-compatible

(CC) if every agent will perform all of its intended message passing

actions pm
i in an ex post NE, for all type profiles θ ∈ Θ.

(AC) Algorithm-compatible. A DI, dM , is algorithm-compatible (AC) if

every agent will perform all of its intended computational actions cm
i

in an ex post NE, for all type profiles θ ∈ Θ.

This makes clear that faithfulness extends the more traditional concern of

truthful information revelation to other kinds of deviations. Note that it is

without loss of generality to assume that the intended information-revelation

actions are truth-revealing, and so the property of IC will be equated with

a strategy in which agents respond truthfully to queries, from other agents

or from the center, about their type. We have the following, which follows

immediately from the way in which IC, CC and AC have been defined:

Proposition 1.41 [SP04b] A distributed implementation is ex post faithful

37For example, the feasible strategy space in the uQCE-invariant auctions defined in Section 1.4.2
only includes information-revelation actions, since all deviations from straightforward bidding
select the outcome of the VCG mechanism for some (possibly untruthful) valuation.

52 D. C. Parkes

when the intended strategy is IC, CC and AC in the same ex post Nash

equilibrium.

1.5.2 Extended Example: Second-price Auction

The following example will serve to illustrate the definitions introduced

above as well as suggest some of the challenges in designing faithful pro-

tocols. Consider a distributed second-price auction dM =<Σ, g, p; sm > for

a single item in which there is a communication graph structured as a tree

rooted at the center. One agent is associated with each node of the tree. Let

θi denote agent i’s value. Agents communicate with messages w = (v1, v2, x)

where v1 and v2 are the first- and second highest value the agent has seen

(including its own), and x is the identity of the agent with the highest value.

Use “upstream” and “downstream” to denote towards and away from the

root, respectively. The intended strategy, sm, has the following components:

(i) information-revelation: Send message (vi, 0, i) to the upstream agent

on receiving a START message.

(ii) computation: Maintain internal state (v1, v2, x), initialized to v1 =

θi, v2 = 0 and x = i. Upon receiving message (v′1, v
′
2, x

′) from a

downstream agent, update v1 := max(v1, v
′
1), v2 := {v1, v2, v

′
1, v

′
2}

(2)

(i.e. the second-highest seen), and x := x′ if v′1 > v1. If the local state

has changed, then send message (v1, v2, x) to the upstream neighbor.

(iii) message-passing: Upon receiving a START message, send START to

all downstream neighbors.

The outcome rule g : Σ → A defines the winner of the auction as the

agent for whom the highest value is reported by the neighbors to the center.

Assume that all messages take a finite time and the center knows the max-

imal number of agents and so knows when it can terminate the mechanism

and make the final decision. The payment rule p : Σ → Rn
≥0 defines the

payment by the winner as the second highest value received by the center

(in either value entry of an incoming message), with all other agents making

zero payment. The feasible strategy space limits agents to sending either the

message START (as the first message sent to each downstream neighbor), or

messages to upstream neighbors with syntax (v1, v2, x) where v1, v2 ∈ R≥0

and x ∈ N .

Example 1.42 For a concrete instance of this problem of DI see Figure 1.2.

The mechanism is IC (for the simple reason that in equilibrium only the

agents directly connected to the center will affect the outcome via their

Computational Mechanism Design 53

3

M

$5

$10

$25

$10

$20

1

2 4

< 25, 20, 4 >

< 10, 0, 1 >

< 25, 20, 4 >

< 25, 0, 4 >

< 15, 10, 5 >

< 10, 0, 6 >

$15

5

6

Fig. 1.2. An example of a second price distributed auction [not faithful].

report), but not AC or CC. AC fails. For instance, agent 3 in the figure

should never propagate any value information that it receives from down-

stream agents (e.g. (25, 0, 4) from agent 4). Rather it should deviate and

claim that it has received no bids from downstream. CC fails. For instance,

agent 3 should never propagate the START message to downstream agents

because it would rather them not participate in the auction.

1.5.3 Analysis Techniques

With all these definitions in hand we are ready to develop some faithful DIs.

It might be surprising that this is possible, given the apparent complexity

of establishing that an intended algorithm is IC, CC, and AC. The analysis

techniques introduced below will be subsequently illustrated in a sequence

of case studies.

Strong Compatibility

It is if course not sufficient to assume AC and CC and then prove IC, and

then assume AC and IC and prove CC, and finally assume CC and IC and

prove AC. This is because agents can also jointly deviate from multiple

components of their strategy at the same time.

Progress can be made by the following observation. We define strong ver-

sions of AC and CC, and then appeal to the dominant-strategy truthfulness

of direct-revelation mechanisms to get faithfulness.

Definition 1.43 A distributed implementation is strong CC (resp. strong

AC) if an agent will perform all of its intended message-passing actions pm
i

(resp. computational actions cm
i) in the ex post NE of a restricted game in

54 D. C. Parkes

which it is forced to deviate from its information-revelation actions rm
i and

computational actions cm
i (resp. message-passing actions pm

i) in an arbitrary

way, for all types θi and all types θ−i.

A DI dM is said to be equivalent to DRM, M ′ =<g′, p′ >, with g′ and p′

defined so that g(sm(θ)) = g′(θ) and p(sm(θ)) = p′(θ). Given this, we have

the following:

Theorem 1.44 [SP04b] A strong CC and strong AC distributed implemen-

tation that is equivalent to a DSIC mechanism M is faithful as long as the

information-revelation actions are restricted to be consistent.

This holds by an argument similar to that employed in the revelation

principle. Once the new opportunities for manipulation provided to agents

within a DI have been shown to be ineffective the faithfulness is inherited

from the DSIC of the equivalent DRM.

Partition Principle

For illustrative purposes, consider the following “canonical distributed al-

gorithm” to determine the outcome of a VCG mechanism. To keep things

simple, it assumes that every agent can communicate directly with the center

without sending messages through other agents.

• (step 1) Each agent reports its type θ̂i to the center.

• (step 2) The center involves some subset of the agents in computing a

solution g(θ̂) and g(θ̂−i) for each marginal economy E(N \ i). This step

can utilize a variety of distributed algorithms.

• (step 3) The center receives reported solutions a′ = g′(θ̂), a′−1 =

g′(θ̂−1), . . . , a
′
−n = g′(θ̂−n) (where a′ and g′ are adopted to denote that

they may not be correct).

• (step 4) These reports are used to define the outcome of the VCG mech-

anism:

(i) Alternative a′ is selected as the outcome.

(ii) Payments pi(θ) =
∑

j 6=i vj(a
′
−i; θ̂j) −

∑

j 6=i vj(a
′; θ̂j).

To see that agent i can usefully deviate from the intended strategy, notice

that it can now affect the first component of its payment term, pi(θ) =
∑

j 6=i vj(a
′
−i; θ̂j), the payment which is usually independent of its strategy.

Here, if agent i is involved in the computation of a′−i then it should obstruct

the computation of the best alternative in the marginal economy without i.

Computational Mechanism Design 55

Theorem 1.45 [PS04b] A canonical distributed VCG implementation with

an intended strategy sm in which computation is partitioned so that no de-

viation from agent i can affect the correct solution of g(θ−i) is faithful.

A canonical distributed VCG implementation that satisfies this partition

principle has the property that deviating from the intended computational

actions has no more effect than deviating from truthful revelation. Just

as it is in an agent’s best interest to report its true type, it is an agent’s

best interest to assist in computing the best alternative given the reports

of all agents. An agent is indifferent to performing the computation of the

solutions to marginal economies for other agents, because this just affects the

payment of other agents. Computation, when assigned carefully, becomes

no more useful than revelation.

Example 1.46 Consider the following simple example. This is for a single-

minded CA, as introduced in Section 1.3.2. Each agent is interested in

a single bundle of goods G = {A,B,C}, with types: θ1 = {(ABC, 14)},
θ2 = {(B, 8)}, θ3 = {(AC, 12)}. A valid assignment of agents to perform

computation (that will give faithfulness) is: agent 1 for the problem without

agent 3, agents 2 and 3 for the problem without agent 1, and agents 2 and

3 for the entire problem.

This principle can also be used in the context of blackboard-based algo-

rithms, where the blackboard is “moderated” by the center, and only agents

other than i are allowed to post improvements to the solution g(θ−i) [PS04b].

Information-Revelation Principle

A second principle is the information-revelation principle. This is a corollary

of Theorem 1.44, but worth stating explicitly:

Corollary 1.47 A distributed implementation that is equivalent to a DSIC

mechanism M is faithful if the only actions available in the feasible strategy

space are information-revelation actions, and as long as the information-

revelation must be consistent.

This explains, for instance, why ascending price CAs that terminate with

the VCG outcome have straightforward bidding in an ex post NE. Simi-

larly, distributed optimization algorithms from operations research such as

Dantzig-Wolfe, Bender’s, and methods such as column generation and La-

grangian relaxation [BHM77, Geo70] involve only information-revelation and

provide faithful DIs for the VCG mechanism.

56 D. C. Parkes

Redundancy Principle

A third principle is the redundancy principle. This supposes that the com-

putation required in determining g and p in mechanism M =<g, p> can be

divided into a sequence of finite computational step. The pieces can then

be dispatched to agents in one of two ways:

• Each piece can be given to two agents, along with all necessary inputs to

perform the computation. If both agents respond with the same result

then that is adopted by the center and the next computational step is

dispatched. Otherwise, the center steps in and repeats the computation

itself and punishes one or both agents, whichever is found to have deviated

(e.g. with a fine.)

• Each piece can be given to three or more agents, along with all necessary

inputs to perform the computation. The mechanism then adopts the

quorum outcome.

Collectively, we refer to this approach (which provides strong AC) as

“chunk-and-dispatch”.

