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Abstract

We present the design of a banner advertising auction which
is considerably morexpressivéhan current designs. We de-
scribe a general model of expressive ad contracts/biddidg a
an allocation model that can be executed in real time through
the assignment of fractions aflevant ad channel® specific
advertiser contracts. The uncertainty in channel suppty an
demand is addressed by the formulation of a stochastic com-
binatorial optimization problem for channel allocatiomtlis
rerun periodically. We solve this in two different ways: tfas
deterministic optimization with respect to expectaticarsg a
novel online sample-based stochastic optimization method
that can be applied to continuous decision spaces—which ex-
ploits the deterministic optimization as a black box. Exper
ments demonstrate the importance of expressive bidding and
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has focused almost exclusively on improving single-period
expressiveness, still with per-impression or per-CT rice
As has been well-documented in other auction domains, re-
quiring bidders and bid takers to shoehorn their preference
into the impoverished language of per-item bids is usually
unnecessarily and undesirably restrictive. Significant in
creases in efficiency and revenue have been reported from
auction designs that enable the participants to express the
preferences in richer ways (e.g., [3, 19]).

In this paper, we explore the useefpressive biddinfpr
online banner ad auctiodsin many domains, the value of
a setof ads may not be an additive function of value of its
individual elements. For instance, in an advertising cam-
paign,campaign-leveéxpressiveness is important. Adver-

tisers may value particulaequencesf ads, rather than in-
dividual ads per se. Allocative efficiency and revenue maxi-
. mization in such an environment demand that we allow bid-
Introduction ders to express bids (proposentracty on complex alloca-
The prevalence and variety of online advertising in recent tions, and that bid takers optimize owsquencesf alloca-
years has led to the development of an array of services tions to best match bidder preferences, in a way that cannot
for both advertisers and purveyors of online media. Be- be accommodated using per-item bidding.
cause matching an advertiser’s needs (demand) with a con- The key technical challenge for expressive ad auctions is
tent provider’s properties (e.g., locations on displayetbw  optimization: determining the optimal allocation of ad cha
pages) is a complex enterprise, often automated matching is nels to very large numbers of complex bids in real-time.
used to match ad channels with advertisers. One famous ex-This is further complicated by the stochastic nature of the
ample is the dispatch of (typically textual) ads in response domain—bothsupply(number of impressions or CTs) and
to keyword-based web searches, such as thos8anyle demandfuture bids) are uncertain—which necessitates on-
Yahoo! and MSN In those settings, auctions are used to line allocation. To address these issues, we model the prob-
match the supply and demand (see, e.g., [7, 22]). Internet lem as a Markov decision process (MDP), whose solution
auctions of traditional advertising (TV, radio, print) aiso is approximated in several ways. First we perform opti-
emerging (e.g., via companies likeoogleand Spot Run- mization only periodically. Following the genermgptimize-
ner). Auctions and exchanges for banner ads have also beenand-dispatctframework of Parkes and Sandholm [16], our
established—e.gRight Media(now part of Yahoo) and optimization generates an on-likspatch policythat as-
DoubleClick(now part ofGoogleé—although many banner  signs ad channels to advertisers in real-time. Our dispatch
ad bulk contracts are still manually negotiated. policies use the fractional assignment of (dynamically de-
There has been considerable research on developing auc-fined) channels to specific contracts. To approximate the
tion mechanisms for allocating ad channels, with a focus on optimization itself, we consider two approaches. The fast i
issues like auction design [7, 14, 16, 10], charging schemes deterministic optimization using expectations of all rand
(e.g., per impression or petick-through (CT) [13, 7, 22], variables and exploiting powerful mixed integer program-
bidder strategies [5, 9, 18], and so on. However, attention ming (MIP) algorithms for expressive market clearing [19].

the value of stochastic optimization.

Copyright(©) 2008, Association for the Advancement of Artificial 2For ease of presentation, we discuss banner ads, but the gen-
Intelligence (www.aaai.org). All rights reserved. eral principles and specific techniques we propose can biedpp

1This work was funded by, and conducted at, CombineNet, Inc. other forms of online advertising (keyword search auctiatsc-
Patents pending [20, 21]. tronic auctions of TV and radio ads, etc.) as well.



We propose a second, sample-based approach derived from A (long-term) contractexpresses an advertiser’s entire

van Hentenryck and Bent’s [12] online model for stochas-
tic optimization—but with novel adaptations to a continsou
decision space. This approach is able to leverage the MIP
framework, applying it to multiple possible future sceoari

in order to form a dispatch policy. In both cases, periodic
reoptimization is used to overcome the approximate nature
of the methods. We provide experiments to evaluate the ben-
efits of expressive bidding for ad auctions over various per-
item strategies, and the value and efficacy of our stochastic
optimization techniques.

