
Too Many Cooks: Coordinating Multi-agent Collaboration
Through Inverse Planning∗

Extended Abstract

Rose E. Wang∗
MIT

rewang@mit.edu

Sarah A. Wu∗
MIT

sarahawu@mit.edu

James A. Evans
U. Chicago

jevans@uchicago.edu

Joshua B. Tenenbaum
MIT

jbt@mit.edu

David C. Parkes
Harvard

parkes@eecs.harvard.edu

Max Kleiman-Weiner
Harvard, MIT, & Diffeo

maxkleimanweiner@fas.harvard.edu

ABSTRACT
Humans collaborate in dynamic and flexible ways. Collaboration
requires agents to coordinate their behavior on the fly, sometimes
jointly solving a single task together and other times dividing it up
into sub-tasks to work on in parallel. We develop Bayesian Delega-
tion, a learning mechanism for decentralized multi-agent coordi-
nation that enables agents to rapidly infer the sub-tasks that other
agents are working on by inverse planning. These inferences enable
agents to determine, in the absence of communication, whether
to plan jointly with others or work on complementary sub-tasks.
We test this model in a suite of decentralized multi-agent envi-
ronments inspired by cooking problems. To succeed, agents must
coordinate both their high-level plans (sub-task) and their low-level
actions (avoiding collisions). Including joint sub-tasks in the prior
of Bayesian delegation enables agents to carry out sub-tasks that
neither agent can finish independently. The full system outperforms
lesioned systems that are missing one or more of these capabilities.
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1 INTRODUCTION AND ENVIRONMENT
Real world collaboration is challenging as it requires people to coor-
dinate their behaviors. In this work, we build collaborative agents
that coordinate to solve hierarchical tasks inspired by the video-
game Overcooked [2]. These problems are challenging because of
the variation that is present between problems: the specifics of
the environment and task objectives can drastically change the
coordination strategy, so successful collaboration requires flexible
and abstract mechanisms. Specifically, our agents unify solutions
to three challenges of coordination: (A) Divide and conquer: agents
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work in parallel when sub-tasks can be carried out individually,
(B) Cooperation: agents work together on the same sub-task when
required or most efficient, (C) Spatio-temporal movement: agents
avoid getting in each others way while working separately or to-
gether.

We study decentralized Markov decision processes (Dec-MDPs)
with a partial order of sub-tasks over object-object interactions
[3, 4]. We use this formalism to develop a test suite based on simple
kitchen cooking tasks where sub-tasks are different parts of a non-
linear recipe. The left column of Figure 1 shows the different kitchen
layouts and the top row shows the different recipes which can be
composed together. Agents move simultaneously in any cardinal
direction or can stay still. The kitchens have counters that contain
movable foods and plates and immovable knives. Agents pick-up
objects by moving into them and can put them down on counters
by moving into it. The goal is to deliver the completed recipe to the
star. Agents optimize reward by completing delivery in as few time
steps and movements as possible.

2 MODEL
We introduce a novel a hierarchical planning algorithm for multi-
agent coordination based on probabilistic inference over sub-tasks.
At a high-level, each agent must decide which sub-task they should
do next. We develop a new algorithm called Bayesian Delegation
which enables agents to probabilistically take into account the
unobserved intentions of other agents in order to dynamically
decide whether to divide and conquer on different sub-tasks or
cooperate on the same one. At a low-level, agents use model-based
reinforcement learning to find approximately optimal policies for a
specific sub-task. Planning is decentralized at both levels i.e., each
agent plans and learns for itself without sharing any information
with others. This contrasts with existing work on multi-agent task
allocation, which rely on communication or pre-coordination to
centralize beliefs or share the global state [1, 7].

High-level planning (sub-task): Bayesian Delegation uses theory-
of-mind action understanding to plan over sub-tasks. Under Bayesian
Delegation, ta is the set of all possible allocations of agents to sub-
tasks where all agents are assigned to a sub-task. For example if
there are two possible tasks ([T1,T2]) and two agents ([A1,A2]), then
ta = [(A1 : T1,A2 : T2), (A1 : T2,A2 : T1), (A1 : T1,A2 : T1), (A1 :
T2,A2 : T2)] where A1 : T1 means that agent A1 is assigned to
sub-task T1. Thus ta includes the both the possibility that agents
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will divide and conquer (work on separate sub-tasks) as well as
the cooperate (work on the same sub-task). Each element of ta is a
high-level plan. If all agents pick the same element, they will easily
coordinate. However, in our environments, this was not possible.
Agents maintain uncertainty about which element of ta the group
should execute, P(ta).