Theorem 1.48 [PS04b] A distributed implementation dM that is equivalent

to a DSIC mechanism M is faithful if all computation is performed with

redundancy via chunk-and-dispatch.

Example 1.49 The redundancy principle can be used to structure dis-

tributed computation of tree search, in determining the outcome of winner

determination in a CA. Pairs of agents can be used dynamically to search

below a node in the search tree, e.g. performing a particular number of node

expansions before passing the updated search frontier back to the center.

1.5.4 Case Study: Lowest Cost Routing

Feigenbaum et al. [FPSS02] (FPSS) study a distributed algorithm to com-

pute VCG payments for lowest-cost inter-domain routing. For an example

see Figure 1.3. Each node has an associated agent, and represents an au-

tonomous system on the Internet. Agents have transit costs for forwarding

messages to other nodes. In the example, node Z has transit cost 1000 for

forwarding messages from A to C, or from B to C.

The social objective is to compute all pairwise lowest cost paths (LCPs).

For instance, the LCP from X to Z is 2, and goes via D and C. The LCP

from X to B is 0 and involves no transit nodes. This is a MD problem

because the transit cost at each node is private to that node. This is,

Computational Mechanism Design 57

C
1

A
5

B
6

1000
Z

100
X

D
1

Fig. 1.3. An example of LCP inter-domain routing.

more broadly, a DAMD problem and one of DI, because there is no central

computational node; rather, the algorithm for LCP must be distributed and

nodes are self-interested.

FPSS propose a modification to the local state that each node maintains,

and retain the basic message passing structure of BGP, extending the al-

gorithm so that the algorithm computes VCG payments as well as LCPs.

Realize that VCG payments will be made to transit nodes because they in-

cur costs. VCG payments are made by nodes with node-originating traffic

to compensate nodes that provide transit capacity. The graph is assumed

to be biconnected so that VCG payments are well defined. Without this,

the marginal positive effect on the cost of a path due to a node with a piv-

otal position in the network is unbounded, and its VCG payment would be

unbounded.

In the example, the VCG payment made by node X for X-originating

traffic with destination Z is to transit nodes D and C. Node D receives

payment 5 and node C receives payment 5. In both cases, this represents

the maximal cost that each node could have reported and still formed the

LCP from X to Z.

However, the FPSS algorithm is not faithful. The most obvious way

in which FPSS fails faithfulness is because the sender, X in our example,

is ultimately responsible for computing its own payment. X would prefer

to deviate from this computation. Even without this problem, nodes can

benefit by overstating the transit cost of nodes on competing paths, to boost

the payments they receive in the VCG scheme.

Shneidman and Parkes [SP04b] make FPSS faithful by splitting the pro-

58 D. C. Parkes

tocol into three phases (two construction and one execution, in which traffic

flows and payments are made and collected), and using redundancy and the

idea of “catch and punish” to make the implementation strong AC and strong

CC within each phase, irrespective of behaviors in other phases. Faithfulness

leverages the biconnectedness of the graph, so that no agent can unilaterally

block information flow.

The most important idea is that of assigning every neighbor of a node as a

checker node. For instance, nodes A,B and D act as checker nodes for node

X (as well as principal nodes in their own right). The intended strategy is

augmented so that the principal is required to relay all messages it receives

to every checker node. CC is established for this aspect of the strategy

because there is always at least one checker that knows about any message

the principal receives (because it was the sender!), and thus a deviation is

caught when the checkers compare local state at the end of a phase. All

checker nodes replicate all computation of the principal node; again, this is

shown to be AC through a catch-and-punish argument. A limited center is

assumed to compare the states of checker nodes and impose penalties if a

mismatch is discovered.

1.5.5 Case Study: Faithful Distributed Constrained Optimization

Petcu et al. [PFP06] have provided a faithful DI, called M-DPOP, for solv-

ing distributed constraint optimization problems (DCOP). In a DCOP, each

agent is associated with a variable Xi with domain di and is responsible for

setting the value of its variable. There are hard constraints that preclude

certain values in combination for pairs of variables. Finally, there are rela-

tions, R = {r1, . . . , rn} where ri is the set of relations known to agent i and

relation rj
i is a function d1 × . . .× dk → R that defines a value to agent i for

each possible combination of values of the involved variables. The objective

in DCOP is to find the optimal solution x∗ = arg maxx∈F

∑

i

∑

r∈ri
r(x),

where F defines the set of feasible assignments given the hard constraints.

DCOP assumes a message passing architecture. Each agent is connected

in the communication graph to all agents for which it has a relation with

that agent’s value in its domain, or that shares a hard constraint with its

variable. A number of optimal and complete (i.e. will solve all instances)

DCOP algorithms are known, able to terminate with the value-maximizing

assignment of values that satisfies all hard constraints [ML04, MSTY05,

PF05]. However, none of these algorithms are faithful in the sense of DI.

M-DPOP extends the DPOP algorithm [PF05], making it faithful so that

no agent can benefit from a unilateral deviation from the algorithm (as long

Computational Mechanism Design 59

as the other agents follow the algorithm). In doing so, M-DPOP retains the

useful computational properties of DPOP [PF05], including a linear number

of messages, each of size that is exponential in a parameter that scales with

the degree of interdependence between different parts of the problem.

M-DPOP is designed to terminate with the outcome of the VCG mech-

anism and is made faithful by the partition principle. Agent i is not able

to prevent agents other than i from computing the correct solution to the

DCOP problem without agent i. The other agents are simply instructed

to ignore any messages that agent i sends during the process of solving the

problem without i. In addition, agents other than i are responsible for fi-

nally computing the payment that agent i must make. This is achieved

by ensuring that they have enough information locally to understand the

marginal effect of agent i on their own value. M-DPOP is also able to re-use

computation performed in solving the main problem when solving the prob-

lem without agent i, by carefully retaining a similar control flow in solving

the problem without i and identifying which messages can be re-used.

1.5.6 Case Study: A Distributed Second Price Auction.

Consider again the earlier example of a distributed second price auction.

Recall that the intended strategy was not faithful because an agent would

choose not to propagate the values of agents further downstream from the

center.

Monderer and Tennenholtz [MT99] (MT) study a special case of this prob-

lem, with message-passing and information-revelation actions but without

computational actions. The basic function of agents is to propagate bids re-

ceived from agents further downstream on, towards the center. The appro-

priate concerns, then, are those of IC and CC but the agents are not required

to perform any computational actions as part of the intended strategy.

MT consider a biconnected graph so that a message sent by any agent i

to be delivered to the center would still be received by the center even if

one other agent deviates and chooses not to propagate the message. This is

almost sufficient by itself because an agent can no longer benefit from drop-

ping a message. However, this would not lead to the correct implementation

because an agent that sees a bid from downstream with value greater than

its own would stop forwarding messages from that round forwards (or at

least be weakly indifferent.) Agents at the far edges of the network would

be disadvantaged.

MT address this by masking the information so that an agent does not

learn anything useful when forwarding the bid of another agent. For this,

60 D. C. Parkes

MT assume that values are defined on a domain of size 2k for some positive

integer k, and with an agent values distributed uniformly on {1, . . . , 2k}.

Let vi denote a bit string representation of agent i’s value, i.e. vi ∈ {0, 1}k .

Before sending its value, agent i selects a bit string yi ∈ {0, 1}k uniformly

at random. This acts to mask its value. The agent sends yi on one of its

outgoing edges and vi ⊕ yi (the bit-by-bit exclusive or of vi and yi) on the

other. A forwarding agent cannot distinguish the mask yi from the masked

bid vi ⊕ yi, and even if it could determine vi ⊕ yi would not learn anything

about vi because the posterior distribution on the masked bid is the same

as the prior on value.

Taken together, this brings the intended strategy of correct forwarding of

messages into an ex post Nash equilibrium. Each agent chooses to report

its vi ⊕ yi and mask yi truthfully, and the center finally combines this infor-

mation, with yi ⊕ (vi ⊕ yi) = vi and recovers the values and determines the

Vickrey outcome.

1.6 Dynamic Environments: Online Mechanisms

Many multi-agent problem domains are inherently dynamic. Consider, for

instance, multi-agent planning domains [BGT03], and resource allocation

in grid computing, where jobs have state and require resources for some

period of time [FK00]. Other compelling examples are the eBay marketplace,

in which auctions open and close over time and the bidder population is

dynamic, and the sponsored search auctions used by Google and Yahoo!, in

which supply and demand is realized online. One can also think about a

group of suppliers in long-term contracts with a car manufacturer; in this

setting the private state of a supplier (and its value for different decisions)

can change dynamically, e.g., perhaps its workers go on strike, part of its

plant fails, or the price of electricity increases.

In each of these settings at least one of the following is true: agents are

dynamically arriving or departing, or fixed but with each agent realizing new

information about its local problem across time; or, there is uncertainty

about the set of feasible decisions in the future. These dynamics present

a new challenges when seeking to sustain good system-wide decisions in

multi-agent systems with self-interested agents. For example, if the agent

population is dynamically changing then simultaneous reports of type (as in

the standard model of direct-revelation mechanisms) is not possible.

The general problem of designing mechanisms for dynamic environments

considers a center that implements a sequence of decisions, and agents that

Computational Mechanism Design 61

report (perhaps untruthfully) private type information and have values that

pertain to a sequence of decisions.

The appropriate notion of direct revelation is that of a direct-revelation,

online mechanism in which the strategy space allows an agent to make a

claim about its private information in each period. For example, in the

simple case that each agent “arrives” in some period, a direct-revelation

online mechanism will allow an agent to make a claim about its valuation

function for different decisions by sending a single message in some period.

There are two main frameworks in which to study the performance of

online mechanisms. The first is model-free [LN00], and adopts a worst-case

analysis and is useful when a designer does not have good probabilistic infor-

mation about future agent types or about feasible decisions in future periods.