Expressive ad markets

We consider an ad network (seller) that is charged with
serving banner ads over a number of sites. Given a particu-
lar page view, the seller can display ads in various location
on that page. We assume a fixed set of locatibreorre-
sponding to particular page-location pairs. Constraimts o
location allocations can be imposed (e.qg., to prevent alloc
tion of overlapping locations). Each location has statid an
transient properties of potential interest. Static propsr
include the page identity (e.g., NY Times main page), page
category (major news site), expected demographics, tgenti
and size of the location (top banner, wide skyscraper, mi-

preferences (or willingness to pay) foisator sequencef
location allocations rather than individual allocatidnsA
variety of forms of sequential, campaign-level expressive
ness are quite natural in banner ad auctions [16]. Examples
of complex preferences that our model allows include:

e Minimum targets: a minimal target level in a specific peried i
desired (e.g., 100K impressions in a week) and payment sccur
only if that target is reached. Or the offer may provide a $mal
CPI for any number of impressions less than 100K, but a signif
icant lump-sum bonus if the 100K target is met.

e Willingness to pay may be a function of multiple target lavel
(low saturation at 30K impressions may be of some value, high
saturation at 100K of significantly greater value).

e Temporal sequencing: e.g., (a minimum) 20K impressions on

the same page for each in a specific sequence of time periods

(e.g., 11PM-1AM for each of the next 14 days).

Substitution among properties: e.g., the same price fame-ti

limited campaign on either (but not both) of the NY Times or

CNN; or offer a slightly higher price for the NY Times cam-

paign. Note that substitution issues can benefit from our ap-

proach even in markets that have no temporal considerations

The forms of local expressiveness (i.e., features of spe-
cific impressions or CTs) that can be handled in current
auctions can also be incorporated into the conditions of a

cro bar, etc.) and so on. Transient location (or allocation) campaign-level contract. Thus context and other transient
features include time of day, page content, the presence of afaatures can be incorporated into @t preference€e.g.,

competitor's ad on the same page, etc.

We assume time is divided into a discrete set of decision
periods of suitable duration (e.g., several minutes, ar,hou
or even a day§. Ads are allocated to locations—possibly
fractionally, so that the multiple impressions of each taa
are allocated across multiple ads—over entire periods.

The supply of locations is uncertain, dictated by a se-
guence of page hits to the sites in question, each hit “cre-
ating” a specific set of location realizations in the current
period. The seller has a predictive distribution over page
hits. If CTs are of interest, we also assume a model of CT
probability (conditioned on location and ad features).

The seller receives bids of various forms from potential
advertisersifidderg that indicate their willingness to pay
for specific allocatiorschedulesperhaps coupled with bud-
get constraints. Bidders may be interested in CTs, impres-

bid for 100K NY Times front page impressions this week;
but offer a bonus if at least 20K of these hits include an
article on health care). Additionally, expressive aucion
can allow bidders to specify preferences directly in terms
of their target audiencde.g., via demographic attributes),
rather than only indirectly via ad location properties.

The following example illustrates the value of sequential
expressiveness coupled with optimizatfhere are two
sites A and B. Bidder b; bids $1 per thousand impres-
sions onA and $0.50 onB, with a budget of $50K. Bid-
der b, bids $0.50 per thousand impressions 4nwith a
budget of $20K. Suppose supply ohis 5 times that of
B for the first 50K units, but is then exhausted (oriby
has supply from then on). In a non-expressive auctien,
will win all of A’s and B’s supply until its budget is ex-
hausted. Specifically, bidder 1 would wifi00/11) K im-

sions, or other actions induced by the display of the ad. As pressions ((1)z + 0.52/5 = 50K). At this pointb, wins
page hits occur, the seller must assign ads to the realized the remaining50/11) K impressions onl. Total revenue is

locations, ideally in such a way as to maximiggpected
revenue or some other objective over a horizon of interest.
Standard banner and keyword auctions allow bidders to
express a cost per impression (CPI) or cost per clickthrough
(CPC) together with a budget constraint over a particular pe
riod of time (e.g., hour or day). While certain forms of “lo-

cal” expressiveness are provided to enable good matches to
be made between an ad and instantaneous supply, little be-

yond budget constraints (e.g., [2]) is provided to allow for
sequentialor campaign-level expressivendgssit see [1, 8]
for mild expressiveness extensions in keyword auctions).

3These periods need not be of the same duration; the start of a
new period may even be triggered dynamically by the occagen
of an event, such as an advertiser reaching its budget limit.

50 + (0.5)(50/11) ~ $52.3K. An optimal expressive auc-
tion would collect revenue of $70K by selling 40K units of
A'to by, and 10K units ofd plus 80K units ofB to b .

Preliminaries: The optimization problem

Our optimization takes as input a set of long-term contracts
that have been submitted to the auction. They specify all the

4Although a contract need not insist on a guarantee of a certai
number of impressions/CTs, such guarantees can be hangled b
including penalties on targets not achieved.