Each time step, the agent selects the most likely sub-task allo-
cation ta∗ and plans actions according to that sub-task allocation
(low-level planning): ta∗ = argmaxta P(ta |H0:T ), with P(ta |H0:T )
the posterior over ta after having observed a history of actions,
H0:T = [(s0, a0), . . . (sT , aT )] where T is the number of time steps
in the history. This posterior P(ta |H0:T ) is computed at time stepT
according to Bayesian inference:

P(ta |H0:T ) ∝ P(ta)P(H0:T |ta) = P(ta)
T∏
t=0

P(at |st , ta)

where P(at |st , ta) is the likelihood of action for all agents. Note
that these belief updates do not explicitly consider what each agent
knows about their own sub-tasks at time T − 1. Rather, the model
only considers the information that is known by all, i.e., a third-
party observer would know. The likelihood is computed by inverse
planning using a soft-max to account for non-optimal and variable
behavior: P(at |st , ta) ∝ exp(β ∗Q∗

ta (s, a)), where Q
∗
ta (s, a), the ex-

pected future reward of actions towards the completion of sub-tasks
ta, is computed by low-level planning and β controls the degree to
which an agent believes other agents are optimizing.

Low-level planning (action): Low-level planning takes a goal
induced by the sub-task selected next by the high-level planner, Ti ,
and outputs a sequence of low-level actions for the agent to execute.
Agents use bounded real-time dynamic programming (BRTDP) to
approximates an optimal policy, πTi (s), under the Dec-MDP induced
by the chosen sub-task [8]. To avoid collisions, agents best-respond
to non-strategic (level-0) models of their partners. To cooperate
on a sub-task, agents simulate a fictitious joint plan and then act
according to their role in that shared intention [6, 9].

3 RESULTS AND DISCUSSION
Agents play with each other in nine levels (3 kitchens x 3 recipes).
Experimentswere replicatedwith 50 random seeds and each episode
was 100 time steps. The softmax in the Bayesian inference is β = 0.3.
With lesioned versions of our model, we investigate the importance
of Bayesian Delegation and joint planning for successful multi-
agent coordination. The first lesion (NJP) has Bayesian Delegation
but agent’s cannot simulate fictitious joint plans, i.e., no cooperating
on the same of sub-task. The second lesion (NJP+NBD) has neither.
These agents make no inferences about others and optimize sub-
tasks without concern for what others are doing.

Figure 1 shows empirical results for the time it takes to complete
the level for all three models. On simpler planning problems (row 1,
column 1), the models are comparable to each other, but when faced
with more complex recipes NJP and NJP+NBD take significantly
longer to finish. For column 2, NJP maxes out because the agents
are unable to jointly plan, yet they can still perform inference over
each other. As a result, they often simultaneously yield to each other
(assuming the other will pass through) and generate a deadlock. We
hypothesize that this is also why NJP+NBD performs comparable

Figure 1: Performance of the Bayesian Delegation model
by number of time steps until recipe completion (lower is
better). The row shows the kitchen, the column shows the
recipe. The full model outperforms two lesioned models.
The error bars show the standard error of the mean.

or better than NJP: in certain situations, acting without regard for
the other is more effective than considering the sub-tasks of other
agents because it breaks symmetries.

Without the ability to reason about and for other agents, the
lesioned models produce frequent spatial miscoordination in rows
1 and 2. For instance, they may inadvertently block each other
from delivering separate dishes, or attempt to cross the kitchen
in the lower bottleneck at the same time. Both lesions also take
significantly longer than the full model because completion time
multiplies with the number of sub-tasks, and without Bayesian
Delegation each sub-task must be done individually.

We developed a new set of spatial and object-oriented cooking
challenges that require nuanced coordination to successfully com-
plete. In particular, subtle changes in the task or in spatial layout
call for different multi-agent strategies. We developed a unified ap-
proach inspired by cognitive science, Bayesian Delegation, which
rises to these challenges without communication between agents.
It gives rise to many natural aspects of human cooperation, such as
the emergence of and convergence of cooperative behavior when
joint planning is deemed better than planning alone, as well as
the natural decision to pursue one sub-task over another equally
feasible sub-task. Coordination is achieved through two key mech-
anisms: (1) inverse planning that enables agents to rapidly infer
the sub-tasks of other agents; and (2) joint planning that enables
agents to mesh their intentions and complete sub-tasks in ways
that neither agent could achieve on their own [5].
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