The second is model-based [FP03, PS03], and adopts an average-case analy-

sis. As a motivating example, consider a search engine selling search terms

to advertisers. This is a data rich environment and it is reasonable to believe

that the seller can build an accurate model to predict the distribution on

types of buyers, including the process governing arrival and departures.

We will consider each of these paradigms in turn. The mechanisms studied

in the first framework will provide DSIC but require a restricted environ-

ment (single-valued). The mechanisms studied in the second framework will

provide BNIC but apply to a more general environment. See Parkes [Par07]

for a comprehensive survey.

1.6.1 Example: Dynamic Auction with Expiring Items

Consider a dynamic auction model with discrete time periods T =

{1, 2, . . . , } and a single indivisible item to allocate in each time period. The

type of an agent i ∈ {1, . . . , N} is denoted θi = (ai, di, wi) ∈ T × T × R>0.

Agent i has arrival time ai, departure time di, value wi for an allocation

of a single unit of the item in some period t ∈ [ai, di], and wants at most

one unit. An agent has zero value if allocated an item outside of this pe-

riod. This information is all private to an agent. Moreover, suppose that an

agent does not know about its type until period ai and thus cannot report

an arrival time, âi, that is any earlier than this period. A payment can be

collected from an agent in any period t ∈ [ai, di], including a period after an

item is allocated [HKP04, HKMP05].

The following example illustrates why online auctions introduce new

strategic considerations into MD.

Example 1.50 Suppose there are three agents, with types θ1 =

62 D. C. Parkes

(1, 2, 100), θ2 = (1, 2, 80) and θ3 = (2, 2, 60) and a seller that has a sin-

gle unit of an item to sell in each of periods 1 and 2. Consider an online

variant of the Vickrey auction: an agent can report its type in any period,

and its bid will be considered in each of a sequence of second-price auctions

until it wins or until its departure period, whichever occurs first. In the ex-

ample, if the agents are truthful, then agent 1 wins in period 1 for 80, stops

bidding, and agent 2 wins in period 2 for 60. But agent 1 can do better. It

can report type θ̂1 = (1, 2, 61), so that agent 2 wins in period 1 for 61, stops

bidding, and then agent 1 wins for 60 in period 2. Or, agent 1 can report

type θ̂1 = (2, 2, 80) and delay its bid until period 2, so that agent 2 wins for

0 in period 1, stops bidding, and then agent 1 wins for 60 in period 2.

In this context, a direct-revelation online mechanism, M =< g, p >, has

an outcome rule g : Θ → K and payment rule p : Θ → Rn. Each agent can

send a message in a single period, to make a claim about its type. We adopt

notation K for the space of alternatives, instead of A, to avoid confusion

with the arrival time, ai.

Outcome k ∈ K defines a sequence of allocations k1, . . . , kt, . . . for t ∈ T

where (in this environment) kt ⊆ N defines the winner(s) in period t. The

outcome rule and payment rule must be online implementable, defined as

follows: Let g(θ, t) = k[1..t] ,i.e. the sequence of decisions made between

periods 1 and t. Then, we must have g(θ, t) = z and g(θ̂, t) = ẑ 6= z implies

that θ̂i = (âi, d̂i, ŵi) 6= θi for some agent i with âi ≤ t. Similarly, for the

payment rule, we need pi(θ) = π and pi(θ̂) = π̂ 6= π implies that θ̂i 6= θi

or θ̂j = (âj , d̂j , ŵj) 6= θj for some j 6= i with âj ≤ di.
38 We also write

gi(θ) ∈ {0, 1} to denote whether or not agent i is allocated an item in some

period t ∈ [ai, di] by outcome rule g.

A Characterization of Truthful Auctions An online mechanism is

DSIC (or truthful) if an agent’s dominant strategy is to report its true type,

whatever the future reports of other agents. For this setting in which type

information is simple, with an arrival, departure and value for an allocation

decision, we can define an appropriate form of monotonicity:

Definition 1.51 [HKMP05] Outcome rule g : Θ → {0, 1}n is monotonic

if for every agent i and every θ, θ′ ∈ Θ with [a′i, d
′
i] ⊆ [ai, di], wi > w′

i, and

θ−i = θ′−i, we have gi(θ) > gi(θ
′).

38By this definition, if a payment rule is online implementable then it will also have a fixed
payment to agent i for all periods t after the reported departure of the agent, and thus satisfies
the requirement that payments are collected no later than an agent’s departure.

Computational Mechanism Design 63

In words, if an agent wins for some report (ai, di, wi) then it should con-

tinue to win for a more relaxed arrival-departure interval, and a higher value.

Given an outcome rule, we can define the critical value to agent i for

arrival and departure (ai, d):

vc
(ai,di)

(θ−i) =

{

min w′
i s.t. gi((ai, di, w

′
i), θ−i) = 1

∞, if no such w′
i exists

(1.35)

When the outcome rule is monotonic, the critical value to agent i is

independent of value wi and (weakly) monotonically increasing in tighter

arrival-departure intervals. In this domain, any truthful (and determinis-

tic) online mechanism that satisfies IR must collect a payment equal to the

critical value from each allocated agent. Monotonicity is also necessary; any

truthful online mechanism that does not pay unallocated agents must be

monotonic [HKMP05, Par07].

For simplicity we will now make an additional assumption, that of no

late-departure misreports. Together with no late-arrival misreports, we have

that agent reports ai ≤ âi ≤ d̂i ≤ di. For example, if this is an auction for

theater tickets, then we could argue that it is not credible to claim to have

value for a ticket for a last minute Broadway show after 5pm because the

auctioneer knows that it takes at least 2 hours to get to the theater and the

show starts at 7pm. For network resources, such as an auction for access

to WiFi bandwidth in a coffee house, think about requiring a user to be

present for the entire period of time reported to the mechanism.39

We have the following positive result in this environment:

Theorem 1.52 [HKMP05] Online mechanism < g, p > is truthful with

agents that arrive, depart and have a value for a single unit of an item,

when g is monotonic and p collects the critical-value payment from winners,

and given no early-arrival and no late-departure misreports.

The intuition for this result is that an agent cannot do any better by

reporting a tighter arrival-departure interval because this will only make it

less likely that it will be allocated, and increase its payment. Moreover,

its payment (for a given arrival-departure) and contingent on winning is

independent of its bid value and if the agent loses when bidding its true

39The assumption of no late-departures can be dispensed with, while still retaining truthfulness,
in environments in which it is possible to schedule a resource in some period before an agent’s
reported departure, but withhold access to the benefit from the use of the resource until the
reported departure; e.g., in grid computing, jobs can run on the machine but the result then held
until reported departure [Por04].

64 D. C. Parkes

value then even though it might win by increasing its bid, its critical value

payment will be greater than its value. For a proof, see Parkes [Par07].40

Model-Free Analysis. In this setting we will adopt a model-free frame-

work, and not assume any particular distributional information about the

environment. The performance of a mechanism can instead by studied via

a worst-case analysis, for a sequence of types that are generated by an “ad-

versary” whose task it is to make the performance as bad as possible. Of

particular relevance is the method of competitive analysis, typically adopted

in the study of online algorithms. The following question is asked: how ef-

fectively does the performance of the online mechanism “compete” with that

of an offline mechanism that is given complete information about the future

arrival of agent types? Again, this is asked in the worst-case, for a suitably

adversarially-defined input.

Competitive analysis is most easily justified when the designer does not

have a good model of the environment. As a motivating example, consider

selling a completely new product or service, for which it is not possible to

conduct market research to get a good model of demand. Competitive anal-

ysis can also lead to mechanisms that enjoy good average-case performance

in practice, provide insight into how to design robust mechanisms, and pro-

duce useful “lower-bound” analysis. A lower-bound for a problem makes a

statement about the best possible performance that can be achieved by any

mechanism. Online mechanisms are of special interest when their realized

performance matches the lower bound.

For our adversarial model, we consider a powerful adversary that is able

to pick arbitrary agent types, including the value, arrival and departure of

agents. Let z ∈ Z denote the set of inputs available to the adversary and

θz the corresponding type profile. An online mechanism is c-competitive for

efficiency if:

min
z∈Z

E

{

Val(g(θz))

V ∗(θz)

}

≥
1

c
, (1.36)

for some constant c ≥ 1. Here Val(g(θz)) is the total value of the alloca-

tion determined by outcome rule g and V ∗(θz) is the best possible solution,

determined with perfect information about all of the types. Such a mecha-

nism is guaranteed to achieve within fraction 1
c of the value of the optimal

40The sufficiency result can also be generalized to a domain with arbitrary misreports of departure,
by placing a timing constraint on the allocation [HKMP05]. It can also be extended to a more
general valuation domain, in which agents have single-valued types, with the same value for any
of some interesting set of decisions [Par07, PD07].

Computational Mechanism Design 65

offline algorithm, whatever the input sequence. The expectation allows for

a randomized outcome rule.

Back to the Expiring Items Setting Consider the following auction,

proposed in Hajiaghayi et al. [HKMP05] (HKMP):

(i) In each period, t, allocate the good to the highest unassigned bid.

(ii) Agent i pays the critical value, which is the smallest amount that it

could have bid and still won an item.

For impatient bidders with di = ai for all θi, this is precisely a sequence

of Vickrey auctions and truthful in a dominant strategy equilibrium.

Theorem 1.53 [HKMP05] The HKMP online auction is 2-competitive for

efficiency and truthful in the expiring items environment and with no early-

arrival and no late-departure misreports.

Proof Suppose that random tie-breaking is invariant to reported arrival and

departure. The auction is strongly truthful because the allocation function

is monotone: if agent i wins in some period t ∈ [ai, di] then it continues

to win either earlier or in the same period for w′
i > wi, and for a′i < ai or

d′i > di. For competitiveness, consider a set of types θ and establish that

the greedy online allocation rule is 2-competitive by a “charging argument”.