5The example is simplistic since we do not provide equilibriu
analysis of either auction. Nevertheless, it illustrates advan-
tage of global optimization over myopic bidding in non-exgsive
auctions—even when there is no uncertainty.



offers (including bids, constraints, bonuses, etc.) the bi
ders have made. We model tepot markefor new bids—
traditional bids without sequential expressiveness—and a
sume a spot marketemand distributionrP” over location-

Supply (and demand) uncertainty. Precise supply, or
channel sizeat any periodt is not generally known in ad-
vance. For instance, we may not know the number of page
hits for the NY Times Business front page between 2PM

price pairs. Spot demand can easily be treated as a standingand 3PM. However, we assume that a distribution over chan-

contract containing only inexpressive bids. The sellerdhas
predictive distribution over page hits, inducingapply dis-
tribution P over locations for each period.

Suppose we have a sé& of long-term contracts, with
maximum horizonI’ (i.e., the final state of all contracts is
determined by period). For anyj € B, let A;~" be a ran-
dom variable denoting the set of locations assigned to con-
tractj, andR(j, A} ") the revenue generated by contract
given this realization of locations. Finally, letdenote the
seller'spolicy, which assigns realized locations to contracts
j € B In a history-dependent fashion. Our objective is to
find a policy that maximizes expected revenue:

> R, A}“'T>|w} :
JjEB

where the expectation is taken w.r.t. the distribution over
supply (page hits) and demand (future bids).

The decision problem facing the bid taker can be modeled
as a fully observable, finite-horizon Markov decision pro-
cess (MDP) [6]. Ideally, a policy should take into account
contract states after each “event” (e.g., page view) and de-
termine the optimal allocation of locations to maximize ex-
pected future reward. Of course, the size of the state space i
such an MDP renders its optimal solution infeasible. Even
online approximations cannot be re-run at the time scale of
individual events. Thus we use coarser-grained decision pe
riods (e.g., at the level of minutes or hours). At each period
the seller assigns a fraction of a specific location (or ckann
as defined below) to each contract. This isapémize-and-
dispatchapproach [16]. Given this, we can can define an
MDP using the following components.

Channels. The supply of locations can be dynamically
abstracted intechannelsbased on the current contradss
A channelaggregatedocations: two locations will be part
of the same channel if they are indistinguishable from the
point of view of fulfilling the demands of any contract. Bids
are then assigned to specific channels rather than speeific lo
cations, thus dramatically reducing the size of the degisio
space. Bidders do not specify channels in their contracts,
only location properties of interest to them. The relevant
channels are constructed automatically by developingta sui
able algebra of location properties. We do not provide de-
tails for lack of space, but illustrate with a simple example
if bid b; makes an offer for banner ads on any page of the
NY Times site (NYT), whileb, makes an offer for any page
with a medical article (Med), then three aggregate channels
are created: one corresponding to a NYT and Med (i.e., a
Times page with a medical article, with the potential to sat-
isfy both bids), one to NYT without Med, and one to Med
on a non-NYT site. This approach can render the space of
channels exponentially smaller than the number of potentia

E ()

locations. We use subsumption and inconsistency based on
the semantics of page properties to further reduce the num-

ber of relevant channels.

nel size is derivable from the distributional informati&¥
over page hits. The general model also allows for antici-
pation of uncertain future demand via a distributiBf on
the spot demand, as described above. (We do not explicitly
model new demand from expressive bids because there are
infinitely many possible expressive bid types, but a rough
model of them can be incorporated into spot demand.)
Decision space. The decision space consists of the as-
signment in each period of a percentage of the capacity of
each channel to each contract. Decision variables are then
{a}; 1 i < C,j < B,t < T}, wherex]; denotes the per-
centage of channelassigned to contragtat periodt. Some
channels will not be “relevant” to a particular contrace (.
do not contribute to the satisfaction of that contract) dred t
correspondin@ﬁj are removed. WittB contracts and an av-

erage ofC relevant channels per contract, we haueBC)
decision variables per period.

Abstraction techniques. The MDP decision space is dic-
tated by the number of channels and time periods. If the time
resolution specified by bids results in too large an action
space to solve effectively (or too many decision variables
for the optimization methods discussed below), we can ag-
gregate time into larger intervals. The potential impact on
optimality can be mitigated by performing the aggregation
only for distant times, while maintaining finer-grainedaes
lution in the near-term, especially since supply/demased pr
dictions will tend to be less accurate deeper into the future

Potentially more problematic is that certain sets of bids
could cause an exponential explosion in the number of chan-
nels, even with a judicious channel construction algorithm
Here we have developed methods to further abstract chan-
nels beyond the granularity implied by the bids. For in-
stance, in the example above, we could merge the two chan-
nels “NYT and Med” and “NYT without Med"” into a single
channel “NYT” for optimization. The dispatcher can cor-
rect for the loss in optimality to some degree by ensuring
that bids are dispatched based on the actual features speci-
fied. Thatis, a bid for “NYT and Med” would be dispatched
only to NY Times pages with medical articles, even if the
optimizer-computed policy suggests otherwise. Variafits o
our optimization methods to account for such abstraction is
beyond the scope of this paper.

MDP formulation. With these components in place,
we can formulate the stochastic optimization problem as an
MDP. For each contragte B, let.S; denote the set afon-
tract states A contract states; € S, is a sufficient statistic
summarizing relevant aspects of all past location alloceti
to j that enables the accurate prediction of contract satis-
faction or revenue given any future sequence of allocations
The state space of the MDP$s= [ [, ;.

Let X be the set of mappings

X={z:BxC—[01]]> z;<1VieC}

jeEB
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achieved (in expectation) by I> denotes that CTs are
achieved byt’ (but nott), T, denotes how many CTs be-
yondr have been achieved, ad, denotes the number of
impressions on channej.

The speed associated with moving from an MDP to a
MIP is often dramatic. MIP solvers customized for auction-
clearing can handle problems with tens of thousands of dis-
tinct items (multiple units of each), millions of bids, and
hundreds of thousands of side constraints [19]. Our deter-
ministic MIP formulation using expected channel size is rea
sonably tractable: the decision space is laf@@3CT'), but

| manageable with suitable choice of period size and appro-

Here z;; is the fraction of channel € C' is assigned to
contractj € B, and X is the decision space of the MDP
(for periodt). A nonstationary policyr = (r!,..., 77 isa
sequence of state-dependent fractional channel assigamen
to contracts:w® : § — X. The dynamics of the MDP
is given by (time-dependent) transition functiaRs where
Pt(s'|z, s) denotes the probability of reaching statet the
end of periodt when the state entering periagds s and
allocationz is used during period This transition function
can be defined using the supply distributiBri, CT rates,
and (if appropriate) the demand distributi&? .

Bellman equations can be used to define both the optima

value function and the optimal policy: priate aggregation of channels.
If the distributions over expected supply (or future de-
VTt (s) = R(s) and for t € [1,T] we have mand) have sufficiently high variance, then this expeatatio

based approach may be far from optimal, in particular, if we

t _ t toot t+1, 1
Vis) = mfo (s,2) + Z Pi(slz, s)V(s) adhere to the expectation-based policy in the face of actual

. . ses . o supply realizations that differ significantly from their ares.
7' (s) = arg max R'(s, ) > P |z, ) V(S Reoptimization offers a way of recovering from such devia-
s'es tions, and requires simply re-solving the MIP, using the up-

HereR(s) = Y_.., R;(s;) denotes the terminal value (at dated contract states and updated supply (and demand) pro-
JEB “MI\7) . . . R 4
the end of periodl’) associating with realizing joint con- jections. \_Nhlle this does not allow one to account for risk
tract states (reflecting any sequential or set-based revenue, OPtimally, it does allow a form of recovery from unexpected
e.g., bonuses)Ri(s,z) = 3. R(s;,x;) denotes the events. Reoptimization can be triggered at any time (e.g.,
AR ’ jE Pl

expected item-based revenue generated during péeriod when demand has drifted far from projection/expectation),
The optimal policy will maximize expected revenue for and need not be tied to the time discretization used in the

the seller across tHE-stage decision process. The key diffi- m_odell. (In the experi_ments ir_1 tahis paper, we trigger reopti-
culty in solving this MDP is the size of the state space, con- mization once every time period.)

sisting of the cross-product of the individual contractesa Online stochastic optimization

as well as the high-dimensional continuous action space.

. . Another approach to solving a subclass of large scale MDPs
Expectation-based (re)optimization is sample-based online stochastic optimizatjh8]. Sam-

One way of dealing with the complexity of solving this MDP ples are drawn from the distribution of uncertain eventd, an

is to ignore the uncertainty, solving a deterministic madel ~ & deterministic optimization problem, scenarig is con-
which uncertain channel sizes are replaced by their expecta Structed using each sampled realization. Each scenario is
tions. Letz! denote theexpectedsize of channel € C at _solved and_the resul_ts are aggregated to construct an approx
time ¢. Optimal allocation of channel capacity to contracts imately optimal decision at the current period in the under-
can readily be formulated as a mixed-integer program (MIP) 1Ying MDP. The method inlinein that the sample-based
for most natural forms of expressiveness. Specifically, we OPtmization is repeated after the current realization of u

will have decision variables!. > 0 for eacht within the certain events. Thatis, the approach determines the oely th
horizon of the contraci € B and relevant channeéle C nextaction (in our case a fractional dispatch decision) rather
with the constrain®_, xf; < 1 for all 4,t; thena?; 2 de- than an entire policy for the MDP.