For any agent i that is allocated offline but not online, charge its value to

the online agent that was allocated in period t in which agent i is allocated

offline. Since agent i is not allocated online it is present in period t, and the

greedy rule allocates to another agent in that period with at least as much

value as agent i. For any agent i that is allocated offline and also online,

charge its value to itself in the online solution. Each agent that is allocated

in the online solution is charged at most twice, and in all cases for a value

less than or equal to its own value. Therefore the optimal offline value V ∗(θ)

is at most twice the value of the greedy solution.

There is actually a 1.618-competitive online algorithm for this problem

but it is not monotonic and cannot be implemented truthfully. In fact,

there is a matching lower bound for the problem of achieving efficiency and

truthfulness:

Theorem 1.54 No truthful, IR and deterministic online mechanism can

obtain a (2 − ǫ)-approximation for efficiency in the expiring items environ-

ment with no early-arrival and no late-departure misreports, for any constant

ǫ > 0.

66 D. C. Parkes

For the proof of this result see Hajiaghayi et al. [HKMP05]. More than just

this gap, between what is possible with and without incentive constraints,

Lavi and Nisan [LN05] also show that no constant-competitive mechanism is

possible in this environment without the assumption of no-late-departures.

Thus, we have another justification for this assumption.

Example 1.55 Consider the earlier example, with three agents and types

θ1 = (1, 2, 100), θ2 = (1, 2, 80) and θ3 = (2, 2, 60) and one item to sell in each

period. Suppose all three agents bid truthfully. The greedy allocation rule

sells to agent 1 in period 1 and then agent 2 in period 2. Agent 1’s payment

is 60 because this is the critical value for arrival-departure (1, 2) given the

bids of other agents. (A bid of just above 60 would allow the agent to win,

albeit in period 2 instead of period 1.) Agent 2’s payment is also 60.

Example 1.56 In order to understand the distinction between DSIC and

ex post Nash IC, suppose that the reports received by the mechanism are

public. Now, agent 3 can condition its strategy on the report of agent 1.

For instance, if agent 3’s strategy is “bid (2,2,1000) if a bid of (1,2,100) is

received, and bid (2,2,60) otherwise” then agent 1 would pay 80 if truthful

but 60 with a bid of (2,2,65).

Related work considers an environment in which there is a fixed num-

ber of non-expiring items to allocate before some deadline [LN00, HKP04].

Awerbuch et al. [AAM03] provide a method to convert a competitive on-

line algorithm into a truthful and competitive online auction for algorithms

that satisfy technical conditions that provide increasing prices. Bredin and

Parkes [BP05] study the environment of online double auctions in which

there are both buyers and sellers. Juda and Parkes [JP06] study a model

related to eBay, and extend the framework to allow for sequential auctions

with non-identical goods and buyers with general valuations.

1.6.2 General Environments: BNIC

In a general, dynamic valuation environment we allow agents with general

valuation functions defined on sequences of decisions. To keep things simple,

we will assume here that the arrival period, ai, still models the period in

which an agent learns its own type.41

An agent’s type, θi, defines its value vi(k; θi) for a sequence k1, k2, . . . , kt

41Even more generally, we can also consider agents (possibly persistent) that receive information
that pertains to their own type over time [BV06, CPS06]. We make a brief comment about this
model in closing this section.

Computational Mechanism Design 67

of decisions k ∈ K in each of T discrete time periods. An agent has both an

arrival ai and a departure di, and vi(k; θi) 6= vi(k
′; θi) implies that kt 6= k′t

for some t ∈ [ai, di].

A Markov decision process (MDP) provides a useful formalism for defining

online mechanisms in model-based environments with general agent prefer-

ences [PS03]. We define an MDP model (H,K,Prob , R) with the following

components:

• State, ht = (θ1, . . . , θt; k1, . . . , kt−1), in period t ∈ T , is defined in terms

of the reports that the mechanism has received up to and including this

period, and the sequence of decisions it has made. Let H denote the set

of states, and K(h) denote the set of feasible decisions in each state with

K = ∪h∈HK(h).

• Prob(ht+1|ht, kt) defines the probability of transition to state ht+1 given

decision kt in state ht. A well-defined model requires
∑

h′ Prob(h′|ht, kt) =

1 for all ht, kt. This transition models encapsulates both the stochastic

arrival model of agents and the effect (deterministic or otherwise) of a

decision on the state.

• R(ht, kt) =
∑

i∈I(ht) Ri(h
t, kt), is the reward received by the policy for

taking action kt in state ht. Here, I(ht) denotes the set of agents present

in state ht, and agent i has value Ri(h
t, kt) = vi(k

[1..t]; θi)−vi(k
[1..t−1]; θi),

given type θi.
42

The Markov property requires that feasible decisions, transitions and

rewards depend on previous states and actions only through the cur-

rent state. It is achieved here, for example, by defining ht ∈ Ht =

(θ1, . . . , θt;ω1, . . . , ωt; k1, . . . , kt−1), so that the state captures the complete

history of types, stochastic events, and decisions. In practice a short sum-

marization of state ht is often sufficient to retain the Markov property.

An optimal policy π∗ : Ht → Kt maximizes the MDP value V π(ht) =

Eπ

[

R(ht, π(ht)) + R(ht+1, π(ht+1)) + . . . + R(hT , π(hT))
]

in all states ht.43

The expectation here is taken with respect to the probabilistic transition

model. The optimal MDP value function, V ∗, which corresponds to the

MDP value for the optimal policy, can be computed via the following value

42The reward to agent i in period t is defined this way so that the cumulative component of
reward Ri because of the presence of agent i with type θi, is

Pτ
t=1 Ri(ht, kt) = vi(k[1..τ]; θi),

for all periods τ ; thus, Ri(ht, kt) defines the total value obtained by agent i up to and including
period t.
43For infinite time horizons, a standard approach is to define a discount factor and maximize the
expected discounted value of a policy.

68 D. C. Parkes

iteration algorithm [Put94]: for time periods t = T−1, T−2, . . . , 1:

∀h ∈ Ht V ∗(h) = max
k∈Kt(h)

[R(h, k) +
∑

h′∈Ht+1

Prob(h′|h, k)V ∗(h′)], (1.37)

where V ∗(h ∈ Ht) = maxk∈Kt(h) R(h, k). This algorithm works backwards

in time from the horizon and has time complexity polynomial in the size of

the MDP and the time horizon T .

Given the optimal MDP value function, the optimal policy is derived as

follows: for t < T , we have:

π∗(h ∈ Ht) = arg max
k∈Kt(h)

[R(h, k) +
∑

h′∈Ht+1

Prob(h′|h, k)V ∗(h′)], (1.38)

and π∗(h ∈ Ht) = arg maxk∈Kt(h) R(h, k).

What makes this a problem of mechanism design is because the MDP state

is defined in terms of agent type information, which is private to agents.

Thus, incentives must be provided for agents to report their private types

to the center.

A direct-revelation online mechanism, M =< π, p >, in this general set-

ting, restricts each agent to making a single claim about its type, and defines

decision policy π = {πt}t∈T and payment policy, p = {pt}t∈T , where decision

πt(ht) ∈ K(ht) is made in state ht and payment pt
i(h

t) ∈ R is collected from

each agent i ∈ I(ht).

We define a dynamic VCG mechanism for this problem. We assume that

the decisions and reports in previous periods t′ < t are all public in pe-

riod t, although similar analysis holds without this. The center knows the

probabilistic transition model (and this model is also common knowledge to

agents) but the realization of types is private to agents.

Definition 1.57 [PS03] A dynamic VCG mechanism works for the finite

time horizon online MD environment works as follows:

(i) Each agent, i, reports its type θ̂i in some period âi ≥ ai.

(ii) Implement optimal policy π∗, which maximizes the total expected

value, assuming the current state as defined by agent reports is the

true state.

(iii) On reported departure, t = d̂i, collect payment

pt
i(h

t) = vi(π
∗(θ[1..t]); θi) −

[

V ∗(hâi) − V ∗(hâi

−i)
]

, (1.39)

where π∗(θ[1..t]) denotes the sequence of decisions made up to and

Computational Mechanism Design 69

including period t based on types θ[1..t], and ht
−i defines the (counter-

factual) MDP state constructed to be equal to ht but removing agent

i’s type from the state. The payment is zero otherwise.

Agent i’s payment is its (ex post) value discounted by the value (V ∗(hâi)−
V ∗(hâi

−i)), which is the expected marginal value it contributes to the system

as estimated upon its arrival and based on its report. With this, the expected

utility to agent i when reporting truthfully is equal to the expected marginal

value that it contributes to the multi-agent system through its presence.

For incentive-compatibility, we need the technical property of stalling,

which requires that the expected value of policy π∗ cannot be improved (in

expectation) by delaying the report of an agent.44 In addition, we assume

an independence property; namely, the probabilistic process defining the

arrival of agents other than i is independent of whether or not agent i has

arrived.

Theorem 1.58 [PS03] The dynamic VCG mechanism, coupled with a pol-

icy that satisfies stalling, is Bayes-Nash incentive compatible (BNIC) and

implements the expected-value maximizing policy, in a domain with no early-

arrival misreports but arbitrary misreports of departure.

To understand why the dynamic VCG mechanism is BNIC, consider the

following expression, which is the expected utility (defined with respect to

its information in period ai) to agent i for report θ̂i, and given that agents

other than i are truthful. Let c ≥ 0 denote the number of periods by which

agent i misreports its arrival time. The expected utility is:

Eπ∗

{

vi(π
∗(hai); θi)|θ̂i

}

+Eπ∗

{

T
∑

t=ai+c
R−i(h

t, π∗(ht))
}

−Eπ∗

{

V ∗(hai+c
−i)

}

(A) (B) (C)

Here, Eπ

{

vi(π(h); θi)
}

denotes the expected value to agent i with type θi

for policy π executed from state h forward in time, and R−i(h
t, kt) is the

total value to all agents except i for decision kt in state ht.

Term (A) denotes the expected value to agent i given its misreport. Term

(B) is the expected value to all other agents forward from reported arrival,

ai + c, given report θ̂i and optimal policy π∗. It corresponds to the expected

value of terms {−vi(π
∗(θ[1..d̂i]); θi) + V ∗(hâi)} in the payment. Term (A) +

(B) is the expected value to all other agents, plus the expected true value

to agent i given its misreport. Term (C) is the total expected value to other

44This stalling property is typically reasonable, for example any optimal policy that is able to
delay for itself any decisions that pertain to the value of an agent will automatically satisfy stalling.

70 D. C. Parkes

agents forward from period ai+c, but with agent i removed, and corresponds

to the final term in the payment.

First, fix the reported arrival period. Now term (C) is agent-independent,

as in the offline VCG mechanism, and agent i maximizes the sum of (A)

+ (B) in a Bayes-Nash equilibrium by reporting its true valuation function

vi(k; θi) because the policy π∗ is defined so that it will maximize these terms

when the agent reports its true type.

But, agent i can also delay its reported arrival, which can affect the value

of term (C) in addition to terms (A) + (B). This is a new manipulation,

not possible to an agent in the offline VCG but possible here because an

agent can change the set of agents other than itself with which its marginal

negative effect is judged by delaying its arrival. However, BNIC is retained

because in equilibrium the expected decrease in (C) caused by delay c to

agent i’s arrival is equal to the expected decrease in (B), and these two effects

cancel out. Thus, an agent can report its true arrival time, and contingent

on this we have established that an agent should report its true type.

To understand this, add term Eπ∗

{

ai+c−1
∑

t=ai

R−i(h
t, π∗(ht))

}

to term (B)

and subtract it again from term (C). The adjusted term (C’) is now agent

independent (by the independence property) and can be ignored for the

purpose of establishing BNIC. Term (A) combined with adjusted term (B’)

is the expected value to all other agents forward from period ai, plus the

expected true value to agent i. Agent i’s best response is to report its true

type (and immediately upon arrival) because the policy π∗ is defined to

maximize (A)+(B’) when the other agents are truthful, i.e. in a Bayes-Nash

equilibrium.

Remarks

The dynamic VCG mechanism is BNIC but not dominant strategy IC. This

is a different solution concept than in an offline VCG mechanism. We only

have BNIC because the correctness of the policy depends on the center

having the correct model for the distribution on agent types. Without the

correct model the policy is not optimal in expectation and an agent with

beliefs different from that of the center should deviate to improve (its belief

about) the expected utility it will receive. The center can only have correct

beliefs in equilibrium.

In addition to expected-value maximizing, the dynamic VCG mechanism

is ex post IR if the environment satisfies agent-monotonicity, which requires

that introducing an agent to a state always has a positive expected effect

on the total value of the system. This is generally true, except in domains

Computational Mechanism Design 71

where there are effects such as congestion, for instance physical domains

where the arrival of an additional robot may block the movements of other

robots.

The dynamic VCG mechanism also satisfies ex ante WBB if the environ-

ment satisfies no positive externalities, which requires that the arrival of an

agent does not have a positive expected effect on the total value of the other

agents.This holds when agents are all consumers, but not when some agents

contribute value to a team by their presence (e.g. sellers in a market, or

robots bringing a new skill that enables a task that all robots care about to

be completed more quickly).

Parkes et al. [PSY04] construct an ǫ-BNIC online mechanism by cou-

pling the dynamic VCG mechanism with an approximate, sparse-sampling

algorithm to compute the online decision in each period [KMN99]. The algo-

rithm is a good fit with the requirements of the dynamic VCG mechanism

because the payments just require an estimate of the system value with

agent i and without agent i upon its arrival, and sparse-sampling can be

used to get such an estimate. The approximate, dynamic VCG mechanism

is ǫ-BNIC, in the sense that no agent can gain more than some amount ǫ > 0

(that can be made arbitrarily small) by deviating from truthful reporting,

as long as the other agents are truthful. This example illustrates making a

tradeoff between an exact equilibrium solution concept and computational

tractability.

The dynamic VCG mechanism has been further generalized by Bergemann

and Välämaki [BV06], whose work along with that of Cavallo et al. [CPS06]

applies to a model in which agent state changes across time. Because of

this, incentive compatibility must now be assured in every period, so that

an agent will continue to report its true state information. For an applica-

tion, consider a multi-agent variation on the classical multi-armed bandits

problem. Each agent owns an “arm” and receives a reward when its arm is

activated, sampled from a stationary distribution. The reward signals are

privately observed and allow an agent to update its model for the reward on

its arm. In a setting with an infinite time horizon and discounting, one can

use Gittins’ [GJ74] celebrated index policy to characterize an efficient online

policy that makes the optimal tradeoff between exploitation and exploration.

In the presence of self-interest, the generalized (dynamic) VCG mechanism

provides incentives to support truthful reporting of reward signals by each

agent, and thus implement the efficient learning policy.

72 D. C. Parkes

1.7 Conclusions

Mechanism design provides a beautiful but theory for how to perform opti-

mization in multi-agent systems with self-interest and distributed, privately

known information. However, mechanism design must be extended in many

dimensions to make it widely applicable to distributed intelligent systems.

This is natural because mechanisms are being realized, and in realizing them

new considerations– e.g. those of computational and communication effi-

ciency –come to light. Progress on this agenda, in the emerging subfield

of computational mechanism design, requires a strong background in the

techniques of computer science, microeconomics, and operations research.

In these notes we have considered three main topics: algorithmic mech-

anism design and its focus on the computational complexity of central-

ized problem solving in MD; indirect mechanisms and the problem of effi-

cient preference elicitation in CMD; distributed implementation, distributed

AMD, and the problems entailed in getting agents involved in computing

the outcome of mechanisms; and online MD in which mechanism design is

applied to dynamic environments.

To date, CMD has relied heavily on dominant-strategy implementation,

and to a lesser extent ex post Nash implementation. Yet, it seems likely that

an important future direction is to develop new solution concepts. There

is mounting evidence of the difficulties in implementing desirable outcomes

with these strong solution concepts. Moreover, agents (both computational

and human) are intrinsically bounded in their capacity for deliberation and

modeling. One challenge, going forward is to find analytically tractable

models of bounded-rationality; we need models that support the design of

new mechanisms.45

Much current work in CMD focuses on worst-case approximation results

and polynomial-time algorithms. This attention to the worst-case is some-

what at odds with the traditions in artificial intelligence and operations

research of heuristic, anytime algorithms such as tree search for solving op-

timization problems. Algorithms such as these are designed to work well

on typical problem instances and fail gracefully. We should expect future

work to find methods to integrate the search and sample-based methods

of AI and OR into the methods of CMD, retaining appropriate incentive

properties [PS04a, PD07, e.g.].

Research in CMD will also need to acknowledge, and then systemati-

cally attack, the obvious limitations in the equilibrium concepts and models

45Some work has started in this direction [LS01, LS04a, LN05, HB04, HB06, HB07, BW05, Par04].
We also note that economics is increasingly welcoming of behavioral models of agent behav-
ior [LG04, Mul02, Rab98, Wil04].

Computational Mechanism Design 73

adopted in current work. Most glaring of these is the almost exclusive con-

sideration of unilateral deviation. With limited exception [GH05, e.g.], no

attention has been given to the possibilities of collusive behavior or other

coordinated manipulations. Another example of a largely unmodeled ma-

nipulation is that of false-name bidding [Yok03, YSM04]. Other weaknesses

of current models include the private values assumption [IP06, e.g.] and

the quasilinear utility assumption [BCI+05, e.g.]. Finally, there are many

computational domains in which it is impossible to support payments, but

there has been comparatively less focus on implementation in settings with

ordinal preferences [CSL07].

1.8 Acknowledgments

This research is supported in part by National Science Foundation grants

IIS-0238147, IIS-0534620 and an Alfred P. Sloan Foundation award. Many

of the ideas have come out of inspiring conversations with collaborators,

my wonderful group of students, and colleagues. Thanks to the IMS of the

National University of Singapore, and especially Yeneng Sun, for supporting

a visit in June 2005 and facilitating the tutorial upon which this chapter is

structured. Peter Hammond offered helpful comments on an earlier draft.

74 D. C. Parkes

Bibliography

[AAM03] Baruch Awerbuch, Yossi Azar, and Adam Meyerson. Reducing truth-
telling online mechanisms to online optimization. In Proc. ACM Symposium
on Theory of Computing (STOC’03), pages 503–510, 2003.

[Abr06] Zoe Abrams. Revenue maximization when bidders have budgets. In Proc.
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.

[AM02] Lawrence M Ausubel and Paul Milgrom. Ascending auctions with package
bidding. Frontiers of Theoretical Economics, 1:1–42, 2002.

[Ang87] Dana Angluin. Queries and concept learning. Machine Learning, 2:319–342,
1987.

[Arr79] Kenneth J Arrow. The property rights doctrine and demand revelation
under incomplete information. In M Boskin, editor, Economics and Human
Welfare. Academic Press, New York, 1979.

[AT01] A Archer and E Tardos. Truthful mechanisms for one-parameter agents. In
Proc. 42nd IEEE Symp. on Foundations of Computer Science, 2001.