notes the quantity of channehssigned tg in periodt. We This approach can be extremely effective on problems
encode the objective to allow for accurate assessment of the for which good algorithms exist for the deterministic prob-
payment of each contragt The encoding depends on the lem [12]. A critical aspect of the model is the requirement

contract language/expressiveness permitted; to givearflay  that domain uncertainty is exogenous; thattis distri-
consider a very simple example. bution over future events should not be influenced by the

pressions on channels andcs: roughly true in our domain: the assignment of channels to
advertisers will have little discernible effect on the izaf

1. nothing f9r01 impressions if few_er than CTs ) tion of future supply or demand. Thition independence
2. $10,000 if at least CTs are achieved an by periodt is vital as it allows valid sampling of scenarios prior to the
3. $8,000if atleast CTs are achieved an by ' > ¢. optimization of these scenarios (i.e., action choice bydthe

4. $0.50 per CT om; afterr CTs have been achieved.

5. $0.25 per impression an prior to timet”’. 8if time periods were so short that deterministic optimiaati

; At . could not be realized online between consecutive pericahsl +
We encode the following as part of the objective in the MIP: 1, it can be applied over multiple periods (e.g., the updatates

1000017 + 800072 + 0.5T1 + 0.25 X5, after periodt is used to compute a new deterministic policy that is
where [; is an indicator variable denoting thatCTs are put in place in period + ¢ for someg > 1).



cision maker), a fact exploited to great effect below.

We adapt the RGRETSalgorithm [4] to our banner ad
optimization setting. In its original formulation, it asaes
a setX’ of decisions are to be made at tirhand that there

finds the optimal allocation of capacity to contracts forttha
realization. Unfortunately, we must also estimate the ealu
of all alternative stage decisions for the scenario: in the
context of our problem this is theontinuous fractional al-

is a generative model that can be used to sample uncertainlocation of the supply of each channel to higeeventing the

events over horizof, ..., T]. The algorithm sample&
scenarios, solving the deterministic optimization prable
for each. Given scenario, := GetSample(t + 1,T) and
current states;, supposeOptimalSoln(s;,wy) is “easily”
solvable using some deterministic combinatorial optimiza
tion algorithm. In our setting, the offline problem consists
of allocating known location supply to known ad demand
over the planning horizon. Let* denote a solution to the
offline problem with total valuev(«*) and decisior:*(¢) in

the current period. RGRETSworks as follows:

Input: Current timet, decisions in current timg’,
K scenarioss® current state.
forz e X, f(z) —0
fork=1...K:
wi «— GetSample(t 4+ 1,T)
xz* — OptimalSoln(st, ws)
f@* () — fe* () +w(z")
forz e X\ {«"(¢)}
f(x) — f(z) + w(z") — Regret(c*, z, 51, wr)
Output: Decision for timet is arg max{f(z) : z € X'}
along with estimated expected valjier)/ K.

Here, Regret(z*, x, s¢,wy) IS an upper bound on the loss
associated with taking decisianat timet (the current pe-
riod) in scenariau;, and then adopting the policy dictated by
the deterministic solutiom* at future period$ + 1,--- , T,
rather than executing* from the current period (i.e., acting
optimally for w;). Using MDP terminology, regret bounds
the (negativepdvantageof actionx relative to the optimal
offline solutionz*; we can interpret regret as:

—t —t
. RegTEt(I*vxv Stawk) 2 Vﬂ.(St) - Qm(st)'
whereQ, (s;) is the value of performing action at time

t and then “acting optimally” thereafter, alefT(st) is the
value of acting optimally (both relative to sampled scemari
w*). Regret is then used in the estimgter) /K of the Q-
value of each actiom in the current state.

We now consider the application ofERRETSto banner
ad optimization. The algorithm is run once per period and
is used to select the decision at the current period (time
Once the decision is taken, new supply and demand informa-
tion is observed and RsRETSreoptimizes for subsequent
periods. A key feature of the BEGRETS algorithm is the
fact that, by assigning a value to each decision at time
we can take advantage of a single optimization (for one sam-
ple) providing us with (perhaps crude) information aboet th
expected value ofX| potential decisions, rather than just

direct use of the RGRETSalgorithm. Discretization of deci-
sion variables would be ineffective due to the dimensidyali
of the problem.

We propose a new technique for estimating the value of al-
ternative decisions with large numbers of decision vaeabl
in continuous spaces, without enumerationtaf We thus
extend the applicability of the ®EsRETSalgorithm. As in
REGRETSwe generatek scenarios (realizations of chan-
nel sizes) over the period, ..., T], and solve the associ-
ated offline optimization problem for each. This gives, for
each scenarié < K, a fractional allocation of each chan-
nel at each period to each contract. Denote this solution by

%, = (x4, %tF . xT), where eackk! is a vector of al-
locations for period’: <i§;>i§07j§3. We cannot evaluate
the continuous space of alternativestaget decisions for
each scenario. However, the ultimate goal is not actually to
evaluate each such decision, but to find the stadgcision
that has the highest (estimated) expected value over sdmple
scenarios. This can be accomplished by solving a single, rel
atively simple “scenario-aggregating” Mi®ithout explicit
enumeration of the decision space.