[ATY00] Arne Andersson, Mattias Tenhunen, and Fredrik Ygge. Integer program-
ming for auctions with bids for combinations. In Proc. 4th International Con-
ference on Multi-Agent Systems (ICMAS-00) [icm00], pages 39–46.

[BCI+05] C Borgs, J Chayes, N Immorlica, M Mahdian, and A Saberi. Multi-
unit auctions with budget-constrained bidders. In Proc. 6th ACM Conf. on
Electronic Commerce, pages 44–51, 2005.

[BCL+06] S Bikhchandani, S Chatterji, R Lavi, A Mu’alem, N Nisan, and A Sen.
Weak monotonicity characterizes incentive deterministic dominant strategy im-
plementation. Econometrica, 74:1109–1132, 2006.

[BGN03] Yair Bartal, Rica Gonen, and Noam Nisan. Incentive compatible multi
unit combinatorial auctions. In TARK ’03: Proceedings of the 9th conference
on Theoretical aspects of rationality and knowledge, pages 72–87. ACM Press,
2003.

[BGT03] Curt Bererton, Geoff Gordon, and Sebastian Thrun. Auction mechanism
design for multi-robot coordination. In Proc. 17th Annual Conf. on Neural
Information Processing Systems (NIPS’03), 2003.

[BHM77] S Bradley, A Hax, and T Magnanti. Applied Mathematical Programming.
Addison-Wesley, 1977.

[BJSZ04] Avrim Blum, Jeffrey Jackson, Tuomas Sandholm, and Martin Zinkevich.
Preference elicitation and query learning. Journal of Machine Learning Re-
search (JMLR), 5:649–667, 2004.

[BM07] Dirk Bergemann and Stephen Morris. Ex post implementation. Games and
Economic Behavior, 2007. To appear.

[BN05] Liad Blumrosen and Noam Nisan. On the computational power of iterative
auctions. In Proc. 6th ACM Conf. on Electronic Commerce, pages 29–43, 2005.

[BO02] Sushil Bikhchandani and Joseph M Ostroy. The package assignment model.
Journal of Economic Theory, 107(2):377–406, 2002.

[BP05] Jonathan Bredin and David C. Parkes. Models for truthful online double
auctions. In Proc. 21st Conference on Uncertainty in Artificial Intelligence
(UAI’2005), pages 50–59, 2005.

[BV03] Sandeep Baliga and Rakesh Vohra. Market research and market design. BE
Journal of Theoretical Economics, 3, 2003.

[BV06] Dirk Bergemann and Juuso Välimäki. Efficient dynamic auctions. Technical
Report Cowles Foundation Discussion Paper No. 1584, Yale University, 2006.

[BW05] Moshe Babaioff and William E Walsh. Incentive-compatible, budget-

Computational Mechanism Design 75

balanced, yet highly efficient auctions for supply chain formation. Decision
Support Systems, 39:123–149, 2005.

[Cav06] Ruggiero Cavallo. Optimal decision-making with minimal waste: Strate-
gyproof redistribution of VCG payments. In Proc. of the 5th Int. Joint Conf.
on Autonomous Agents and Multi Agent Systems (AAMAS’06), 2006.

[CBA+05] Brent N. Chun, Philip Buonadonna, Alvin AuYoung, Chaki Ng, David C.
Parkes, Jeffrey Shneidman, Alex C. Snoeren, and Amin Vahdat. Mirage: A mi-
croeconomic resource allocation system for sensornet testbeds. In Proceedings
of 2nd IEEE Workshop on Embedded Networked Sensors (EmNetsII), 2005.

[CHK07] Shuchi Chawla, Jason Hartline, and Robert Kleinberg. Algorithmic pricing
via virtual valuations. In Proc. ACM Conference on Electronic Commerce,
2007.

[CJ07] Olivier Compte and Philippe Jehiel. Auctions and information acquisition:
Sealed-bid or Dynamic Formats? Rand Journal of Economics, 2007.

[Cla71] E H Clarke. Multipart pricing of public goods. Public Choice, 11:17–33,
1971.

[CP05] Florin Constantin and David C. Parkes. Preference-based characterizations
of truthfulness and the limited expressiveness of order-based domains. In Proc.
Workshop on Preference Handling, Edinburgh, Scotland, 2005.

[CP06] Estelle Cantillon and Martin Pesendorfer. Auctioning bus Routes: The Lon-
don experience. In Cramton et al. [CSS06], chapter 22.

[CPS06] Ruggiero Cavallo, David C. Parkes, and Satinder Singh. Optimal coordi-
nated learning among self-interested agents in the multi-armed bandit problem.
In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence
(UAI’2006), Cambridge, MA, 2006.

[CS02a] V Conitzer and T Sandholm. Complexity of mechanism design. In Proc.
18th Conf. on Uncertainty in Artificial Intelligence (UAI’02), pages 103–110,
2002.

[CS02b] V Conitzer and T Sandholm. Vote Elicitation: Complexity and Strategy-
Proofness. In Proc. 18th National Conference on Artificial Intelligence (AAAI-
02), pages 392–397, 2002.

[CS03] Vincent Conitzer and Tuomas Sandholm. Applications of automated mech-
anism design. In Proc. UAI Bayesian Modeling Applications Workshop, Aca-
pulco, Mexico, 2003.

[CS04] Vincent Conitzer and Tuomas Sandholm. Computational criticisms of the
revelation principle. In Proc. 5th ACM Conference on Electronic Commerce
(EC’04), pages 262–263, 2004. Short paper.

[CSL07] Vincent Conitzer, Tuomas Sandholm, and Jerome Lang. When are elections
with few candidates hard to manipulate? Journal of the ACM, 2007.

[CSS06] Peter Cramton, Yoav Shoham, and Richard Steinberg, editors. Combina-
torial Auctions. MIT Press, January 2006.

[dG79] C d’Aspremont and L Gerard-Varet. Incentives and incomplete information.
J. of Public Economics, 11:25–45, 1979.

[DHM79] Partha S Dasgupta, Peter Hammond, and Eric S. Maskin. The Implemen-
tation of Social Choice Rules: Some General Results on Incentive Compatibil-
ity. Review of Economic Studies, 46:185–216, 1979.

[DNS05] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation
algorithms for combinatorial auctions with complement free bidders. In Proc.
37th ACM Symposium on Theory of Computing (STOC), 2005.

[DNS06] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Truthful random-

76 D. C. Parkes

ized mechanisms for combinatorial auctions. In STOC ’06: Proceedings of the
thirty-eighth annual ACM symposium on Theory of computing, pages 644–652.
ACM Press, 2006.

[DS06] Shahar Dobzinski and Michael Schapira. An improved approximation algo-
rithm for combinatorial auctions with submodular bidders. In Proc. ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1064–1073, 2006.

[dVSV07] Sven de Vries, James Schummer, and Rakesh V Vohra. On ascending Vick-
rey auctions for heterogeneous objects. Journal of Economic Theory, 132:95–
118, 2007.

[dVV03] Sven de Vries and Rakesh V Vohra. Combinatorial auctions: A survey.
Informs Journal on Computing, 15(3):284–309, 2003.

[ec000] Proc. 2nd ACM Conf. on Electronic Commerce (EC-00), 2000.
[ER91] Eithan Ephrati and Jeffrey S Rosenschein. The Clarke tax as a consensus

mechanism among automated agents. In Proc. 9th National Conference on
Artificial Intelligence (AAAI-91), pages 173–178, July 1991.

[Fal04] Boi Faltings. A budget-balanced, incentive-compatible scheme for social
choice. In Workshop on Agent-mediated E-commerce (AMEC), 2004.

[FGHK02] Amos Fiat, Andrew Goldberg, Jason Hartline, and Anna Karlin. Com-
petitive generalized auctions. In Proc. 34th ACM Symposium on Theory of
Computing (STOC’02), 2002.

[FK00] I T Foster and C Kesselman. Computational grids. In VECPAR, pages 3–37,
2000.

[FKSS01] Joan Feigenbaum, Arvind Krishnamurthy, Rahul Sami, and Scott
Shenker. Approximation and collusion in multicast cost sharing. In Proc.
of the 3rd Conference on Electronic Commerce, pages 253–255, 2001.

[FP03] Eric Friedman and David C. Parkes. Pricing WiFi at Starbucks– Issues
in online mechanism design. In Fourth ACM Conf. on Electronic Commerce
(EC’03), pages 240–241, 2003. Short Paper.

[FPSS02] Joan Feigenbaum, Christos Papadimitriou, Rahul Sami, and Scott
Shenker. A BGP-based mechanism for lowest-cost routing. In Proceedings
of the 2002 ACM Symposium on Principles of Distributed Computing, pages
173–182, 2002.

[FS] Joan Feigenbaum and Scott Shenker. Distributed algorithmic mechanism
design: Recent results and future directions. Presentation at: http://cs-
www.cs.yale.edu/homes/jf/DIALM02.pdf.

[FS02] Joan Feigenbaum and Scott Shenker. Distributed Algorithmic Mechanism
Design: Recent Results and Future Directions. In Proceedings of the 6th Inter-
national Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications, pages 1–13, 2002.

[FSS07] Joan Feigenbaum, Michael Schapira, and Scott Shenker. Distributed algo-
rithmic mechanism design. In Nisan et al. [NRTV07], chapter 14.

[FT91] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.
[GC07] M Guo and V Conitzer. Worst-case optimal redistribution of VCG payments.

In Proc. 8th ACM Conference on Electronic Commerce, 2007.
[Geo70] Arthur M Geoffrion. Elements of large-scale mathematical programming.

Management Science, 16(11):652–691, 1970.
[GH03] Andrew Goldberg and Jason Hartline. Envy-free auctions for digital goods.