Letx" = (zf;)i<c j<p be any stage decision. We can
estimate the Q-value of this alternative decision in sderiar
by simply pinning down the allocation schedulg at stages
[t +1,...,7] and replacingk} with this new value; note
that the decisions it + 1,...,T] remain feasible in our
setting because they specify a fractional allocation golic
of whatever supply is realized. Indeed, this value is lin-
ear in the variables! (as in the original MIP). Note that
only staget allocations are variable now; all decisions at
later stages are fixed by,. Denote this value)! (x*):
this is equivalent to the (lower bound) estimate of Q-values
for deterministic scenarios in theeRRETSalgorithm (i.e.,
w(x*) — Regret(z*, z, s¢,wy)). This provides an underesti-
mate of the value of the new decision in scenatio

We can now compute the stagelternative decision with
maximunexpected “Q-value” over th& sampled scenarios
by solving the following optimization problem (subject to
the channel capacity constraints):

= 3 QL6

k<K

max
xt

3

This is the “optimal” decision for stageand involves only
decision variables for a single stage of the process (rather
than for each stage). Thus once we havekuiull optimiza-

one. Of course, the effectiveness of this approach dependstions for the X' sampled scenarios, computing the “regret-

heavily on having a quality regret bound. Additionally, for
REGRETSto be effective, regret computation must be much
faster than full (deterministic) optimization.

The REGRETSmethod in [4] cannot be directly applied to
ad optimization becauserequires the set of decisiors to
be small and discretéd sampled scenario is a realization of
channel sizes over time, and the deterministic optiminatio

sanctioned” optimal decision is straightforward.

There is some subtlety in dealing with budgets when solv-
ing the scenario-aggregating MIP. L&Y; be the (remain-
ing) budget of contract € B, and letQ], ;(x") be the por-
tion of the Q-value ascribed to contrgctinder decision’
in scenariok. To account for budgets, it is not appropri-
ate to add constrain®@;, ;(z*) < D; for each contracj.



is ill-understood, so these are not tested on traditionel au
different scenariog and%’, leading to the possibility that tions. For traditional bidders, we consider two differeiat-b
QLJ,(It) < D; while ?«,j(xt) > D;. However, any rea- ding strategiesmyop_ic optimization (MOandbid-all (I_3A),
sonable dispatch algorithm would stop serving ads to a con- Which map expressive contracts or “preferences” into per-
tract once its budget limit is reached. Thus, we interpret itém bids in ways described later. For expressive auctions,
x! as specifying upper bounds on the allocation of supply the contracts are simply taken as given, but we compare our

For any decisionx’, generallyQ;, ;(x') # Qj. ;(x") for

to contracts; otherwise, the MIP will discard an allocation
that is very good on average if the budget constraint is vio-

lated even in a single scenario. L@;] (z*) be the “budget-
independent” value obtained By we simply impose that

Qiyj(a:t) = max( A’,fc_’j (z'), D;).
Empirical evaluation

To investigate the effectiveness of our expressive modzl an

optimization techniques, we tested our methods on four sets
On two of these sets,
we also compared our expressive methods to more “clas-

of randomly generated problems.

sic” auctions. The latter comparison was necessarily dichit
by the ability to understand how bids would be constructed
for inexpressive auctions by bidders with expressive prefe

ences. Our comparison is also complicated by the fact that

equilibrium strategies are not known in expressive, dyiwami
first-price auctions of the kind studied here, nor in staddar
(non-expressive) dynamic auctions (first-price or otheeyi
when bidders have non-linear valuations on sequences of a
locations, or even when bidders have budget constraints.
Ideally, we would generate biddpreferencesgor various

campaign types, map these to suitable bids, and compare

efficiency and revenue in different models. However, as dis-

two different optimization techniques. The following tabl
summarizes the major classes of experiments:

Auction: Classic Auction: Expressive

Bid: MO | Bid: BA | Opt: exp.| Opt: stoc
Pref: flat v v v v
Pref: bonus X X v v

Within each class, we also vary the supply distribution.
Preferences/contracts. We created four sets of ten ran-
domly generated problems, each of which was characterized

by one of two contract distributionfiat or bonus and one
of two channel supply distributionsinimodalor bimodal
All problems have 10 channels and 50 bidders. Each bid-
derj € B has a contract that is valid during time window
[T, T;7], with ;- < T, each drawn froni/[1,10]. A
bidder has a positive bid on a subset of changglswith
|Cj| ~ U[1,10].