In Proc. ACM E’Commerce, pages 29–35, 2003.
[GH05] Andrew Goldberg and Jason Hartline. Collusion-resistant mechanisms for

single parameter agents. In Proc. ACM-SIAM Symposium on Discrete Algo-

Computational Mechanism Design 77

rithms (SODA), pages 620–629, 2005.
[GHK+06] Andrew Goldberg, Jason Hartline, Anna Karlin, Mike Saks, and Andrew

Wright. Competitive auctions. Games and Economic Behavior, 55:242–269,
2006.

[Gib73] Alan Gibbard. Manipulation of voting schemes: A general result. Econo-
metrica, 41:587–602, 1973.

[GJ74] J. C. Gittins and D. M. Jones. A dynamic allocation index for the sequential
design of experiments. In J. Gani, K. Sakadi, and I. Vinczo, editors, Progress
in Statistics, pages 241–266. North-Holland, 1974.

[GL77a] Jerry Green and Jean-Jacques Laffont. Characterization of satisfactory
mechanisms for the revelation of preferences for public goods. Econometrica,
45:427–438, 1977.

[GL77b] Theodore Groves and John O Ledyard. Optimal allocation of public goods:
A solution to the “free rider” problem. Econometrica, 45:783–809, 1977.

[GMV04] Hongwei Gui, Rudolf Muller, and Rakesh Vohra. Characterizing dom-
inant strategy mechanisms with multi-dimensional types. Technical report,
Northwestern University, 2004.

[Gro73] Theodore Groves. Incentives in teams. Econometrica, 41:617–631, 1973.
[GS00] Faruk Gul and Ennio Stacchetti. The English auction with differentiated

commodities. Journal of Economic Theory, pages 66–95, 2000.
[H9̈9] J Hästad. Clique is hard to approximate within n1−ǫ. Acta Mathematica,

182:105–142, 1999.
[HB00] Holger H Hoos and Craig Boutilier. Solving combinatorial auctions with

stochastic local search. In Proc. 17th National Conference on Artificial Intel-
ligence (AAAI-00), pages 22–29, 2000.

[HB04] Nathanael Hyafil and Craig Boutilier. Regret minimizing equilibria and
mechanisms for games with strict type uncertainty. In Proceedings of the Twen-
tieth Annual Conference on Uncertainty in Artificial Intelligence (UAI-04),
pages 268–277, 2004.

[HB06] Nathanael Hyafil and Craig Boutilier. Regret-based incremental partial rev-
elation mechanisms. In Proceedings of the Twenty-first National Conference
on Artificial Intelligence (AAAI-06), pages 672–678, 2006.

[HB07] Nathanael Hyafil and Craig Boutilier. Mechanism design with partial rev-
elation. In Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI-07), Hyderabad, India, 2007.

[HG00] Luke Hunsberger and Barbara J Grosz. A combinatorial auction for collabo-
rative planning. In Proc. 4th International Conference on Multi-Agent Systems
(ICMAS-00) [icm00], pages 151–158.

[HKMP05] Mohammad T. Hajiaghayi, Robert Kleinberg, Mohammad Mahdian, and
David C. Parkes. Online auctions with re-usable goods. In Proc. ACM Conf.
on Electronic Commerce, pages 165–174, 2005.

[HKP04] Mohammad T. Hajiaghayi, Robert Kleinberg, and David C. Parkes. Adap-
tive limited-supply online auctions. In Proc. ACM Conf. on Electronic Com-
merce, pages 71–80, 2004.

[HM83] Bengt Holmstrom and Roger B. Myerson. Efficient and durable decision
rules with incomplete information. Econometrica, 51:1799–1820, 1983.

[Hol79] Bengt Holmström. Groves’ scheme on restricted domains. Econometrica,
47(5):1137–1144, 1979.

[Hur75] Leonid Hurwicz. On the existence of allocation systems whose manipulative
Nash equilibria are Pareto optimal. Unpublished paper presented at the 3rd

78 D. C. Parkes

World Congress of the Economic Society, Toronto, 1975.
[icm00] Proc. 4th International Conference on Multi-Agent Systems (ICMAS-00),

2000.
[IK06] Garud Iyengar and Anuj Kumar. Characterizing optimal adword auctions.

In Proc. Second Workshop on Sponsored Search, 2006.
[IP06] Takayuki Ito and David C. Parkes. Instantiating the contingent bids model

of truthful interdependent value auctions. In Proc. 6th Int. Joint Conf. on
Autonomous Agents and Multiagent Systems, 2006.

[Jac01] Matthew O. Jackson. A crash course in Implementation theory. Social
Choice and Welfare, 18(4):655–708, 2001.

[Jac03] Matthew O. Jackson. Mechanism theory. In Ulrich Derigs, editor, The
Encyclopedia of Life Support Systems. EOLSS Publishers, 2003.

[JM01] P. Jehiel and B. Moldovanu. Efficient design with interdependent valuations.
Econometrica, 69:1237–1259, 2001.

[JP06] Adam Juda and David Parkes. The sequential auction problem on eBay:
An empirical analysis and a solution. In Proc. 7th ACM Conf. on Electronic
Commerce (EC’06), pages 180–189, 2006.

[JtVM07] Philippe Jehiel, Moritz Meyer ter Vehn, and Benny Moldovanu. Mixed
bundling auctions. Journal of Economic Theory, 134:494–512, 2007.

[Kle00] Paul Klemperer. The Economic Theory of Auctions, chapter 1. Edward
Elgar, 2000. Auction Theory: A Guide to the Literature.

[KMN99] Michael Kearns, Yishay Mansour, and Andrew Y Ng. A sparse sampling
algorithm for near-optimal planning in large Markov Decision Processes. In
Proc. 16th Int. Joint Conf. on Artificial Intelligence, pages 1324–1331, 1999.

[KP00] Vijay Krishna and Motty Perry. Efficient mechanism design. Tech-
nical report, Pennsylvania State University, 2000. Available at:
http://econ.la.psu.edu/̃ vkrishna/vcg18.ps.

[Kri02] Vijay Krishna. Auction Theory. Academic Press, 2002.
[LCP05] Sébastien M Lahaie, Florin Constantin, and David C Parkes. More on the

power of demand queries in combinatorial auctions: Learning atomic languages
and handling incentives. In Proc. 19th Int. Joint Conf. on Artificial Intell.
(IJCAI’05), 2005.

[Led07] John Ledyard. Optimal combinatoric auctions for single-minded bidders. In
Proc. ACM Conference on Electronic Commerce, 2007.

[LG04] David Laibson and Xavier Gabaix. Bounded rationality and directed cogni-
tion. Technical report, Harvard University, 2004.

[LMN03] R Lavi, A Mu’alem, and N Nisan. Towards a characterization of truthful
combinatorial auctions. In Proc. 44th Annual Symposium on Foundations of
Computer Science, page 574, 2003.

[LMS06] Daniel Lehmann, Rudolf Muller, and Tuomas Sandholm. The winner de-
termination problem. In Cramton et al. [CSS06], chapter 12.

[LN00] Ron Lavi and Noam Nisan. Competitive analysis of incentive compatible
on-line auctions. In Proc. 2nd ACM Conf. on Electronic Commerce (EC-00)
[ec000], pages 233–241.

[LN05] Ron Lavi and Noam Nisan. Online ascending auctions for gradually expiring
goods. In Proc. of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1146–1155, 2005.

[LOS02] Daniel Lehmann, Liadan Ita O’Callaghan, and Yoav Shoham. Truth reve-
lation in approximately efficient combinatorial auctions. Journal of the ACM,
49(5):577–602, September 2002.

Computational Mechanism Design 79

[LP04] Sébastien M Lahaie and David C Parkes. Applying learning algorithms to
preference elicitation. In Proc. ACM Conf. on Electronic Commerce, pages
180–188, 2004.

[LS01] Kate Larson and Tuomas Sandholm. Bargaining with limited computation:
Deliberation equilibrium. Artificial Intelligence, 132(2):183–217, 2001.

[LS04a] Kate Larson and Tuomas Sandholm. Experiments on deliberation equilibria
in auctions. In Proc. 3rd Int. Joint. Conf. on Autonomous Agents and Multi
Agent Systems, pages 394–401, 2004.

[LS04b] A Likhodedov and T Sandholm. Methods for boosting revenue in combi-
natorial auctions. In Proc. 19th National Conference on Artificial Intelligence
(AAAI-04), pages 232–237, 2004.

[LS05] A Likhodedov and T Sandholm. Approximating revenue-maximizing combi-
natorial auctions. In Proc. of the National Conference on Artificial Intelligence
(AAAI), 2005.

[LS07] Ron Lavi and Chaitanya Swamy. Truthful mechanism design for multi-
dimensional scheduling via cycle monotonicity. In Proc. ACM Conference on
Electronic Commerce, 2007.

[M0̈6] Rudolf Müller. Tractcable cases of the winner determination problem. In
Cramton et al. [CSS06], chapter 13.

[MCWG95] Andreu Mas-Colell, Michael D Whinston, and Jerry R Green. Microe-
conomic Theory. Oxford University Press, 1995.

[Mil04] Paul Milgrom. Putting Auction Theory to Work. Cambridge University
Press, 2004.

[ML04] Roger Mailler and Victor Lesser. Solving distributed constraint optimization
problems using cooperative mediation. In Proceedings of Third International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2004), pages 438–445, 2004.

[MM96] R Preston McAfee and John McMillan. Analyzing the airwaves auction. J
Econ Perspect, 10:159–175, 1996.

[MN02] A. Mu’alem and N. Nisan. Truthful approximation mechanisms for re-
stricted combinatorial auctions. In Proc. 18th National Conference on Artificial
Intelligence (AAAI-02), 2002. .

[MP07] Debasis Mishra and David C. Parkes. Ascending price Vickrey auctions for
general valuations. Journal of Economic Theory, 132:335–366, 2007.