The flat contract distribution models the type of expres-
siveness supported in traditional ad auctions. A bidder has

I_ﬂat, per-unit bids on a set of channels, along with a bud-

get over all its bids. Specifically, a biddgrhas a per-
impression bidb; ; ~ U[0.1, 1] for channeli. It also has
random parametet; ~ U[0.1, 1.0], and its budget is set to
o Ty max;ec bj i, wherey, is the mean supply of chan-

g i _ . - - _ + ;
cussed above, equilibrium bidding strategies are not known N€lé in a single period and; = 7" — T)" + 1, i.e., the

even for mild forms of expressiveness, so this is not feasi-
ble. Instead, we generate expressive bids/contractstiglirec

number of periods for which a bid is valid. We model the
spot market as a single bidder that bid$ on all channels

for our expressive auctions. We compare revenue generated"ith no budget constraint. An example biddewith a flat
by both our expectation-based and stochastic optimization contract might have positive valuations on channessd
methods for such bids. These bids can also be viewed as? during time window(3, 7]. If thf’ mean channel supplies
surrogates for bidder preferences: thus we also use them as@'®i = 200 andp;; = 100, if j's bids areb; ; = $0.30

input to two heuristic bidding strategies we consider far tr

ditional, non-expressive auctions. These heuristicsrare i
spired in part by existing observations about bidding strat
gies in Internet advertising markets, as discussed latés T

andb; » = $0.70, and if «; = 0.6, thenj's budget is
0.6-(7—341)-max(0.3-200, 0.7-100) = $210.

The bonuscontract distribution includes expressiveness
not supported in traditional ad auctions. The distribution

allows us to compare, subject to the appropriateness of our includes two types of bidders: bonus bidders and flat bid-

assumptions, the revenue properties of traditional and ex-

pressive auctions, illustrating the potential advantades-

ders. A bonus bidder offers a large payment if it reaches
a bonus target for its bids, but offers only a small payment

pressive bidding with respect to revenue (and, to the extent (P€low even the spot market value) if it misses the target.

revenue reflects allocative efficiency, social welfare).

Our tests are divided along the following dimensions,
each elaborated below. We first consider two different forms
of expressive contract$;lat and Bonus reflecting differ-
ent types of biddepreferences We also consider allocat-
ing channel supply either usirgiassicper-item auctions or
ourexpressivéechniques. As explained below, constructing
bidding strategies for traditional auctions for bonus cacts

’In various special cases, equilibrium of generalized secon
price pay-per-click auctions have been analyzed [22, 7, 48]
line generalizations of VCG for expressive, dynamic dormiave
been proposed [17]; and means for dealing with approximalie p
cies in mechanisms exist [11, 15]. But none of these methods o
analyses apply to expressiveness forms we consider here.

In contrast, a flat bidder offers higher per-unit bids, but no
bonus. Uncertainty in channel supply makes it particularly
challenging to maximize revenue given the bonus contract
distribution. Since bonus bidders pay little if they missith
bonus targets, the optimizer must adequately accounsfor ri
when deciding what fraction to allocate to them.

The specific parameters of the bonus contract distribution
are as follows. With probability 0.5, a bidder is as in the
flat distribution, but withb; ; ~ UJ0.5,1]. Otherwise, the
bidder has a per-impression bigl; ~ U[0, 0.5] for ¢ € Cj,
but is willing to pay an additional bontiz.;qj if it obtains a
total of ¢; impressions on those channélsfor which it has

positive bids, withb; ~ U[1,5] andg; = o;T; 3,0, 1t
wherea; ~ UJ0.1,1]. The budget for a bonus bidder is



bjq; + oT; max;ec b; ;1t;. We model the spot market as in
the flat contract distribution, but with bid valies.

An example bidderj with a bonus contract might have
positive valuations on channeland:’ during time window
[3, 7]. Letthe mean channel supply for eachhe= 200 and
pi = 100. The per-unit bids aré; ; = $0.10 andb; ; =

$0.30, and the per-unit bonus s = 3. If a = 0.5, then the
bonustargetig; = 0.5-(7—3+1)(2004100) = 750. Thus
the bidder will pay a bonus & - 750 = $2, 250 if it gets a
total of 750 page views on channélandi’. The bidder’s
budgetis750- max(0.1-200, 0.3-100) 42, 250 = $24, 750.
Supply distribution. The unimodalsupply distribution
models the case when supply is relatively steady and pre-
dictable. Here, for each period, a chanhdlas a supply
drawn from a Poisson with mean ~ U[10, 1000].

The bimodal distribution (crudely) models the non-
parametric nature of web traffic (e.g., how it might vary
given a major news event). The supply of channgldrawn
from a mixture of two Poissons. A hidden binary vari-
able determines which Poisson distribution is active aheac

b; 4 because the price of channel 4 is below its bid value.
The bidder will not includé; » or b; 3 in its optimization
because the prices channels 2 and 3 are above its value for
them. The bidder then computes which of channels 1 and 4
will maximize value, given the mean supply of the channels
and its budget, and then submits the selected bids (forreithe
or both channels) at its bid values.