[MS83] Robert B Myerson and Mark A Satterthwaite. Efficient mechanisms for
bilateral trading. Journal of Economic Theory, 28:265–281, 1983.

[MSTY05] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous
distributed constraint optimization with quality gurantees. Artificial Intelli-
gence Journal, 161:149–180, 2005.

[MT99] Dov Monderer and Moshe Tennenholtz. Distributed games. Games and
Economic Behavior, 28(1):55–72, 1999.

[Mul02] Sendhil Mullainathan. A memory-based model of bounded rationality.
Quarterly Journal of Economics, 117:735–774, 2002.

[MV04] A Malakhov and R V Vohra. Single and multi-dimensional optimal auc-
tions – A network approach. Technical report, Kellogg School of Management,
Northwester University, 2004.

[Mye81] Robert B Myerson. Optimal auction design. Mathematics of Operation
Research, 6:58–73, 1981.

[Nis00] Noam Nisan. Bidding and allocation in combinatorial auctions. In Proc. 2nd
ACM Conf. on Electronic Commerce (EC-00) [ec000], pages 1–12.

80 D. C. Parkes

[Nis06] Noam Nisan. Bidding languages for combinatorial auctions. In Cramton
et al. [CSS06], chapter 9.

[NR00] Noam Nisan and Amir Ronen. Computationally feasible VCG mechanisms.
In Proc. 2nd ACM Conf. on Electronic Commerce (EC-00) [ec000], pages 242–
252.

[NR01] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and
Economic Behavior, 35:166–196, 2001.

[NRTV07] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay Vazirani, editors.
Algorithmic Game Theory. Cambridge University Press, 2007.

[NS05] Noam Nisan and Ilya Segal. Exponential communication inefficiency of de-
mand queries. In Tenth Conf. on the Theoretical Aspects of Rationality and
Knowledge, 2005.

[NS06] Noam Nisan and Ilya Segal. The communication requirements of efficient
allocations and supporting prices. Journal of Economic Theory, 129:192–224,
2006.

[NW99] George Nemhauser and Laurence Wolsey. Integer and Combinatorial Opti-
mization. Wiley-Interscience, 1999.

[OR94] Martin J Osborne and Ariel Rubinstein. A Course in Game Theory. MIT
Press, 1994.

[Par01] David C Parkes. Iterative Combinatorial Auctions: Achieving Economic and
Computational Efficiency. PhD thesis, Department of Computer and Informa-
tion Science, University of Pennsylvania, May 2001.

[Par02] David C. Parkes. Price-based information certificates for minimal-revelation
combinatorial auctions. In Agent Mediated Electronic Commerce IV: Designing
Mechanisms and Systems, volume 2531 of Lecture Notes in Artificial Intelli-
gence, pages 103–122. Springer Verlag, 2002.

[Par04] David C. Parkes. On learnable mechanism design. In Kagan Tumer and
David Wolpert, editors, Collectives and the Design of Complex Systems, pages
107–131. Springer-Verlag, 2004.

[Par05] David C. Parkes. Auction design with costly preference elicitation. Annals
of Mathematics and AI, 44:269–302, 2005. Special Issue on the Foundations of
Electronic Commerce.

[Par07] David C Parkes. On-line mechanisms. In Nisan et al. [NRTV07], chapter 16.
[PD07] David C Parkes and Quang Duong. An ironing-based approach to adaptive

online mechanism design in single-valued domains. In Proc. 22nd National
Conference on Artificial Intelligence (AAAI’07), 2007.

[PF05] Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint
optimization. In Proc. 19th Int. Joint Conf. on Art. Intelligence (IJCAI’05),
pages 266–271, 2005.

[PFP06] Adrian Petcu, Boi Faltings, and David C. Parkes. MDPOP: Faithful dis-
tributed implementation of efficient social choice problems. In Proc. 5th Int.
Joint Conf. on Autonomous Agents and Multiagent Systems, 2006.

[Por04] Ryan Porter. Mechanism design for online real-time scheduling. In Proc.
ACM Conf. on Electronic Commerce (EC’04), pages 61–70, 2004.

[PRST02] Ryan Porter, Amir Ronen, Yoav Shoham, and Moshe Tennenholtz. Mech-
anism design with execution uncertainty. In Proc. 18th Conf. on Uncertainty
in Artificial Intelligence (UAI’02), 2002.

[PS03] David C. Parkes and Satinder Singh. An MDP-based approach to Online
Mechanism Design. In Proc. 17th Annual Conf. on Neural Information Pro-
cessing Systems (NIPS’03), 2003.

Computational Mechanism Design 81

[PS04a] David C. Parkes and Grant Schoenebeck. Growrange: Anytime VCG-
Based Mechanisms. In Proc. 19th National Conference on Artificial Intelligence
(AAAI-04), pages 34–41, 2004.

[PS04b] David C. Parkes and Jeffrey Shneidman. Distributed implementations of
Vickrey-Clarke-Groves mechanisms. In Proc. 3rd Int. Joint Conf. on Au-
tonomous Agents and Multi Agent Systems, pages 261–268, 2004.

[PSY04] David C. Parkes, Satinder Singh, and Dimah Yanovsky. Approximately
efficient online mechanism design. In Proc. 18th Annual Conf. on Neural In-
formation Processing Systems (NIPS’04), 2004.

[PU00] David C Parkes and Lyle H Ungar. Iterative combinatorial auctions: The-
ory and practice. In Proc. 17th National Conference on Artificial Intelligence
(AAAI-00), pages 74–81, 2000.

[Put94] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic
programming. John Wiley & Sons, New York, 1994.

[Rab98] Matthew Rabin. Psychology and economics. Journal of Economic Litera-
ture, 36:11–46, 1998.

[Rob79] Kevin Roberts. The characterization of implementable rules. In Jean-
Jacques Laffont, editor, Aggregation and Revelation of Preferences, pages 321–
348. North-Holland, Amsterdam, 1979.

[Roc87] J.-C. Rochet. A necessary and sufficient condition for rationalizability in a
quasi-linear context. Journal of Mathematical Economics, 16:191–200, 1987.

[RPH98] Michael H Rothkopf, Aleksandar Pekewc, and Ronald M Harstad.
Computationally manageable combinatorial auctions. Management Science,
44(8):1131–1147, 1998.

[RZ94] Jeffrey S Rosenschein and Gilad Zlotkin. Rules of Encounter. MIT Press,
1994.

[San93] Tuomas W Sandholm. An implementation of the Contract Net Protocol
based on marginal-cost calculations. In Proc. 11th National Conference on
Artificial Intelligence (AAAI-93), pages 256–262, July 1993.

[San96] Tuomas W Sandholm. Limitations of the Vickrey auction in computational
multiagent systems. In Proc. Second International Conference on Multiagent
Systems (ICMAS-96), pages 299–306, 1996.

[San02] Tuomas W Sandholm. eMediator: A next generation electronic commerce
server. Computational Intelligence, 18:656–676, 2002.

[San06] Tuomas Sandholm. Optimal winner determination algorithms. In Cramton
et al. [CSS06], chapter 14.

[Sat75] Mark A Satterthwaite. Strategy-proofness and Arrow’s conditions: Exis-
tence and correspondence theorems for voting procedures and social welfare
functions. Journal of Economic Theory, 10:187–217, 1975.

[Seg03] Ilya Segal. Optimal pricing mechanisms with unknown demand. American
Economic Review, 93:509–529, 2003.

[SP04a] Saurabh Sanghvi and David C. Parkes. Hard-to-manipulate combinatorial
auctions. Technical report, Harvard University, 2004.

[SP04b] Jeffrey Shneidman and David C. Parkes. Specification faithfulness in net-
works with rational nodes. In Proc. 23rd ACM Symp. on Principles of Dis-
tributed Computing (PODC’04), pages 88–97, St. John’s, Canada, 2004.

[SS93] R Schapire and L Sellie. Learning sparse multivariate polynomials over a
field with queries and counterexamples. In Proc. 6th Annual ACM Workshop
on Computational Learning Theory, pages 17–26, 1993.

[SSGL05] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB: A fast optimal

82 D. C. Parkes

algorithm for winner determination in combinatorial auctions. Management
Science, 51(3):374–390, 2005.

[SY05] Michael Saks and Lan Yu. Weak monotonicity suffices for truthfulness on
convex domains. In Proc. 6th ACM Conf. on Electronic Commerce, pages
286–293, 2005.

[Ü06] Levent Ülkü. Optimal combinatorial mechanism design. Technical report,
Rutgers University, 2006.

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive sealed ten-
ders. Journal of Finance, 16:8–37, 1961.

[Voh07] Rakesh V. Vohra. Paths, cycles and mechanism design. Technical report,
Kellogg School of Management, Northwestern University, 2007.

[Wil04] Andrea Wilson. Bounded memory and biases in information processing.
Technical report, University of Chicago, 2004.

[Yok03] Makoto Yokoo. The characterization of strategy/false-name proof combina-
torial auction protocols: Price-oriented, rationing-free protocol. In Proc. 18th
Int. Joint Conf. on Art. Intell., pages 733–742, 2003.

[YSM04] Makoto Yokoo, Y Sakurai, and S Matsubara. The effect of false-name
bids in combinatorial auctions: New Fraud in Internet Auctions. Games and
Economic Behavior, 46(1):174–188, 2004.

[ZBS03] Martin Zinkevich, Avrim Blum, and Tuomas Sandholm. On polynomial-
time preference elicitation with value queries. In Proc. 4th ACM Conf. on
Electronic Commerce, pages 176–185, 2003.

[ZN01] Edo Zurel and Noam Nisan. An efficient approximate allocation algorithm
for combinatorial auctions. In Proc. 3rd ACM Conference on Electronic Com-
merce, pages 125–136. ACM Press, 2001.