We chose not to develop bidding strategiesfonuscon-
tracts in classic auctions because their highly non-limear
ture makes good strategies much less obvious.

Set up. In a given experiment run, each of the ten in-
stances saw 100 trials, each with a different realization of
channel supply. For thigat contracts, we ran all four meth-
ods on each trial (i.e., each method experienced the same
realized supply), while we ran only the expressive methods
on thebonuscontracts (as explained above). The continuous
ReEGRETSsalgorithm used 10 sampled scenarios in each trial
to determine an allocation. For each instance, we simulate
the auctions and channel realizations according to thelgupp
distribution and bids. The classic auctions are run at each
time stage. For classic auctions, we dispatch the ad of the

stage. For a given channel, the mean of one Poisson is drawnhighest bidder to a channel until its budget is depleted-(dur

from U[10, 100], the other fron/[100, 1000]. The state of

ing a given stage). For expressive auctions, we randomly

the hidden variable persists for a random number of stages dispatch according to the specified decision fractions.eOnc

(Poissonyu = 2), after which it switches value (triggering a
switch to the other distribution).

Bidding strategies. For the classic (inexpressive) auc-

a contract exhausts its budget, we stop dispatching to it.
Experimental results. Table 1 compares the average
ex postrealized revenue from the bids for the two bidding

tions, we run a separate auction for each channel, but an strategies in traditional auctions and the two optimizatio

overall budget constraint is enforced in dispatch. In adbsa
the pricing rule is pay-your-bid, and, for simplicity we as-

methods for expressive auctions, considefiagcontracts
and for the two different models of supply. The MO strat-

sume that payments are per impression. Bidding strategies egy gives rise to greater revenue than the BA strategy, but

for flat contracts have been widely studied for classic auc-
tions; we consider two possibilities here. We refer tolitte

all (BA) strategy as that in which a bidder simply submits all
of its positive-value bids. However, as some [5, 9, 18] have
observed, if the supply is known and the highest competing
bids are fixed and known (which they are not, of course),
a bidder should select the bids that maximize its profit at
the cost of the highest competing bids, subject to its budget
constraint. We incorporate this idea intongopic optimiza-
tion (MO) strategy as follows. A bidder computes the set
of channels that would maximize the value of its bids given
its budget and the prices from the last auction round, and
then submits its bids at face value. If it either won a chan-
nel in the last round or did not bid on a channel whose price
was lower than its bid, the bidder assumes it could win the
channel at its bid level and considers the channel in its opti
mization. Otherwise, it ignores the channel. The bidden the
optimizes its channel selection assuming that the sitaatio
fixed for all future periods. It can reoptimize at each stage.

To see how thdO strategy works, assume that bidger
bids arebj,l = $0.50, bj,g = $0.20, bj73 =$0.70 andbj,4 =
$0.60 for channels 1, 2, 3, and 4, respectively. Assume that,
in the previous roundj submitted bidsh; ; andb; o, but
not bidsb; s andb; 4. Currently,j is winning channel 1 but
not channel 2, and the prices for channels 3 and 4@&9
and $0.50, respectively. When determining which bids to
submit in the next auction roung,will include b; ; in its
optimization because it is winning the bid, and will include

it still realizes only~ 70% of the revenue obtained by the
expressive auctions. The stochastic and expectatiordbase
approach perform (statistically) the same on these prahlem
Assuming that bids in the expressive auctions do indeed pro-
vide adequate surrogates for bidder preferences (enabling
turn a comparison with classic auctions populated with bid-
ders with heuristic strategies), these auctions have teven
properties that are superior to traditional auctions sjppee-

tive of whether the MO or BA bidding strategy is used by
bidders. Furthermore, to the extent that increased revenue
reflects improved allocative efficiency, then this advaatag
would also be expected to extend to efficiency.

Approach | Unimodalsupply Bimodalsupply

Bid-all 25,687 + 436 14,004 £+ 141
Myopic 30,256 £ 437 15,890 £ 175
Expectation| 42,365 + 581 22,385 £ 227
Stochastic 42,237 £ 581 22,774 £ 238

Table 1: Classic vs. expressive auctions fiat contracts.
Average values shown with 95% confidence intervals.

Table 2 compares the revenue for the expectation-based
and our stochastic optimization algorithms, on the two sets
of problems withbonuscontracts. There is a pronounced
advantage to using stochastic optimization when there are
bonuses. The expectation-based algorithm obtains 67.1%—
85.9% of the revenue that stochastic optimization yields.
Note that the strong performance of the stochastic alguorith
was achieved with few sample scenarios, requiring about 11
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